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Abstract
We introduce a novel framework of ranking with
abstention, where the learner can abstain from
making prediction at some limited cost c. We
present a extensive theoretical analysis of this
framework including a series of H-consistency
bounds for both the family of linear functions
and that of neural networks with one hidden-layer.
These theoretical guarantees are the state-of-the-
art consistency guarantees in the literature, which
are upper bounds on the target loss estimation
error of a predictor in a hypothesis set H, ex-
pressed in terms of the surrogate loss estimation
error of that predictor. We further argue that our
proposed abstention methods are important when
using common equicontinuous hypothesis sets in
practice. We report the results of experiments
illustrating the effectiveness of ranking with ab-
stention.

1. Introduction
In many applications, ranking is a more appropriate formula-
tion of the learning task than classification, given the crucial
significance of the ordering of the items. As an example, for
movie recommendation systems, an ordered list of movies
is preferable to a comprehensive list of recommended titles,
since users are more likely to watch those ranked highest.

The problem of learning to rank has been studied in a large
number of publications. Ailon & Mohri (2008; 2010) distin-
guish two general formulations of the problem: the score-
based setting and the preference-based setting. In the score-
based setting, a real-valued function over the input space
is learned, whose values determine a total ordering of all
input points. In the preference-based setting, a pairwise
preference function is first learned, typically by training a
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classifier over a sample of labeled pairs; next, that function
is used to derive an ordering, potentially randomized, of any
subset of points.

This paper deals with the score-based ranking formulation
both in the general ranking setting, where items are not as-
signed any specific category, and the bipartite setting, where
they are labeled with one of two classes. The evaluation of
a ranking solution in this context is based on the average
pairwise misranking metric. In the bipartite setting, this
metric is directly related to the AUC (Area Under the ROC
Curve), which coincides with the average correct pairwise
ranking (Hanley & McNeil, 1982; Cortes & Mohri, 2003),
also known as the Wilcoxon-Mann-Whitney statistic.

For most hypothesis sets, directly optimizing the pairwise
misranking loss is intractable. Instead, ranking algorithms
resort to a surrogate loss. As an example, the surrogate loss
for RankBoost (Freund et al., 2003; Rudin et al., 2005) is
based on the exponential function and that of SVM ranking
(Joachims, 2002) on the hinge loss. But, what guarantees
can we rely on when minimizing a surrogate loss instead of
the original pairwise misranking loss?

The property often invoked in this context is Bayes consis-
tency, which has been extensively studied for classification
(Zhang, 2004; Bartlett et al., 2006; Tewari & Bartlett, 2007).
The Bayes consistency of ranking surrogate losses has been
studied in the special case of bipartite ranking: in partic-
ular, Uematsu & Lee (2017) proved the inconsistency of
the pairwise ranking loss based on the hinge loss and Gao
& Zhou (2015) gave excess loss bounds for pairwise rank-
ing losses based on the exponential or the logistic loss (see
also (Menon & Williamson, 2014)). A related but distinct
consistency question has been studied in several publica-
tions (Agarwal et al., 2005; Kotlowski et al., 2011; Agarwal,
2014). It is one with respect to binary classification, that
is whether a near minimizer of the surrogate loss of the
binary classification loss is a near minimizer of the bipartite
misranking loss (Cortes & Mohri, 2003).

However, as recently argued by Awasthi, Mao, Mohri, and
Zhong (2022a), Bayes consistency is not a sufficiently in-
formative notion since it only applies to the entire class of
measurable functions and does not hold for specific subsets,
such as sub-families of linear functions or neural networks.
Furthermore, Bayes consistency is solely an asymptotic con-
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cept and does not offer insights into the performance of
predictors trained on finite samples. In response, the au-
thors proposed an alternative concept called H-consistency
bounds, which provide non-asymptotic guarantees tailored
to a given hypothesis set H. They proceeded to establish
such bounds within the context of classification both in bi-
nary and multi-class classification (Awasthi et al., 2022a;b),
see also (Mao et al., 2023b;a; Zheng et al., 2023). These
are stronger and more informative guarantees than Bayes
consistency.

But, can we derive H-consistency bounds guarantees for
ranking? We propose a novel framework of ranking with
abstention, where the learner can abstain from making pre-
diction at some limited cost c, in both the general pairwise
ranking scenario and the bipartite ranking scenarios. For
surrogate losses of these abstention loss functions, we give a
series of H-consistency bounds for both the family of linear
functions and that of neural networks with one hidden-layer.
A key term appearing in these bounds is the minimizability
gap, which measures the difference between the best-in-
class expected loss and the expected infimum of the point-
wise expected loss. This plays a crucial role in these bounds
and we give a detailed analysis of these terms.

We will further show that, without abstention, deriving
non-trivial H-consistency bounds is not possible for most
hypothesis sets used in practice, including the family of
constrained linear models or that of the constrained neural
networks, or any family of equicontinuous functions with
respect to the input. In fact, we will give a relatively simple
example where the pairwise misranking error of the Rank-
Boost algorithm remains significant, even after training with
relatively large sample sizes. These results further imply the
importance of our proposed abstention methods.

We also present the results of experiments illustrating the
effectiveness of ranking with abstention.

Technical novelty. The primary technical differences and
challenges between the ranking and classification settings
(Awasthi et al., 2022a) stem from the fundamental distinc-
tion that ranking loss functions take as argument a pair of
samples rather than a single one, as is the case for binary
classification loss functions. This makes it more challeng-
ing to derive H-consistency bounds, as upper bounding the
calibration gap of the target loss by that of the surrogate loss
becomes technically more difficult.

Additionally, this fundamental difference leads to a nega-
tive result for ranking, as H-consistency bounds cannot be
guaranteed for most commonly used hypothesis sets, in-
cluding the family of constrained linear models and that
of constrained neural networks, both of which satisfy the
equicontinuity property concerning the input. As a result, a
natural alternative involves using ranking with abstention,

for which H-consistency bounds can be proven. In the
abstention setting, an extra challenge lies in carefully mon-
itoring the effect of a threshold γ to relate the calibration
gap of the target loss to that of the surrogate loss.

Furthermore, the bipartite ranking setting introduces an
added layer of complexity, as each element of a pair of
samples has an independent conditional distribution, which
results in a more intricate calibration gap.

Structure of the paper. The remaining sections of this pa-
per are organized as follows. In Section 2, we study general
pairwise ranking with abstention. We provide a series of
explicit H-consistency bounds in the case of the pairwise
abstention loss, with multiple choices of the surrogate loss
and for both the family of linear functions and that of neural
networks with one hidden-layer. We also study bipartite
ranking with abstention in Section 3. Here too, we present
H-consistency bounds for bipartite abstention loss, for lin-
ear hypothesis sets and the family of neural networks with
one hidden-layer. In Section 4, we show the importance
of our abstention methods by demonstrating that without
abstention, there exists no meaningful H-consistency bound
for general surrogate loss functions with an equicontinuous
hypothesis set H, in both the general pairwise ranking (Sec-
tion 4.1) and the bipartite ranking (Section 4.2) scenarios. In
Section 5, we report the results of experiments illustrating
the effectiveness of ranking with abstention.

We give a detailed discussion of related work in Appendix A.

2. General Pairwise Ranking with Abstention
In this section, we introduce a novel framework of general
pairwise ranking with abstention. We begin by introducing
the necessary definitions and concepts.

2.1. Preliminaries

We study the learning scenario of score-based ranking in
the general pairwise ranking scenario (e.g. see (Mohri et al.,
2018)). Let X denote the input space and Y = {−1,+1} the
label space. We denote by H a hypothesis set of functions
mapping from X to R. The general pairwise misranking
loss L0−1 is defined for all h in H, x,x′ in X and y in Y by

L0−1(h,x, x′, y) = 1y≠sign(h(x′)−h(x)), (1)

where sign(u) = 1u≥0 − 1u<0. Thus, h incurs a loss of
one on the labeled pair (x,x′, y) when it ranks the pair
(x,x′) opposite to the sign of y, where, by convention,
x′ is considered as ranked above x when h(x′) ≥ h(x).
Otherwise, the loss incurred is zero.

The framework we propose is that of general pairwise rank-
ing with abstention. In this framework, the learner abstains
from making a prediction on input pair (x,x′) if the distance
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between x′ and x is relatively small, in which case a cost c
is incurred. Let ∥ ⋅ ∥ denote the norm adopted, which is typi-
cally an `p-norm, p ∈ [1,+∞]. The pairwise abstention loss
is defined as follows for any h ∈H and (x,x′, y) ∈ X×X×Y:

Labs
0−1(h,x, x′, y)

= 1y≠sign(h(x′)−h(x))1∥x−x′∥>γ + c1∥x−x′∥≤γ , (2)

where γ is a given threshold value. For γ = 0, Labs
0−1 reduces

to the pairwise misranking loss L0−1 without abstention.

In Section 4, we will show the importance of our proposed
abstention methods when using common equicontinuous hy-
pothesis sets in practice. Optimizing the pairwise misrank-
ing loss L0−1 or pairwise abstention loss Labs

0−1 is intractable
for most hypothesis sets. Thus, general ranking algorithms
rely on a surrogate loss function L instead of L0−1. The
general pairwise ranking surrogate losses widely used in
practice admit the following form:

LΦ(h,x, x′, y) = Φ(y(h(x′) − h(x))), (3)

where Φ is a non-increasing function that is continuous
at 0 and upper bounding u ↦ 1u≤0 over R. We will an-
alyze the properties of such surrogate loss functions with
respect to both L0−1 and Labs

0−1. We will specifically con-
sider the hinge loss Φhinge(t) = max{0,1 − t}, the expo-
nential loss Φexp(t) = e−t and the sigmoid loss Φsig(t) =
1 − tanh(kt), k > 0 as auxiliary functions Φ.

Let D denote a distribution over X ×X × Y. We denote by
η(x,x′) = D(Y = +1 ∣ (X,X ′) = (x,x′)) the conditional
probability of Y = +1 given (X,X ′) = (x,x′). We also
denote by RL(h) the expected L-loss of a hypothesis h and
by R∗

L(H) its infimum over H:

RL(h) = E
(x,x′,y)∼D

[L(h,x, x′, y)] R∗
L(H) = inf

h∈H
RL(h)

H-consistency bounds. We will analyze the H-consistency
bounds properties (Awasthi et al., 2022a) of such surrogate
loss functions. An H-consistency bound for a surrogate loss
L and a target loss L is a guarantee of the form:

∀h ∈H, RL(h) −R∗
L
(H) ≤ f(RL(h) −R∗

L(H)),

for some non-decreasing function f ∶R+ → R+, where L
can be taken as L0−1 or Labs

0−1. This provides a quantitative
relationship between the estimation loss of L and that of
the surrogate loss L. The guarantee is stronger and more
informative than Bayes consistency, or H-consistency, H-
calibration or the excess error bounds (Zhang, 2004; Bartlett
et al., 2006; Steinwart, 2007; Mohri et al., 2018) discussed
in the literature.

A key quantity appearing in H-consistency bounds is the
minimizability gap, which is the difference between the best-
in-class expected loss and the expected pointwise infimum

of the loss:

ML(H) = R∗
L(H) − E

(x,x′)
[ inf
h∈H

E
y
[L(h,x, x′, y) ∣ (x,x′)]].

By the super-additivity of the infimum, the minimizability
gap is always non-negative.

We will specifically study the hypothesis set of linear hy-
potheses, Hlin = {x↦ w ⋅ x + b ∣ ∥w∥q ≤W, ∣b∣ ≤ B} and
the hypothesis set of one-hidden-layer ReLU networks:
HNN = {x ↦ ∑nj=1 uj(wj ⋅ x + bj)+ ∣ ∥u∥1 ≤ Λ, ∥wj∥q ≤
W, ∣bj ∣ ≤ B}, where (⋅)+ = max(⋅,0).

Let p, q ∈ [1,+∞] be conjugate numbers, that is 1
p
+ 1
q
= 1.

Without loss of generality, we consider X = Bdp(1) and ∥⋅∥
in (2) to be the `p norm. The corresponding conjugate `q
norm is adopted in the hypothesis sets Hlin and HNN. In the
following, we will prove H-consistency bounds for L = LΦ

and L = Labs
0−1 when using as an auxiliary function Φ the

hinge loss, the exponential loss, or the sigmoid loss, in the
case of the linear hypothesis set Hlin or that of one-hidden-
layer ReLU networks HNN.

2.2. H-consistency bounds for pairwise abstention loss

Theorem 2.1 shows the H-consistency bounds for LΦ with
respect to Labs

0−1 when using common auxiliary functions.
The bounds in Theorem 2.1 depend directly on the threshold
value γ, the parameter W in the linear models and parame-
ters of the loss function (e.g., k in sigmoid loss). Different
from the bounds in the linear case, all the bounds for one-
hidden-layer ReLU networks not only depend on W , but
also depend on Λ, which is a parameter appearing in HNN.

Theorem 2.1 (H-consistency bounds for pairwise ab-
stention loss). Let H be Hlin or HNN. Then, for any h ∈H
and any distribution,

RLabs
0−1

(h) −R∗
Labs

0−1
(H) +MLabs

0−1
(H)

≤ ΓΦ(RLΦ
(h) −R∗

LΦ
(H) +MLΦ

(H)),

where ΓΦ(t) = t
min{Wγ,1} , max{

√
2t,2( e2Wγ+1

e2Wγ−1
) t} and

t
tanh(kWγ) for Φ = Φhinge, Φexp and Φsig respectively. W
is replaced by ΛW for H =HNN.

As an example, for H = Hlin or HNN, when using as Φ
the exponential loss function, modulo the minimizability
gaps (which are zero when the best-in-class error coin-
cides with the Bayes error or can be small in some other
cases), the bound implies that if the surrogate estimation
loss RLΦexp

(h)−R∗
LΦexp

(H) is reduced to ε, then, the target
estimation loss RLabs

0−1
(h) −R∗

Labs
0−1

(H) is upper bounded by
ΓΦexp(ε). For sufficiently small values of ε, the dependence
of ΓΦexp on ε exhibits a square root relationship. However,
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if this is not the case, the dependence becomes linear, sub-
ject to a constant factor depending on the threshold value γ,
the parameter W in the linear models and the one-hidden-
layer ReLU networks, and an additional parameter Λ in the
one-hidden-layer ReLU networks.

The proofs consist of analyzing calibration gaps of the target
loss and that of each surrogate loss and seeking a tight lower
bound of the surrogate calibration gap in terms of the target
one. As an example, for Φ = Φexp, we have the tight lower
bound ∆CLΦexp ,H

(h,x, x′) ≥ ∆CLΦexp ,H
(h0, x, x

′) =
Ψexp(∆CLabs

0−1,H
(h,x, x′)), where h0 can be the null hy-

pothesis when ∆CLabs
0−1,H

(h,x, x′) ≠ 0 and Ψexp is an in-
creasing and piecewise convex function on [0,1] defined by

Ψexp(t) =
⎧⎪⎪⎨⎪⎪⎩

1 −
√

1 − t2, t ≤ e2Wγ−1
e2Wγ+1

1 − t+1
2
e−Wγ − 1−t

2
eWγ , t > e2Wγ−1

e2Wγ+1

, where

W is replaced by ΛW for H = HNN. The detailed proofs
and the expression of the corresponding minimizability gaps
are included in Appendix C.

3. Bipartite Ranking with Abstention
As with the general pairwise ranking case, we introduce a
novel framework of bipartite ranking with abstention. We
first introduce the relevant definitions and concepts.

3.1. Preliminaries

In the bipartite setting, each point x admits a label y ∈
{−1,+1}. The bipartite misranking loss L̃0−1 is defined for
all h in H, and (x, y), (x′, y′) in (X × Y) by

L̃0−1(h,x, x′, y, y′) =

1(y−y′)(h(x)−h(x′))<0 +
1

2
1(h(x)=h(x′))∧(y≠y′). (4)

The framework we propose is that of bipartite ranking with
abstention. In this framework, the learner can abstain from
making prediction on a pair (x,x′) with x and x′ relatively
close. The bipartite abstention loss is defined as follows for
any h ∈H and (x, y), (x′, y′) ∈ X × Y:

L̃abs
0−1(h,x, x′, y, y′)

= L̃0−1(h,x, x′, y, y′)1∥x−x′∥>γ + c1∥x−x′∥≤γ , (5)

where γ is a given threshold value. When γ = 0, L̃abs
0−1

reduces to bipartite misranking loss L̃0−1 without abstention.

Optimizing the bipartite misranking loss L̃0−1 or bipartite
abstention loss L̃abs

0−1 is intractable for most hypothesis sets
and bipartite ranking algorithms rely instead on a surrogate
loss L̃. The bipartite ranking surrogate losses widely used
in practice, admit the following form:

L̃Φ(h,x, x′, y, y′)=Φ((y − y′)(h(x) − h(x′))
2

)1y≠y′ , (6)

where Φ is a non-increasing function that is continuous
at 0 upper bounding u ↦ 1u≤0 over R. We will ana-
lyze the H-consistency bounds properties (Awasthi et al.,
2022a) of such surrogate loss functions with respect to both
L̃0−1 and L̃abs

0−1. As with the general pairwise ranking case,
we will specifically consider the hinge loss Φhinge(t) =
max{0,1 − t}, the exponential loss Φexp(t) = e−t and the
sigmoid loss Φsig(t) = 1 − tanh(kt), k > 0 as auxiliary
functions Φ.

Let D be a distribution over X × Y. We denote by η(x) =
D(Y = +1 ∣ X = x) the conditional probability of Y =
+1 given X = x. We will use a definition and notation
for the expected L̃-loss of h ∈ H, its infimum, and the
minimizability gaps similar to what we used in the general
pairwise misranking setting:

RL̃(h) = E
(x,x′,y)∼D

[L̃(h,x, x′, y)] R∗
L̃
(H) = inf

h∈H
RL̃(h)

ML̃(H)

= R∗
L̃
(H) − E

(x,x′)
[ inf
h∈H

E
(y,y′)

[L(h,x, x′, y, y′) ∣ (x,x′)]].

3.2. H-consistency bounds for bipartite abstention
losses

Theorem 3.1 presents a series of H-consistency bounds for
L̃Φ when using as an auxiliary function Φ the hinge loss,
the exponential loss, or the sigmoid loss. The bounds in
Theorem 3.1 depend directly on the threshold value γ, the
parameterW in the linear models and parameters of the loss
function (e.g., k in sigmoid loss). Different from the bounds
in the linear case, all the bounds for one-hidden-layer ReLU
networks not only depend on W , but also depend on Λ, a
parameter in HNN.

Theorem 3.1 (H-consistency bounds for bipartite ab-
stention losses). Let H be Hlin or HNN. Then, for any
h ∈H and any distribution,

RL̃abs
0−1

(h) −R∗
L̃abs

0−1

(H) +ML̃abs
0−1

(H)

≤ ΓΦ(RL̃Φ
(h) −R∗

L̃Φ
(H) +ML̃Φ

(H))

where ΓΦ(t) equals t
min{Wγ,1} , max{

√
t, ( e2Wγ+1

e2Wγ−1
) t}

and t
tanh(kWγ) for Φ equals Φhinge, Φexp and Φsig respec-

tively. W is replaced by ΛW for H =HNN.

As an example, for H = Hlin or HNN, when adopting the
exponential loss function as Φ, modulo the minimizabil-
ity gaps (which are zero when the best-in-class error coin-
cides with the Bayes error or can be small in some other
cases), the bound implies that if the surrogate estimation
loss RL̃Φexp

(h)−R∗
L̃Φexp

(H) is reduced to ε, then, the target

estimation loss RL̃abs
0−1

(h) −R∗
L̃abs

0−1

(H) is upper bounded by
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Table 1: General pairwise abstention loss for the Rankboost loss on CIFAR-10; mean ± standard deviation over three runs
for various γ and cost c.

γ 0 0.3 0.5 0.7 0.9

Cost 0.1 8.33% ± 0.15% 8.33% ± 0.15% 8.33% ± 0.15% 8.25% ± 0.07% 8.54%± 0.07%

Cost 0.3 8.33% ± 0.15% 8.33% ± 0.15% 8.35% ± 0.15% 9.73% ± 0.11% 20.41%± 0.06%

Cost 0.5 8.33% ± 0.15% 8.33% ± 0.15% 8.36% ± 0.14% 11.20% ± 0.14% 32.28% ± 0.07%

ΓΦexp(ε). For sufficiently small values of ε, the dependence
of ΓΦexp on ε exhibits a square root relationship. However,
if this is not the case, the dependence becomes linear, sub-
ject to a constant factor depending on the threshold value γ,
the parameter W in the linear models and the one-hidden-
layer ReLU networks, and an additional parameter Λ in the
one-hidden-layer ReLU networks.

As with the general pairwise ranking setting, the proofs con-
sist of analyzing calibration gaps of the target loss and that
of each surrogate loss and seeking a tight lower bound of
the surrogate calibration gap in terms of the target one. Ad-
ditionally, the bipartite ranking setting introduces an added
layer of complexity, as x and x′ in a pair have independent
conditional distributions η(x) and η(x′), which results in a
more intricate calibration gap that is harder to address.

As an example, for Φ = Φexp the exponential loss func-
tion, we have the lower bound ∆CL̃Φexp ,H

(h,x, x′) ≥
Ψexp(∆CLabs

0−1,H
(h,x, x′)), where Ψexp is an increasing

and piece-wise convex function on [0,2] defined by
Ψexp(t) = min{t2, ( e2Wγ+1

e2Wγ−1
) t}, where W is replaced by

ΛW for H =HNN. The detailed proofs and the expression
of the corresponding minimizability gaps are included in
Appendix D.

4. Importance of abstention
In this section, we show the importance of our abstention
methods by demonstrating the impossibility of deriving non-
trivial H-consistency bounds with respect to L0−1 or L̃0−1

for widely used surrogate losses and hypothesis sets.

4.1. Negative Results for General Pairwise Ranking

Here, we give a negative result for standard general pairwise
ranking. We will say that a hypothesis set is regular for
general pairwise ranking if, for any x ≠ x′ ∈ X, we have
{sign(h(x′) − h(x))∶h ∈ H} = {−1,+1}. Hypothesis sets
commonly used in practice all admit this property.

The following result shows that the common surrogate losses
do not benefit from a non-trivial H-consistency bound when
the hypothesis set used is equicontinuous, which includes
most hypothesis sets used in practice, in particular the family
of linear hypotheses and that of neural networks.

Theorem 4.1 (Negative results). Assume that X contains

an interior point x0 and that H is regular for general pair-
wise ranking, contains 0 and is equicontinuous at x0. If
for some function f that is non-decreasing and continu-
ous at 0, the following bound holds for all h ∈ H and any
distribution,

RL0−1(h) −R∗
L0−1

(H) ≤ f(RLΦ
(h) −R∗

LΦ
(H)),

then, f(t) ≥ 1 for any t ≥ 0.

Theorem 4.1 shows that for equicontinuous hypothesis sets,
any H-consistency bound is vacuous, assuming that f is a
non-decreasing function continuous at zero. This is because
for any such bound, a small LΦ-estimation loss does not
guarantee a small L0−1-estimation loss, as the right-hand
side remains lower-bounded by one.

The proof is given in Appendix E, where we give a simple ex-
ample on pairs whose distance is relatively small for which
the standard surrogate losses including the RankBoost algo-
rithm (Lexp) fail (see also Section 5). It is straightforward
to see that the assumptions of Theorem 4.1 hold for the case
H = Hlin or H = HNN. Indeed, we can take x0 = 0 as the
interior point and thus for any h ∈ Hlin, ∣h(x) − h(x0)∣ =
∣w ⋅ x∣ < ε for any x ∈ {x ∈ X ∶ ∥x∥p < ε

W
}, which

implies that Hlin is equicontinuous at x0. As
with the linear hypothesis set, for any h ∈ HNN,
∣h(x) − h(x0)∣ = ∣∑nj=1 uj(wj ⋅ x + bj)+ −∑nj=1 uj(bj)+∣ =
∣∑nj=1 uj[(wj ⋅ x + bj)+ − (bj)+]∣ ≤ ΛW ∥x∥p < ε, for any
x ∈ {x ∈ X ∶ ∥x∥p < ε

ΛW
}, which implies that HNN is

equicontinuous at x0. In fact, Theorem 4.1 holds for any
family of Lipschitz constrained neural networks, since a
family of functions that share the same Lipschitz constant is
equicontinuous.

It is straightforward to verify that the proof of Theorem 4.1
also holds in the deterministic case where η(x,x′) equals 0
or 1 for any x ≠ x′, which yields the following corollary.

Corollary 4.2 (Negative results in the deterministic
case). In the deterministic case where η(x,x′) equals 0
or 1 for any x ≠ x′, the negative result of Theorem 4.1 still
holds.

4.2. Negative Results for Bipartite Ranking

Here, as in the general pairwise misranking scenario, we
present a negative result in the standard bipartite setting. We
say that a hypothesis set is regular for bipartite ranking if,
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for any x ≠ x′ ∈ X, there exists h+ ∈ H such that h+(x) <
h+(x′) and h− ∈H such that h−(x) > h−(x′). Hypothesis
sets commonly used in practice all admit this property.

As with the general pairwise ranking, we show that common
surrogate losses do not benefit from H-consistency bounds
when H is an equicontinuous family.

Theorem 4.3 (Negative results for bipartite ranking).
Assume that X contains an interior point x0 and that H
is regular for bipartite ranking, contains 0 and is equicon-
tinuous at x0. If for some function f that is non-decreasing
and continuous at 0, the following bound holds for all h ∈H
and any distribution,

RL̃0−1
(h) −R∗

L̃0−1
(H) ≤ f(RL̃Φ

(h) −R∗
L̃Φ

(H)),

then, f(t) ≥ 1
2

for any t ≥ 0.

As with Theorem 4.1, Theorem 4.3 shows that in the bi-
partite ranking setting, any H-consistency bound with an
equicontinuous hypothesis set is vacuous, assuming a non-
decreasing function f continuous at zero. The proof is given
in Appendix F. It is straightforward to verify that the proof
holds in the deterministic case where η(x) equals 0 or 1 for
any x ∈ X, which yields the following corollary.

Corollary 4.4 (Negative results in the bipartite deter-
ministic case). In the bipartite deterministic case where
η(x) equals 0 or 1 for any x ∈ X, the same negative result
as in Theorem 4.3 holds.

The negative results in Section 4.1 and Section 4.2 suggest
that without abstention, standard pairwise ranking with the-
oretical guarantees is difficult with common hypothesis sets.
The inherent issue for pairwise ranking is that for equicon-
tinuous hypotheses, when x and x′ are arbitrarily close, the
confidence value ∣h(x) − h(x′)∣ can be arbitrary close to
zero. These results further imply the importance of ranking
with abstention, where the learner can abstain from making
prediction on a pair (x,x′) with x and x′ relatively close,
as illustrated in Section 2 and Section 3.

5. Experiments
In this section, we provide empirical results for general
pairwise ranking with abstention on the CIFAR-10 dataset
(Krizhevsky, 2009).

We used ResNet-34 with ReLU activations (He et al., 2016).
Here, ResNet-n denotes a residual network with n convolu-
tional layers. Standard data augmentations, 4-pixel padding
with 32 × 32 random crops and random horizontal flips are
applied for CIFAR-10. For training, we used Stochastic Gra-
dient Descent (SGD) with Nesterov momentum (Nesterov,
1983). We set the batch size, weight decay, and initial learn-
ing rate to 1,024, 1× 10−4 and 0.1 respectively. We adopted

the cosine decay learning rate schedule (Loshchilov & Hut-
ter, 2016) for a total of 200 epochs. The pairs (x,x′, y) are
randomly sampled from CIFAR-10 during training, with
y = ±1 indicating if x is ranked above or below x′ per the
natural ordering of labels of x and x′.

We evaluated the models based on their averaged
pairwise abstention loss (2) with γ selected from
{0.0,0.3,0.5,0.7,0.9} and the cost c selected from
{0.1,0.3,0.5}. We randomly sampled 10,000 pairs (x,x′)
from the test data for evaluation. The `∞ distance is adopted
in the algorithm. We averaged losses over three runs and
report the standard deviation as well.

We used the surrogate loss (3) with Φ(t) = exp(−t) the
exponential loss, LΦexp , which coincides with the loss func-
tion of RankBoost. Table 1 shows that when γ is as small
as 0.3, no abstention takes place and the abstention loss
coincides with the standard misranking loss (γ = 0) for
any cost c. As γ increases, there are more samples that are
abstained. When using a minimal cost c of 0.1 (as demon-
strated in the first row of Table 1), abstaining on pairs with
a relatively small distance (γ = 0.7) results in a lower target
abstention loss compared to the scenario without absten-
tion (γ = 0). Conversely, abstaining on pairs with larger
distances (γ = 0.9) led to a higher abstention loss. This can
be attributed to the fact that rejected samples at γ = 0.7 had
lower accuracy compared to those at γ = 0.9. This empiri-
cally verifies that the surrogate loss LΦexp is not favorable on
pairs whose distance is relatively small, for equicontinuous
hypotheses. When the cost c is larger, the abstention loss,
in general, increases with γ, since the number of samples
rejected increases with γ.

Overall, the experiment shows that, in practice, for small γ,
abstention actually does not take place. Thus, the abstention
loss coincides with the standard pairwise misranking loss in
those cases, and the surrogate loss is consistent with respect
to both of them. Our results also indicate that the surrogate
loss LΦexp , a commonly used loss function, for example for
RankBoost, is not optimal for pairs with a relatively small
distance. Instead, rejecting these pairs at a minimal cost
proves to be a more effective strategy.

6. Conclusion
We introduce a novel framework of ranking with absten-
tion, in both the general pairwise ranking and the bipartite
ranking scenarios. Our proposed abstention methods are
important when using common equicontinuous hypothe-
sis sets in practice. It will be useful to explore alternative
non-equicontinuous hypothesis sets that may be of practical
use, and to further study the choice of the parameter γ for
abstention in practice. We have also initiated the study of
randomized ranking solutions with theoretical guarantees.
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A. Related work
The notions of Bayes consistency (also known as consistency) and calibration have been extensively studied for classification
(Zhang, 2004; Bartlett et al., 2006; Tewari & Bartlett, 2007). The Bayes consistency of ranking surrogate losses has been
studied in the special case of bipartite score-based ranking: in particular, Uematsu & Lee (2017) proved the inconsistency of
the pairwise ranking loss based on the hinge loss and Gao & Zhou (2015) gave excess loss bounds for pairwise ranking
losses based on the exponential or the logistic loss. Later, these results were further generalized by Menon & Williamson
(2014). A related but distinct consistency question has been studied in several publications (Agarwal et al., 2005; Kotlowski
et al., 2011; Agarwal, 2014). It is one with respect to binary classification, that is whether a near minimizer of the surrogate
loss of the binary classification loss is a near minimizer of the bipartite misranking loss (Cortes & Mohri, 2003).

Considerable attention has been devoted to the study of the learning to rank algorithms and their related problems: including
one-pass AUC pairwise optimization (Gao et al., 2013), preference-based ranking (Cohen et al., 1997; Clemençon et al.,
2008), subset ranking with Discounted Cumulative Gain (DCG) (Cossock & Zhang, 2008; Buffoni et al., 2011), listwise
ranking (Xia et al., 2008), subset ranking based on Pairwise Disagreement (PD) (Duchi et al., 2010; Lan et al., 2012), subset
ranking using Normalized Discounted Cumulative Gain (NDCG) (Ravikumar et al., 2011), subset ranking with Average
Precision (AP) (Calauzenes et al., 2012; Ramaswamy et al., 2013), general multi-class problems (Ramaswamy & Agarwal,
2012; Ramaswamy et al., 2014) and multi-label problems (Gao & Zhou, 2011; Zhang et al., 2020).

Bayes consistency only holds for the full family of measurable functions, which of course is distinct from the more restricted
hypothesis set used by a learning algorithm. Therefore, a hypothesis set-dependent notion of H-consistency has been
proposed by Long & Servedio (2013) in the realizable setting, which was used by Zhang & Agarwal (2020) for linear
models, and generalized by Kuznetsov et al. (2014) to the structured prediction case. Long & Servedio (2013) showed that
there exists a case where a Bayes-consistent loss is not H-consistent while inconsistent loss functions can be H-consistent.
Zhang & Agarwal (2020) further investigated the phenomenon in (Long & Servedio, 2013) and showed that the situation
of loss functions that are not H-consistent with linear models can be remedied by carefully choosing a larger piecewise
linear hypothesis set. Kuznetsov et al. (2014) proved positive results for the H-consistency of several multi-class ensemble
algorithms, as an extension of H-consistency results in (Long & Servedio, 2013).

Recently, Awasthi et al. (2022a) presented a series of results providing H-consistency bounds in binary classification. These
guarantees are significantly stronger than the H-calibration or H-consistency properties studied by Awasthi et al. (2021a;b).
Awasthi et al. (2022b) and Mao et al. (2023b) (see also (Zheng et al., 2023)) generalized H-consistency bounds to the
scenario of multi-class classification. Awasthi et al. (2023b) proposed a family of loss functions that benefit from such
H-consistency bounds guarantees for adversarial robustness (Goodfellow et al., 2014; Madry et al., 2017; Tsipras et al.,
2018; Carlini & Wagner, 2017; Awasthi et al., 2023a). Mao et al. (2023a) used H-consistency bounds in the context of
ranking. H-consistency bounds are also more informative than similar excess error bounds derived in the literature, which
correspond to the special case where H is the family of all measurable functions (Zhang, 2004; Bartlett et al., 2006; Mohri
et al., 2018). Our work significantly generalizes the results of Awasthi et al. (2022a) to the score-based ranking setting,
including both the general pairwise ranking and bipartite ranking scenarios.

B. General tools
To begin with the proof, we first introduce some notation. In general pairwise ranking scenario, we denote by D a distribution
over X × X × Y and by P a set of such distributions. We further denote by η(x,x′) = D(Y = 1 ∣ (X,X ′) = (x,x′)) the
conditional probability of Y = 1 given (X,X ′) = (x,x′). Without loss of generality, we assume that η(x,x) = 1/2.
The generalization error for a surrogate loss L can be rewritten as RL(h) = EX[CL(h,x, x′)], where CL(h,x, x′) is the
conditional L-risk, defined by

CL(h,x, x′) = η(x,x′)L(h,x, x′,+1) + (1 − η(x,x′))L(h,x, x′,−1).
We denote by C∗L(H, x, x′) = infh∈H CL(h,x, x′) the minimal conditional L-risk. Then, the minimizability gap can be
rewritten as follows:

ML(H) = R∗
L(H) −EX[C∗L(H, x)].

We further refer to CL(h,x, x′) − C∗L(H, x, x′) as the calibration gap and denote it by ∆CL,H(h,x, x′).

In bipartite ranking scenario, we denote by D a distribution over X × Y and by P a set of such distributions. We further
denote by η(x) = D(Y = 1 ∣X = x) the conditional probability of Y = 1 given X = x. The generalization error for a
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surrogate loss L̃ can be rewritten as RL̃(h) = EX[CL̃(h,x, x′)], where CL̃(h,x, x′) is the conditional L̃-risk, defined by

CL̃(h,x, x
′) = η(x)(1 − η(x′))L̃(h,x, x′,+1,−1) + η(x′)(1 − η(x))L̃(h,x, x′ − 1,+1).

We denote by C∗
L̃
(H, x, x′) = infh∈H CL̃(h,x, x′) the minimal conditional L̃-risk. Then, the minimizability gap can be

rewritten as follows:

ML̃(H) = R∗
L̃
(H) −EX[C∗

L̃
(H, x)].

We further refer to CL̃(h,x, x′) − C∗
L̃
(H, x, x′) as the calibration gap and denote it by ∆CL̃,H(h,x, x′). For any ε > 0, we

will denote by ⟨t⟩ε the ε-truncation of t ∈ R defined by t1t>ε.

We first prove two general results, which provide bounds between any loss functions L1 and L2 in both general pairwise
ranking scenario and bipartite ranking scenario.

Theorem B.1. Assume that there exists a convex function Ψ∶R+ → R with Ψ(0) ≥ 0 and ε ≥ 0 such that the following holds
for all h ∈H, x ∈ X, x′ ∈ X and D ∈ P:

Ψ(⟨∆CL2,H(h,x, x′)⟩ε) ≤ ⟨∆CL1,H(h,x, x′)⟩ε. (7)

Then, the following inequality holds for any h ∈H and D ∈ P:

Ψ(RL2(h) −R∗
L2
(H) +ML2(H)) ≤ RL1(h) −R∗

L1
(H) +ML1(H) +max{Ψ(0),Ψ(ε)}. (8)

Proof. By the definition of the generalization error and the minimizability gap, for any h ∈H and D ∈ P, we can write the
left hand side of (8) as

Ψ(RL2(h) −R∗
L2
(H) +ML2(H)) = Ψ(RL2(h) −E(X,X′)[C∗L2

(H, x, x′)]) = Ψ(E(X,X′)[∆CL2,H(h,x, x′)]).

Since Ψ is convex, by Jensen’s inequality, it can be upper bounded by E(X,X′)[Ψ(∆CL2,H(h,x, x′))]. Due to the
decomposition

∆CL2,H(h,x, x′) = ⟨∆CL2,H(h,x, x′)⟩ε +∆CL2,H(h,x, x′)1∆CL2,H
(h,x,x′)≤ε,

and the assumption Ψ(0) ≥ 0, we have the following inequality:

E(X,X′)[Ψ(∆CL2,H(h,x, x′))] ≤ E(X,X′)[Ψ(⟨∆CL2,H(h,x, x′)⟩ε)] +E(X,X′)[Ψ(∆CL2,H(h,x, x′)1∆CL2,H
(h,x,x′)≤ε)].

By assumption (7), the first term can be bounded as follows:

E(X,X′)[Ψ(⟨∆CL2,H(h,x, x′)⟩ε)] ≤ E(X,X′)[∆CL1,H(h,x, x′)] = RL1(h) −R∗
L1
(H) +ML1(H).

Since ∆CL2,H(h,x, x′)1∆CL2,H
(h,x,x′)≤ε ∈ [0, ε], we can bound E(X,X′)[Ψ(∆CL2,H(h,x, x′)1∆CL2,H

(h,x,x′)≤ε)] by
supt∈[0,ε] Ψ(t), which equals max{Ψ(0),Ψ(ε)} due to the convexity of Ψ.

Theorem B.2. Assume that there exists a non-decreasing concave function Γ∶R+ → R and ε ≥ 0 such that the following
holds for all h ∈H, x ∈ X, x′ ∈ X and D ∈ P:

⟨∆CL2,H(h,x, x′)⟩ε ≤ Γ(⟨∆CL1,H(h,x, x′)⟩ε). (9)

Then, the following inequality holds for any h ∈H and D ∈ P:

RL2(h) −R∗
L2
(H) ≤ Γ(RL1(h) −R∗

L1
(H) +ML1(H)) −ML2(H) + ε. (10)

Proof. By the definition of the generalization error and the minimizability gap, for any h ∈H and D ∈ P, we can write the
left hand side of (10) as

RL2(h) −R∗
L2
(H)

= E(X,X′)[∆CL2,H(h,x, x′)] −ML2(H)
= E(X,X′)[⟨∆CL2,H(h,x, x′)⟩ε] +E(X,X′)[∆CL2,H(h,x, x′)1∆CL2,H

(h,x,x′)≤ε] −ML2(H)

11



Ranking with Abstention

By assumption (9) and that Γ is non-decreasing, the following inequality holds:

E(X,X′)[⟨∆CL2,H(h,x, x′)⟩ε] ≤ E(X,X′)[Γ(∆CL1,H(h,x, x′))].

Since Γ is concave, by Jensen’s inequality,

E(X,X′)[Γ(∆CL1,H(h,x, x′))] ≤ Γ(E(X,X′)[∆CL1,H(h,x, x′)]) = Γ(RL1(h) −R∗
L1
(H) +ML1(H)).

We complete the proof by noting that E(X,X′)[∆CL2,H(h,x, x′)1∆CL2,H
(h,x,x′)≤ε] ≤ ε.

C. H - consistency bounds for general pairwise ranking with abstention (Proof of Theorem 2.1)
We first characterize the minimal conditional Labs

0−1-risk and the calibration gap of Labs
0−1 for a broad class of hypothesis sets.

We let H(x,x′) = {h ∈H∶ sign(h(x′) − h(x))(2η(x,x′) − 1) ≤ 0} for convenience.

Lemma C.1. Assume that H is regular for general pairwise ranking. Then, the minimal conditional Labs
0−1-risk is

C∗Labs
0−1

(H, x, x′) = min{η(x,x′),1 − η(x,x′)}1∥x−x′∥>γ + c1∣x−x′∣≤γ .

The calibration gap of Labs
0−1 can be characterized as

∆CLabs
0−1,H

(h,x, x′) = ∣2η(x,x′) − 1∣1h∈H(x,x′)1∥x−x′∥>γ .

Proof. By the definition, the conditional Labs
0−1-risk is

CLabs
0−1

(h,x, x′) = (η(x,x′)1h(x′)<h(x) + (1 − η(x,x′))1h(x′)≥h(x))1∥x−x′∥>γ + c1∣x−x′∣≤γ .

For any (x,x′) such that ∥x − x′∥ ≤ γ and h ∈H, CLabs
0−1

(h,x, x) = C∗
Labs

0−1
(H, x, x) = c. For any (x,x′) such that ∥x − x′∥ > γ,

by the assumption, there exists h∗ ∈ H such that sign(h∗(x′) − h∗(x)) = sign(2η(x,x′) − 1). Therefore, the optimal
conditional Labs

0−1-risk can be characterized as for any x,x′ ∈ X,

C∗Labs
0−1

(H, x, x′) = CLabs
0−1

(h∗, x, x′) = min{η(x,x′),1 − η(x,x′)}1∥x−x′∥>γ + c1∣x−x′∣≤γ .

which proves the first part of lemma. By the definition, for any (x,x′) such that ∥x − x′∥ ≤ γ and h ∈ H,
∆CLabs

0−1,H
(h,x, x′) = CLabs

0−1
(h,x, x′) − C∗

Labs
0−1

(H, x, x′) = 0. . For any (x,x′) such that ∥x − x′∥ > γ and h ∈H,

∆CLabs
0−1,H

(h,x, x′) = CLabs
0−1

(h,x, x′) − C∗Labs
0−1

(H, x, x′)

= η(x,x′)1h(x′)<h(x) + (1 − η(x,x′))1h(x′)≥h(x) −min{η(x,x′),1 − η(x,x′)}

=
⎧⎪⎪⎨⎪⎪⎩

∣2η(x,x′) − 1∣, h ∈H(x,x′),
0, otherwise.

This leads to

∆CLabs
0−1,H

(h,x, x′) = ∣2η(x,x′) − 1∣1h∈H(x,x′)1∥x−x′∥>γ .

Theorem 2.1 (H-consistency bounds for pairwise abstention loss). Let H be Hlin or HNN. Then, for any h ∈ H and
any distribution,

RLabs
0−1

(h) −R∗
Labs

0−1
(H) +MLabs

0−1
(H) ≤ ΓΦ(RLΦ

(h) −R∗
LΦ

(H) +MLΦ
(H)),

where ΓΦ(t) = t
min{Wγ,1} , max{

√
2t,2( e2Wγ+1

e2Wγ−1
) t} and t

tanh(kWγ) for Φ = Φhinge, Φexp and Φsig respectively. W is
replaced by ΛW for H =HNN.
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Ranking with Abstention

Proof. Since Hlin and HNN satisfy the condition of Lemma C.1, by Lemma C.1 the (Labs
0−1,Hlin)-minimizability gap and

the (Labs
0−1,HNN)-minimizability gap can be expressed as follows:

MLabs
0−1

(Hlin) = R∗
Labs

0−1
(Hlin) −E(X,X′)[min{η(x,x′),1 − η(x,x′)}1∥x−x′∥>γ + c1∣x−x′∣≤γ]

MLabs
0−1

(HNN) = R∗
Labs

0−1
(HNN) −E(X,X′)[min{η(x,x′),1 − η(x,x′)}1∥x−x′∥>γ + c1∣x−x′∣≤γ .].

By the definition of Hlin and HNN, for any (x,x′) ∈ X ×X, {h(x′) − h(x) ∣ h ∈Hlin} = [−W ∥x − x′∥p,W ∥x − x′∥p] and
{h(x′) − h(x) ∣ h ∈HNN} = [−ΛW ∥x − x′∥p,ΛW ∥x − x′∥p]. In the following, we will prove the bounds for Hlin. Similar
proofs with B replaced by ΛB hold for HNN.

Proof for LΦhinge
. For the hinge loss function Φhinge(u)∶ = max{0,1 − u}, for all h ∈Hlin and (x,x′) such that ∥x − x′∥p >

γ,
CLΦhinge

(h,x, x′)
= η(x,x′)LΦhinge

(h(x′) − h(x)) + (1 − η(x,x′))LΦhinge
(h(x) − h(x′))

= η(x,x′)max{0,1 − h(x′) + h(x)} + (1 − η(x,x′))max{0,1 + h(x′) − h(x)}.

Then,

C∗LΦhinge
,Hlin

(x,x′) = inf
h∈Hlin

CLΦhinge
(h,x, x′) = 1 − ∣2η(x,x′) − 1∣min{W ∥x − x′∥p,1}.

The (LΦhinge
,Hlin)-minimizability gap is

MLΦhinge
(Hlin) = R∗

LΦhinge
(Hlin) −E(X,X′)[C∗LΦhinge

,Hlin
(x,x′)]

= R∗
LΦhinge

(Hlin) −E(X,X′)[1 − ∣2η(x,x′) − 1∣min{W ∥x − x′∥p,1}].
(11)

Therefore, ∀h ∈Hlin(x,x′),

∆CLΦhinge
,Hlin

(h,x, x′)
≥ inf
h∈Hlin(x,x′)

CLΦhinge
(h,x, x′) − C∗LΦhinge

,Hlin
(x,x′)

= η(x,x′)max{0,1 − 0} + (1 − η(x,x′))max{0,1 + 0} − C∗LΦhinge
,Hlin

(x,x′)

= 1 − [1 − ∣2η(x,x′) − 1∣min{W ∥x − x′∥p,1}]
= ∣2η(x,x′) − 1∣min{W ∥x − x′∥p,1}
≥ ∣2η(x,x′) − 1∣min{Wγ,1}

which implies that for any h ∈Hlin and (x,x′) such that ∥x − x′∥p > γ,

∆CLΦhinge
,Hlin

(h,x, x′) ≥ min{Wγ,1}⟨∣2η(x,x′) − 1∣⟩01h∈Hlin(x,x′) = ∆CLabs
0−1,Hlin

(h,x, x′).

Thus, by Theorem B.1 or Theorem B.2, setting ε = 0 yields the Hlin-consistency bound for LΦhinge
, valid for all h ∈Hlin:

RLabs
0−1

(h) −R∗
Labs

0−1
(Hlin) ≤

RLΦhinge
(h) −R∗

LΦhinge
(Hlin) +MLΦhinge

(Hlin)
min{Wγ,1} −MLabs

0−1
(Hlin). (12)

Proof for LΦexp . For the exponential loss function Φexp(u)∶ = e−u, for all h ∈Hlin and (x,x′) such that ∥x − x′∥p > γ,

CLΦexp
(h,x, x′) = η(x,x′)LΦexp(h(x′) − h(x)) + (1 − η(x,x′))LΦexp(h(x) − h(x′))

= η(x,x′)e−h(x
′)+h(x) + (1 − η(x,x′))eh(x

′)−h(x).
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Ranking with Abstention

Then,

C∗LΦexp ,Hlin
(x,x′)

= inf
h∈Hlin

CLΦexp
(h,x, x′)

=
⎧⎪⎪⎨⎪⎪⎩

2
√
η(x,x′)(1 − η(x,x′)) 1

2
∣log η(x,x′)

1−η(x,x′) ∣ ≤W ∥x − x′∥p
max{η(x,x′),1 − η(x,x′)}e−W ∥x−x′∥

p +min{η(x,x′),1 − η(x,x′)}eW ∥x−x′∥
p 1

2
∣log η(x,x′)

1−η(x,x′) ∣ >W ∥x − x′∥p.

The (LΦexp ,Hlin)-minimizability gap is:

MLΦexp
(Hlin) = R∗

LΦexp
(Hlin) −E(X,X′)[C∗LΦexp ,Hlin

(x,x′)]

= R∗
LΦexp

(Hlin) −E(X,X′)[2
√
η(x,x′)(1 − η(x,x′))1 1

2 ∣log
η(x,x′)

1−η(x,x′) ∣≤W ∥x−x′∥p
]

−E(X,X′)[max{η(x,x′),1 − η(x,x′)}e−W ∥x−x′∥
p1 1

2 ∣log
η(x,x′)

1−η(x,x′) ∣>W ∥x−x′∥p
]

−E(X,X′)[min{η(x,x′),1 − η(x,x′)}eW ∥x−x′∥
p1 1

2 ∣log
η(x,x′)

1−η(x,x′) ∣>W ∥x−x′∥p
].

(13)

Therefore, ∀h ∈Hlin(x,x′),

∆CLΦexp ,Hlin
(h,x, x′)

≥ inf
h∈Hlin(x,x′)

CLΦexp
(h,x, x′) − C∗LΦexp ,Hlin

(x,x′)

= η(x,x′)e−0 + (1 − η(x,x′))e0 − C∗LΦexp ,Hlin
(x,x′)

=
⎧⎪⎪⎨⎪⎪⎩

1 − 2
√
η(x,x′)(1 − η(x,x′)) 1

2
∣log η(x,x′)

1−η(x,x′) ∣ ≤W ∥x − x′∥p
1 −max{η(x,x′),1 − η(x,x′)}e−W ∥x−x′∥

p −min{η(x,x′),1 − η(x,x′)}eW ∥x−x′∥
p 1

2
∣log η(x,x′)

1−η(x,x′) ∣ >W ∥x − x′∥p

≥
⎧⎪⎪⎨⎪⎪⎩

1 − 2
√
η(x,x′)(1 − η(x,x′)) 1

2
∣log η(x,x′)

1−η(x,x′) ∣ ≤Wγ

1 −max{η(x,x′),1 − η(x,x′)}e−Wγ −min{η(x,x′),1 − η(x,x′)}eWγ 1
2
∣log η(x,x′)

1−η(x,x′) ∣ >Wγ

= Ψexp(∣2η(x,x′) − 1∣),

where Ψexp is the increasing and convex function on [0,1] defined by

∀t ∈ [0,1], Ψexp(t) =
⎧⎪⎪⎨⎪⎪⎩

1 −
√

1 − t2, t ≤ e2Wγ−1
e2Wγ+1

1 − t+1
2
e−Wγ − 1−t

2
eWγ , t > e2Wγ−1

e2Wγ+1

which implies that for any h ∈Hlin and (x,x′) such that ∥x − x′∥p > γ,

∆CLΦexp ,Hlin
(h,x, x′) ≥ Ψexp(∆CLabs

0−1,Hlin
(h,x, x′)).

To simplify the expression, using the fact that

1 −
√

1 − t2 ≥ t
2

2
,

1 − t + 1

2
e−Wγ − 1 − t

2
eWγ = 1 − e

Wγ

2
− e

−Wγ

2
+ e

Wγ − e−Wγ

2
t,

Ψexp can be lower bounded by

Ψ̃exp(t) =
⎧⎪⎪⎨⎪⎪⎩

t2

2
, t ≤ e2Wγ−1

e2Wγ+1
1
2
( e2Wγ−1
e2Wγ+1

) t, t > e2Wγ−1
e2Wγ+1

.
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Ranking with Abstention

Thus, we adopt an upper bound of Ψ−1 as follows:

ΓΦexp(t) = Ψ̃−1
exp(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

√
2t, t ≤ 1

2
( e2Wγ−1
e2Wγ+1

)
2

2( e2Wγ+1
e2Wγ−1

) t, t > 1
2
( e2Wγ−1
e2Wγ+1

)
2

= max{
√

2t,2(e
2Wγ + 1

e2Wγ − 1
) t}.

Thus, by Theorem B.1 or Theorem B.2, setting ε = 0 yields the Hlin-consistency bound for LΦexp , valid for all h ∈Hlin:

RLabs
0−1

(h) −R∗
Labs

0−1
(Hlin) ≤ ΓΦexp(RLΦexp

(h) −R∗
LΦexp

(Hlin) +MLΦexp
(Hlin)) −MLabs

0−1
(Hlin). (14)

where ΓΦexp(t) = max{
√

2t,2( e2Wγ+1
e2Wγ−1

) t}.

Proof for LΦsig
. For the sigmoid loss function Φsig(u)∶ = 1 − tanh(ku), k > 0, for all h ∈ Hlin and (x,x′) such that

∥x − x′∥p > γ,

CLΦsig
(h,x, x′)

= η(x,x′)LΦsig
(h(x′) − h(x)) + (1 − η(x,x′))LΦsig

(h(x) − h(x′))
= η(x,x′)(1 − tanh(k[h(x′) − h(x)])) + (1 − η(x,x′))(1 + tanh(k[h(x′) − h(x)])).

Then,

C∗LΦsig
(Hlin)(x,x′) = inf

h∈Hlin

CLΦsig
(h,x, x′) = 1 − ∣1 − 2η(x,x′)∣ tanh(kW ∥x − x′∥p).

The (LΦsig
,Hlin)-minimizability gap is:

MLΦsig
(Hlin) = R∗

LΦsig
(Hlin) −E(X,X′)[C∗LΦsig

,Hlin
(x,x′)]

= R∗
LΦsig

(Hlin) −E(X,X′)[1 − ∣1 − 2η(x,x′)∣ tanh(kW ∥x − x′∥p)].
(15)

Therefore, ∀h ∈Hlin(x,x′),

∆CLΦsig
,Hlin

(h,x, x′) ≥ inf
h∈Hlin(x,x′)

CLΦsig
(h,x, x′) − C∗LΦsig

,Hlin
(x,x′)

= 1 − ∣1 − 2η(x,x′)∣ tanh(0) − C∗LΦsig
,Hlin

(x,x′)

= ∣1 − 2η(x,x′)∣ tanh(kW ∥x − x′∥p)
≥ ∣1 − 2η(x,x′)∣ tanh(kWγ)

which implies that for any h ∈Hlin and (x,x′) such that ∥x − x′∥p > γ,

∆CLΦsig
,Hlin

(h,x, x′) ≥ tanh(kWγ)∆CLabs
0−1,Hlin

(h,x, x′).

Thus, by Theorem B.1 or Theorem B.2, setting ε = 0 yields the Hlin-consistency bound for LΦsig
, valid for all h ∈Hlin:

RLabs
0−1

(h) −R∗
Labs

0−1
(Hlin) ≤

RLΦsig
(h) −R∗

LΦsig
(Hlin) +MLΦsig

(Hlin)
tanh(kWγ) −MLabs

0−1
(Hlin). (16)

D. H - consistency bounds for bipartite ranking with abstention (Proof of Theorem 3.1)
We first characterize the minimal conditional L̃abs

0−1-risk and the calibration gap of L̃abs
0−1 for a broad class of hypothesis sets.

We let H̃(x,x′) = {h ∈H∶ (h(x) − h(x′))(η(x) − η(x′)) < 0} and H̊(x,x′) = {h ∈H∶h(x) = h(x′)} for convenience.
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Ranking with Abstention

Lemma D.1. Assume that H is regular for bipartite ranking. Then, the minimal conditional L̃abs
0−1-risk is

C∗
L̃abs

0−1

(H, x, x′) = min{η(x)(1 − η(x′)), η(x′)(1 − η(x))}1∥x−x′∥>γ + c1∣x−x′∣≤γ .

The calibration gap of L̃abs
0−1 can be characterized as

∆CL̃abs
0−1,H

(h,x, x′) = ∣η(x) − η(x′)∣1h∈H̃(x,x′)1∥x−x′∥>γ +
1

2
∣η(x) − η(x′)∣1h∈H̊(x,x′)1∥x−x′∥>γ .

Proof. By the definition, the conditional L̃abs
0−1-risk is

CL̃abs
0−1

(h,x, x′)

= (η(x)(1 − η(x′))[1h(x)−h(x′)<0 +
1

2
1h(x)=h(x′)] + η(x′)(1 − η(x))[1h(x)−h(x′)>0 +

1

2
1h(x)=h(x′)])1∥x−x′∥>γ+c1∣x−x′∣≤γ .

For any (x,x′) such that ∥x − x′∥ ≤ γ and h ∈H, CL̃abs
0−1

(h,x, x) = C∗
L̃abs

0−1

(H, x, x) = c. For any (x,x′) such that ∥x − x′∥ > γ,

by the assumption, there exists h∗ ∈H such that

(h∗(x) − h∗(x′))(η(x) − η(x′))1η(x)≠η(x′) > 0.

Therefore, the optimal conditional L̃abs
0−1-risk can be characterized as for any x,x′ ∈ X,

C∗
L̃abs

0−1

(H, x, x′) = CL̃abs
0−1

(h∗, x, x′) = min{η(x)(1 − η(x′)), η(x′)(1 − η(x))}1∥x−x′∥>γ + c1∣x−x′∣≤γ .

which proves the first part of lemma. By the definition, for any (x,x′) such that ∥x − x′∥ ≤ γ and h ∈ H,
∆CL̃abs

0−1,H
(h,x, x′) = CL̃abs

0−1
(h,x, x′) − C∗

L̃abs
0−1

(H, x, x′) = 0. . For any (x,x′) such that ∥x − x′∥ > γ and h ∈H,

∆CL̃abs
0−1,H

(h,x, x′) = CL̃abs
0−1

(h,x, x′) − C∗
L̃abs

0−1

(H, x, x′)

= η(x)(1 − η(x′))[1h(x)−h(x′)<0 +
1

2
1h(x)=h(x′)]

+ η(x′)(1 − η(x))[1h(x)−h(x′)>0 +
1

2
1h(x)=h(x′)]

−min{η(x)(1 − η(x′)), η(x′)(1 − η(x))}

=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∣η(x)(1 − η(x′)) − η(x′)(1 − η(x))∣, h ∈ H̃(x,x′),
1
2
∣η(x)(1 − η(x′)) − η(x′)(1 − η(x))∣, h ∈ H̊(x,x′),

0, otherwise.

=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∣η(x) − η(x′)∣, h ∈ H̃(x,x′),
1
2
∣η(x) − η(x′)∣, h ∈ H̊(x,x′),

0, otherwise.

This leads to

⟨∆CL̃abs
0−1,H

(h,x, x′)⟩
ε
= ⟨∣η(x) − η(x′)∣⟩ε1h∈H̃(x,x′)1∥x−x′∥>γ + ⟨1

2
∣η(x) − η(x′)∣⟩

ε
1h∈H̊(x,x′)1∥x−x′∥>γ .

Theorem 3.1 (H-consistency bounds for bipartite abstention losses). Let H be Hlin or HNN. Then, for any h ∈H and
any distribution,

RL̃abs
0−1

(h) −R∗
L̃abs

0−1

(H) +ML̃abs
0−1

(H) ≤ ΓΦ(RL̃Φ
(h) −R∗

L̃Φ
(H) +ML̃Φ

(H))

where ΓΦ(t) equals t
min{Wγ,1} , max{

√
t, ( e2Wγ+1

e2Wγ−1
) t} and t

tanh(kWγ) for Φ equals Φhinge, Φexp and Φsig respectively.
W is replaced by ΛW for H =HNN.
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Ranking with Abstention

Proof. Since Hlin and HNN satisfy the condition of Lemma D.1, by Lemma D.1 the (L̃abs
0−1,Hlin)-minimizability gap and

the (L̃abs
0−1,HNN)-minimizability gap can be expressed as follows:

ML̃abs
0−1

(Hlin) = R∗
L̃abs

0−1

(Hlin) −E(X,X′)[min{η(x)(1 − η(x′)), η(x′)(1 − η(x))}1∥x−x′∥>γ + c1∣x−x′∣≤γ]

ML̃abs
0−1

(HNN) = R∗
L̃abs

0−1

(HNN) −E(X,X′)[min{η(x)(1 − η(x′)), η(x′)(1 − η(x))}1∥x−x′∥>γ + c1∣x−x′∣≤γ].

By the definition of Hlin and HNN, for any (x,x′) ∈ X ×X, {h(x′) − h(x) ∣ h ∈Hlin} = [−W ∥x − x′∥p,W ∥x − x′∥p] and
{h(x′) − h(x) ∣ h ∈HNN} = [−ΛW ∥x − x′∥p,ΛW ∥x − x′∥p]. In the following, we will prove the bounds for Hlin. Similar
proofs with B replaced by ΛB hold for HNN.

Proof for L̃Φhinge
. For the hinge loss function Φhinge(u)∶ = max{0,1 − u}, for all h ∈Hlin and (x,x′) such that ∥x − x′∥p >

γ,
CL̃Φhinge

(h,x, x′)

= η(x)(1 − η(x′))Φhinge(h(x) − h(x′)) + η(x′)(1 − η(x))Φhinge(h(x′) − h(x))
= η(x)(1 − η(x′))max{0,1 − h(x) + h(x′)} + η(x′)(1 − η(x))max{0,1 + h(x) − h(x′)}.

Then,

C∗
L̃Φhinge

,Hlin
(x,x′) = inf

h∈Hlin

CL̃Φhinge
(h,x, x′) = η(x)(1 − η(x′)) + η(x′)(1 − η(x)) − ∣η(x) − η(x′)∣min{W ∥x − x′∥p,1}.

The (L̃Φhinge
,Hlin)-minimizability gap is

ML̃Φhinge
(Hlin)

= R∗
L̃Φhinge

(Hlin) −E(X,X′)[C∗L̃Φhinge
,Hlin

(x,x′)]

= R∗
L̃Φhinge

(Hlin) −E(X,X′)[η(x)(1 − η(x′)) + η(x′)(1 − η(x)) − ∣η(x) − η(x′)∣min{W ∥x − x′∥p,1}].

(17)

Therefore, ∀h ∈ H̃lin(x,x′)⋃ H̊lin(x,x′),

∆CL̃Φhinge
,Hlin

(h,x, x′)

≥ inf
h∈H̃lin(x,x′)⋃ H̊lin(x,x′)

CL̃Φhinge
(h,x, x′) − C∗

L̃Φhinge
,Hlin

(x,x′)

= η(x)(1 − η(x′))max{0,1 − 0} + η(x′)(1 − η(x))max{0,1 + 0} − C∗
L̃Φhinge

,Hlin
(x,x′)

= ∣η(x) − η(x′)∣min{W ∥x − x′∥p,1}
≥ ∣η(x) − η(x′)∣min{Wγ,1}

which implies that for any h ∈Hlin and (x,x′) such that ∥x − x′∥p > γ,

∆CL̃Φhinge
,Hlin

(h,x, x′) ≥ min{Wγ,1}∆CL̃abs
0−1,H

(h,x, x′).

Thus, by Theorem B.1 or Theorem B.2, setting ε = 0 yields the Hlin-consistency bound for L̃Φhinge
, valid for all h ∈Hlin:

RL̃abs
0−1

(h) −R∗
L̃abs

0−1

(Hlin) ≤
RL̃Φhinge

(h) −R∗
L̃Φhinge

(Hlin) +ML̃Φhinge
(Hlin)

min{Wγ,1} −ML̃abs
0−1

(Hlin). (18)

Proof for L̃Φexp . For the exponential loss function Φexp(u)∶ = e−u, for all h ∈Hlin and (x,x′) such that ∥x − x′∥p > γ,

CL̃Φexp
(h,x, x′)

= η(x)(1 − η(x′))Φexp(h(x) − h(x′)) + η(x′)(1 − η(x))Φexp(h(x′) − h(x))
= η(x)(1 − η(x′))e−h(x)+h(x

′) + η(x′)(1 − η(x))eh(x)−h(x
′).
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Ranking with Abstention

Then,

C∗
L̃Φexp ,Hlin

(x,x′)

= inf
h∈Hlin

CL̃Φexp
(h,x, x′)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

2
√
η(x)η(x′)(1 − η(x))(1 − η(x′))

if 1
2
∣log η(x)(1−η(x′))

η(x′)(1−η(x)) ∣ ≤W ∥x − x′∥p
max{η(x)(1 − η(x′)), η(x′)(1 − η(x))}e−W ∥x−x′∥

p +min{η(x)(1 − η(x′)), η(x′)(1 − η(x))}eW ∥x−x′∥
p

if 1
2
∣log η(x)(1−η(x′))

η(x′)(1−η(x)) ∣ >W ∥x − x′∥p.

The (L̃Φexp ,Hlin)-minimizability gap is:

ML̃Φexp
(Hlin) = R∗

L̃Φexp
(Hlin) −E(X,X′)[C∗L̃Φexp ,Hlin

(x,x′)]

= R∗
L̃Φexp

(Hlin) −E(X,X′)[2
√
η(x)η(x′)(1 − η(x))(1 − η(x′))1 1

2 ∣log
η(x)(1−η(x′))
η(x′)(1−η(x)) ∣≤W ∥x−x′∥p

]

−E(X,X′)[[max{η(x), η(x′)} − η(x)η(x′)]e−W ∥x−x′∥
p1 1

2 ∣log
η(x)(1−η(x′))
η(x′)(1−η(x)) ∣>W ∥x−x′∥p

]

−E(X,X′)[[min{η(x), η(x′)} − η(x)η(x′)]eW ∥x−x′∥
p1 1

2 ∣log
η(x)(1−η(x′))
η(x′)(1−η(x)) ∣>W ∥x−x′∥p

].

(19)

Therefore, ∀h ∈ H̃lin(x,x′)⋃ H̊lin(x,x′),

∆CL̃Φexp ,Hlin
(h,x, x′)

≥ inf
h∈H̃lin(x,x′)⋃ H̊lin(x,x′)

CL̃Φexp
(h,x, x′) − C∗

L̃Φexp ,Hlin
(x,x′)

= η(x)(1 − η(x′))e−0 + η(x′)(1 − η(x))e0 − C∗
L̃Φexp ,Hlin

(x,x′)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

η(x)(1 − η(x′)) + η(x′)(1 − η(x)) − 2
√
η(x)η(x′)(1 − η(x))(1 − η(x′))

if 1
2
∣log η(x)(1−η(x′))

η(x′)(1−η(x)) ∣ ≤W ∥x − x′∥p
[max{η(x), η(x′)} − η(x)η(x′)](1 − e−W ∥x−x′∥

p) + [min{η(x), η(x′)} − η(x)η(x′)](1 − eW ∥x−x′∥
p)

if 1
2
∣log η(x)(1−η(x′))

η(x′)(1−η(x)) ∣ >W ∥x − x′∥p

≥

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

η(x)(1 − η(x′)) + η(x′)(1 − η(x)) − 2
√
η(x)η(x′)(1 − η(x))(1 − η(x′))

if 1
2
∣log η(x)(1−η(x′))

η(x′)(1−η(x)) ∣ ≤Wγ

[max{η(x), η(x′)} − η(x)η(x′)](1 − e−Wγ) + [min{η(x), η(x′)} − η(x)η(x′)](1 − eWγ)
if 1

2
∣log η(x)(1−η(x′))

η(x′)(1−η(x)) ∣ >Wγ

=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

( η(x)(1−η(x′))−η(x′)(1−η(x))√
η(x)(1−η(x′))+

√
η(x′)(1−η(x))

)
2

if 1
2
∣log η(x)(1−η(x′))

η(x′)(1−η(x)) ∣ ≤Wγ

η(x)(1−η(x′))+η(x′)(1−η(x))
2

(2 − e−Wγ − eWγ) + 1
2
∣η(x) − η(x′)∣(eWγ − e−Wγ) if 1

2
∣log η(x)(1−η(x′))

η(x′)(1−η(x)) ∣ >Wγ

≥ min{(η(x) − η(x′))2
,(e

2Wγ + 1

e2Wγ − 1
) ∣η(x) − η(x′)∣}

which implies that for any h ∈Hlin and (x,x′) such that ∥x − x′∥p > γ,

∆CL̃Φexp ,Hlin
(h,x, x′) ≥ Ψexp(∆CL̃abs

0−1,H
(h,x, x′)).

where Ψexp is the increasing function on [0,2] defined by

∀t ∈ [0,1], Ψexp(t) = min{t2,(e
2Wγ + 1

e2Wγ − 1
) t}.
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Ranking with Abstention

Thus, by Theorem B.1 or Theorem B.2, setting ε = 0 yields the Hlin-consistency bound for L̃Φexp , valid for all h ∈Hlin:

RL̃abs
0−1

(h) −R∗
L̃abs

0−1

(Hlin) ≤ ΓΦexp(RL̃Φexp
(h) −R∗

L̃Φexp
(Hlin) +ML̃Φexp

(Hlin)) −ML̃abs
0−1

(Hlin). (20)

where ΓΦexp(t) = max{
√
t, ( e2Wγ−1

e2Wγ+1
) t}.

Proof for L̃Φsig
. For the sigmoid loss function Φsig(u)∶ = 1 − tanh(ku), k > 0, for all h ∈ Hlin and (x,x′) such that

∥x − x′∥p > γ,

CL̃Φsig
(h,x, x′)

= η(x)(1 − η(x′))Φsig(h(x) − h(x′)) + η(x′)(1 − η(x))Φsig(h(x′) − h(x))
= η(x)(1 − η(x′))(1 − tanh(k[h(x) − h(x′)])) + η(x′)(1 − η(x))(1 + tanh(k[h(x) − h(x′)]))

Then,

C∗
L̃Φsig

,Hlin
(x,x′) = inf

h∈Hlin

CL̃Φsig
(h,x, x′) = η(x)(1 − η(x′)) + η(x′)(1 − η(x)) − ∣η(x) − η(x′)∣ tanh(kW ∥x − x′∥p).

The (L̃Φsig
,Hlin)-minimizability gap is

ML̃Φsig
(Hlin) = R∗

L̃Φsig

(Hlin) −E(X,X′)[η(x)(1 − η(x′)) + η(x′)(1 − η(x)) − ∣η(x) − η(x′)∣ tanh(kW ∥x − x′∥p)].
(21)

Therefore, ∀h ∈ H̃lin(x,x′)⋃ H̊lin(x,x′),

∆CL̃Φsig
,Hlin

(h,x, x′)

≥ inf
h∈H̃lin(x,x′)⋃ H̊lin(x,x′)

CL̃Φsig
(h,x, x′) − C∗

L̃Φsig
,Hlin

(x,x′)

= η(x)(1 − η(x′)) + η(x′)(1 − η(x)) − C∗
L̃Φsig

,Hlin
(x,x′)

= ∣η(x) − η(x′)∣ tanh(kW ∥x − x′∥p)
≥ ∣η(x) − η(x′)∣ tanh(kWγ)

which implies that for any h ∈Hlin and (x,x′) such that ∥x − x′∥p > γ,

∆CL̃Φsig
,Hlin

(h,x, x′) ≥ tanh(kWγ)∆CL̃abs
0−1,H

(h,x, x′).

Thus, by Theorem B.1 or Theorem B.2, setting ε = 0 yields the Hlin-consistency bound for L̃Φsig
, valid for all h ∈Hlin:

RL̃abs
0−1

(h) −R∗
L̃abs

0−1

(Hlin) ≤
RL̃Φsig

(h) −R∗
L̃Φsig

(Hlin) +ML̃Φsig
(Hlin)

tanh(kWγ) −ML̃abs
0−1

(Hlin). (22)

E. Negative results for general pairwise ranking (Proof of Theorem 4.1)
Theorem 4.1 (Negative results). Assume that X contains an interior point x0 and that H is regular for general pairwise
ranking, contains 0 and is equicontinuous at x0. If for some function f that is non-decreasing and continuous at 0, the
following bound holds for all h ∈H and any distribution,

RL0−1(h) −R∗
L0−1

(H) ≤ f(RLΦ
(h) −R∗

LΦ
(H)),

then, f(t) ≥ 1 for any t ≥ 0.
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Ranking with Abstention

Proof. Assume x0 ∈ X is an interior point and h0 = 0 ∈ H. By the assumption that x0 is an interior point and H is
equicontinuous at x0, for any ε > 0, we are able to take x′ ≠ x0 ∈ X such that ∣h(x′) − h(x0)∣ < ε for all h ∈H. Consider the
distribution that supports on {(x0, x

′)} with η(x0, x
′) = 0. Then, for any h ∈H,

RL0−1(h) = CL0−1(h,x0, x
′) = 1h(x′)≥h(x0) ≥ 0,

where the equality can be achieved for some h ∈H since H is regular for general pairwise ranking. Therefore,

R∗
L0−1

(H) = C∗L0−1
(H, x0, x

′) = inf
h∈H

CL0−1(h,x0, x
′) = 0.

Note RL0−1(h0) = 1. For the surrogate loss LΦ, for any h ∈H,

RLΦ
(h) = CLΦ

(h,x0, x
′) = Φ(h(x0) − h(x′)) ∈ [Φ(ε),Φ(−ε)]

since ∣h(x′) − h(x0)∣ < ε and Φ is non-increasing. Therefore,

R∗
LΦ

(H) = C∗LΦ
(H, x0, x

′) ≥ Φ(ε).

Note RLΦ
(h0) = Φ(0). If for some function f that is non-decreasing and continuous at 0, the bound holds, then, we obtain

for any h ∈H and ε > 0,

RL0−1(h) − 0 ≤ f(RLΦ
(h) −R∗

LΦ
(H)) ≤ f(RLΦ

(h) −Φ(ε)).

Let h = h0, then f(Φ(0) −Φ(ε)) ≥ 1 for any ε > 0. Take ε → 0, we obtain f(0) ≥ 1 using the fact that Φ and f are both
continuous at 0. Since f is non-decreasing, for any t ∈ [0,1], f(t) ≥ 1.

F. Negative results for bipartite ranking (Proof of Theorem 4.3)
Theorem 4.3 (Negative results for bipartite ranking). Assume that X contains an interior point x0 and that H is regular
for bipartite ranking, contains 0 and is equicontinuous at x0. If for some function f that is non-decreasing and continuous
at 0, the following bound holds for all h ∈H and any distribution,

RL̃0−1
(h) −R∗

L̃0−1
(H) ≤ f(RL̃Φ

(h) −R∗
L̃Φ

(H)),

then, f(t) ≥ 1
2

for any t ≥ 0.

Proof. Assume x0 ∈ X is an interior point and h0 = 0 ∈ H. By the assumption that x0 is an interior point and H is
equicontinuous at x0, for any ε > 0, we are able to take x′ ≠ x0 ∈ X such that ∣h(x′) − h(x0)∣ < ε for all h ∈H. Consider the
distribution that supports on {x0, x

′} with η(x0) = 1 and η(x′) = 0. Then, for any h ∈H,

RL̃0−1
(h) = CL̃0−1

(h,x0, x
′) = 1h(x0)<h(x′) +

1

2
1h(x0)=h(x′) ≥ 0,

where the equality can be achieved for some h ∈H since H is regular for bipartite ranking. Therefore,

R∗
L0−1

(H) = C∗L0−1
(H, x0, x

′) = inf
h∈H

CL0−1(h,x0, x
′) = 0.

Note RL0−1(h0) = 1
2

. For the surrogate loss LΦ, for any h ∈H,

RLΦ
(h) = CLΦ

(h,x0, x
′) = Φ(h(x0) − h(x′)) ∈ [Φ(ε),Φ(−ε)]

since ∣h(x′) − h(x0)∣ < ε and Φ is non-increasing. Therefore,

R∗
LΦ

(H) = C∗LΦ
(H, x0, x

′) ≥ Φ(ε).

Note RLΦ
(h0) = Φ(0). If for some function f that is non-decreasing and continuous at 0, the bound holds, then, we obtain

for any h ∈H and ε > 0,

RL0−1(h) − 0 ≤ f(RLΦ
(h) −R∗

LΦ
(H)) ≤ f(RLΦ

(h) −Φ(ε)).

Let h = h0, then f(Φ(0) −Φ(ε)) ≥ 1
2

for any ε > 0. Take ε → 0, we obtain f(0) ≥ 1
2

using the fact that Φ and f are both
continuous at 0. Since f is non-decreasing, for any t ∈ [0,1], f(t) ≥ 1

2
.
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