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ABSTRACT

Prompt-based methods have recently gained prominence in Continual Learning
(CL) due to their strong performance and memory efficiency. A prevalent strat-
egy in this paradigm assigns a dedicated subset of prompts to each task, which,
while effective, incurs substantial computational overhead and causes memory
requirements to scale linearly with the number of tasks. Conversely, approaches
employing a single shared prompt across tasks offer greater efficiency but often
suffer from degraded performance due to knowledge interference. To reconcile
this trade-off, we propose SMoPE, a novel framework that integrates the benefits
of both task-specific and shared prompt strategies. Inspired by recent findings on
the relationship between Prefix Tuning and Mixture of Experts (MoE), SMoPE
organizes a shared prompt into multiple "prompt experts" within a sparse MoE
architecture. For each input, only a select subset of relevant experts is activated,
effectively mitigating interference. To facilitate expert selection, we introduce a
prompt-attention score aggregation mechanism that computes a unified proxy score
for each expert, enabling dynamic and sparse activation. Additionally, we pro-
pose an adaptive noise mechanism to encourage balanced expert utilization while
preserving knowledge from prior tasks. To further enhance expert specialization,
we design a prototype-based loss function that leverages prefix keys as implicit
memory representations. Extensive experiments across multiple CL benchmarks
demonstrate that SMoPE consistently outperforms task-specific prompt methods
and achieves performance competitive with state-of-the-art approaches, all while
significantly reducing parameter counts and computational costs. Our code is pub-
licly available at https://github.com/Minhchuyentoancbn/SMoPE.

1 INTRODUCTION

Continual Learning (CL) is a critical research area focused on enabling neural networks to learn from
a sequence of tasks in dynamic environments while retaining knowledge from previous tasks (Aljundi
et al., 2017; De Lange et al., 2021; Zhang et al., 2023). A primary challenge in CL is catastrophic for-
getting, where performance on earlier tasks deteriorates as new ones are learned (McCloskey & Cohen,
1989; French, 1999; Mehta et al., 2023). Recently, prompt-based approaches have gained attention as
a promising direction in CL, offering strong performance and high memory efficiency (Wang et al.,
2022b;a; Smith et al., 2023; Le et al., 2024). These methods adapt pre-trained models using a small
set of learnable parameters, referred to as prompts, which function as task-specific instructions to
guide adaptation and alleviate forgetting. Several studies have demonstrated the effectiveness of
prompt-based methods, reporting state-of-the-art results across a range of CL benchmarks.

A common strategy in prompt-based CL is to allocate a distinct subset of prompt parameters to each
task (Wang et al., 2022a; 2023; Le et al., 2024). This task-specific partitioning helps mitigate interfer-
ence by isolating knowledge within separate prompt modules. While effective, such approaches face
several notable limitations. First, when task identity is unknown at inference time, the model must
infer the appropriate prompt for each input. Existing methods often rely on forwarding the input
through the full pre-trained model to compute a query, introducing non-negligible computational
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overhead (Huang et al., 2024; Kim et al., 2024). Second, assigning dedicated prompts to each task
hinders scalability and limits knowledge sharing. As the number of tasks increases, the number of
learnable prompt parameters grows linearly, making this approach inefficient for long-term continual
learning. Moreover, strict prompt partitioning restricts transferability by preventing the reuse or
adaptation of previously learned prompts, thereby limiting positive knowledge transfer across tasks.

In contrast to task-specific prompt methods, Huang et al. (2024) recently introduced OVOR, a
highly parameter-efficient and computationally lightweight approach that employs a single shared
prompt across all tasks. Despite its efficiency, OVOR underperforms relative to state-of-the-art
task-specific prompt methods. We hypothesize that this performance gap arises from excessive
knowledge interference: because the same prompt is continually updated across tasks, it struggles to
retain task-specific information, leading to degraded performance. This raises a key question:

(Q) Can we strike a balance between these two paradigms, retaining the parameter efficiency
of a single prompt while achieving performance competitive with task-specific approaches?

Most prompt-based CL methods rely on Prefix Tuning (Li & Liang, 2021) to integrate prompts into
pre-trained models. However, recent work by Le et al. (2024) offers a new perspective: each attention
head can be viewed as a composition of multiple Mixture of Experts (MoE) models (Jacobs et al.,
1991; Shazeer et al., 2017), and prefix tuning effectively introduces new prompt experts into these
models. Building on this insight, we propose SMoPE (Sparse Mixture of Prompt Experts), a novel
method that retains a single shared prompt while structuring it as multiple prompt experts within a
sparse MoE framework.

SMoPE introduces a prompt-attention score aggregation mechanism that computes a unified proxy
score for each expert, enabling sparse and dynamic expert selection for each input. Like OVOR,
SMoPE maintains a single shared prompt across tasks for high parameter efficiency. However, unlike
OVOR, which updates all prompt components uniformly, SMoPE selectively activates and updates
only a small, relevant subset of experts for each input. This targeted update mechanism reduces
interference and promotes positive transfer by reusing previously learned experts across tasks. A
common challenge in sparse MoE architectures is the risk of imbalanced expert utilization. To address
this while preserving learned knowledge, we introduce an adaptive noise mechanism that encourages
the use of underutilized experts without overwriting important ones. Furthermore, to enhance expert
specialization in the CL setting, we propose a novel prototype loss that leverages prefix keys as
an implicit memory of past tasks. Extensive experiments on standard CL benchmarks show that
SMoPE significantly outperforms task-specific prompt methods despite using a single shared prompt.
Moreover, SMoPE matches or exceeds the performance of current state-of-the-art methods while
reducing computational cost by up to 50% and requiring substantially fewer learnable parameters.

Contributions. The primary contributions of this work are: 1. We propose SMoPE, a novel approach
that integrates a sparse mixture of experts architecture into the prefix tuning framework, featuring
a prompt-attention score aggregation mechanism for efficient and dynamic expert selection. 2. We
introduce an adaptive noise mechanism to encourage balanced expert utilization without overwriting
prior knowledge, and a prototype-based loss that leverages prefix keys as implicit memory. 3. We show
that SMoPE achieves state-of-the-art results on multiple CL benchmarks, while using significantly
fewer parameters and reducing computation compared to existing prompt-based methods.

2 BACKGROUND AND RELATED WORK

2.1 CONTINUAL LEARNING

Continual Learning (CL) involves training a model on a sequence of tasks {D1, . . . ,DT }. Each task
Dt = {(xt

i, y
t
i)}

Nt
i=1 containsNt samples, where xt

i ∈ X t is an input and yti ∈ Yt is its corresponding
label. The primary objective is for the model, after being trained on task t, to perform well on the
set of all classes encountered up to task t, denoted by Y1:t =

⋃t
i=1 Yi. We focus on the challenging

class-incremental learning scenario (Van de Ven & Tolias, 2019; Wang et al., 2022b; 2023), where the
label spaces of different tasks are disjoint, i.e., Yt

⋂
Yt′ = ∅ for any t ̸= t′. A standard constraint in

CL is that data from previous tasks D1, . . . ,Dt−1 is unavailable when training on the current task
Dt. This sequential training process, without access to past data, makes the model susceptible to
catastrophic forgetting (McCloskey & Cohen, 1989; Nguyen et al., 2019; Mehta et al., 2023), wherein
performance on previously learned tasks degrades significantly as the model adapts to new ones.
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2.2 PROMPT-BASED CONTINUAL LEARNING

In vision tasks, prompting is typically applied to the Vision Transformer (ViT) (Dosovitskiy et al.,
2020), which consists of a sequence of Multi-Head Self-Attention (MSA) (Vaswani et al., 2017)
blocks. To illustrate how prompts are integrated, we first describe the standard MSA mechanism. Let
the input to an MSA layer be a sequence of token embeddings [x1, . . . ,xN ]⊤ ∈ RN×d, where N is
the sequence length and d is the embedding dimension. The MSA operation is defined as follows:

MSA(XQ,XK ,XV ) = Concat(h1, . . . ,hm)WO ∈ RN×d,

hi = Attention(XQWQ
i ,XKWK

i ,XV WV
i ), i = 1, . . . ,m, (1)

where XQ = XK = XV = [x1, . . . ,xN ]⊤ are the query, key, and value matrices, respectively;
m is the number of attention heads; and WO ∈ Rmdv×d, WQ

i ∈ Rd×dk , WK
i ∈ Rd×dk , and

WV
i ∈ Rd×dv are projection matrices, with dk = dv = d

m .

Most prompt-based methods (Wang et al., 2022a; 2023; Jiao et al., 2024) adopt Prefix Tuning (Li &
Liang, 2021), which introduces learnable prefix key PK ∈ RNp×d and prefix value P V ∈ RNp×d

parameters, prepended to the input key and value matrices of the MSA layer:

fPreT(X
Q,XK ,XV ) = MSA

(
XQ,

[
PK

XK

]
,

[
P V

XV

])
= Concat(ĥ1, . . . , ĥm)WO. (2)

During training, only the prompt parameters PK and P V are updated, while the pre-trained ViT
parameters, including WO, WQ

i , WK
i , and WV

i , remain frozen.

Conventional prompt-based continual learning methods, such as DualPrompt (Wang et al., 2022a),
HiDe-Prompt (Wang et al., 2023), and NoRGa (Le et al., 2024), typically allocate a separate set of
prompt parameters for each task. However, recent work by Huang et al. (2024) demonstrates that
a single prompt shared across tasks can achieve performance comparable to that of task-specific
prompting, raising questions about the efficiency and utilization of prompts in prior approaches.
While subsequent works have attempted to address related issues, they still present limitations. For
instance, the mechanism proposed by Gao et al. (2024) to mitigate incorrect prompt selection at test
time still results in a linear growth of prompts with the number of tasks. Similarly, the strategy of Roy
et al. (2024) to manage prompt growth by employing Large Language Models (LLMs) introduces
significant computational overhead due to its reliance on an external model.

2.3 MIXTURE OF EXPERTS

Mixture of Experts (MoE) extends classical mixture models by introducing an adaptive gating
mechanism (Jacobs et al., 1991; Jordan & Jacobs, 1994). For a given input h ∈ Rd, the MoE model
computes outputs from N ′ experts fj : Rd → Rdv , which are then combined using weights from a
learned gating function G : Rd → RN ′

as follows:

ŷ =

N ′∑
j=1

G(h)j · fj(h) =
N ′∑
j=1

exp (sj(h))∑N ′

ℓ=1 exp (sℓ(h))
· fj(h), (3)

where sj : Rd → R denotes the score function for expert fj . To enhance scalability, Shazeer et al.
(2017) introduced the Sparse Mixture of Experts (SMoE), a variant that activates only the top-K
experts with the highest scores. The set of these indices, denoted Kh, is formally defined as:

Kh = argmax
S⊆{1,...,N ′}:|S|=K

∑
j∈S

sj(h). (4)

The final output is then computed as:

ŷ =
∑
j∈Kh

exp (sj(h))∑
ℓ∈Kh

exp (sℓ(h))
· fj(h). (5)

By routing only a small subset of experts per input, SMoE achieves high model capacity with limited
computational overhead. This property has driven adoption in large-scale systems, including language
models (Fedus et al., 2022; Jiang et al., 2024; Comanici et al., 2025), computer vision (Riquelme
et al., 2021; Xue et al., 2023), and multi-task learning (Ma et al., 2018; Yang et al., 2024).
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3 METHODOLOGY

3.1 MIXTURE OF EXPERTS AND PREFIX TUNING

We adopt prefix tuning as our primary prompting strategy, following prior work. Furthermore, we use
a single prompt shared across all tasks, similar to Huang et al. (2024). Recent findings by Le et al.
(2024) show that each attention head in a ViT can be viewed as a structured composition of multiple
MoE models, framing prefix tuning as a way to add new experts to this structure.

Specifically, consider the output of the l-th head in Equation (2), denoted as ĥl = [ĥl,1, . . . , ĥl,N ]⊤ ∈
RN×dv . Let X =

[
x⊤
1 , . . . ,x

⊤
N

]⊤ ∈ RNd denote the concatenated input embeddings to the MSA

layer, and let PK =
[
pK
1 , . . . ,pK

Np

]⊤
∈ RNp×d and P V =

[
pV
1 , . . . ,p

V
Np

]⊤
∈ RNp×d.

We interpret each attention head as comprising N pre-trained experts fj : RNd → Rdv , together
with Np prompt experts fN+j′ : RNd → Rdv introduced via prefix tuning:

fj(X) = WV
l

⊤
xj = WV

l

⊤
EjX , fN+j′(X) = WV

l

⊤
pV
j′ ,

for j = 1, . . . , N , and j′ = 1, . . . , Np. Here, Ej ∈ Rd×Nd is a selection matrix such that EjX = xj .
The corresponding score functions are defined as:

si,j(X) =
x⊤
i W

Q
l WK

l

⊤
xj√

dv
=

X⊤E⊤
i WQ

l WK
l

⊤
EjX√

dv
,

si,N+j′(X) =
x⊤
i W

Q
l WK

l

⊤
pK
j′√

dv
=

X⊤E⊤
i WQ

l WK
l

⊤
pK
j′√

dv
,

for i = 1, . . . , N , j = 1, . . . , N , and j′ = 1, . . . , Np. With these definitions, the output of the i-th
token in head l can be expressed as an MoE model:

ĥl,i =

N∑
j=1

exp(si,j(X))∑N
k=1 exp(si,k(X)) +

∑Np

k′=1 exp(si,N+k′(X))
fj(X)

+

Np∑
j′=1

exp(si,N+j′(X))∑N
k=1 exp(si,k(X)) +

∑Np

k′=1 exp(si,N+k′(X))
fN+j′(X). (6)

Thus, each attention head can be regarded as a multi-gate MoE model, where each output token ĥl,i

is itself an MoE model. Crucially, only the prefix parameters PK and P V are learnable. Adaptation
is therefore restricted to training the prompt experts fN+j′ and their score functions si,N+j′ . These
experts complement the pre-trained experts in the attention head, enabling efficient task adaptation.

3.2 SPARSE MIXTURE OF PROMPT EXPERTS

The preceding analysis reveals that even when a single prompt is shared across tasks, multiple prompt
experts are still added to the pre-trained model. Their simultaneous activation leads to repeated
updates across tasks, inducing inter-task interference. To address this, we propose SMoPE, a novel
sparse mixture of experts architecture built on prefix tuning. By selectively activating only a subset of
relevant prompt experts, SMoPE introduces implicit parameter partitioning that mitigates interference.

Prompt-Attention Score Aggregation. Unlike standard MoEs where each expert has one score
function, the MoE architecture within the attention head utilizes a multi-gate mechanism. Specifically,
under prefix tuning, each prompt expert fN+j′ has N score functions si,N+j′ for i = 1, . . . , N , ren-
dering direct application of the standard SMoE framework non-trivial and computationally intensive.
To reduce this complexity, we introduce a unified proxy score that aggregates these individual scores:

s̃j′(X) =

N∑
i=1

si,N+j′(X)

N
=

X⊤Ẽ⊤WQ
l WK

l

⊤
pK
j′√

dv
=

x̃⊤WQ
l WK

l

⊤
pK
j′√

dv
, (7)

where Ẽ = 1
N

∑N
i=1 Ei is the mean extraction matrix and x̃ = 1

N

∑N
i=1 xi denotes the average

token representation. Importantly, this formulation eliminates the need to compute all individual
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scores si,N+j′; computing the single vector x̃ suffices to obtain the proxy scores s̃j′ . These proxy
scores are then used to determine expert selection and output composition:

ĥl,i =

N∑
j=1

exp(si,j(X))∑N
k=1 exp(si,k(X)) +

∑Np

k′=1 exp(s̃k′(X))
fj(X)

+
∑

j′∈KX

exp(s̃j′(X))∑N
k=1 exp(si,k(X)) +

∑Np

k′=1 exp(s̃k′(X))
fN+j′(X). (8)

Sample Complexity of Estimating Prompt Experts. Although the prompt-attention score aggrega-
tion is designed to activate only a subset of relevant prompt experts, we show in Appendix A that the
SMoPE model in Equation (8) maintains the same sample complexity for estimating prompt experts
as the standard MoE in Equation (6). Specifically, estimating the prompt experts fN+j′(X) in each
MoE variant with an estimation error of τ > 0 requires at most a polynomial number of data points
of the order O(τ−4). Therefore, SMoPE is as sample-efficient as the standard MoE for prefix tuning.

Sparse Prompt Expert Selection. Each prompt expert fN+j′ is now associated with a single unified
score s̃j′ , enabling the efficient selection of the top-K most relevant experts using Equation (4). This
yields the active expert set KX , and Equation (8) becomes:

ĥl,i =

N∑
j=1

exp(si,j(X))∑N
k=1 exp(si,k(X)) +

∑
k′∈KX

exp(s̃k′(X))
fj(X)

+
∑

j′∈KX

exp(s̃j′(X))∑N
k=1 exp(si,k(X)) +

∑
k′∈KX

exp(s̃k′(X))
fN+j′(X). (9)

Similar to OVOR (Huang et al., 2024), SMoPE employs a single prompt shared across all tasks,
ensuring high parameter efficiency. However, unlike OVOR, SMoPE activates only a sparse subset of
K prompt experts per input X within each MSA layer, introducing implicit parameter partitioning.
By updating only the relevant parameters, SMoPE reduces knowledge interference and mitigates
catastrophic forgetting. Importantly, this parameter selection relies solely on the current layer’s
input X and does not require precomputed query representations from a full model forward pass,
as in prior task-specific prompting methods (Wang et al., 2022a; 2023; Smith et al., 2023; Le et al.,
2024). As a result, SMoPE offers substantial reductions in computational overhead compared to
these approaches (Kim et al., 2024). Furthermore, by dynamically reusing relevant experts across
tasks, SMoPE naturally promotes knowledge sharing and transfer.

Implementation in Attention Layers. We now describe how the MoE formulation in Equation (9)
integrates with the attention mechanism. In prefix tuning, the attention matrix Al for the l-th head is
constructed as follows:

Al =
[
Aprompt

l , Apre-trained
l

]
=

XQWQ
l WK

l

⊤
[
PK⊤

, XK⊤
]

√
dv

=

[
XQWQ

l WK
l

⊤
PK⊤

√
dv

,
XQWQ

l WK
l

⊤
XK⊤

√
dv

]
. (10)

This decomposition shows that the full attention matrix comprises scores from both the prompt
experts (Aprompt

l ) and the original pre-trained attention (Apre-trained
l ). Since SMoPE modifies only the

prompt components, we adjust Aprompt
l while keeping Apre-trained

l unchanged. Based on Equation (7),
this adjustment requires only the computation of x̃. The SMoPE-adjusted attention matrix is then:

Ãl =
[
Ãprompt

l , Apre-trained
l

]
, Ãprompt

l = TopK

(
x̃⊤WQ

l WK
l

⊤
PK

√
dv

)
.expand(N,−1). (11)

Here, the Top-K operator selects the K most relevant prompt experts based on the proxy scores
s̃j′ , which are computed once per input and shared across all output tokens ĥl,i. Notably, while
conventional prefix tuning computes N scores per prompt expert at a cost of O(Ndk), SMoPE
reduces this to a single proxy score at O(dk), yielding up to an N -fold reduction in complexity.

5



Published as a conference paper at ICLR 2026

Add noise

Activation Frequency

TopK  Score Selection

Score of Prompt Experts 

෩𝑨𝒍
𝒑𝒓𝒐𝒎𝒑𝒕

𝑨𝒍
𝒑𝒓𝒆−𝒕𝒓𝒂𝒊𝒏𝒆𝒅

P
ro

m
p

t 
  
E

x
p

e
rt

s
P

re
-t

ra
in

e
d

  
E

x
p

e
rt

s

Expand by row

…

෥𝒙

Average

𝑿

𝑾𝒍
𝑸

𝑾𝒍
𝑲

Softmax

𝑾𝒍
𝑽𝑷𝑲

𝑷𝑽

Inactive prompt component

Active prompt component

Pre-trained component

Score added noise

Learnable

Frozen

Input Embedding

The 𝒍-th Attention Head

Figure 1: SMoPE Implementation in Attention Layers. The attention mechanism for each head is composed
of both pre-trained and prompt components. The pre-trained attention matrix Apre-trained

l is computed using
standard self-attention. To construct the prompt attention matrix Ãprompt

l , we first calculate the average input
representation x̃, and evaluate the scores for all prompt experts. During training, frequently activated prompt
experts are penalized by applying an adaptive noise to their scores, which promotes exploration of underutilized
experts for new tasks while preserving essential knowledge in critical experts. A Top-K selection operator then
identifies the most relevant experts based on these adjusted scores. The selected scores are row-expanded to form
Ãprompt

l . Finally, Ãprompt
l is concatenated with Apre-trained

l to produce the final attention matrix, which is applied to
the expert representations via a dot product, similar to the standard self-attention mechanism.

3.3 BALANCING EXPERT UTILIZATION WITH ADAPTIVE NOISE

A well-known challenge in training SMoE models is the imbalance in expert utilization, where a
small subset of experts dominates routing decisions while others remain underutilized or inactive (Mu
& Lin, 2025). This imbalance reduces the diversity of learned representations and ultimately limits
model effectiveness. We find that SMoPE exhibits a similar issue: during training, only a small group
of prompt experts is consistently activated across tasks. While SMoPE mitigates interference by
selectively activating experts, repeatedly relying on the same subset still risks knowledge interference.

Adaptive Noise Mechanism. To address this issue, we introduce a novel adaptive noise mechanism
that promotes more balanced expert utilization in continual learning, as follows:

KX = argmax
S⊆{1,...,Np}:|S|=K

∑
j′∈S

(s̃j′(X)− ϵj′), (12)

ϵj′ =

{
ϵ · (maxj s̃j(X)−minj s̃j(X)) if train and Fj′ ≥ 1

Np

∑Np

j=1 Fj

0 otherwise
(13)

where ϵ ∈ [0, 1] is a hyperparameter, and Fj′ denotes the accumulated activation frequency of prompt
expert fN+j′ , i.e., the proportion of instances in which expert fN+j′ was selected across previous
tasks. We define a prompt expert as important if its activation frequency exceeds the average across
all prompt experts within its attention head. These experts, having been frequently activated, are
expected to encode essential prior knowledge. The adaptive noise mechanism specifically targets
these important experts, applying the noise penalty only to those with activation frequencies above
the mean. This penalization encourages the selection of underutilized experts when adapting to new
tasks, while protecting knowledge stored in the important experts that are already highly activated.
Please refer to Figure 1 for an illustration.
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Figure 2: Activation Frequencies of Prompt Experts. Results on CUB-200 with the prompt length Np = 25
and K = 5. We show one representative attention head and visualize the frequency with which prompt experts
are activated after training on all tasks under different values of ϵ.

As shown in Figure 2, setting ϵ = 0.0 results in the repeated activation of a small subset of experts,
while ϵ = 1.0 spans the entire dynamic score range, heavily penalizing frequently used experts and
enforcing full expert utilization. Intermediate values provide a smooth trade-off between exploration
and stability. By balancing expert utilization in this way, SMoPE can more effectively adapt to new
tasks while preserving the knowledge encoded in important experts, thereby mitigating catastrophic
forgetting. Further discussion and experimental results can be found in Appendix D.3.

3.4 PREFIX KEY PROTOTYPES FOR EXPERT SPECIALIZATION

Promoting Expert Specialization. During both training and inference, each MSA layer receives
an input X and selects a subset of prompt experts. To facilitate this selection, we encourage expert
specialization, whereby each expert focuses on distinct regions of the input space. This enables more
reliable routing, as specialized experts are more easily identifiable for a given input. To promote such
specialization, we introduce the following objective:

Lrouter = −
∑

j′∈KX

exp (s̃j′(X))∑
k′∈KX

exp (s̃k′(X)) +
∑

k′ /∈KX
exp (s̃k′(X))

. (14)

This objective encourages higher scores s̃j′(X) for experts in the selected set KX while suppressing
the scores of unselected experts. As a result, experts develop more distinct input-space specializations,
reducing redundancy and improving routing accuracy.

Prefix Keys as Prototypes. From Equation (7), optimizing s̃j′(X) corresponds to updating the prefix
key pK

j′ . Since the score function determines expert activation, the prefix key effectively defines the
region of the input space in which each expert specializes. Thus, optimizing Lrouter requires updating
both selected and unselected prefix keys.

However, in continual learning, this poses a challenge: past-task data are unavailable, and up-
dating unselected prefix keys may lead to overwriting prior specializations. To address this, we
propose treating prefix keys from earlier tasks as prototypes, which serve as implicit memory
representations of past input distributions. Specifically, we define the prototype set: Dproto ={
pK

old,j′ | 1 ≤ j′ ≤ Np, Fj′ ≥ 1
Np

∑Np

j=1 Fj

}
, where pK

old,j′ denotes the prefix key after training on
the previous task. Only frequently activated experts are retained to avoid noisy or uninformative
prototypes. We then define the prototype-based objective:

Lproto = −
∑

p∈Dproto

∑
j′∈Kp

exp
(
p⊤pK

j′

)∑Np

k′=1 exp
(
p⊤pK

k′

) , (15)

where Kp = argmax
S⊆{1,...,Np}:|S|=K

∑
j′∈S

(
p⊤pK

j′

)
denotes the top-K experts activated by prototype p.

While Lrouter promotes specialization using current-task data, Lproto preserves specializations learned
from previous tasks, thereby mitigating catastrophic forgetting without relying on past inputs.

Additional Training Strategies. In continual learning, the MLP classifier head often develops a bias
toward newly introduced classes (Hou et al., 2019; Belouadah & Popescu, 2019). To mitigate this, we
adopt task-adaptive prediction, following prior work (Wang et al., 2023; Jiao et al., 2024; Le et al.,
2024). This technique adjusts predictions using the representation statistics of previously learned
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Table 1: Performance comparison on ImageNet-R, CIFAR-100, and CUB-200 (10-task splits). ↑ indicates
higher is better. FAA and CAA are averaged over 5 runs. Bold denotes the best results, excluding joint training.

Method ImageNet-R CIFAR-100 CUB-200

FAA (↑) CAA (↑) FAA (↑) CAA (↑) FAA (↑) CAA (↑)
Joint-Train 82.06 91.38 88.00
L2P++ 69.29± 0.73 78.30± 0.69 82.50± 1.10 88.96± 0.82 77.18± 0.71 84.31± 0.17
Deep L2P++ 71.66± 0.64 79.63± 0.90 84.30± 1.03 90.50± 0.69 78.64± 0.60 86.14± 0.57
DualPrompt 71.32± 0.62 78.94± 0.72 82.37± 0.29 87.10± 0.55 77.27± 0.31 84.82± 0.15
CODA-Prompt 75.45± 0.56 81.59± 0.82 87.02± 0.10 91.61± 0.91 76.65± 0.70 84.16± 0.23
OVOR 75.25± 0.21 79.78± 0.65 86.91± 0.35 91.02± 1.00 77.45± 0.69 85.81± 1.56
HiDe-Prompt 74.25± 0.19 79.64± 0.53 88.27± 0.59 91.38± 0.78 85.60± 0.05 90.16± 0.64
NoRGa 74.39± 0.08 79.68± 0.41 88.79± 0.13 92.06± 0.51 85.78± 0.24 90.63± 0.58
ConvPrompt 77.30± 0.45 81.46± 0.67 88.76± 0.36 92.49± 0.89 82.56± 0.61 86.68± 0.95
CPrompt 77.14± 0.11 82.92± 0.70 87.82± 0.21 92.53± 0.23 80.35± 0.44 85.66± 0.59
VQ-Prompt 78.71± 0.22 83.24± 0.68 88.73± 0.27 92.84± 0.73 86.72± 0.94 90.33± 1.03
SMoPE 79.32± 0.42 84.39± 0.77 89.23± 0.12 93.67± 0.82 87.43± 0.39 91.11± 0.55

Table 2: Performance comparison on ImageNet-R (10-task split) for self-supervised pre-training, iBOT-1K, and
DINO-1K. ↑ indicates higher is better. FAA and CAA are averaged over 5 runs. Bold highlights the best results.

Method iBOT-1K DINO-1K

FAA (↑) CAA (↑) FAA (↑) CAA (↑)
DualPrompt 61.51± 1.05 67.11± 0.08 58.57± 0.45 64.89± 0.15
CODA-Prompt 66.56± 0.68 73.14± 0.57 63.15± 0.39 69.73± 0.25
HiDe-Prompt 65.34± 0.37 71.67± 0.56 62.94± 0.22 70.04± 0.70
NoRGA 65.81± 0.52 72.11± 0.52 63.02± 0.11 70.25± 0.64
OVOR 69.46± 0.46 74.95± 0.63 66.55± 0.30 72.89± 0.71
VQ-Prompt 71.68± 0.72 76.66± 0.40 68.42± 0.28 74.43± 0.58
SMoPE 72.17± 0.36 77.24± 0.57 68.61± 0.41 75.14± 0.54

classes to correct classifier bias and stabilize prompt learning. Additionally, inspired by advances in
SMoE training (Wu et al., 2022; Lin et al., 2024; Cai et al., 2025), we apply dense expert training
(i.e., without sparse selection) during the initial epochs of the first task. This aids in establishing
stable expert representations before enabling sparse routing.

Final Optimization Objective. The complete loss function for our SMoPE framework is:

L = Lce + αrouter · Lrouter + αproto · Lproto, (16)

where Lce is the standard cross-entropy loss, and αrouter and αproto are weighting hyperparameters.
During training, only the prefix parameters and classifier head are updated, while the pre-trained
backbone remains frozen. Please refer to Appendix B for further details on the training algorithm.

4 EXPERIMENTS

4.1 EXPERIMENTAL DETAILS

Datasets. Following Jiao et al. (2024), we evaluate SMoPE on three representative CL benchmarks:
ImageNet-R (Boschini et al., 2022), CIFAR-100 (Krizhevsky et al., 2009), and CUB-200 (Wah et al.,
2011). ImageNet-R consists of 200 challenging classes, including difficult samples from ImageNet
and newly collected data with diverse stylistic variations, and is split into 5, 10, or 20 disjoint tasks.
CIFAR-100 contains 100 classes, which we randomly partition into 10 tasks. CUB-200 comprises
fine-grained images of 200 bird species, randomly divided into 10 tasks with 20 classes each.

Evaluation Metrics. We adopt two widely used CL metrics: Final Average Accuracy (FAA) and
Cumulative Average Accuracy (CAA). FAA is the average accuracy after training on all tasks, while
CAA represents the mean of the FAA values recorded after each task.

Baselines. We compare our approach against several representative prompt-based continual learn-
ing methods, including L2P (Wang et al., 2022b), DualPrompt (Wang et al., 2022a) and CODA-
Prompt (Smith et al., 2023). Additionally, we evaluate against recent state-of-the-art methods, such
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as ConvPrompt (Roy et al., 2024), CPrompt (Gao et al., 2024), and VQ-Prompt (Jiao et al., 2024).
We also consider OVOR (Huang et al., 2024), which employs a single prompt, and state-of-the-art
task-specific prompt methods such as HiDe-Prompt (Wang et al., 2023) and NoRGa (Le et al., 2024).
For L2P, we follow Smith et al. (2023) and include two variants: "L2P++", which replaces prompt
tuning with prefix tuning, and "Deep L2P++", which extends L2P++ by inserting prompts into the
first five MSA blocks. Finally, we report the performance of "Joint-Train", an offline upper bound
obtained by training on all tasks simultaneously.

Implementation Details. All experiments are conducted on a single NVIDIA A100 GPU. To ensure
a fair comparison, all baseline methods are re-implemented using the configurations reported in their
original papers. Following Jiao et al. (2024), we adopt a ViT-B/16 backbone pretrained on ImageNet-
1K (Russakovsky et al., 2015) and ImageNet-21K (Ridnik et al., 2021) as the backbone. We also
evaluate self-supervised ViT-B/16 models from iBOT-1K (Zhou et al., 2021) and DINO-1K (Caron
et al., 2021). The prompt length is fixed at Np = 25, and the number of selected prompt experts
is set to K = 5 for all experiments. Prompts are inserted into the first six MSA blocks. SMoPE is
optimized using AdamW (Loshchilov & Hutter, 2017) with a cosine learning rate decay schedule.
The batch size is set to 64 for ImageNet-R, and 128 for both CIFAR-100 and CUB-200. Additional
implementation details are provided in Appendix C.

4.2 EXPERIMENTAL RESULTS

Overall Comparison. Table 1 summarizes the performance of SMoPE compared to prompt-based
continual learning baselines. SMoPE achieves the best overall results across all three benchmarks,
consistently surpassing prior methods on both FAA and CAA, demonstrating strong resistance to
forgetting while effectively adapting to new tasks. On CIFAR-100 and CUB-200, OVOR, which
employs a single shared prompt, performs competitively with L2P, DualPrompt, and CODA-Prompt
but falls short of task-specific methods such as HiDe-Prompt and NoRGa. Notably, SMoPE breaks
this trade-off: despite using only a single shared prompt, it not only outperforms OVOR by a large
margin but also surpasses task-specific methods, indicating that its structured design overcomes the
limitations of shared prompting. Its performance is also comparable to that of VQ-Prompt, a recent
state-of-the-art method. These results highlight that SMoPE mitigates forgetting while maintaining
the efficiency of a shared prompt, achieving a favorable balance between effectiveness and efficiency
without relying on task-specific model expansions.

Table 3: Comparison of computational cost on
ImageNet-R (10-task split), including learnable parame-
ters (millions), training and inference costs (GFLOPs),
and relative cost (%) to L2P.

Method Params (M) Train GFLOPs Test GFLOPs

Deep L2P++ 4.78 67.44 (100%) 67.44 (100%)
DualPrompt 1.10 33.72 (50%) 67.44 (100%)
CODA-Prompt 3.99 67.44 (100%) 67.44 (100%)
HiDe-Prompt 4.21 33.72 (50%) 67.45 (100%)
NoRGa 4.21 33.72 (50%) 67.45 (100%)
OVOR 0.26 33.72 (50%) 33.72 (50%)
VQ-Prompt 0.50 67.44 (100%) 67.44 (100%)
SMoPE 0.38 33.72 (50%) 33.72 (50%)

Table 4: Ablation study of the proposed SMoPE on
CUB-200, split into 10 tasks. FAA and CAA are av-
eraged over 5 runs. ↑ indicates that higher values are
better. Bold highlights the best results.

Training Strategy FAA (↑) CAA (↑)
One Prompt 75.23± 0.17 83.61± 0.48
+ Prompt Score Aggregation 75.49± 0.37 83.65± 0.70
+ Sparse Expert Selection 79.12± 0.20 87.16± 0.56
+ Adaptive Noise 85.36± 0.21 89.12± 0.38
+ Task-Adaptive Prediction 86.03± 0.29 90.09± 0.43
+ Initial Dense Training 86.27± 0.46 90.23± 0.52
+ Router Loss Lrouter 87.05± 0.40 90.47± 0.40
+ Prototype Loss Lproto 87.43± 0.39 91.11± 0.55

Performance with Different Pre-training
Paradigms. In line with prior work (Wang et al.,
2023; Jiao et al., 2024), we conduct experiments
on ImageNet-R using two self-supervised pre-
training paradigms: iBOT-1K (Zhou et al., 2021)
and DINO-1K (Caron et al., 2021). The results,
presented in Table 2, demonstrate that SMoPE
surpasses all other prompt-based continual learn-
ing baselines, highlighting the generalizability
and robustness of SMoPE’s design across differ-
ent pre-training paradigms.

Computational Cost Analysis. To evaluate the
efficiency of SMoPE, we compare the number
of learnable parameters, training GFLOPs, and
inference GFLOPs, as shown in Table 3. By
using a single prompt for all tasks, SMoPE sig-
nificantly reduces the number of parameters. It
also avoids passing the input through the full
pre-trained model to compute a query, unlike
prior approaches. Instead, each MSA layer se-
lects prompt experts based on the input at that
layer, resulting in a substantial reduction in com-
putational cost up to 50%. These design choices
highlight SMoPE’s efficiency over task-specific
prompting methods while maintaining compet-
itive performance.
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Ablation Studies. To evaluate the contribution of individual components in SMoPE, we conducted
a series of ablation experiments (see Table 4). The baseline configuration, "One Prompt", employs
standard prefix tuning with a single prompt shared across all tasks. Removing all SMoPE components
results in a significant performance drop, primarily due to the continual updating of shared parameters.
Introducing the prompt-attention score aggregation mechanism alters the attention computation and
achieves performance comparable to the baseline, consistent with our analysis in Appendix A. Adding
sparse expert selection further improves performance, although the gains are limited by imbalanced
expert utilization. Notably, integrating the adaptive noise mechanism leads to substantial performance
improvements, underscoring its role in reducing interference and mitigating forgetting. Incorporating
all components yields the highest overall performance, confirming the complementary nature of
SMoPE’s design. These ablation results collectively validate that each component contributes mean-
ingfully to the final model performance, and their integration is essential for SMoPE’s effectiveness.

5 DISCUSSION AND CONCLUSION

In this paper, we introduced SMoPE, a prompt-based CL method that balances the paradigms of using
single shared and task-specific prompts. By integrating a sparse MoE architecture into prefix tuning,
SMoPE reduces knowledge interference by updating only task-relevant parameters. We also proposed
an adaptive noise mechanism and a prototype loss function that leverage prefix keys as an implicit
memory of previous tasks, further enhancing performance. Extensive experiments demonstrate that
SMoPE effectively reduces catastrophic forgetting while maintaining adaptability to new tasks, with
significantly improved parameter and computational efficiency compared to existing methods.

Despite these promising results, several avenues for future work remain. Although our approach
uses a shared prompt structure across tasks, which mitigates forgetting more effectively than prior
methods, interference may still arise as the number of tasks grows. Future research could explore
dynamically expanding the prompt length or increasing the number of prompt experts to better address
continual learning demands. Investigating how SMoPE scales with the number of prompt experts
may also yield valuable insights. While our experiments focused on ViT, extending SMoPE to other
foundational models would help assess its generalizability. Finally, though designed for continual
learning, SMoPE’s architecture may have broader applications warranting further exploration.
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REPRODUCIBILITY STATEMENT

In order to facilitate the reproduction of our empirical results, we provide detailed descriptions of the
experimental setup in Section 4 and Appendix C. All datasets used in this study are publicly available,
enabling full replication of our experiments.
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Supplement to “One-Prompt Strikes Back: Sparse Mixture of
Experts for Prompt-based Continual Learning”

This supplementary material provides: a theoretical analysis of prompt estimation rates when using
prompt-attention score aggregation (Appendix A); the detailed training algorithm for SMoPE (Ap-
pendix B); additional experimental details (Appendix C) and results (Appendix D); and a discussion
on the use of large language models in this work (Appendix E).

A THEORETICAL ANALYSIS OF PROMPT-ATTENTION SCORE AGGREGATION

In this appendix, we aim to compare the sample complexity of estimating prompt experts with and
without prompt-attention score aggregation. To this end, we conduct a convergence analysis of
prompt expert estimation. The results of the analysis reveal that employing prompt-attention score
aggregation is as sample-efficient as not using it, which indicates that this choice does not affect
the model’s ability to adapt to new tasks. Before stating the problem formally, let us introduce the
notation that we use throughout this appendix.

Notation. For any natural number n ∈ N, let [n] = {1, 2, . . . , n}. For a vector u ∈ Rd, we use
both u = (u(1), u(2), . . . , u(d)) and u = (u1, u2, . . . , ud) interchangeably. Given a multi-index
α = (α1, α2, . . . , αd) ∈ Nd, we write uα = uα1

1 uα2
2 · · ·u

αd

d , |u| = u1 + u2 + · · · + ud, and α! =
α1!α2! · · ·αd!. The Euclidean norm of u is denoted by the term ∥u∥, while |S| refers to the cardinality
of any set S. For two positive sequences (an)n≥1 and (bn)n≥1, we write an = O(bn) or an ≲ bn if
there exists a constant C > 0 such that an ≤ Cbn for all n. The notation an = OP (bn) means that
an/bn is stochastically bounded. We further write an = ÕP (bn) when an = OP (bn log

c(bn)), for
some c > 0.

As established in Section 3.2, the MoE models ĥl,1, . . . , ĥl,N in each attention head share a common
structure of experts and score functions. Therefore, to simplify our analysis while maintaining rigor,
we focus on the first head (i.e., l = 1) and the first row of its attention matrix (i.e., i = 1). Within this
simplified setting, we present a regression-based framework to analyze the convergence of prompt
expert estimation in an MoE model for prefix tuning. This framework has previously been used to
study the asymptotic behavior of other MoE-based parameter-efficient fine-tuning methods, namely,
low-rank adaptation (Truong et al., 2025) and LLaMA-Adapter (Diep et al., 2025). We begin by
defining the problem setting with prompt-attention score aggregation.

Problem Setting with Prompt-Attention Score Aggregation. Suppose we have i.i.d. data
(X1, Y1), (X2, Y2), . . . , (Xn, Yn) ∈ RNd × R generated from the following model:

Yi = gG∗(Xi) + εi, i = 1, . . . , n, (17)

where the noise terms ε1, . . . , εn are independent Gaussian random variables with mean zero and
variance ν2. The covariates X1, . . . ,Xn are drawn i.i.d. from some probability distribution µ. The
regression function gG∗ is composed of N pre-trained experts and Np learnable prompt experts:

gG∗(X) =

∑N
j=1 exp

(
X⊤B0

jX + c0j
)
h(X, η0j )∑N

k=1 exp
(
X⊤B0

kX + c0k
)
+
∑Np

k′=1 exp
(
(β∗

1k′)⊤W⊤X + β∗
0k′

)
+

∑Np

j′=1 exp
(
(β∗

1j′)
⊤W⊤X + β∗

0j′

)
h(X, η∗j′)∑N

k=1 exp
(
X⊤B0

kX + c0k
)
+
∑Np

k′=1 exp
(
(β∗

1k′)⊤W⊤X + β∗
0k′

) , (18)

Here, G∗ =
∑Np

j′=1 exp(β
∗
0j′) δ(β∗

1j′ ,η
∗
j′ )

represents the mixing measure, i.e., a weighted sum of Dirac

measures associated with the parameters (β∗
1j′ , β

∗
0j′ , η

∗
j′) of the prompt experts. The matrix B0

j plays

the same role as the matrix E⊤
1 WQ

1 WK
1

⊤
Ej√

dv
in the score function s1,j(X), while the vector β∗

1j′ and

the matrix W , respectively, correspond to the components
Ẽ⊤WQ

1 WK
1

⊤
pK
j′√

dv
used in the modified score

function s̃j′(X). The expert functions h(X, η0j ) correspond to the pre-trained experts fj(X), while
h(X, η∗j′) correspond to the new prompt experts fN+j′(X). In general, the expert functions can
have flexible parametric forms, not restricted to the simple forms used in the linear-gating-prefix
MoE model (Le et al., 2024).
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Least Squares Estimation. We use the least squares method (van de Geer, 2000) to estimate
the unknown parameters (β∗

0j′ , β
∗
1j′ , η

∗
j′)

Np

j′=1, or, equivalently, the true mixing measure G∗. The
estimator, denoted by Ĝn, is defined as:

Ĝn = arg min
G∈GN′

p
(Θ)

n∑
i=1

(
Yi − gG(Xi)

)2
, (19)

where

GN ′
p
(Θ) =

{
G =

ℓ∑
i=1

exp(β0i)δ(β1i,ηi) : 1 ≤ ℓ ≤ N ′
p, (β0i, β1i, ηi) ∈ Θ

}
is the set of mixing measures with at most N ′

p components. Since the true number of experts, Np, is
typically unknown in practice, we assume that the maximum number of components, N ′

p, is chosen
to be an upper bound such that N ′

p ≥ Np.

Definition A.1 (Strong Identifiability). We say an expert function h(·, η) is strongly identifiable if
and only if it is twice differentiable with respect to its parameters, and if for any k ≥ 1 and any set of
pairwise distinct parameters η1, . . . , ηk, the collection of functions{

Xν · ∂
|γ|h

∂ηγ
(X, ηj) : j ∈ [k], ν ∈ NNd, γ ∈ Nq, 0 ≤ |ν|+ |γ| ≤ 2

}
is linearly independent for almost every X ∈ RNd.

Intuitively, this condition prevents unwanted interactions between the parameters of the expert func-
tion h(·, η). In practice, it guarantees that the regression difference ĝG(X)−gG∗(X) can be expanded
into linearly independent terms via a Taylor expansion of expressions i.e., exp(β⊤

1 W⊤X)h(X, η).
Thus, the above condition guarantees that all the derivative terms in the Taylor expansion are linearly
independent. The following example illustrates a class of expert functions h(·, η) that satisfy this
condition.

Example. Consider a neural network expert of the form h(X, (a, b)) = ϕ(a⊤X + b), where the
parameters are η = (a, b) ∈ RNd × R and the activation function is ϕ ∈ {ReLU,GELU, z 7→ zp}.
This form of expert function satisfies the strong identifiability condition under mild assumptions on
the activation function ϕ.

Voronoi Loss. To quantify the discrepancy between an estimated measure G and the target measure
G∗, we define

D(G,G∗) =
∑

j′∈[Np]:|Vj′ |>1

∑
i∈Vj′

exp(β0i)
(
∥∆β1ij′∥2 + ∥∆ηij′∥2

)
+

∑
j′∈[Np]:|Vj′ |=1

∑
i∈Vj′

exp(β0i)
(
∥∆β1ij′∥+ ∥∆ηij′∥

)

+

Np∑
j′=1

∣∣∣∣∣ ∑
i∈Vj′

exp(β0i)− exp(β∗
0j′)

∣∣∣∣∣. (20)

Here, the notation ∆β1ij′ := β1i − β∗
1j′ and ∆ηij′ := ηi − η∗j′ represents the difference between

estimated and true parameters. The partitioning of the estimated components is based on Voronoi
cells. For each true component ω∗

j′ := (β∗
1j′ , η

∗
j′), the corresponding Voronoi cell Vj′ ≡ Vj′(G)

contains the indices of the estimated components that are closest to it. Formally, it is defined as

Vj′ :=
{
i ∈ {1, 2, . . . , N ′

p} : ∥ωi − ω∗
j′∥ ≤ ∥ωi − ω∗

ℓ ∥, ∀ ℓ ̸= j′
}
, (21)

where ωi := (β1i, ηi) denotes an estimated component from G. Consequently, the cardinality of a
cell |Vj′ | indicates how many components ωi from G are used to approximate the true component
ω∗
j′ in G∗.

By construction, a small value of D(G,G∗) implies that the estimated parameters are close to the
true parameters. Based on the observation, although this loss function D(G,G∗) is not symmetric, it
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serves as a suitable measure for analyzing the convergence of the least squares estimator Ĝn. With
this loss function defined, we can now present the sample complexity of estimating prompt experts
with prompt-attention score aggregation.
Theorem A.2. Under the strong identifiability condition for the expert function h(X, η), the least
squares estimator Ĝn converges to the true measure G∗ at the following rate:

D(Ĝn, G
∗) = ÕP (n

−1/2). (22)

The proof of Theorem A.2 is deferred to Appendix A.1. Several remarks on this result are in order.

(i) Convergence rate of prompt parameter estimation. This theorem, combined with the definition of
the Voronoi loss in Equation (20), implies that the convergence rates for the prompt parameters η∗j′
range from ÕP (n

−1/4) to ÕP (n
−1/2), depending on the cardinality of the corresponding Voronoi

cells Vj′ .

(ii) Convergence rate of prompt expert estimation. Denote Ĝn :=
∑N̂p

i=1 exp(β̂n,0i)δ(β̂n,1i,η̂n,i)
. If

the expert function h(X, η) is Lipschitz continuous with respect to its parameter η for almost every
X , i.e.,

|h(X, η̂n,i)− h(X, η∗j′)| ≲ ∥η̂n,i − η∗j′∥, (23)
then this property, combined with the parameter convergence rates from remark (i), implies that the
rates for estimating prompt experts h(X, η∗j′) admit the same orders as those for estimating prompt
parameters η∗j′ , standing at ÕP (n

−1/4) or ÕP (n
−1/2).

(iii) Sample complexity of estimating prompt experts. As a consequence, when using the prompt-
attention score aggregation, we need a polynomial number of data points, either O(τ−4) or O(τ−2),
to estimate the prompt experts with a given error τ > 0.

Problem Setting without Prompt-Attention Score Aggregation. In this setting, we assume the
i.i.d. data (X1, Y1), (X2, Y2), . . . , (Xn, Yn) ∈ RNd × R are generated from the same regression
model (17), but with the following modified regression function:

gG∗(X) =

∑N
j=1 exp

(
X⊤B0

jX + c0j
)
h(X, η0j )∑N

k=1 exp
(
X⊤B0

kX + c0k
)
+
∑Np

k′=1 exp
(
(β∗

1k′)⊤W⊤
k′X + β∗

0k′

)
+

∑Np

j′=1 exp
(
(β∗

1j′)
⊤W⊤

j′ X + β∗
0j′

)
h(X, η∗j′)∑N

k=1 exp
(
X⊤B0

kX + c0k
)
+
∑Np

k′=1 exp
(
(β∗

1k′)⊤W⊤
k′X + β∗

0k′

) . (24)

The key difference between this function and the one in Equation (18) is that the weight matrix
W is no longer shared across prompt experts. Instead, because there is no prompt-attention score
aggregation, each expert j′ has its own matrix, Wj′ . Accordingly, the least squares estimator is now
defined as:

Gn = arg min
G∈GN′

p
(Θ)

n∑
i=1

(
Yi − gG(Xi)

)2
.

Theorem A.3. Under the strong identifiability condition for the expert function h(X, η), the least
squares estimator Gn converges to the true measure G∗ at the following rate:

D(Gn, G
∗) = ÕP (n

−1/2). (25)

It should be noted that the proof arguments for the dense gating have been included in Appendix A.1.
Furthermore, since the weight matrices Wj′ are frozen during training, their dependence on the expert
index j′ do not affect the proof arguments in Appendix A.1. In other words, the proof of Theorem A.3
can be done similarly to that of Theorem A.2, so it is omitted here.

Comparison of Sample Complexity with and without Prompt-Attention Score Aggregation.
Comparing the convergence rates in Equations (22) and (25), we find that they are identical. This
indicates that the estimation rate for the prompt parameters is unaffected by the use of prompt-
attention score aggregation. As a direct consequence of the Lipschitz continuity in Equation (23), the
estimation rates for the prompt experts are also preserved. We therefore conclude that incorporating
prompt-attention score aggregation into the MoE model for prefix tuning does not change the sample
complexity of prompt expert estimation.
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A.1 PROOF OF THEOREM A.2

Roadmap. The result follows once we establish the following two inequalities:

inf
G∈GN′

p
(Θ)

∥gG − gG∗∥L2(µ)

D(G,G∗)
> 0, (26)

∥gĜn
− gG∗∥L2(µ) = OP

(√
log(n)/n

)
. (27)

We will prove Equations (26) and (27) in turn.

Proof of Equation (26). We split the argument into a local and a global part.

Local part. We use proof by contradiction to show that:

lim
ε→0

inf
G∈GN′

p
(Θ): D(G,G∗)≤ε

∥gG − gG∗∥L2(µ)

D(G,G∗)
> 0. (28)

Suppose, for the sake of contradiction, that the claim is false. Then there exists a sequence of mixing
measures, Gn =

∑Np

i=1 exp(β
n
0i) δ(βn

1i,η
n
i ) ∈ GN ′

p
(Θ), such that Dn := D(Gn, G∗)→ 0 and

∥gGn
− gG∗∥L2(µ)

Dn
→ 0. (29)

Let Vn
j := Vj(Gn) be the Voronoi cell corresponding to the j-th true component. Since Dn → 0, the

components of Gn converge to those of G∗. For n sufficiently large, the Voronoi partition stabilizes,
so we can drop the superscript n and write Vj = Vn

j for simplicity. The loss Dn is then given by

Dn =
∑

j:|Vj |>1

∑
i∈Vj

exp(βn
0i)
(
∥∆βn

1ij∥2 + ∥∆ηnij∥2
)

+
∑

j:|Vj |=1

∑
i∈Vj

exp(βn
0i)
(
∥∆βn

1ij∥+ ∥∆ηnij∥
)
+

Np∑
j=1

∣∣∣ ∑
i∈Vj

exp(βn
0i)− exp(β∗

0j)
∣∣∣, (30)

where ∆βn
1ij := βn

1i − β∗
1j and ∆ηnij := ηni − η∗j . Since Dn → 0, we have (βn

1i, η
n
i )→ (β∗

1j , η
∗
j ) for

i ∈ Vj , and the weights aggregate correctly:
∑

i∈Vj
exp(βn

0i)→ exp(β∗
0j). We now split the proof

of the local part into three steps.

Step 1 — Taylor expansion. In this step, we want to decompose the following quantity into a
combination of linearly independent elements:

Qn(X) :=
[ N∑
i′=1

exp(X⊤B0
i′X + c0i′) +

Np∑
j′=1

exp((β∗
1j′)

⊤W⊤X + β∗
0j′)
]
[gGn(X)− gG∗(X)]

(31)

We first rewrite it as follows:

Qn(X) =

Np∑
j=1

∑
i∈Vj

exp(βn
0i)
[
exp((βn

1i)
⊤W⊤X)h(X; ηni )− exp((β∗

1j)
⊤W⊤X)h(X; η∗j )

]

−
Np∑
j=1

∑
i∈Vj

exp(βn
0i)
[
exp((βn

1i)
⊤W⊤X)− exp((β∗

1j)
⊤W⊤X)

]
gGn

(X)

+

Np∑
j=1

(∑
i∈Vj

exp(βn
0i)− exp(β∗

0j)
)
exp((β∗

1j)
⊤W⊤X)

[
h(X; η∗j )− gGn

(X)
]

:= An(X)−Bn(X) + Cn(X). (32)
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Decomposition of An(X). Let us denote E(X;β1) := exp(β⊤
1 W⊤X), then An can be separated

into two terms as follows:

An(X) :=
∑

j:|Vj |=1

∑
i∈Vj

exp(βn
0i)
[
E(X;βn

1i)h(X; ηni )− E(X;β∗
1j)h(X; η∗j )

]
+

∑
j:|Vj |>1

∑
i∈Vj

exp(βn
0i)
[
E(X;βn

1i)h(X; ηni )− E(X;β∗
1j)h(X; η∗j )

]
:= An,1(X) +An,2(X).

By means of the first-order Taylor expansion, we have

An,1(X) =
∑

j:|Vj |=1

∑
i∈Vj

exp(βn
0i)

α!

∑
|α|=1

(∆βn
1ij)

α1(∆ηnij)
α2

∂|α1|E

∂βα1
1

(X;β∗
1j)

∂|α2|h

∂ηα2
(X; η∗j ) +Rn,1(X)

=
∑

j:|Vj |=1

∑
|α1|+|α2|=1

Sn,j,α1,α2

∂|α1|E

∂βα1
1

(X;β∗
1j)

∂|α2|h

∂ηα2
(X; η∗j ) +Rn,1(X),

where Rn,1(X) is a Taylor remainder such that Rn,1(X)/Dn → 0 as n→∞, and

Sn,j,α1,α2 :=
∑
i∈Vj

exp(βn
0i)

α!
(∆βn

1ij)
α1(∆ηnij)

α2 .

On the other hand, by applying the second-order Taylor expansion, we get that

An,2(X) =
∑

j:|Vj |>1

∑
1≤|α1|+|α2|≤2

Sn,j,α1,α2

∂|α1|E

∂βα1
1

(X;β∗
1j)

∂|α2|h

∂ηα2
(X; η∗j ) +Rn,2(X),

in which Rn,2(X) is a Taylor remainder such that Rn,2(X)/Dn → 0 as n→∞.

Decomposition of Bn. Recall that we have

Bn(X) =
∑

j:|Vj |=1

∑
i∈Vj

exp(βn
0i)
[
E(X;βn

1i)− E(X;β∗
1j)
]
gGn

(X)

+
∑

j:|Vj |>1

∑
i∈Vj

exp(βn
0i)
[
E(X;βn

1i)− E(x;β∗
1j)
]
gGn(X)

:= Bn,1(X) +Bn,2(X).

By invoking first-order and second-order Taylor expansions to Bn,1(X) and Bn,2(X), it follows that

Bn,1(X) =
∑

j:|Vj |=1

∑
|ℓ|=1

Tn,j,ℓ ·
∂|ℓ|E

∂βℓ
1

(X;β∗
1j)gGn

(X) +Rn,3(X),

Bn,2(X) =
∑

j:|Vj |>1

∑
1≤|ℓ|≤2

Tn,j,ℓ ·
∂|ℓ|E

∂βℓ
1

(X;β∗
1j)gGn

(X) +Rn,4(X),

where we define

Tn,j,ℓ :=
∑
i∈Vj

exp(βn
0i)

ℓ!
(∆βn

1ij)
ℓ.

Additionally, Rn,3(X) and Rn,4(X) are Taylor remainders such that Rn,3(X)/Dn → 0 and
Rn,3(X)/Dn → 0 as n→∞.

Collect the above results together, we can represent Qn(x) as

Qn(X) =

Np∑
j=1

∑
0≤|α1|+|α2|≤2

Sn,j,α1,α2

∂|α1|E

∂βα1
1

(X;β∗
1j)

∂|α2|h

∂ηα2
(X; η∗j ),

−
Np∑
j=1

∑
0≤|ℓ|≤2

Tn,j,ℓ ·
∂|ℓ|E

∂βℓ
1

(X;β∗
1j)gGn(X) +

4∑
i=1

Rn,i(X), (33)
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where we define Sn,j,0d×d,0q
= Tn,j,0d×d

=
∑

i∈Vj
exp(βn

0i)− exp(β∗
0j) for any j ∈ [Np].

Step 2 — Non-vanishing coefficients. Here, we show that not all normalized coefficients can vanish.
Specifically, we prove that at least one of the ratios Sn,j,α1,α2

/Dn or Tn,j,ℓ/Dn does not converge to
0 as n→∞. Assume by the contrary: for every j ∈ [Np] and 0 ≤ |α1|, |α2|, |ℓ| ≤ 2,

Sn,j,α1,α2

Dn
→ 0,

Tn,j,ℓ

Dn
→ 0.

In particular,

1

Dn

Np∑
j=1

∣∣∣ ∑
i∈Vj

exp(βn
0i)− exp(β∗

0j)
∣∣∣ = Np∑

j=1

∣∣∣Sn,j,0d×d,0q

Dn

∣∣∣→ 0. (34)

First, consider indices j for which the Voronoi cell is a singleton, i.e., |Vj | = 1.

• Fix u, v ∈ [Nd], take α1 ∈ NNd×Nd with α
(uv)
1 = 1 and α2 = 0q . Then

1

Dn

∑
i∈Vj

exp(βn
0i) |(∆βn

1ij)
(uv)| =

∣∣∣Sn,j,α1,α2

Dn

∣∣∣→ 0.

Summing over u, v and using equivalence of ℓ1 and ℓ2 norms yields

1

Dn

∑
i∈Vj

exp(βn
0i) ∥∆βn

1ij∥ → 0. (35)

• Fix u ∈ [q], take α1 = 0Nd×Nd and α2 ∈ Nq with α
(u)
2 = 1. Then

1

Dn

∑
i∈Vj

exp(βn
0i) |(∆ηnij)

(u)| =
∣∣∣Sn,j,α1,α2

Dn

∣∣∣→ 0,

hence
1

Dn

∑
i∈Vj

exp(βn
0i) ∥∆ηnij∥ → 0. (36)

Combining (35) and (36) yields

1

Dn

∑
j: |Vj |=1

∑
i∈Vj

exp(βn
0i)
[
∥∆βn

1ij∥+ ∥∆ηnij∥
]
→ 0. (37)

Next, consider indices j with multi-element cells, i.e., |Vj | > 1.

• Fix u, v ∈ [Nd], let α(uv)
1 = 2 and α2 = 0q . Then

1

Dn

∑
i∈Vj

exp(βn
0i) |(∆βn

1ij)
(uv)|2 =

∣∣∣Sn,j,α1,α2

Dn

∣∣∣→ 0,

hence
1

Dn

∑
i∈Vj

exp(βn
0i) ∥∆βn

1ij∥2 → 0. (38)

• Fix u ∈ [q], take α1 = 0Nd×Nd and α
(u)
2 = 2. Then

1

Dn

∑
i∈Vj

exp(βn
0i) |(∆ηnij)

(u)|2 =
∣∣∣Sn,j,α1,α2

Dn

∣∣∣→ 0,

giving

1

Dn

∑
i∈Vj

exp(βn
0i) ∥∆ηnij∥2 → 0. (39)
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Combining these gives

1

Dn

∑
j: |Vj |>1

∑
i∈Vj

exp(βn
0i)
[
∥∆βn

1ij∥+ ∥∆ηnij∥
]
→ 0. (40)

Finally, summing the terms in (34), (37), and (40) yields

Dn/Dn → 0,

which implies 1→ 0, a contradiction. Therefore, our initial assumption was false: at least one ratio
among Sn,j,α1,α2/Dn and Tn,j,ℓ/Dn does not converge to 0 as n→∞.

Step 3 — Application of Fatou’s lemma. In this step, we show that all normalized coefficients
Sn,j,α1,α2

/Dn and Tn,j,ℓ/Dn must, in fact, converge to zero as n → ∞. This will contradict the
conclusion of Step 2, completing the proof by contradiction. We denote mn as the maximum of the
absolute values of those ratios. The result of Step 2 implies that 1/mn ̸→ ∞.

From the hypothesis in Equation (29), we have ∥gGn
− gG∗∥L2(µ)/Dn → 0 as n → ∞, which

indicates that ∥gGn
− gG∗∥L1(µ)/Dn → 0. Applying Fatou’s lemma, we get

0 = lim
n→∞

∥gGn
− gG∗∥L1(µ)

mnDn
≥
∫

lim inf
n→∞

|gGn
(X)− gG∗(X)|

mnDn
dµ(X) ≥ 0.

This implies that 1
mnDn

· [gGn
(X) − gG∗(X)] → 0 as n → ∞ for µ-almost surely X . Looking

at the formulation of Qn(X) in equation (31), since the term
[∑k0

i′=1 exp(X
⊤B0

i′X + c0i′) +∑k∗
j′=1 exp((β

∗
1j′)

⊤W⊤X + β∗
0j′)
]

is bounded, we deduce that the term Qn(X)
mnDn

→ 0 for µ-almost
surely X .

Let us define the normalized limits
Sn,j,α1,α2

mnDn
→ ϕj,α1,α2 ,

Tn,j,ℓ

mnDn
→ φj,ℓ,

with a note that at least one among them is non-zero. Then, from the decomposition of Qn(X) in
Equation (33), we have

Np∑
j=1

1+1{|Vj |>1}∑
|α1|+|α2|=0

ϕj,α1,α2
·∂

|α1|E

∂βα1
1

(X;β∗
1j)

∂|α2|h

∂ηα2
(X; η∗j ),

−
Np∑
j=1

1+1{|Vj |>1}∑
|ℓ|=0

φj,ℓ ·
∂|ℓ|E

∂βℓ
1

(X;β∗
1j)gG∗(X) = 0,

for µ-almost surely X . It is worth noting that the term ∂|α1|E
∂β

α1
1

(X;β∗
1j) · ∂|α2|h

∂ηα2
(X; η∗j ) can be

explicitly expressed as

• When |α1| = 0, |α2| = 0: exp((β∗
1j)

⊤W⊤X)h(X; η∗j );

• When |α1| = 1, |α2| = 0: (W⊤X)(u) exp((β∗
1j)

⊤X)h(X; η∗j );

• When |α1| = 0, |α2| = 1: exp((β∗
1j)

⊤W⊤X) ∂h
∂η(w) (X; η∗j );

• When |α1| = 1, |α2| = 1: (W⊤X)(u) exp((β∗
1j)

⊤W⊤X) ∂h
∂η(w) (X; η∗j );

• When |α1| = 2, |α2| = 0: (W⊤X)(u)(W⊤X)(v) exp((β∗
1j)

⊤X)h(X; η∗j );

• When |α1| = 0, |α2| = 2: exp((β∗
1j)

⊤X) ∂2h
∂η(w)∂η(w′) (X; η∗j ).

Recall that the expert function h satisfies the strong identifiability condition in Definition A.1. This
condition implies that the set of functions{

(W⊤X)ν
∂|γ|h

∂ηγ
(X, η∗j ) : j ∈ [Np], 0 ≤ |ν|+ |γ| ≤ 2

}
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is linearly independent for almost every X . Therefore, we obtain that ϕj,α1,α2
= φj,ℓ = 0 for

all j ∈ [Np], 0 ≤ |α1| + |α2|, |ℓ| ≤ 1 + 1{|Vj |>1}. This contradicts the fact that at least one of
these coefficients is non-zero. This completes the proof by contradiction for the local part, thereby
establishing the inequality in Equation (28).

Global part. From the local inequality (28), we can infer that there exists a constant ε′ > 0 such that

inf
G∈GN′

p
(Θ):D(G,G∗)≤ε′

∥gG − gG∗∥
D(G,G∗)

> 0.

It remains to show that the inequality also holds for measures far from G∗:

inf
G∈GN′

p
(Θ):D(G,G∗)>ε′

∥gG − gG∗∥
D(G,G∗)

> 0. (41)

Suppose, for the sake of contradiction, that (41) is false. Then there exists a sequence of mixing
measures {G′

n} ⊂ GN ′
p
(Θ) with D(G′

n, G∗) > ε′ for all n, such that

lim
n→∞

∥gG′
n
− gG∗∥

D(G′
n, G∗)

= 0,

which in turn implies that ∥gG′
n
− gG∗∥ → 0 as n→∞.

Since the parameter space Θ is compact, the sequence {G′
n} admits a convergent subsequence

with limit G′ ∈ GN ′
p
(Θ). Moreover, because D(G′

n, G∗) > ε′, it follows that the limit satisfies
D(G′, G∗) ≥ ε′.

Applying Fatou’s lemma, we obtain

0 = lim
n→∞

∥gG′
n
− gG∗∥2 ≥

∫
lim inf
n→∞

|gG′
n
(X)− gG∗(X)|2 dµ(X).

This implies that gG′(X) = gG∗(X) for µ-almost every X .

By an identifiability property of the MoE model (to be established at the end of this proof), this
functional equality implies that the measures themselves must be identical, i.e., G′ ≡ G∗. This
leads to D(G′, G∗) = 0, which contradicts our earlier conclusion that D(G′, G∗) ≥ ε′ > 0. This
contradiction establishes (41) and completes the proof of Equation (26).

Identifiable. We now establish the identifiability of the MoE regression function gG. Specifically,
we show that if gG(X) = gG∗(X) for almost every X , then the measures must be identical,
i.e., G ≡ G∗.

For clarity, define

softmaxG(u) :=
exp(u)∑N

i′=1 exp(X
⊤B0

i′X + c0i′) +
∑Np

j′=1 exp((β1j′)⊤W⊤X + β0j′)
,

softmaxG∗(u
∗) :=

exp(u∗)∑N
i′=1 exp(X

⊤B0
i′X + c0i′) +

∑Np

j′=1 exp((β
∗
1j′)

⊤W⊤X + β∗
0j′)

,

with

u ∈ {X⊤B0
i′X + c0i′ , (β1j′)

⊤W⊤X + β0j′ : i
′ ∈ [N ], j′ ∈ [N ′

p]},
u∗ ∈ {X⊤B0

i′X + c0i′ , (β
∗
1j′)

⊤W⊤X + β∗
0j′ : i

′ ∈ [N ], j′ ∈ [Np]}.

Since gG(X) = gG∗(X) for almost every X , we have

N∑
i=1

softmaxG(X
⊤BiX + c0i ) · h(X, η0i ) +

N ′
p∑

j=1

softmaxG

(
(β1j)

⊤X + β0j

)
· h(X, ηj)

=

N∑
i=1

softmaxG∗(X
⊤BiX + c0i ) · h(X, η0i ) +

Np∑
j=1

softmaxG∗

(
(β∗

1j)
⊤X + β∗

0j

)
· h(X, η∗j ).

(42)
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As the expert function h satisfies the conditions in Definition A.1, the set {h(X, η′i) : i ∈ [k′]}, where
η′1, . . . , η

′
k′ are distinct vectors for some k′ ∈ N, is linearly independent. If N ′

p ̸= Np, then there exists

some i ∈ [N ′
p] such that ηi ̸= η∗j for any j ∈ [Np]. This implies that

∑N ′
p

j=1 softmaxG

(
(β1j)

⊤X +

β0j

)
· h(X, ηj) = 0, which is a contradiction. Thus, we must have that Np = N ′

p. As a result,{
softmaxG

(
(β1j)

⊤X + β0j

)
: j ∈ [N ′

p]
}
=
{
softmaxG∗

(
(β∗

1j)
⊤X + β∗

0j

)
: j ∈ [Np]

}
,

for almost every X . Without loss of generality,

softmaxG((β1j)
⊤X + β0j) = softmaxG∗((β

∗
1j)

⊤X + β∗
0j), (43)

for each j ∈ [Np]. Since the softmax function is invariant to translation, this forces β1j = β∗
1j

and β0j = β∗
0j + v0 for some v0 ∈ R. Given the normalization β0N ′

p
= β0Np

= 0, we conclude
β0j = β∗

0j .

Substituting back, the equation becomes:

Np∑
j=1

exp(β0j) exp((β1j)
⊤X)h(X, ηj) =

Np∑
j=1

exp(β∗
0j) exp((β

∗
1j)

⊤X)h(X, η∗j ).

for almost every X .

Partition the index set [Np] into groups P1, . . . , Pm (with m ≤ Np) such that within each group the
weights exp(β0i) agree, and across groups they differ. Then the above equality reduces groupwise to∑

i∈Pj

exp(β0i) exp((β1i)
⊤X)h(X, ηi) =

∑
i∈Pj

exp(β∗
0i) exp((β

∗
1i)

⊤X)h(X, η∗i ),

for almost every X . Since β1i = β∗
1i and β0i = β∗

0i, this equality implies that {ηi : i ∈ Pj} = {η∗i :
i ∈ Pj} for all j.

Therefore,

G =

m∑
j=1

∑
i∈Pj

exp(β0i)δ(β1i,ηi) =

m∑
j=1

∑
i∈Pj

exp(β∗
0i)δ(β∗

1i,η
∗
i )

= G∗,

which proves the identifiable property.

Proof of Equation (27). We begin the proof by introducing some key notations. LetRN ′
p
(Θ) be the

class of regression functions corresponding to the mixing measures in GN ′
p
(Θ):

RN ′
p
(Θ) := {gG(X) : G ∈ GN ′

p
(Θ)}.

For any δ > 0, we define the Np
2(µ) neighborhood around the true function gG∗(Y |X) intersected

withRN ′
p
(Θ) as

RN ′
p
(Θ, δ) := {g ∈ RN ′

p
(Θ) : ∥g − gG∗∥L2(µ) ≤ δ}.

To bound the complexity of this function class, van de Geer (2000) introduced the functional

JB(δ,RN ′
p
(Θ, δ)) :=

∫ δ

δ2/213
H

1/2
B

(
t,RN ′

p
(Θ, t), ∥ · ∥L2(µ)

)
dt ∨ δ, (44)

where HB(·) denotes the bracketing entropy of RN ′
p
(Θ, t) with respect to the Np

2(µ) norm, and
a ∨ b means max{a, b}. By adapting the proof techniques of Theorems 7.4 and 9.2 from van de Geer
(2000), we can establish the following lemma:
Lemma A.4. Suppose Ψ(δ) ≥ JB(δ,RN ′

p
(Θ, δ)) and that Ψ(δ)/δ2 is non-increasing in δ. Then

there exists a universal constant c and a sequence (δn) satisfying
√
n δ2n ≥ cΨ(δn) such that

P
(
∥gĜn

− gG∗∥L2(µ) > δ
)
≤ c exp

(
−nδ2

c2

)
,

for all δ ≥ δn.
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Next, we show that if the expert functions are Lipschitz continuous, then

HB(ε,RN ′
p
(Θ), ∥ · ∥L2(µ)) ≲ log(1/ε), (45)

for any 0 < ε ≤ 1/2. To see this, note that for any gG ∈ RN ′
p
(Θ) the boundedness of h ensures

h(X, η) ≤M for all X , for some constant M .

Let τ ≤ ε and consider a ζ-cover {π1, . . . , πN̄} of RN ′
p
(Θ) under the Np

∞ norm, where N̄ :=

N(ζ,RN ′
p
(Θ), ∥ · ∥L∞). Construct brackets [Npi(X), Ui(X)] for each i ∈ [N̄ ] by

Npi(X) := max{πi(X)− ζ, 0}, Ui(X) := max{πi(X) + ζ,M}.

By construction,RN ′
p
(Θ) ⊆

⋃N̄
i=1[Npi, Ui] and the width satisfies Ui −Npi ≤ min{2ζ,M}. Thus,

∥Ui −Npi∥
2 =

∫
(Ui −Npi)

2 dµ(X) ≤ 4ζ2,

so that ∥Ui −Npi∥ ≤ 2ζ. Hence, by the definition of bracketing entropy,

HB(2ζ,RN ′
p
(Θ), ∥ · ∥) ≤ logN = logN(ζ,RN ′

p
(Θ), ∥ · ∥L∞). (46)

Therefore, we need to provide an upper bound for the covering number N̄ . In particular, we denote
∆ := {(β1, β0) ∈ RNd×Nd × RNd × R : (β1, β0, η) ∈ Θ} and Ω := {η ∈ Rq : (β1, β0, η) ∈ Θ}.
Since Θ is a compact set, ∆ and Ω are also compact. Therefore, we can find ζ-covers ∆ζ and Ωζ for
∆ and Ω, respectively. We can check that

|∆ζ | ≤ OP (τ
−(Nd+1)N ′

p), |Ωζ | ≲ OP (τ
−qN ′

p).

For each mixing measure G =
∑N ′

p

i=1 exp(β0i)δ(β1i,ηi) ∈ GN ′
p
(Θ), we consider other two mixing

measures:

Ǧ :=

N ′
p∑

i=1

exp(β0i)δ(β1i,ηi)
, G :=

N ′
p∑

i=1

exp(β0i)δ(β1i,ηi)
.

Here, ηi ∈ Ωζ such that ηi is the closest to ηi in that set, while (β1i, β0i) ∈ ∆ζ is the closest to
(β1i, β0i) in that set. From the above formulations, we get that

∥gG − gǦ∥L∞ = sup
X∈X

N ′
p∑

j=1

exp(β⊤
1jX + β0j) · |h(X, ηj)− h(X, ηj)|∑N

i′=1 exp(X
⊤B0

i′X + c0i′) +
∑N ′

p

j′=1 exp(β
⊤
1j′X + β0j′)

≤
N ′

p∑
j=1

sup
X∈X

exp(β⊤
1jX + β0j) · |h(X, ηj)− h(X, ηj)|∑N

i′=1 exp(X
⊤B0

i′X + c0i′) +
∑N ′

p

j′=1 exp(β
⊤
1j′X + β0j′)

≤
N ′

p∑
j=1

sup
X∈X

|h(X, ηj)− h(X, ηj)|

≤
N ′

p∑
j=1

sup
X∈X

[L1(X) · ∥ηj − ηj∥] ≲ N ′
pζ ≲ ζ.

Here, the second inequality occurs as the softmax weight is bounded by one, and the third inequality
follows from the fact that the expert h(X, ·) is a Lipschitz function with some Lipschitz constant
L1(X) > 0. Next, let us denote

D : =

N∑
i′=1

exp(X⊤B0
i′X + c0i′) +

N ′
p∑

j′=1

exp(β⊤
1j′X + β0j′),

D : =

N∑
i′=1

exp(X⊤B0
i′X + c0i′) +

N ′
p∑

j′=1

exp(β
⊤
1j′X + β0j′).
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Then, we have

∥gǦ − gG∥L∞ = sup
X∈X

∣∣∣∣∣ 1D(
N∑
i=1

exp(X⊤B0
i X + c0i )h(X, η0i ) +

N ′
p∑

j=1

exp(β⊤
1jX + β0j)h(X, ηj)

)

− 1

D

( N∑
i=1

exp(X⊤B0
i X + c0i )h(X, η0i ) +

N ′
p∑

j=1

exp(β
⊤
1jX + β0j)h(X, ηj)

)∣∣∣∣∣
≤
∣∣∣ 1
D
− 1

D

∣∣∣ · N∑
i=1

sup
X∈X

∣∣∣ exp(X⊤B0
i X + c0i )h(X, η0i )

∣∣∣
+

N ′
p∑

j=1

sup
X∈X

∣∣∣∣∣exp(β⊤
1jX + β0j)

D
−

exp(β
⊤
1jX + β0j)

D

∣∣∣∣∣ · |h(X, ηj)|. (47)

Now, we will bound two terms in the above right hand side. Firstly, since both the input space X and
the parameter space Θ are bounded, we have that

1

D
− 1

D
≲ |D −D| ≤

N ′
p∑

j′=1

∣∣∣ exp(β⊤
1j′X + β0j′)− exp(β

⊤
1j′X + β0j′)

∣∣∣
≲

N ′
p∑

j′=1

∣∣∣(β1j − β1j)
⊤X + (β0j − β0j)

∣∣∣
≤

N ′
p∑

j′=1

|(β1j − β1j)
⊤X|+ |β0j − β0j |

≲

N ′
p∑

j=1

[
∥β1j − β1j∥ · ∥X∥+ |β0j − β0j |

]
≤ N ′

p(B + 1)ζ ≲ ζ.

As a result, we deduce that∣∣∣ 1
D
− 1

D

∣∣∣ · N∑
i=1

sup
X∈X

∣∣∣ exp(X⊤B0
i X + c0i )h(X, η0i )

∣∣∣ ≲ ζ. (48)

Regarding the second term, note that

exp(β⊤
1jX + β0j)

D
−

exp(β
⊤
1jX + β0j)

D

= exp(β⊤
1jX + β0j)

( 1

D
− 1

D

)
+

1

D

[
exp(β⊤

1jX + β0j)− exp(β
⊤
1jX + β0j)

]
.

Since both the input space and the parameter space are bounded, we have

exp(β⊤
1jX + β0j)

( 1

D
− 1

D

)
≲

1

D
− 1

D
≲ ζ,

1

D

[
exp(β⊤

1jX + β0j)− exp(β
⊤
1jX + β0j) ≲ (B + 1)ζ ≲ ζ,

which yields that
N ′

p∑
j=1

sup
X∈X

∣∣∣∣∣exp(β⊤
1jX + β0j)

D
−

exp(β
⊤
1jX + β0j)

D

∣∣∣∣∣ · |h(X, ηj)|

≲ ζ

N ′
p∑

j=1

sup
X∈X

|h(X, ηj)| ≲ ζ. (49)

25



Published as a conference paper at ICLR 2026

From Equations (47), (48) and (49), we obtain that ∥gǦ − gG∥L∞ ≲ ζ. According to the triangle
inequality, we have

∥gG − gG∥L∞ ≤ ∥gG − gǦ∥L∞ + ∥gǦ − gG∥L∞ ≲ ζ.

By definition of the covering number, we deduce that

N(ζ,RN ′
p
(Θ), ∥ · ∥L∞) ≤ |∆ζ | × |Ωζ | ≤ O(n−(Nd+1)N ′

p)×O(n−qN ′
p) ≤ O(n−(Nd+1+q)N ′

p).

(50)

Combined with Equations (46) and (50), we achieve the following result:

HB

(
2ζ,RN ′

p
(Θ), ∥ · ∥L2(µ)

)
≲ log(1/τ).

Let ζ = ε/2, then we obtain that

HB(ε,RN ′
p
(Θ), ∥ · ∥L2(µ)) ≲ log(1/ε).

As a result, it follows that

JB(δ,RN ′
p
(Θ, δ)) =

∫ δ

δ2/213
H

1/2
B (t,RN ′

p
(Θ, t), ∥ · ∥L2(µ)) dt ∨ δ ≲

∫ δ

δ2/213
log(1/t)dt ∨ δ.

(51)

Let Ψ(δ) = δ · [log(1/δ)]1/2, then Ψ(δ)/δ2 is a non-increasing function of δ. Furthermore, Equa-
tion (51) indicates that Ψ(δ) ≥ JB(δ,RN ′

p
(Θ, δ)). In addition, let δn =

√
log(n)/n, then we get

that
√
nδ2n ≥ cΨ(δn) for some universal constant c. Finally, by applying Lemma A.4, we achieve the

desired conclusion of the theorem.

B TRAINING ALGORITHM OF SMOPE

Algorithm 1 Training Process for Task Dt

Input: Pre-trained ViT fθ, dataset Dt, number of epochs E, hyperparameters ϵ, αrouter, αproto, and
accumulated expert activation frequencies {Fj′}

Output: Updated prompt parameters P and classifier parameters ϕ
1: if t > 1 then
2: Store the prompt parameters from the previous task: Pold ← P

3: if t = 1 then
4: for epoch = 1, . . . , E/2 do
5: for (xt

i, y
t
i) ∈ Dt do

6: Compute output ŷ = gϕ(fθ(x
t
i; P,K = −1))

7: Optimize P and ϕ with Lce ▷ Dense training phase
8: for epoch = 1, . . . , E do
9: for (xt

i, y
t
i) ∈ Dt do

10: Compute output ŷ = gϕ(fθ(x
t
i; P,K))

11: Optimize P and ϕ using Equation (16) ▷ Sparse training phase
12: for c ∈ Yt do
13: Estimate Gaussian distribution Gc using Equation (53)
14: for epoch = 1, . . . , E do
15: Optimize ϕ with the Ltap from Equation (54) ▷ Task-adaptive prediction
16: for (xt

i, y
t
i) ∈ Dt do

17: Compute z = fθ(x
t
i; P,K)

18: Update accumulated frequencies of expert usage {Fj′}
return (P, ϕ)

For the l-th MSA block, let PK
(l) and P V

(l) denote the prefix parameters where prompts are inserted.
For clarity, the main text omits the layer index (l) in the notation. The complete set of prompt
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parameters is P = {(PK
(l), P

V
(l))}

Np

l=1, where Np is the number of MSA blocks in the ViT. Given
an input x, its prompted representation is z = fθ(x;P,K), where θ denotes the frozen pre-trained
ViT weights and K is the number of selected prompt experts. Setting K = −1 activates a dense
prompting mode that bypasses sparse expert selection. Using an MLP classifier gϕ, the prediction is
given by:

ŷ = gϕ(z) = gϕ(fθ(x; P,K)). (52)

During training, only the prompt parameters P and the classifier parameters ϕ are updated.

Following prior work on SMoE training (Wu et al., 2022; Lin et al., 2024; Cai et al., 2025), we first
adopt dense training (K = −1) for several initial epochs on the first task. This provides a good
initialization of the prompt parameters before enabling sparse expert selection.

For each task t, the model is optimized on Dt using the objective in Equation (16). We then refine
the classifier parameters ϕ using the task-adaptive prediction (TAP) objective, following (Wang
et al., 2023; Jiao et al., 2024; Le et al., 2024), which mitigates classifier bias by modeling the
Gaussian distributions of previously seen classes. Specifically, for each class c ∈ Yi from tasks
i = 1, . . . , t − 1, we maintain a Gaussian distribution Gc = N (µc,Σc), approximated from the
prompted representations Dz

c = {z = fθ(x;P,K) | (x, c) ∈ Di}. The distribution parameters are
estimated as:

µc =
∑

zc∈Dz
c

zc
|Dz

c |
, Σc =

∑
zc∈Dz

c

(zc − µc)(zc − µc)
⊤

|Dz
c |

. (53)

The classifier gϕ is further optimized with the TAP loss:

Ltap =

t∑
i=1

∑
c∈Yi

∑
z∈Zi,c

− log

(
exp(gϕ(z)[c])∑t

j=1

∑
c′∈Yj exp(gϕ(z)[c′])

)
(54)

where Zi,c is constructed by sampling an equal number of pseudo-representations from Gc for each
class c ∈ Yi. The full procedure is summarized in Algorithm 1.

C ADDITIONAL EXPERIMENTAL DETAILS

Evaluation Metrics. We report two standard metrics, Final Average Accuracy (FAA) and Cumulative
Average Accuracy (CAA), as they inherently capture both plasticity and forgetting (Smith et al.,
2023). FAA measures the overall performance by computing the average accuracy across all T tasks
after the completion of continual learning. CAA extends this by averaging the performance across
all intermediate stages. Formally, let Si,t denote the accuracy on the i-th task after learning the t-th
task, and define the average accuracy after t tasks as At =

1
t

∑t
i=1 Si,t. Then, after all T tasks are

learned, FAA and CAA are given by FAA = AT , and CAA = 1
T

∑T
t=1 At.

Data Augmentation. Input images are resized to 224× 224 and augmented following the protocol
of Smith et al. (2023), including random horizontal flipping and standard normalization.

Implementation Details. We use a pre-trained ViT-B/16 model as the backbone. Training is
conducted using the AdamW optimizer with hyperparameters β1 = 0.9 and β2 = 0.999. Following
the setup in VQ-Prompt (Jiao et al., 2024), 20% of the training data is reserved for validation, and
a grid search is used to tune hyperparameters. We evaluate L2P++, Deep L2P++, DualPrompt,
CODA-Prompt, and VQ-Prompt using the official implementation provided by VQ-Prompt. For
OVOR, we similarly employ the original codebase. Recent work by Feng et al. (2025) has identified
an implementation issue in the official HiDe-Prompt codebase, specifically in its prompt retrieval
mechanism. This issue introduces information leakage, resulting in overestimated performance,
particularly when inference is performed with a batch size of 1, while the training batch size
remains consistent with the original setup. To address this, we adopt the corrected prompt retrieval
code provided by Feng et al. (2025) for both HiDe-Prompt and NoRGa, while preserving all other
components from the original implementations.

Hyperparameters. For SMoPE, we fix the prompt length to Np = 25 and select K = 5 prompt
experts in all experiments. Prompts are inserted into the first six MSA blocks (see Table 5). The
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Table 5: Detailed prompt configurations used for our main experiments. “Location” indicates the specific MSA
block where the prompt is inserted. Here, N denotes the number of prompts, and Np denotes the prompt length.

Method Location Dataset Hyperparameters

L2P++ [1] All N = 30, Np = 20

Deep L2P++ [1 2 3 4 5] All N = 30, Np = 20

DualPrompt [1 2] All G: N = 1, Np = 5
[3 4 5] All E: N = 10, Np = 20

CODA-Prompt [1 2 3 4 5] All N = 100, Np = 8

OVOR [1 2 3] All G: N = 1, Np = 5
[4 5] All E: N = 1, Np = 20

HiDe-Prompt [1 2 3 4 5]
ImageNet-R N = 10, Np = 40
CIFAR-100 N = 10, Np = 10
CUB-200 N = 10, Np = 40

NoRGa [1 2 3 4 5]
ImageNet-R N = 10, Np = 40
CIFAR-100 N = 10, Np = 10
CUB-200 N = 10, Np = 40

VQ-Prompt [1 2 3 4 5] All N = 10, Np = 8

SMoPE [1 2 3 4 5 6] All N = 1, Np = 25

Table 6: Performance comparison on ImageNet-R with varying task numbers. ↑ indicates higher is better. FAA
and CAA are averaged over 5 runs. Bold denotes the best results, excluding joint training.

Method 5-task 10-task 20-task 50-task

FAA (↑) CAA (↑) FAA (↑) CAA (↑) FAA (↑) CAA (↑) FAA (↑) CAA (↑)
Joint-Train 82.06 82.06 82.06 82.06
L2P++ 70.83± 0.58 78.34± 0.47 69.29± 0.73 78.30± 0.69 65.89± 1.30 77.15± 0.65 55.65± 0.89 64.88± 0.86
Deep L2P++ 73.93± 0.37 80.14± 0.54 71.66± 0.64 79.63± 0.90 68.42± 1.20 78.68± 1.03 58.48± 0.54 67.04± 0.80
DualPrompt 73.05± 0.50 79.47± 0.40 71.32± 0.62 78.94± 0.72 67.89± 1.39 77.42± 0.80 58.31± 1.18 65.51± 0.95
CODA-Prompt 76.51± 0.38 82.04± 0.54 75.45± 0.56 81.59± 0.82 72.37± 1.19 79.88± 1.06 66.96± 0.71 75.19± 0.72
OVOR 75.81± 0.16 79.31± 0.42 75.25± 0.21 79.78± 0.65 72.45± 0.42 77.60± 1.15 65.84± 0.59 74.84± 0.69
HiDe-Prompt 75.00± 0.05 79.68± 0.43 74.25± 0.19 79.64± 0.53 73.71± 0.37 79.14± 0.72 70.82± 0.54 76.81± 0.83
NoRGa 75.17± 0.19 79.64± 0.62 74.39± 0.08 79.68± 0.41 73.89± 0.33 79.22± 0.84 71.02± 0.63 76.99± 0.58
VQ-Prompt 79.23± 0.29 82.96± 0.50 78.71± 0.22 83.24± 0.68 78.10± 0.22 82.70± 1.16 75.31± 0.61 81.52± 0.81
SMoPE 80.09± 0.42 84.47± 0.95 79.32± 0.42 84.39± 0.77 77.81± 0.36 83.38± 0.98 75.54± 0.49 81.94± 0.93

hyperparameter ϵ is tuned over the set {0.0, 0.1, . . . , 0.9, 1.0}. The weighting coefficients αrouter
and αproto are tuned over the set {5e−6, 1e−5, 5e−5, 1e−4, 5e−4, 1e−3}. For all baseline methods,
we use the configurations and hyperparameters reported in their respective original papers to ensure a
fair comparison.

D ADDITIONAL EXPERIMENTAL RESULTS

D.1 PERFORMANCE ACROSS VARYING TASK LENGTHS

To assess the scalability and generalizability of SMoPE, we follow prior work (Huang et al., 2024;
Jiao et al., 2024) by partitioning ImageNet-R into 5, 10, and 20 sequential tasks, ensuring a fair
comparison with existing methods. Additionally, we introduce a 50-task split to more rigorously
evaluate SMoPE’s capacity to handle longer task sequences. The results are shown in Table 6. Across
all configurations, SMoPE consistently outperforms task-specific methods such as HiDe-Prompt and
NoRGa, despite using a single shared prompt. Its performance remains comparable to VQ-Prompt,
further validating its robustness under varying task lengths. These findings suggest that SMoPE can
generalize effectively as the number of tasks increases. However, relying on a single prompt for an
indefinite number of tasks may eventually lead to knowledge interference as the task sequence grows.
To address this limitation, future work could explore strategies for scaling the number of prompt
experts to better support longer task sequences.

D.2 PERFORMANCE ACROSS VARYING PROMPT LENGTHS AND NUMBER OF PROMPT
EXPERTS

We investigated the impact of prompt length Np and the number of selected experts K on model
performance, with results presented in Figure 3. Across a wide range of configurations, our method
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Figure 3: Impact of Prompt Length Np and Number of Selected Experts K on Performance. Performance
across different combinations of Np and K values on CUB-200 with a 10-task split.
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Figure 4: Distribution of Prompt Expert Scores. Box plot illustrating the distribution of prompt expert scores
s̃j′ across attention heads in the first MSA block on the CUB-200 dataset.

consistently surpasses task-specific prompting approaches, particularly HiDe-Prompt, demonstrating
the robustness of SMoPE. Performance tends to degrade when Np is small, as indicated by lower FAA
scores across various values of K. Increasing Np generally improves performance up to a certain
threshold. However, excessively large values of Np lead to a decline in performance, likely due to the
increased difficulty of effectively training all Np prompt experts. A larger number of experts also
means that each receives less training data, which hinders learning and complicates the selection of
relevant experts, ultimately reducing FAA scores. Regarding the number of selected experts, we find
that setting K = 5 yields strong and stable performance across different prompt lengths. Based on
these observations, we use Np = 25 and K = 5 in all our experiments.

D.3 DETAILED ANALYSIS OF ADAPTIVE NOISE

Adaptive Noise Formulation. Our adaptive noise formulation is derived directly from min–max
normalization. From Equation (12), the selected expert set can be expressed as:

KX = argmax
S

∑
j′∈S

s̃j′(X)− ϵj′

maxj s̃j(X)−minj s̃j(X)
= argmax

S

∑
j′∈S

s̃j′(X)− ϵj′ −minj s̃j(X)

maxj s̃j(X)−minj s̃j(X)

= argmax
S

∑
j′∈S

(
s̃j′(X)−minj s̃j(X)

maxj s̃j(X)−minj s̃j(X)
− ϵj′

maxj s̃j(X)−minj s̃j(X)

)
.
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Table 7: Performance comparison on ImageNet-R and CUB-200 using 10-task split with different noise
formulations. ↑ indicates that higher values are better. Bold highlights the best results.

Method ImageNet-R CUB-200

FAA (↑) CAA (↑) FAA (↑) CAA (↑)
Fixed Noise 79.03± 0.31 84.42± 0.68 86.86± 0.47 90.37± 0.60
Uniform Noise 79.04± 0.63 84.29± 0.70 87.14± 0.45 90.40± 0.65
Adaptive Noise 79.32± 0.42 84.39± 0.77 87.43± 0.39 91.11± 0.55
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Figure 5: Impact of ϵ on Performance. Performance across different ϵ values on the ImageNet-R dataset using
a 10-task split.

Thus, our adaptive noise can be interpreted as performing min–max normalization of the expert
scores, followed by subtracting a scaled ϵ from the scores of important experts. As a result, the noise
is adaptively scaled to the dynamic range of the scores, eliminating the need for manual tuning of
noise magnitudes across different attention heads.

Previous work has typically encouraged expert exploration by injecting random noise into expert
scores, either with a fixed magnitude (Nguyen et al., 2024) or by sampling from predefined distri-
butions (e.g., Uniform) (Shazeer et al., 2017; Fedus et al., 2022). However, in pre-trained models,
the range of expert scores can vary considerably across attention heads (see Figure 4), making it
difficult to select an appropriate fixed noise level. In contrast, our method requires tuning only a
single noise parameter, ϵ, which is constrained to the interval [0, 1]. This approach eliminates the
need for head-specific noise scaling and significantly reduces the complexity of hyperparameter
tuning in large-scale models.

To assess the effectiveness of our adaptive noise approach, we compare it with the following baseline
variants:

• Fixed Noise: A constant noise value ϵ is subtracted from the scores of frequently activated
prompt experts across all attention heads.

• Uniform Noise: Noise is sampled from a uniform distribution U(−ϵ, ϵ) and added to all
prompt expert scores across all attention heads.

The experimental results, summarized in Table 7, demonstrate that our adaptive noise formulation
surpasses these baselines, highlighting its effectiveness. While our noise formulation is specifically
tailored for continual learning to help preserve knowledge in important experts, it may also be
applicable to other settings, which we leave for future exploration.

Impact of ϵ on Performance. To evaluate the impact of ϵ on model performance, we report FAA
results on ImageNet-R across a range of ϵ values, as shown in Figure 5. When ϵ = 0.0, performance
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Figure 6: Impact of ϵ on Activation Frequencies. Results on CUB-200 with a prompt length of Np = 25 and
K = 5. We present the results for several representative attention heads and visualize the frequency with which
prompt experts are activated after training on all tasks for different values of ϵ.

is suboptimal due to imbalanced expert utilization. As ϵ increases, performance improves, suggesting
enhanced exploration and more balanced expert engagement. However, excessively large values
of ϵ can reduce expert specialization, as a broader set of experts is activated more frequently. This
also hinders the reuse of frequently activated trained experts, limiting knowledge transfer. Overall, a
moderate ϵ value achieves a favorable trade-off between exploration and stability, resulting in optimal
performance.

Impact of ϵ on Activation Frequencies of Prompt Experts. To investigate the influence of
the regularization parameter ϵ on the activation frequencies of prompt experts, we select several
representative attention heads and visualize their activation patterns across varying values of ϵ using
the CUB-200 dataset. The results are shown in Figure 6.

At ϵ = 0.0, we observe that certain attention heads activate only a limited subset of prompt experts.
However, as the input distribution to these attention heads shifts with the introduction of new tasks,
different sets of experts may be activated. This variation is primarily driven by the relevance of
each expert to the input, as determined by the score function. Interestingly, even in the absence of
adaptive noise, some attention heads (e.g., Layer 2, Head 2, as depicted in the figure) demonstrate
balanced expert utilization, with no significant imbalances in activation frequency. At ϵ = 1.0, the
regularization penalty reaches its maximum, substantially reducing the scores of frequently activated
experts while encouraging the activation of underutilized ones. As shown in the figure, this penalty
leads to a more balanced distribution of expert utilization across all attention heads. We find that
ϵ = 0.4 is the optimal value and yields the best performance. At this setting, the distribution of
expert activation is relatively balanced, though some attention heads still exhibit imbalanced expert
utilization. This highlights a key trade-off in continual learning: activating too many experts can
dilute the specialization of each expert, as they are exposed to less data during training. Furthermore,
an excessive number of activated experts complicates the task of selecting the most relevant experts
for a given input. This challenge mirrors issues observed in methods using task-specific prompts,
where an increasing number of tasks makes it progressively harder to identify the correct task identity
and its corresponding prompt.

D.4 PERFORMANCE ACROSS VARYING LOSS WEIGHTS

To enhance the selection process of prompt experts, we introduce two loss functions: Lrouter and
Lproto. These are designed to encourage expert specialization while preserving previously acquired
knowledge. We investigate the impact of their corresponding loss weights, αrouter and αproto, as
defined in Equation (16). The results, shown in Figure 7, demonstrate that the model achieves optimal
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Figure 7: Impact of αrouter and αproto on Performance. Performance across different combinations of αrouter
and αproto values on the CUB-200 dataset using a 10-task split.
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Figure 8: Visualization of Prefix Keys. PCA is applied to a representative attention head to visualize the
distribution of the corresponding input embeddings and prefix key vectors.

performance when these weights are sufficiently large, suggesting that both components contribute
positively to overall performance. Furthermore, performance remains strong across a relatively wide
range of values, highlighting the robustness and effectiveness of incorporating Lrouter and Lproto into
the training objective.

D.5 DETAILED ANALYSIS OF PROTOTYPE LOSS

As discussed in Section 3.4, the activation of a prompt expert fN+j′ is determined by its score
function s̃j′ , which in turn depends on the associated prefix key pK

j′ . Thus, the set of prefix keys
implicitly defines the regions of the input space where each expert is most responsive. Building on
this insight, we propose leveraging prefix keys from previous tasks as prototypes, serving as implicit
memory representations of past input distributions. To support this intuition, we select a representative
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Figure 9: Sample Efficiency Evaluation. Validation loss on ImageNet-R (10-task split) measured throughout
the training process for each task.

attention head and visualize its corresponding input embeddings alongside the associated prefix keys
using Principal Component Analysis (PCA), as shown in Figure 8. The visualization reveals that prefix
keys occupy a region of the embedding space densely populated by input samples. This proximity
suggests that prefix keys encode salient features of the input distribution, thereby functioning as
effective prototypes.

This perspective aligns with findings in recent literature. For example, Chen et al. (2022) showed
that routers can learn cluster-center features, facilitating the decomposition of complex tasks into
simpler sub-problems addressable by individual experts. Furthermore, the expert selection process
can be interpreted as a classification problem, where the prefix keys act as a linear classification head.
In this context, recent studies have proposed that the weight vector associated with each class in a
classifier can be interpreted as a class prototype (Snell et al., 2017; Qi et al., 2018; Zhao et al., 2024),
further supporting our hypothesis.

D.6 SAMPLE EFFICIENCY EVALUATION

As demonstrated in Appendix A, applying the prompt-attention score aggregation technique yields
MoE models within attention heads that maintain the same estimation rate and sample efficiency
as those achieved by the standard prefix tuning formulation. To empirically support this theoretical
result, we follow Le et al. (2024) and evaluate sample efficiency by tracking the validation loss on
ImageNet-R throughout the training process for each new task. The results, presented in Figure 9,
show that both models exhibit comparable convergence rates. This suggests that incorporating
prompt-attention score aggregation does not compromise the model’s ability to efficiently adapt to
new tasks.

D.7 ANALYSIS OF PROMPT EXPERT ACTIVATION FREQUENCIES

To provide direct evidence for our central claim that sparse activation mitigates interference, this
section analyzes how expert activation patterns evolve as the model encounters a sequence of tasks.
As illustrated in Figure 10, which visualizes activation frequencies on the CUB-200 dataset, the
model initially activates a sparse and concentrated subset of prompt experts. As training progresses
across subsequent tasks, the set of activated experts becomes increasingly larger and more diverse.

This dynamic and adaptive activation pattern is fundamental to how our method mitigates interfer-
ence. In contrast to dense, single-prompt baselines (e.g., OVOR), where a single set of parameters
must be continually updated for each new task—risking the overwriting of previously acquired
knowledge—our sparse approach distributes the learning load across a broader pool of specialized
experts. New tasks can activate and train new or underutilized experts, leaving the parameters of
experts essential for earlier tasks largely unaffected. This selective activation is crucial for preserving
acquired knowledge while maintaining plasticity for new learning.

Furthermore, this diversification does not preclude effective knowledge reuse. The activation mecha-
nism in the SMoPE framework is input-driven rather than task-ID-driven, as discussed in Section 3.2.
Consequently, an expert can be reactivated for subsequent tasks if its specialized function is relevant
to the current input. This mechanism facilitates positive knowledge transfer while preventing the
destructive interference.
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Figure 10: Evolution of Prompt Expert Activation Frequencies Across Sequential Tasks. Results on
CUB-200 with a prompt length of Np = 25 and K = 5. We present the results for a representative attention
head and visualize the frequency with which prompt experts are activated across sequential tasks.
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Figure 11: Accuracy Curves Across Incremental Steps. Performance of different methods on CUB-200
under the 10-task incremental learning setting.

D.8 ACCURACY CURVES ACROSS INCREMENTAL STEPS

To provide a more comprehensive understanding of the method’s behavior, we present accuracy
curves illustrating how FAA performance evolves across sequential tasks on CUB-200 under the
10-task setting. The results are shown in Figure 11. As observed, OVOR performance deteriorates
rapidly as training progresses. This decline can be attributed to knowledge interference arising from
updating all prompt parameters simultaneously. In contrast, SMoPE maintains consistently strong
performance across all tasks. Notably, its accuracy surpasses that of methods employing task-specific
prompts, such as HiDe-Prompt. These results demonstrate the effectiveness and robustness of the
SMoPE architecture, even when using shared prompt parameters.

E USE OF LARGE LANGUAGE MODELS

Large language models were employed solely for editorial purposes, including grammar correction
and spelling refinement. They were not used for content generation, data analysis, or the design of
experiments.
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