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Abstract
Visual Word Sense Disambiguation (VWSD) is
a novel challenging task with the goal of retriev-
ing an image among a set of candidates, which
better represents the meaning of an ambigu-
ous word within a given context. In this paper,
we make a substantial step towards unveiling
this interesting task by applying a varying set
of approaches. Since VWSD is primarily a
text-image retrieval task, we explore the lat-
est transformer-based methods for multimodal
retrieval. Additionally, we utilize Large Lan-
guage Models (LLMs) as knowledge bases to
enhance the given phrases and resolve ambigu-
ity related to the target word. We also study
VWSD as a unimodal problem by converting
to text-to-text and image-to-image retrieval, as
well as question-answering (QA), to fully ex-
plore the capabilities of relevant models. To tap
into the implicit knowledge of LLMs, we exper-
iment with Chain-of-Thought (CoT) prompting
to guide explainable answer generation. On top
of all, we train a learn to rank (LTR) model in
order to combine our different modules, achiev-
ing competitive ranking results. Extensive ex-
periments on VWSD demonstrate valuable in-
sights to effectively drive future directions.

1 Introduction

Visual word sense disambiguation (VWSD) is a
recently introduced challenging task where an am-
biguous target word within a given context has to
retrieve the proper image among competitive can-
didates (Raganato et al., 2023). For example, the
phrase andromeda tree contains the ambiguous tar-
get word andromeda accompanied by the context
tree which resolves this ambiguity. Out of the 10
candidates presented in Fig. 1, a VWSD frame-
work attempts to retrieve the ground truth image,
denoted with colored border.

Even though VWSD is essentially a text-image
retrieval task, there are some fundamental differ-
ences. First of all, the context given for an ambigu-
ous word is minimal, most often limited to a single

Figure 1: An example of the VWSD task.

word, upon which a retrieval module should rely
to retrieve the proper candidate. Additionally, the
candidate images themselves pose significant chal-
lenges; for example, by observing the candidates
of Fig. 1, which are related to several meanings
of the ambiguous word andromeda (can be either
a constellation, fish species, tree, reptile etc), a
successful retrieval system should be fine-grained
enough and highly sensitive to the contextualiza-
tion of the ambiguous target word. In that case,
the context word tree should be prominent enough
-from the perspective of the retrieval module- to
resolve ambiguity. At the same time, this retrieval
module should not excessively rely on the tree con-
text: images containing flowers and green grass
induce some expected visual bias in the retrieval
process, thus the image having the highest probabil-
ity of containing a tree may be selected, ignoring
the ambiguous andromeda attribute. Of course,
there is also the possible scenario that a retrieval
model has never been trained on the ambiguous
word at all: the rarity of the concepts present in the
target word vocabulary increases the probability
of exclusively relying on the well-known context



word, resulting in significant randomness during
selection. To this end, VWSD trustworthiness also
arises as a critical point, raising the need for ex-
plainable solutions.

In this work, we showcase a vast variety of imple-
mentations for VWSD. Multiple experiments are
conducted for each of the implemented approaches,
achieving one of the first extensive contributions to
this interesting task:

• We exploit Large Language Models (LLMs)
as knowledge bases to enrich given full
phrases, so that the target word is disam-
biguated by incorporating more context, ad-
dressing even cases that the ambiguous word
is unknown to the retrieval module.

• We convert VWSD to a unimodal problem:
retrieval (text-to-text and image-to-image) and
question-answering (QA) to fully explore the
capabilities related models have to offer.

• Features extracted from the aforementioned
techniques are used to train a learning to rank
model, achieving competitive retrieval results.

• Chain-of-Thought (CoT) prompting is lever-
aged to guide answer generation, while reveal-
ing intermediate reasoning steps that act as
explanations for retrieval.

Our code can be found at
https://github.com/anastasiakrith/multimodal-
retrieval-for-vwsd/.

2 Related work

Text-image retrieval has been revolutionized
since adopting the popular Transformer framework
(Vaswani et al., 2017) to further incorporate the vi-
sual modality. This transition towards multimodal-
ity was addressed by incorporating one additional
transformer stream to process images (Tan and
Bansal, 2019; Lu et al., 2019), extending the BERT
(Devlin et al., 2019) architecture. Most recent ap-
proaches (Kim et al., 2021; Huang et al., 2021;
Wang et al., 2021) improved upon those primordial
works by utilizing a single encoder for both images
and language, therefore minimizing the number of
trainable parameters, and consequently improving
the performance of several VL tasks, including mul-
timodal retrieval. A significant milestone was the
adoption of contrastive learning for text-image rep-
resentations, a technique that is followed by CLIP
(Radford et al., 2021) and ALIGN (Jia et al., 2021).

Visual Word Sense Disambiguation (VWSD)
(Raganato et al., 2023) is only recently introduced
as part of the SemEval 2023 challenge. So far, the
concurrent work of Dadas (2023) can act as a mea-
sure of comparison to ours. We adopt and extend
some ideas presented in their paper, while further
expanding the experimental suite to cover variable
approaches to the task. Moreover, we step upon the
usage of LLMs for VWSD as in Kritharoula et al.
(2023) to address both performance improvement
and explainability aspects.

LLMs as knowledge bases is a core idea fol-
lowed throughout our paper, as enriching the short
phrases of the VWSD dataset can facilitate target
word disambiguation, and thus improve retrieval.
Traditionally, knowledge enhancement for disam-
biguation was performed via knowledge graphs
(Feng et al., 2020; Nedelchev et al., 2020). The
usage of knowledge graphs was also favored for
knowledge enhancement of multimodal tasks (Lym-
peraiou and Stamou, 2022). Nevertheless, Large
Language Models (LLMs) as knowledge bases
(LLM-as-KB) (Petroni et al., 2019; AlKhamissi
et al., 2022) is a novel paradigm, presenting some
interesting capabilities compared to traditional
knowledge graphs. Knowledge retrieval from
LLMs is implemented via prompting (Liu et al.,
2021), which attempts to appropriately trigger the
LLM in order to provide the fact requested. To this
end, recent VL breakthroughs favor the LLM-as-
KB paradigm for knowledge enhancement, even
though some unresolved shortcomings may be in-
herited (Lymperaiou and Stamou, 2023). We opt
for incorporating the LLM-as-KB paradigm within
our experimentation to investigate performance
gains over knowledge-free baselines, following
Kritharoula et al. (2023).

3 Method

We followed 6 approaches to investigate the VWSD
task from several different perspectives. All our
approaches were tested exclusively on English.

1. Image-Text similarity baseline We imple-
ment a simple multimodal (VL) retrieval baseline
to evaluate the capabilities of existing pre-trained
VL transformers on the VWSD task. VL transform-
ers provide joint embedding representations for text
phrases t and candidate images i, and the image
representation achieving highest cosine similarity
score score(t, i) = max(sim(t, i)) with respect to

https://github.com/anastasiakrith/multimodal-retrieval-for-vwsd/
https://github.com/anastasiakrith/multimodal-retrieval-for-vwsd/


the text embedding is selected. We utilize CLIP
with ViT (Dosovitskiy et al., 2021) base encoder, as
well as with ViT large encoder (denoted as CLIP-
L). ALIGN (Jia et al., 2021) is also used for text-
image retrieval. We also leverage several versions
of BLIP (Li et al., 2022), namely BLIPC and BLIP-
LC (pre-trained on COCO (Lin et al., 2015) and
using ViT base/ViT large as backbone encoders
respectively), as well as BLIPF and BLIP-LF (pre-
trained on Flickr30k (Young et al., 2014)). More
details are provided in Appendix G. We also ex-
periment with incorporating the penalty factor p(i)
described in Dadas (2023) to modulate the retrieval
preference of images that present high similarity
scores sim(t, i) to multiple phrases t. In this case,
the similarity score obeys to the following:

score(t, i) = sim(t, i)− p(i) (1)

2. LLMs for phrase enhancement We employ
a variety of LLMs as knowledge bases to enhance
the short phrases t with more detail in a zero-shot
fashion (Kritharoula et al., 2023) and thus facil-
itate VL retrieval described in the previous para-
graph. All prompts to LLMs presented in Tab. 1 are
designed upon manually crafted templates, based
on the intuition that instructively requesting spe-
cific information from the model has been proven
to be beneficial (Kojima et al., 2023). We select
LLMs up to the scale that our hardware allows, or
otherwise accessible via public APIs; specifically,
GPT2-XL (1.5B parameters) (Radford et al., 2019),
BLOOMZ-1.7B & 3B (Muennighoff et al., 2023),
OPT-2.7B & 6.7B (Zhang et al., 2022), Galactica
6.7B (Taylor et al., 2022), and the 175B parameter
GPT-3 (Brown et al., 2020) and GPT-3.5-turbo1

comprise our experimental set for phrase enhance-
ment. The difference in the number of parameters
is viewed as significant in order to indicate whether
scale matters to elicit disambiguation capabilities
of LLMs. We denote as te the LLM-enhanced
phrases. Similar to the baseline case, a penalty
factor p(i) can be included, adjusting the LLM-
enhanced retrieval score as:

score(te, i) = sim(te, i)− p(i) (2)

3. Image captioning for text retrieval We lever-
age the merits of unimodal retrieval by exploiting
state-of-the-art image captioning transformers to

1https://platform.openai.com/docs/models/gpt-3-5

Prompt name Prompt template
exact “<phrase> ”

what_is “What is <phrase>?”

describe “Describe <phrase>.”

meaning “What is the meaning of <phrase>?”

Table 1: Prompts for phrase enhancement via LLMs.

convert images i to textual captions ci. Specifically,
the captioning models used are BLIP Captions (Li
et al., 2022) with ViT-base encoder (BLIP-L Cap-
tions denotes building upon ViT-large), as well as
GiT (Wang et al., 2022) (with ViT-base) and GiT-L
(with ViT-large). For all BLIP and GiT variants we
attempt both beam-search multinomial sampling
with 5 beams to obtain k=10 captions per image
i, as well as greedy search. We symbolize as cki
the k-th caption for an image i, as obtained from
beam search (greedy search returns a single cap-
tion). In the case of beam search, the 10 captions
are post-processed, as some of them are identical
or substrings of longer ones.

We explore two options in obtaining embedding
representations for the captions ci and the phrases
t. In the first case, embedding representations are
obtained using the same VL transformers as in mul-
timodal retrieval. In the second case, we utilize a
variety of purely textual sentence transformers that
are fine-tuned for semantic similarity (Reimers and
Gurevych, 2019). Then, for both cases, we use co-
sine similarity or euclidean/manhattan 2 distance to
calculate the score(t, cki ), thus retrieving the most
similar caption embedding to each phrase embed-
ding. Experiments with and without LLM-based
phrase enrichment were conducted.

4. Wikipedia & Wikidata image retrieval
Image-to-image retrieval is another way to ap-
proach the VWSD task via unimodal represen-
tations. For this reason, following the idea of
(Dadas, 2023) we exploit the Wikipedia API to
retrieve all relevant articles corresponding to the
given phrase t, and we keep the primary image iw
from each article. Consequently, we post-process
the retrieved image set by considering a maximum
of k=10 Wikipedia images per t. The same process
is repeated for Wikidata (Vrandečić and Krötzsch,
2014). We obtain embedding representations for
the retrieved images iw, as well as for the candidate
images i, using the same VL transformers as in mul-

2Distance metrics are also denoted as ’similarity metrics’
throughout this paper

https://platform.openai.com/docs/models/gpt-3-5


timodal retrieval. Finally, we search for the embed-
dings lying closer together in the embedding space
(using cosine similarity or euclidean/manhattan dis-
tance) according to score(iw, i).

5. Learn to Rank Similarly to Dadas (2023),
we implement a lightweight Learning to Rank
(LTR) model that harnesses features extracted from
our aforementioned experiments. LGBMRanker
with lambdarank objective3, implemented upon the
LightGBM gradient boosting framework (Ke et al.,
2017), is selected as the LTR module.

The selected input features for the LTR model
represent relationships between each given phrase
and the candidate images extracted from the pre-
vious 4 approaches. Specifically, the following
steps (a)-(e) are selected to craft features corre-
sponding to the baseline case. In a similar way,
the steps a-e are repeated for score(te, i) (LLM
enhancement), score(t, cki )/score(te, cki ) (caption-
phrase retrieval/enhanced caption-phrase retrieval)
and score(iw, i) (image retrieval). We train the
LTR module on several combinations of the de-
signed features; also, different similarity (cosine)
and distance (euclidean/manhattan) scores are at-
tempted within these combinations, while the con-
tribution of considering p(i) is evaluated, both in
the baseline VL retrieval (eq. 1), as well as in the
LLM-enhanced VL retrieval module (eq. 2).

(a) score(t, i)

(b) max(score(t, i))

(c) mean(score(t, i))

(d) difference a-b

(e) difference a-c

In order to further advance LTR performance, we
attempt to combine features from enriched phrases
te derived from different LLMs.

6. Question-answering for VWSD and CoT
prompting Based on the zero-shot question-
answering setting of Kritharoula et al. (2023), we
incorporate the given phrase t within a question
template, providing 10 answer choices from A to
J that correspond to extracted captions ci from the
candidate images i = A,B, ..., J for each t. In the
case that beam search was used during captioning,
all k=10 captions for each i are concatenated and
separated by comma to form each answer choice.

3LGBMRanker docs

Moreover, based on Kojima et al. (2023) we utilize
chain-of-thought (CoT) prompts to obtain expla-
nations regarding the reasoning process the LLM
follows when selecting an answer. All resulting QA
prompts (Tab. 2) are provided to GPT-3.5-turbo.

4 Experimental results

The VWSD dataset is comprised of 12869 training
samples and 463 test samples; each sample con-
tains 10 images (Appendix A). All our approaches
are evaluated on the VWSD test split using Accu-
racy and Mean Reciprocal Rank (MRR) metrics.

LLMs for phrase enhancement In Tab. 3, we
present results regarding LLM-based phrase en-
hancement involving all VL retrieval models (with
and without penalty p(i)). Baselines refer to VL
retrieval with non-enhanced phrases t. Additional
quantitative results including more LLMs, as well
as qualitative examples of how knowledge enhance-
ment benefits disambiguation and thus retrieval are
provided in Appendix C. We can easily observe
that different prompts contribute towards better re-
sults per LLM, while BLIP-LF is the most success-
ful VL retriever; however, ALIGN (with penalty)
achieves top performance, together with GPT-3 and
"meaning" as the prompt. In general, large scale
LLMs (GPT-3, GPT-3.5-turbo) are able to clearly
surpass the respective non-enhanced baselines in
most cases.

Interestingly, for smaller LLMs (up to 6.7B pa-
rameters), scaling-up does not necessarily imply
advanced performance: OPT-6.7B (Tab. 12) and
Galactica-6.7B (Tab. 13) fall below their smaller
BLOOMZ-3B competitor when the same prompts
are used. Nevertheless, contrary to GPT-3 and GPT-
3.5-turbo, the phrase enhancement that few-billion
parameter LLMs can offer in total is only marginal
in the best case, and sometimes even fail to compete
against their non-enhanced baselines, indicating
that they do not contain the necessary knowledge
to enrich rare target words with respect to their
given context. Therefore, our LLM-enhancement
analysis reveals that the necessary enrichment for
VWSD may be only achieved when employing
large-scale LLMs, most probably being on par with
other emergent LLM abilities (Wei et al., 2023).

Image captioning In Tab. 4 we present results
on text retrieval between extracted image captions
ci and given phrases t, which are achieved us-

https://lightgbm.readthedocs.io/en/latest/pythonapi/lightgbm.LGBMRanker.html


Prompt name QA Prompt template
think (greedy) “Q: What is the most appropriate caption for the <context>? Answer choices: (A) <caption for image 1>

(B) <caption for image 2> ... A: Let’s think step by step. ”

think (beam) “Q: What is the most appropriate group of captions for the <context>? Answer choices: (A) <captions
for image 1 (separated with comma)> (B) <captions for image 2> ... A: Let’s think step by step. ”

CoT “<think_prompt> <response of llm with think prompt> Therefore, among A through J, the answer is ”

no_CoT (greedy) “Q: What is the most appropriate caption for the <context>? Answer choices: (A) <caption for image 1>
(B) <caption for image 2> ... A: ”

no_CoT (beam) “Q: What is the most appropriate group of captions for the <context>? Answer choices: (A) <captions
for image 1> (B) <captions for image 2> ... A: ”

Table 2: QA prompts for gpt-3.5-turbo containing given phrase and extracted image captions.

ing Manhattan distance as a similarity measure.
ALIGN and XLM distilroberta base (Reimers and
Gurevych, 2019) perform the caption-phrase re-
trieval, representing textual representations via VL
models and purely linguistic semantic similarity
models respectively. More text-to-text retrieval re-
sults in Appendix D. The No-LLM row of Tab. 4
refers to the case that no phrase enhancement is
performed, while the rest of the cases correspond
to prompts designed as per Tab. 1 towards en-
hanced phrases te. In all results presented, GPT-3
is selected as the LLM to be prompted, as it demon-
strated superior knowledge-enhancement perfor-
mance. We observe that LLM-based enhancement
offers performance boosts to text-to-text retrieval
compared to the No-LLM baseline in most cases;
nevertheless, it still stays behind the best perfor-
mance so far (acc 72.57%, MRR 82.29%) achieved
by GPT-3-enhanced VL retrieval. We assume this
is because of the information loss induced when
converting from the visual to the textual modality
during captioning.

Another observation is that VL transformers
perform better in producing textual embeddings
compared to sentence similarity embeddings, even
though the latter have been explicitly fine-tuned
on semantic textual similarity. This observation is
cross-validated by examining more purely textual
semantic similarity transformers in Appendix D.

Wikipedia & Wikidata image retrieval In Tab.
5 results regarding image-to-image retrieval be-
tween candidates i and web retrieved images iw
are presented. Out of the 463 samples of the test
set, Wikipedia API and Wikidata API returned re-
sults for 460 and 324 phrases respectively. Even
best results for image-to-image retrieval are not
competent against our previous approaches; we
assume that exclusively visual representations are
not expressive enough to distinguish fine-grained

details between semantically related candidates.

Learn to rank In Tab. 6 we exhibit results using
ALIGN as the VL retriever. The presented feature
combinations involve the following: (1) Baseline
features: the choice for incorporation (or not) of
penalty p(i) in score(t, i) for the VL retrieval; (2)
LLM-enhancement features: the prompt to produce
enhanced phrases te (or an ensemble of prompts
leading to multiple te) and the choice for incorpora-
tion (or not) of p(i) in score(te, i); (3) Text retrieval
features: the captioner to generate ci, together with
the text embedding model and the similarity mea-
sure (cosine/euclidean/manhattan) for text-to-text
retrieval, as well as the phrase (original t, or en-
hanced te, or an ensemble of enhanced phrases te
derived from different LLMs); (4) Image retrieval
features: image embedding model and similarity
measure (cosine/euclidean/manhattan) for image-
to-image retrieval. Additional results for the LTR
are provided in Appendix E.

For all the experiments of Tab. 6 we
used the following hyperparameter configuration:
n_estimators: 500, early_stopping: 100, learning
rate: 0.03, feature_fraction: 0.25, max_bin: 100,
min_child_samples: 50 and reg_alpha: 0.05. An
80-20 train/validation split was followed, allocating
2514 samples in the validation set.

The ablations of feature combinations presented
in Tab. 6 are highly informative, indicating that
different features pose a varying influence on the
final result, while the amount of incorporated fea-
tures is also significant. In general, incorporating
LLM-based phrase enhancement in LTR is highly
beneficial, offering optimal metric results com-
pared to other feature combinations, or our other
approaches presented in Tab. 3, 4. Overall best
results are achieved when including all features
(colored instances of Tab. 6). This is an interesting
observation since standalone text retrieval (Tab. 4)



CLIP CLIP-L ALIGN BLIPC BLIP-LC BLIPF BLIP-LF

acc. MRR acc. MRR acc. MRR acc. MRR acc. MRR acc. MRR acc. MRR
With penalty

Baseline 63.28 76.27 62.85 76.24 68.90 80.00 60.90 74.33 64.58 77.51 60.47 73.87 69.76 80.42

O
PT

-2
.7

B exact 62.85 76.00 62.85 75.93 68.68 79.89 61.12 74.46 64.58 77.41 60.26 73.73 69.76 80.36
what_is 60.98 74.85 66.30 78.10 63.28 75.95 60.91 74.43 66.31 77.86 57.24 71.15 67.60 78.58

describe 61.05 74.75 66.08 78.14 64.79 77.62 61.77 74.73 66.31 77.57 57.67 71.48 68.03 79.03

meaning 62.15 75.60 65.25 77.45 65.66 77.54 61.99 75.35 63.93 76.88 58.32 71.65 65.44 77.69

B
L

O
O

M
Z

-3
B exact 61.26 74.59 62.99 76.18 66.52 78.36 60.48 73.13 63.28 76.00 57.02 71.23 65.66 77.49

what_is 64.36 76.82 68.25 79.82 67.39 78.72 61.34 74.94 66.95 78.47 59.61 73.35 68.47 79.58
describe 62.01 75.38 65.28 78.07 66.09 78.60 62.85 75.65 67.39 78.71 57.24 71.72 67.82 79.20

meaning 65.58 77.96 67.32 78.76 68.47 79.14 63.71 76.52 66.31 78.55 59.40 73.60 68.03 79.26

G
PT

-3
.5 exact 58.86 72.09 60.18 72.73 62.42 74.43 57.02 70.78 59.18 72.32 52.92 67.40 63.07 74.65

what_is 66.52 78.81 69.35 80.51 70.41 81.42 67.60 78.56 68.47 79.67 60.91 74.30 71.71 82.02
describe 67.32 78.95 69.28 80.31 73.22 82.73 69.33 79.90 70.41 80.80 59.83 73.65 70.63 81.29

meaning 67.76 79.76 69.06 80.55 70.41 81.38 66.52 78.59 66.52 79.16 58.53 73.31 69.98 81.46

G
PT

-3

exact 61.98 74.90 64.07 76.58 66.52 78.37 60.48 73.99 64.15 76.58 59.61 72.91 65.23 77.06

what_is 67.92 79.27 70.73 81.57 71.71 82.27 68.25 78.93 68.90 79.91 60.48 74.24 69.11 80.25

describe 68.25 79.40 68.72 80.26 72.57 82.52 64.58 76.75 68.25 79.35 61.34 74.03 69.33 80.47

meaning 68.07 80.08 69.84 81.56 74.95 84.09 66.74 78.37 71.71 81.55 62.63 75.55 72.35 82.28
Without penalty

Baseline 59.18 72.94 60.69 74.42 65.66 77.48 57.24 72.07 61.34 75.88 57.67 71.96 65.01 77.86

O
PT

-2
.7

B exact 58.96 72.77 60.26 74.15 65.66 77.48 57.45 72.19 61.12 75.77 57.24 71.68 65.01 77.90
what_is 58.31 72.91 62.75 75.47 61.12 73.94 59.83 73.13 61.12 74.54 53.35 68.71 63.50 76.22

describe 59.08 72.95 63.89 76.31 62.20 75.80 59.83 73.28 62.20 75.17 54.43 69.86 63.28 76.28

meaning 58.19 72.97 62.99 75.79 64.58 76.48 59.18 73.38 60.26 74.70 54.86 69.43 62.42 75.86

B
L

O
O

M
Z

-3
B exact 56.93 71.53 59.52 73.78 63.93 76.15 58.10 71.77 59.61 74.06 54.86 69.66 61.12 74.99

what_is 62.20 75.39 65.66 77.88 62.85 75.51 61.34 74.35 65.01 77.32 57.24 71.85 68.03 79.12
describe 60.04 73.83 62.88 76.11 63.50 76.35 60.48 73.87 62.85 76.06 54.86 70.48 65.66 77.64

meaning 61.69 75.51 64.94 77.17 66.31 77.62 61.77 74.92 62.42 76.27 57.02 71.79 65.23 77.21

G
PT

-3
.5 exact 56.89 69.85 57.11 70.36 60.48 72.15 54.43 68.33 56.80 70.42 51.40 65.68 58.32 71.11

what_is 65.00 77.11 65.87 78.11 67.82 79.52 64.15 75.91 65.87 77.78 58.10 72.32 68.03 79.36

describe 65.80 77.26 66.67 78.42 70.84 81.16 65.44 77.57 69.11 80.20 58.96 72.66 67.60 79.47

meaning 65.14 77.61 67.10 79.07 68.47 79.87 63.93 77.05 65.66 78.33 63.93 72.23 68.25 80.17

G
PT

-3

exact 59.88 73.38 61.68 74.91 64.79 76.27 58.96 71.92 60.48 74.02 55.72 70.34 62.42 75.04

what_is 66.51 77.62 68.15 79.38 69.55 80.22 63.28 75.56 65.01 77.40 56.59 71.54 67.82 79.03

describe 67.30 78.50 68.25 79.81 71.27 81.21 63.93 75.81 66.31 77.74 58.96 72.62 67.17 78.93

meaning 66.52 78.32 68.96 80.26 72.57 82.29 65.87 77.56 69.55 80.26 60.26 74.26 70.41 81.09

Table 3: Results for zero-shot LLM-based enhancement. Colored instances denote overall best results per metric,
while bold numbers indicate best results for each LLM.

and image retrieval (Tab. 5) experiments did not
provide competitive metric results; nevertheless,
considering the respective features in LTR training
benefits performance. Moreover, ensembling of
features is highly beneficial. This applies on both
ensembling the LLM-enhanced prompt features
(e.g. all prompts combines features from texact,
twhat_is, tdescribe, tmeaning), as well as ensembling
phrase features for text-to-text retrieval (all te +

t refers to combining features from all the afore-
mentioned 4 enhancements, plus the original given
phrase t). As demonstrated in Tab. 6, most ensem-
ble feature combinations help surpassing baselines
and other implementations (Dadas, 2023).

The implemented LTR module is computation-
ally efficient, as it only requires a CPU for training,
while achieving state-of-the-art performance (Tab.
9). The clear pattern that arises from the ablation



Greedy Beam
BLIP BLIP-L GiT GiT-L BLIP BLIP-L GiT GiT-L
acc. MRR acc. MRR acc. MRR acc. MRR acc. MRR acc. MRR acc. MRR acc. MRR

No LLM 40.60 59.82 48.38 64.71 44.92 62.19 48.60 65.30 46.65 63.48 54.64 69.92 45.36 62.87 54.00 68.47

Manhattan distance - ALIGN
exact 44.06 61.16 50.32 64.51 45.14 61.40 50.76 65.63 46.87 63.94 53.13 68.22 46.22 62.88 53.35 67.79

what_is 47.73 64.65 50.32 66.29 47.95 64.32 54.64 69.27 49.68 66.77 61.12 74.14 51.40 66.93 57.67 71.49

describe 47.08 64.31 51.40 66.87 46.87 63.98 54.43 69.11 52.48 67.89 59.83 73.42 52.27 68.00 58.75 72.02

meaning 50.54 66.93 53.78 68.79 50.54 66.38 57.02 70.92 49.89 67.42 62.42 75.67 55.51 69.99 59.61 73.21

Manhattan distance - XLM distilroberta base
exact 38.66 56.78 38.88 57.05 36.93 54.85 42.33 59.19 42.55 59.35 42.98 60.78 41.04 58.83 48.16 63.82

what_is 41.68 58.96 39.09 57.36 41.68 58.12 43.20 60.53 44.92 62.06 45.36 63.27 42.12 59.99 50.11 65.65

describe 39.96 58.52 42.98 59.69 41.04 58.48 45.57 62.19 43.41 60.34 46.44 63.53 44.06 61.57 48.60 64.99

meaning 41.47 59.13 41.04 59.03 39.96 57.64 44.28 62.26 61.79 61.76 47.73 64.63 45.57 62.30 53.13 67.83

Table 4: Results on phrase-caption retrieval (with and without GPT-3 enhancement) for different captioning models.

C
L

IP

Similarity Image source acc. MRR

Cosine
Wikidata Images 34.26 50.13

Wikipedia Images 53.26 68.14

Euclidean
Wikidata Images 33.64 49.24

Wikipedia Images 52.17 66.95

Manhattan
Wikidata Images 33.02 48.75

Wikipedia Images 52.82 67.25

A
L

IG
N

Cosine
Wikidata Images 31.11 47.84

Wikipedia Images 53.26 68.44

Euclidean
Wikidata Images 30.83 47.52

Wikipedia Images 53.48 68.40

Manhattan
Wikidata Images 31.11 47.66

Wikipedia Images 53.26 68.27

Table 5: Image-to-image retrieval results

provides an explicit direction for potential perfor-
mance improvements, without such endeavors be-
ing computationally prohibiting.

CoT prompting results can reveal the internal
steps followed by an LLM to reach an answer. In
Fig. 2, we present the candidate images for the
phrase t "rowing dory", with candidate C serving
as the golden image. Captions are extracted using
GiT-L captioner with greedy search, thus returning
one caption ci per candidate i. We then transform
"rowing dory" in a question Q, following the think
prompt template, as presented in Tab. 2, with cap-
tions ci, i = A, ..., J forming the answer choices.

Consequently, we produce answers via GPT-3.5-
turbo with and without CoT, as demonstrated in
Tab. 7. In the presented case, CoT encourages

choosing the correct answer C over J, which is
preferred by GPT-3.5-turbo when CoT is omitted.
Furthermore, CoT elicits the reasoning process of
the LLM, thus outputting a detailed explanation
regarding the choice of a candidate against seman-
tically similar candidates; for example, C (a small
boat in the water with two oars) and J (a row boat
with people on it in the water) are indeed closely
related and can be easily confused. As one of the
basic VWSD challenges is the fine-grained discrim-
ination between semantically similar candidates,
we consider such LLM-derived explanations to be
highly informative and accurate for discerning the
subtle details between them. More CoT/no_CoT
examples are presented in Appendix F.

5 Discussion

After the announcement of the Semeval-2023 pro-
ceedings, more works achieving state-of-the-art
results on VWSD for English have been released.
Zhang et al. (2023b) utilize online dictionaries and
biencoder architectures for disambiguation and a
matching module that selects the most appropriate
modality to guide final retrieval. Their approach
significantly differs from ours, both in the disam-
biguation and the ranking part. Patil et al. (2023)
rely on an ensemble approach involving fine-tuning
CLIP and extracting a joint image-text representa-
tion. In their paper they make no usage of knowl-
edge sources but rather resort on more computa-
tionally heavy approaches; instead, in our approach
we only train a lightweight ranking module, while
the usage of computationally demanding modules
such as VL retrievers and LLMs is restricted to



Baseline LLM-enhance Text retrieval features Image retrieval feat. Metrics
p(i) Prompt p(i) Captioner Embedding Similarity Phrase Embedding Similarity Acc. MRR

- - - - - - - - - 63.93 76.33

- - - - - - - - 68.90 80.04

meaning - - - - - - - 73.22 82.79

meaning - - - - - - 75.16 84.13

exact - - - - - - 70.41 81.10

what_is - - - - - - 71.71 81.52

describe - - - - - - 73.00 82.84

all prompts - - - - - - 73.87 83.96

all-except
exact

- - - - - - 74.30 83.80

meaning +
describe

- - - - - - 74.30 83.86

all-except
exact

- - - - ALIGN manhattan 76.09 85.36

all-except
exact

- - - - ALIGN cosine 76.52 85.29

all prompts - - - - ALIGN cosine 76.52 85.70

all prompts BLIP-L-beam ALIGN cosine t ALIGN cosine 77.61 85.90
all prompts BLIP-L-beam ALIGN cosine all te + t ALIGN cosine 77.17 86.08
all prompts BLIP-L-beam ALIGN cosine tmeaning ALIGN cosine 76.52 85.63

all prompts BLIP-L-greedy ALIGN cosine all te + t ALIGN cosine 78.48 86.65
all prompts GiT-L-greedy ALIGN cosine t ALIGN cosine 77.83 86.30
all prompts GiT-L-greedy ALIGN cosine tmeaning ALIGN cosine 77.39 85.92
all prompts GiT-L-greedy ALIGN cosine all te + t ALIGN cosine 79.35 87.23
all prompts GiT-L-greedy ALIGN cosine all te + t ALIGN euclidean 76.96 85.85

all prompts GiT-L-greedy ALIGN cosine all te + t ALIGN manhattan 76.96 86.00
all prompts GiT-L-beam ALIGN cosine all te + t ALIGN cosine 76.96 85.92

LTR of Dadas (2023) (best results) 77.97 85.88

SemEval organizers’ baseline 60.48 73.87

Table 6: LTR results using feature combinations as extracted from our previous 4 approaches (baseline, LLM
enhancement, text retrieval, image retrieval). ALIGN is employed as the VL retriever. Colored instances denote
best results overall, while bold instances highlight instances that outperform best results of Dadas (2023).

A B C (golden image) D E

F G H I J

Figure 2: Candidate images for the phrase "rowing dory".

inference. Yang et al. (2023) create a large-scale
knowledge base for VWSD based on online dic-
tionaries to acquire the different senses for each

ambiguous word. They also train a computation-
ally heavy model in a contrastive setting to tackle
VWSD challenges. Overall, our current work de-



Q: What is the most appropriate caption for the rowing
dory? Answer Choices: (A) a church with a tall tower and
a hedge. (B) an old airplane sitting on top of a runway.
(C) a small boat in the water with two oars. (D) the men’s
rowing team are competing in the men’s single sculls. (E)
a large black ship in the water near a harbor. (F) a ship is
on the water with people on it. (G) a large brick building
with a sign on it. (H) a blue fish (sardines) at the australian
aquarium. (I) a painting of four fish in the water. (J) a row
boat with people on it in the water.

no_CoT
Q: What is the most appropriate [...]
A: The most appropriate caption for the rowing dory would
be (J) a row boat with people on it in the water. X

CoT
Q: What is the most appropriate [...]
A: Let’s think step by step.
First, we need to identify the subject of the caption, which
is the rowing dory. Then, we need to choose a descriptive
and informative caption that accurately represents the im-
age. Out of all the answer choices, (C) "a small boat in
the water with two oars" would be the most appropriate
caption for the rowing dory as it accurately describes the
image and provides relevant information about the boat.
Answers (D), (F), and (J) also provide some information
about the boat and the people in it, but they either include
irrelevant information or are too vague to be an appropriate
caption for the image.
Therefore, among A through J, the answer is (C) "a small
boat in the water with two oars."

Table 7: VWSD as QA problem example, with CoT
prompting encouraging the selection of the correct can-
didate. Questions Q are presented truncated.

viates from the aforementioned ones in two main
aspects. First, following the inclination of the NLP
community towards LLMs we showcase the per-
formance advancements that can be achieved in
VWSD via prompting, replacing the usage of on-
line dictionaries for sense disambiguation. With
the constant improvement of LLM capabilities we
can also expect more advanced phrase enrichment,
and thus further boost VWSD performance. Sec-
ond, we do not train or fine-tune heavy models
for the ranking stage: our LTR module requires
20 minutes training on a CPU, thus being a very
computationally affordable option for retrieval.

A potential combination of techniques men-
tioned in Zhang et al. (2023b); Patil et al. (2023);
Yang et al. (2023) and ours can yield even more
impressive results for VWSD, as long as related
computational considerations are relaxed.

6 Conclusion

In this work, we provided an extensive founda-
tional experimentation and analysis on the novel

Visual Word Sense Disambiguation (VWSD) task.
Specifically, we employed several state-of-the-art
models for VL retrieval to build strong baselines,
showcased the merits of enhancing ambiguous
phrases with external knowledge stored in LLMs
and achieved competitive ranking results by train-
ing a lightweight retrieval module using features
extracted from our independent experiments. More-
over, we obtained useful explanations that unveil
the reasoning process behind VWSD via Chain-of-
Thought prompting. Our results surpassed concur-
rent implementations and given baselines, while
demonstrating valuable insights that can drive fu-
ture state-of-the-art implementations. We plan to
expand our experimentation towards exploring the
use of soft prompting to advance knowledge en-
hancement, and explore the possibility of harness-
ing large-scale knowledge graphs for further en-
richment of ambiguous phrases. Finally, we view
explainability aspects of VWSD as a critical direc-
tion to be studied as future work.
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Limitations

Our current work is accompanied with certain limi-
tations, some of which we plan to address as future
work. First of all, due to limited computational
resources, we do not resort to very large LMs (>7B
parameters) in our machines; however, scaling-up
would probably provide advanced knowledge en-
hancement for short phrases, an assumption that
can be strengthened by the advanced results occur-
ring when incorporating the 175B GPT-3 in our
experimental pipelines. The usage of GPT-3 and
GPT-3.5-turbo was focused on a targeted experi-
mental subset due to high pricing. On the other
hand, with respect to this limitation, we chose to
distribute our efforts across varying approaches
for VWSD rather than focusing to delve into a
specific direction (e.g. LLM-based knowledge en-
hancement) and explore the contribution of larger
LMs. Moreover, under this resource limitation,
our results can drive researchers that have access
to limited computational resources to replicate and
extend our analysis, instead of restricting this exper-
imentation to institutions or individual researchers



with higher budgets.
Other than that, the LLM-enhancement tech-

nique faces the risks associated with hallucinations
and untruthful generation, which cannot be easily
detected or resolved, according to related state-
of-the-art research (Bang et al., 2023; Mündler
et al., 2023; Azaria and Mitchell, 2023; Zheng et al.,
2023; Zhang et al., 2023a). Such a shortcoming
could negatively impact our results, since we have
not investigated whether there are hallucinated or
untruthful enhancements, especially since some
phrases may require specific domain knowledge to
be evaluated (for example, andromeda tree is not an
everyday term, and even a human needs to consult
an encyclopedia to evaluate if a related enhance-
ment is correct). To the best of our knowledge,
there has been no open-source tool to accurately
and faithfully detect hallucinations, therefore as for
now, we cannot resolve this limitation. However,
we could possibly mitigate hallucinations and un-
truthful generation by combining LLM knowledge
with knowledge graphs, which can be regarded as
more reliable knowledge sources for enhancing VL
tasks (Lymperaiou and Stamou, 2023). We will
investigate such hybrid techniques in future work.

Finally, we have focused our experimentation
on the English language in order to develop a va-
riety of techniques for VWSD rather than testing
an applicable subset of them on other languages.
Nevertheless, we plan to address this limitation as
future work.

Ethics Statement

Our work involves a newly introduced publicly
available dataset released under the CC-BY-NC
4.0 license and can be accessed by any researcher.
Throughout this work, we adhered to the fair data
usage policy, as required by the dataset creators4.
We employ language models up to 6.7B parameters
which were run on a machine with a 16 GB GPU.
Such computational resources are rather easily ac-
cessible by most research institutions; therefore,
throughout this paper we promote fair and repro-
ducible research, eliminating the need for high-end
computational budget. Accessing larger models
such as GPT-3 and GPT-3.5-turbo was feasible via
their APIs, which do not impose computational lim-
itations from the user’s side. The task itself does
not involve any obvious risks, as it targets to expand
the field of multimodal retrieval. Harnessing lan-

4https://raganato.github.io/vwsd/

guage models as knowledge bases imposes the risk
of retrieving false or inaccurate information, which
however does not induce serious implications in its
current usage, given the non-critical nature of this
dataset. Overall, we do not anticipate any ethical
issues arising from our work.
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A Dataset details

In Tab. 8 statistics for VWSD are presented. All
train and test samples contain 10 image candidates.
The phrase length demonstrates negligible differ-
ences, with the vast majority of phrases comprised
of 2 words. Data samples and official splits can be
found in https://raganato.github.io/vwsd/.

Split #Samples Phrase length

1
word

2
words

3
words

4
words

Train 12869 0 12868 0 0

Test 463 1 445 17 1

Table 8: Dataset statistics

B Computational resources

In Tab. 9 we analyze the resources used through-
out our experiments, as well as the time needed
for inference on the entire test set of 463 sam-
ples. Regarding captioners, we demonstrate the
time needed for one batch of 1000 images. As for
LTR, training time refers to the train split exclu-
sively (12869 samples).

C Additional LLM-enhancement results

Quantitative results In Tab. 12, 13 we present
the continuation of Tab. 3 results. LLMs com-
bined with VL retrievers without penalty. Since
smaller open-source LLMs do not involve pricing
limitations, we attempt to experiment with some
additional prompts, mostly paraphrasings of the
"describe" prompt, as presented in Tab. 10. To this
end, results for OPT-2.7B and BLOOMZ 3B are
extended for these new prompts (Tab. 11).

As a general takeaway, we can verify the claim
that LLMs in the low-billion parameter scale do not
contain the appropriate knowledge to provide high-
quality context to semantically enrich ambiguous
phrases. For example, according to Tab. 12, OPT-
6.7B enhancement leads to scores slightly below
the non-enhanced baselines in most cases, irrespec-
tively of the incorporation of penalty in the VL
retrieval module. The smaller models of GPT2-
XL (1.5B) and BLOOMZ-1.7B showcase some im-
provements compared to the respective baselines
when no penalty is used, but the results remain
low compared to the ones reported in Tab. 3. We
also observe an interesting variability regarding
which prompts induce better enhancement results,
with different prompts performing better or worse
across models. This verifies that prompts are not
transferable, i.e. a prompt that performs well in
conjunction with a certain model does not necessar-
ily perform equally well when inserted to another
model. In total, all models in Tab. 12, 13 demon-
strate comparable performance to each other; even
though the reported metrics are not discouraging
from the perspective of a potential real use case (e.g.

http://arxiv.org/abs/2205.14100
http://arxiv.org/abs/2205.14100
https://doi.org/10.48550/ARXIV.2108.10904
https://doi.org/10.48550/ARXIV.2108.10904
https://doi.org/10.48550/ARXIV.2108.10904
http://arxiv.org/abs/2201.11903
http://arxiv.org/abs/2201.11903
https://doi.org/10.18653/v1/2023.semeval-1.70
https://doi.org/10.18653/v1/2023.semeval-1.70
https://doi.org/10.18653/v1/2023.semeval-1.70
https://doi.org/10.18653/v1/2023.semeval-1.70
https://doi.org/10.1162/tacl_a_00166
https://doi.org/10.1162/tacl_a_00166
https://doi.org/10.1162/tacl_a_00166
http://arxiv.org/abs/2305.13534
http://arxiv.org/abs/2305.13534
http://arxiv.org/abs/2205.01068
http://arxiv.org/abs/2205.01068
https://doi.org/10.18653/v1/2023.semeval-1.60
https://doi.org/10.18653/v1/2023.semeval-1.60
https://doi.org/10.18653/v1/2023.semeval-1.60
http://arxiv.org/abs/2304.10513
http://arxiv.org/abs/2304.10513
https://raganato.github.io/vwsd/


Model Hardware Time (hours)
VL Transformers for retrieval

CLIP GPU - NVIDIA Tesla K40 12GB 00:10 h

ALIGN GPU - NVIDIA Tesla K40 12GB 00:08 h

CLIP-L GPU - NVIDIA Tesla K40 12GB 00:15 h

BLIP GPU - NVIDIA Tesla K40 12GB 00:20 h

BLIP-L GPU - NVIDIA Tesla K40 12GB 00:45 h

LLMs for phrase enhancement
GPT2 XL 1.5B GPU - NVIDIA Tesla K40 12GB 00:30 h

OPT 2.7B GPU - NVIDIA Tesla K40 12GB 01:45 h

BLOOMZ 1.7B GPU - NVIDIA Tesla K40 12GB 00:15 h

BLOOMZ 3B GPU 12.8GB 00:20 h

OPT 6.7B 2 x GPU T4 14.8GB 02:00 h

Galactica 6.7B 2 x GPU T4 14.8GB 02:15 h

Image Captioners
BLIP (batches with 1000 images each) GPU - NVIDIA Tesla K40 12GB ∼02:00 h / 1000 images

BLIP-L (batches with 1000 images each) GPU - NVIDIA Tesla K40 12GB ∼03:00 h / 1000 images

GiT (batches with 1000 images each) GPU - NVIDIA Tesla K40 12GB ∼03:00 h / 1000 images

GiT-L GPU - NVIDIA Tesla K40 12GB ∼04:00 h / 1000 images

Sentence Transformers
xlm-r-distilroberta NVIDIA TITAN Xp 12GB < 00:08 h

stsb-roberta-base NVIDIA TITAN Xp 12GB < 00:08 h

stsb-distilroberta-base NVIDIA TITAN Xp 12GB < 00:04 h

stsb-mpnet-base NVIDIA TITAN Xp 12GB < 00:07 h

all-MiniLM-L6 NVIDIA TITAN Xp 12GB < 00:03 h

all-MiniLM-L12 NVIDIA TITAN Xp 12GB < 00:04 h

all-mpnet-base NVIDIA TITAN Xp 12GB < 00:06 h

multi-QA-distilbert NVIDIA TITAN Xp 12GB < 00:06 h

multi-QA-MiniLM-L6 NVIDIA TITAN Xp 12GB < 00:04 h

LTR
LTR training CPU - 16GB RAM ∼00:20 h

LTR prediction CPU - 16GB RAM < 00:01 h

Table 9: Resources used for our experiments and time needed

Prompt name Prompt template
would_say “To describe <phrase> I would say

that”

could_describe “I could describe <phrase> as ”

write_description “Write a description of <phrase>.”

Table 10: Prompts for phrase enhancement via LLMs.

an image retrieval platform), especially given the
difficulty of VWSD, performance achieved using
the multi-billion parameter models of GPT3 and
GPT-3.5 turbo set higher expectation for related
VWSD implementations.

Qualitative results We showcase some LLM-
enhancement examples on given phrases, accompa-

nied by the label prediction ranking (the leftmost
label is the top-1 choice of the VL model). In Fig.
3 candidates corresponding to the phrase "greeting
card" are presented, with candidate C being the cor-
rect ground truth answer. The baseline predicted
label ranking from CLIP is: [’G’, ’C’, ’D’, ’E’, ’J’,
’B’, ’I’, ’F’, ’H’, ’A’]; therefore, the golden label is
ranked second. We then create the enhancements
for "greeting card" presented in Tab. 14, accom-
panied by their label predictions using CLIP. As
concluded by Tab. 14, enhancements can be ei-
ther beneficial ("describe" prompt enhancement),
or not (enhancements apart from "describe") with
respect to the prediction. However, by qualitatively
evaluating those enhancements, we view them as
highly sensible and informative, excluding the "ex-



CLIP CLIP-L ALIGN BLIPC BLIP-LC BLIPF BLIP-LF

acc MRR acc MRR acc MRR acc MRR acc MRR acc MRR acc MRR

With penalty
Baseline 63.28 76.27 62.85 76.24 68.90 80.00 60.90 74.33 64.58 77.51 60.47 73.87 69.76 80.42

O
PT

would_say. 62.53 76.07 65.17 78.02 64.15 76.92 63.07 75.22 61.99 74.91 57.02 70.74 65.44 77.33

could_desc. 59.83 73.70 56.99 72.31 68.68 80.41 65.23 77.44 66.09 77.44 57.45 71.88 68.25 79.57

write_desc. 56.44 71.82 63.37 76.52 65.44 77.68 61.99 74.65 62.42 75.29 54.64 69.49 64.79 76.70

B
L

O
O

M
Z would_say. 64.79 77.49 68.03 79.21 70.19 80.66 65.23 77.45 66.31 78.16 60.69 73.92 68.68 79.81

could_desc. 65.23 77.40 65.66 78.09 69.11 79.87 65.23 77.38 67.17 78.75 61.34 73.87 69.33 80.18
write_desc. 65.73 77.16 66.81 79.16 68.68 80.07 62.85 76.23 64.36 77.61 58.53 72.21 67.39 79.17

Without penalty
Baseline 59.18 72.94 60.69 74.42 65.66 77.48 57.24 72.07 61.34 75.88 57.67 71.96 65.01 77.86

O
PT

would_say. 61.21 74.61 62.27 75.92 60.69 74.45 58.75 72.16 58.75 72.69 53.56 68.09 61.56 75.02

could_desc. 56.77 71.43 54.37 69.93 66.74 78.48 61.56 75.25 62.42 75.56 54.43 69.98 65.01 77.61

write_desc. 54.95 70.44 59.16 73.87 63.50 76.13 56.80 71.49 59.83 73.35 50.76 66.97 63.07 75.67

B
L

O
O

M
Z would_say. 61.34 74.87 64.15 76.57 66.95 78.53 62.20 75.50 63.28 76.23 56.80 71.73 65.23 77.70

could_desc. 61.56 74.96 61.77 75.50 66.95 78.10 62.85 75.85 65.23 77.25 57.24 71.49 67.82 79.06
write_desc. 62.26 74.85 63.56 77.02 65.87 77.75 60.91 74.43 62.42 75.68 55.51 70.35 65.01 77.40

Table 11: Results for zero-shot LLM-based enhancement, as a continuation of results for OPT-2.7B and BLOOMZ-
3B (Tab. 3). Bold numbers indicate best results for each LLM.

act" phrase enhancement which is truncated (we
cannot easily predefine the optimal length for the
generated text, and variations in length may result
in varying enhancement results). This observation
motivates our exploration towards more explain-
able solutions, such as the ones involving Chain-
of-Thought prompting.

Another example regarding LLM-enhancement
is exhibited in Fig. 4 regarding the ambiguous
phrase "suede chamois". The baseline CLIP label
prediction is [’A’, ’G’, ’C’, ’E’, ’I’, ’B’, ’F’, ’J’,
’H’, ’D’], ranking the golden candidate G in the
second position. Results after GPT-3 enhancement
are presented in Tab. 15. We observe that enhance-
ments are highly relevant to the meaning of the
ambiguous phrase, and different prompts show sat-
isfactory consistency regarding the enriched phrase
they provide. Nevertheless, retrieval results differ
for different prompts, when CLIP is used as the VL
retriever between the enhanced phrase te and the
candidate images i. This is not an expected behav-
ior in terms of the VL retriever employed, since
semantically similar phrases should yield similar
(or ideally identical) ranking results. Therefore,
we verify the need for retrieval explanations and
we conclude that the robustness of VL models -at
least for the task of multimodal retrieval- should be
an issue of outmost importance, when such models
are designed and deployed.

D Additional text retrieval results

In Tab. 16 we present some additional results
regarding phrase-caption retrieval using ALIGN
as the model to obtain textual representations for
phrases and captions. Cosine similarity and Eu-
clidean distance are utilized as a measure of simi-
larity (we also regard distance as a measure of sim-
ilarity for narrative simplicity). More text-to-text
retrieval results employing other VL transformers
for text embeddings are presented in Tab. 17 Addi-
tionally, results involving purely textual sentence
transformers fine-tuned on semantic similarity for
phrase and caption embeddings are presented in
Tab. 18. In general, the exclusively textual models
of Tab. 18 fall behind the performance achieved
when VL transformers (Tab. 16, 17), are employed
for the textual representations.

E Additional LTR results

As a continuation of Tab. 6, LTR results are pre-
sented in Tab. 19, which contains results when
CLIP is exploited as the VL retriever in place of
ALIGN. In both cases, GPT-3 is used as the LLM
for phrase enhancement.

As in the case of ALIGN, the incorporation of
LLM-enhancement features in the LTR training of-
fers best results. Those results are boosted even fur-
ther when combining visual features, as occurring



CLIP CLIP-L ALIGN BLIPC BLIP-LC BLIPF BLIP-LF

acc MRR acc MRR acc MRR acc MRR acc MRR acc MRR acc MRR

With penalty
Baseline 63.28 76.27 62.85 76.24 68.90 80.00 60.90 74.33 64.58 77.51 60.47 73.87 69.76 80.42

G
PT

2-
X

L
-1

.5
B

exact 53.88 69.51 56.32 71.12 53.35 69.57 47.52 63.67 47.95 64.49 41.90 59.79 50.54 66.96

what_is 61.22 74.89 61.44 75.83 63.93 76.33 57.02 70.42 57.67 71.78 51.62 67.78 61.34 74.42

describe 57.58 72.38 60.82 74.82 58.10 72.67 54.43 68.78 53.78 69.38 47.73 65.08 57.24 71.80

meaning 60.82 75.00 65.58 77.55 64.15 76.65 58.75 72.64 59.18 73.27 52.92 68.27 63.07 75.96

would_say. 59.74 73.86 62.34 75.55 59.40 73.46 52.92 67.80 53.35 68.66 48.16 64.47 55.94 70.67

could_desc. 57.08 71.87 59.26 73.23 58.10 72.49 52.05 68.22 55.08 70.18 46.87 64.44 57.02 72.03

write_desc. 58.90 72.87 62.42 75.63 60.26 74.37 50.76 67.19 54.21 69.57 48.60 65.12 60.04 73.43

B
L

O
O

M
Z

-1
.7

B

exact 61.44 74.50 64.92 77.42 65.87 77.60 64.58 76.28 65.66 77.13 59.18 72.70 67.39 78.67

what_is 63.71 76.41 66.74 78.92 65.44 77.65 63.28 75.95 65.23 77.68 58.32 72.06 66.52 78.30

describe 64.72 77.21 64.07 77.47 68.90 80.28 61.34 75.61 64.36 77.45 58.53 72.41 66.74 78.81

meaning 62.63 76.38 65.01 78.17 66.74 78.27 63.50 76.44 65.44 78.29 58.53 72.50 68.25 79.74

would_say. 63.20 76.36 66.45 78.20 70.41 80.70 64.15 76.77 66.95 78.66 57.88 72.20 68.25 79.81

could_desc. 64.86 77.13 63.99 77.10 69.33 79.96 62.42 75.65 65.87 78.17 58.10 72.47 68.47 79.89

write_desc. 62.61 76.00 65.93 78.07 68.68 79.70 60.04 73.52 64.58 77.13 57.02 71.19 67.17 78.66

O
PT

-6
.7

B

exact 62.63 75.84 62.20 75.54 67.82 79.24 60.91 74.23 64.79 77.58 59.83 73.40 69.11 79.94
what_is 61.79 75.70 64.63 77.68 64.79 77.23 61.77 75.01 63.07 76.16 57.88 71.79 65.87 77.77

describe 64.43 76.91 65.73 78.24 65.23 77.89 61.12 74.67 63.93 77.07 56.16 71.30 66.09 78.38

meaning 62.17 75.84 63.61 77.19 66.74 78.47 63.28 75.93 65.44 77.43 59.83 72.96 68.03 78.75

would_say. 63.98 76.77 61.14 75.49 68.03 78.95 61.77 74.73 60.26 74.38 55.51 70.23 65.87 77.70

could_desc. 58.59 73.21 61.45 74.60 65.44 77.76 63.07 75.34 64.36 76.09 58.32 71.86 65.23 77.28

write_desc. 60.38 74.46 60.61 75.19 64.58 77.04 57.02 71.13 61.34 74.24 53.13 68.91 64.58 76.70

Without penalty
Baseline 59.18 72.94 60.69 74.42 65.66 77.48 57.24 72.07 61.34 75.88 57.67 71.96 65.01 77.86

G
PT

2-
X

L
1.

5B

exact 49.45 66.24 53.66 69.09 51.19 67.22 44.28 61.19 45.57 62.60 35.85 55.50 47.52 64.43

what_is 58.61 72.59 58.61 73.62 60.91 74.25 54.21 68.22 53.56 69.03 46.00 64.08 55.94 70.71

describe 54.76 70.24 56.49 72.14 55.94 70.55 50.97 66.20 50.11 66.62 44.71 62.21 55.51 70.07

meaning 58.44 72.97 62.55 75.60 61.56 74.49 55.08 70.24 54.64 70.76 50.32 66.74 57.02 72.54

would_say. 54.51 69.99 59.34 73.54 57.45 71.77 47.52 64.76 48.16 65.10 45.36 62.79 56.16 70.50

could_desc. 51.85 68.28 55.77 70.84 54.64 69.73 48.81 65.20 51.19 66.97 42.76 61.44 53.13 68.74

write_desc. 54.51 69.99 59.34 73.54 57.45 71.77 47.52 64.76 48.16 65.10 45.36 62.79 56.16 70.50

B
L

O
O

M
Z

1.
7

exact 58.82 72.23 61.66 75.05 63.28 75.56 59.18 72.96 62.85 74.99 56.37 70.60 63.50 76.20

what_is 62.42 75.30 65.01 77.33 63.07 75.58 59.40 73.50 62.85 76.00 56.16 70.54 65.23 77.26

describe 60.82 74.68 62.99 76.05 66.52 78.51 59.83 74.59 62.63 76.47 53.56 69.84 63.71 77.06

meaning 58.75 73.78 64.15 77.03 64.36 76.44 60.48 74.34 61.99 76.13 56.16 70.61 65.01 77.89

would_say. 59.96 73.99 63.64 76.37 68.03 78.94 61.56 74.87 64.79 77.09 55.94 70.84 66.31 78.34

could_desc. 60.74 74.63 60.52 74.64 67.17 78.20 60.69 74.14 63.50 76.46 55.72 70.94 66.31 78.54

write_desc. 59.29 73.49 64.82 77.08 66.31 77.86 57.67 71.61 61.34 74.76 52.48 68.47 64.36 76.72

O
PT

6.
7B

exact 58.75 72.63 59.61 73.86 64.15 76.57 57.24 71.96 61.12 75.83 56.80 71.40 64.79 77.66
what_is 60.48 74.10 62.45 75.89 61.77 75.18 57.88 72.27 61.77 74.89 52.92 68.83 61.99 75.23

describe 60.74 74.28 63.12 76.19 63.28 76.26 59.40 73.03 58.96 73.86 52.92 69.18 62.63 76.13

meaning 59.28 73.77 62.17 76.04 63.71 76.31 52.92 74.37 61.99 75.47 55.94 70.67 65.01 77.27

would_say. 60.90 74.51 58.29 73.30 65.87 77.33 60.26 73.65 57.24 72.50 54.21 69.13 60.69 74.78

could_desc. 55.29 70.73 59.25 72.95 62.20 75.18 60.04 73.27 59.83 73.50 52.70 68.52 60.26 74.46

write_desc. 56.60 71.61 57.31 72.84 62.85 75.52 55.08 69.45 58.32 71.93 49.68 66.35 60.48 74.51

Table 12: Results for zero-shot LLM-based enhancement. Bold numbers indicate best results for each model.



CLIP CLIP-L ALIGN BLIPC BLIP-LC BLIPF BLIP-LF

acc MRR acc MRR acc MRR acc MRR acc MRR acc MRR acc MRR

With penalty
Baseline 63.28 76.27 62.85 76.24 68.90 80.00 60.90 74.33 64.58 77.51 60.47 73.87 69.76 80.42

G
al

ac
tic

a
6.

7B

exact 49.66 66.59 56.24 71.44 52.48 68.45 43.41 60.82 50.32 66.95 41.90 59.68 54.00 70.23

what_is 60.13 74.40 62.78 76.11 62.63 75.50 57.88 72.62 61.12 74.59 53.56 68.73 64.79 76.81

describe 59.61 74.04 60.48 75.13 62.20 75.80 55.51 70.74 56.59 71.25 52.92 68.13 58.96 73.49

meaning 60.09 74.69 60.32 74.80 62.20 75.04 61.56 74.57 61.34 74.99 52.27 68.02 61.99 75.49

would_say. 57.78 73.32 59.75 74.52 56.16 71.45 55.29 70.42 55.72 70.92 51.19 66.89 60.26 74.05

could_desc. 62.45 75.98 63.97 76.62 58.10 72.89 55.51 70.00 56.59 71.38 49.24 66.15 60.48 74.29

write_desc. 58.54 73.10 60.75 74.93 57.88 72.64 55.72 70.27 56.16 70.83 49.24 64.97 60.91 74.25

Without penalty
Baseline 59.18 72.94 60.69 74.42 65.66 77.48 57.24 72.07 61.34 75.88 57.67 71.96 65.01 77.86

G
al

ac
tic

a
6.

7B

exact 45.35 63.57 53.97 69.58 49.89 66.30 38.66 57.14 47.08 64.40 38.01 56.83 50.76 67.94

what_is 56.61 71.74 59.91 73.82 60.91 74.12 55.72 70.32 58.75 72.82 52.27 67.77 61.77 74.84
describe 56.80 71.54 58.53 73.31 59.61 73.85 53.56 69.03 80.28 67.91 50.97 66.30 54.43 70.60

meaning 56.69 72.21 56.24 72.63 58.96 72.64 55.72 70.79 56.37 71.65 50.11 66.57 58.32 72.90

would_say. 54.32 70.73 56.30 72.15 52.05 68.27 51.40 67.87 50.97 67.77 46.87 63.77 54.21 70.28

could_desc. 60.26 74.07 62.23 75.20 54.86 69.99 54.21 68.60 54.21 69.24 45.57 63.44 58.32 72.09

write_desc. 55.65 71.09 57.21 72.40 54.64 70.47 50.11 66.71 51.62 67.61 43.84 61.69 57.88 72.33

Table 13: Results for zero-shot LLM-based enhancement for LLMs containing 6.7B parameters. Bold numbers
indicate best results for each model.

A B C (Gold image) D E

F G H I J

Figure 3: Candidate images for the phrase "greeting card".

A B C D E

F G (Gold image) H I J

Figure 4: Candidate images for the phrase "suede chamois".



Prompt name Enhanced phrase

exact
greeting card Dear [Name],I hope this card finds you in good health and spirits. I wanted to take a moment to
let you know how much I appreciate you and all that you do. You are an amazing person and I am so lucky
to have you in my life.Thank you for always being there for me, for your kind words and support, and for the
countless

CLIP predictions: [’G’, ’C’, ’B’, ’E’, ’H’, ’I’, ’J’, ’D’, ’F’, ’A’]

what_is
What is greeting card? A greeting card is a card with a message of celebration, congratulations, or other
sentiment, typically sent to someone on a special occasion such as a birthday, anniversary, or holiday.
Greeting cards often feature artwork, photographs, or illustrations, and are usually printed on high-quality
paper stock.

CLIP predictions: [’G’, ’D’, ’B’, ’J’, ’E’, ’H’, ’C’, ’F’, ’I’, ’A’]

describe
Describe greeting card. A greeting card is a small, decorated card that is sent to someone to express a
sentiment or to celebrate a special occasion. Greeting cards typically feature artwork, a message, and
sometimes a small gift such as a token or trinket. They are often sent on holidays, birthdays, anniversaries,
and other special occasions.

CLIP predictions: [’C’, ’G’, ’D’, ’B’, ’F’, ’E’, ’I’, ’H’, ’J’, ’A’]

meaning
What is the meaning of greeting card? A greeting card is a card sent to someone to express congratulations,
best wishes, or other sentiments. It typically includes a message of celebration or goodwill, and may also
include an image or design.

CLIP predictions: [’G’, ’B’, ’D’, ’H’, ’E’, ’J’, ’C’, ’I’, ’F’, ’A’]

Table 14: Enhanced phrases for "greeting card" using GPT-3.

Prompt name Enhanced phrase

exact
suede chamois Suede chamois is a type of leather that is made from the hide of a sheep. It is known for
its soft, velvety texture and is often used to make clothing, shoes, and other accessories. It is also used in
upholstery and automotive detailing.

CLIP predictions: [’A’, ’G’, ’C’, ’I’, ’E’, ’F’, ’J’, ’B’, ’D’, ’H’]

what_is
What is suede chamois? Suede chamois is a type of leather that has been treated to give it a soft, velvety
texture. It is often used for making clothing, shoes, and other accessories. It is also used for cleaning and
polishing surfaces, such as cars and furniture.

CLIP predictions: [’C’, ’G’, ’A’, ’I’, ’E’, ’F’, ’J’, ’B’, ’D’, ’H’]

describe
Describe suede chamois. Chamois is a type of soft, suede leather that is made from the hide of a chamois, a
type of mountain goat. It is known for its softness and absorbency, making it ideal for use as a cleaning cloth
or for polishing leather goods. It is also used to make clothing, such as gloves and hats.

CLIP predictions: [’F’, ’A’, ’G’, ’E’, ’C’, ’I’, ’H’, ’B’, ’D’, ’J’]

meaning
What is the meaning of suede chamois? Suede chamois is a type of leather that has been buffed to create a
soft, velvety texture. It is often used to make clothing, shoes, and other accessories.

CLIP predictions: [’G’, ’A’, ’C’, ’I’, ’F’, ’E’, ’B’, ’J’, ’H’, ’D’]

Table 15: Enhanced phrases for "suede chamois" using GPT-3.

based on similarity scores between the representa-
tions of the 10 candidates i and the representations
of the Wikipedia/Wikidata images iw (both visual
representations are extracted using CLIP). In gen-
eral, the incorporation of more features compared
to the VL-baseline only LTR case (first 2 rows
of Tab. 19 is helpful, even though the standalone
experiments (text-to-text retrieval and image-to-
image retrieval) did not produce competitive results
(Tab. 4, 5).

F QA and Chain-of-Thought examples

Chain of Thought (CoT) prompting provided some
interesting insights regarding the explainability of
decisions and how it can guide the LLM towards
the correct reasoning path. In this section, we
provide some additional examples when convert-
ing VWSD to a QA problem, comparing prompts
with and without CoT. Our presented results high-
light particular cases, including the ones where
CoT fails; we proceed with an analysis on why
this may happen and whether it is an absolutely
justified behavior. All presented examples utilize
the GiT-L captioner with greedy search. There-
fore, one caption per candidate is extracted, and the
prompt is constructed appropriately, with each of



Greedy Beam
BLIP BLIP-L GiT GiT-L BLIP BLIP-L GiT GiT-L
acc. MRR acc. MRR acc. MRR acc. MRR acc. MRR acc. MRR acc. MRR acc. MRR

Cosine similarity - ALIGN
No LLM 31.97 50.41 39.52 55.00 36.93 53.51 41.04 57.67 37.37 54.29 46.65 63.21 40.39 57.04 47.30 62.59

exact 34.99 51.89 38.66 54.51 38.44 54.42 43.41 58.79 39.52 56.05 52.05 66.33 42.55 58.69 46.44 61.49

what_is 38.23 55.02 41.68 56.75 41.25 57.19 46.44 61.45 40.60 57.80 56.16 70.00 47.52 62.39 51.19 65.76

descr. 39.74 56.14 42.33 57.87 43.20 58.92 48.60 63.49 42.33 59.06 57.02 70.66 50.11 64.65 52.92 67.18

meaning 36.93 53.93 40.82 56.19 41.68 57.33 44.28 60.39 41.90 58.05 54.64 69.22 48.60 63.34 50.11 65.20

Euclidean distance - ALIGN
No LLM 38.88 57.17 44.28 60.60 43.84 61.30 44.92 62.67 45.14 61.17 50.76 67.62 44.92 62.49 50.97 66.23

exact 43.63 59.57 44.06 59.99 45.14 60.86 51.19 65.38 46.22 62.40 54.86 69.37 47.08 62.81 50.32 65.78

what_is 47.95 63.83 48.60 63.73 47.52 63.73 52.92 67.55 49.46 65.40 60.69 74.05 51.84 67.11 55.51 70.31

descr. 50.32 65.58 50.11 65.21 52.05 66.61 56.59 70.03 50.11 66.46 62.20 75.35 55.51 69.68 58.75 72.23

meaning 45.57 62.18 47.52 62.91 46.65 63.80 54.21 68.32 50.54 65.78 59.40 73.46 52.48 67.97 57.67 71.28

Table 16: Continuation of Tab. 4. Additional results on phrase-caption retrieval (with and without GPT-3
enhancement) for different captioning models using different ALIGN for text embeddings.

the answers for the 10 possible candidates forming
answer choices from A to J within the prompt.

Example 1 In this example, CoT triggers the cor-
rect reasoning path towards choosing the correct
caption choice (H) "a close up of a metal plate
with a pattern of lines." of the corresponding image
(Fig. 5), as demonstrated in Tab. 20. The no_CoT
prompting case is easily misled by the semanti-
cally similar caption (F) that includes the concept
"metal" ("a black piece of metal with a large black
square in the middle"). At the same time, CoT
prompting elicit the appropriate behavior of GPT-
3.5-turbo, guiding it to distinguish how the phrase
"metal steel" differs from the semantically similar
one "black piece of metal". This fine-grained ca-
pacity is one of the crucial desiderata of VWSD
systems, and seems to be somehow connected with
CoT reasoning.

Example 2 There are cases when CoT fails to
enhance the given phrase with appropriate context.
In the case of Fig. 6, the most relevant image out
of the options of Fig. 6 to the phrase "tender em-
brace" fails to be returned: when GPT-3.5-turbo is
prompted with Q, it has a hard time retrieving rele-
vant knowledge, answering that it does not under-
stand where the "tender embrace" phrase refers to,
and that more information is needed. By observing
the captions comprising the answer choices of the
question Q, we confirm that the extracted caption
for the golden candidate (C) is sensible and accu-
rate ("a student gets a hug from a student"); thus,

GPT-3.5-turbo cannot connect the phrase "tender
embrace" with the correct caption (C), leading to
failure, as seen in Tab. 21. On the other hand, when
no_CoT prompting is used, GPT-3.5-turbo success-
fully returns the right answer. We can observe that
even though the model does indeed understand the
sense of the ambiguous phrase "tender embrace"
with respect to the answer choices, it cannot re-
trieve the appropriate choice under CoT prompting.
Therefore, we mark this case as an inherent failure
of CoT disambiguation.

Example 3 Another case that CoT prompting in-
herently fails, while no_CoT prompting succeeds is
presented in Tab. 22 for the phrase "edible sub" and
the candidates of Fig. 7. Similarly to the previous
case, CoT prompting fails to retrieve the proper
caption choice, even though the caption itself is
highly relevant and accurate to the candidate im-
age. Its reasoning path outputs some traces of cor-
rect reasoning (it mentions the word "sandwich"),
even though it cannot proceed further with disam-
biguation. At the same time, no_CoT prompting
succeeds in selecting the right choice (B). It also in-
creases the confidence in its answer by also stating
that "This caption accurately describes the image
and highlights the main focus of the picture".

Example 4 There are also cases where both
no_CoT and CoT prompts fail to provide the right
answer. For example, given the phrase "trotting
appendix" and the candidate images of Fig. 8, GPT-
3.5-turbo fails to understand the context of the am-



5

Greedy
Beam

BLIP BLIP-L GiT GiT-L BLIP BLIP-L GiT GiT-L
acc. MRR acc. MRR acc. MRR acc. MRR acc. MRR acc. MRR acc. MRR acc. MRR

Manhattan distance - CLIP
No LLM 36.50 56.58 41.25 58.18 36.93 55.57 39.09 56.98 41.04 58.45 44.71 61.70 41.68 59.16 43.84 60.14

exact 45.21 63.28 47.60 63.26 43.41 60.58 45.51 62.14 47.90 64.16 50.60 67.08 48.20 63.93 49.10 64.70

what_is 44.96 63.88 46.60 63.48 48.01 63.91 48.24 64.68 49.18 65.23 55.04 70.18 51.05 66.74 49.18 65.81

describe 47.87 65.46 48.82 64.84 48.34 64.90 53.08 67.90 46.92 64.50 57.35 71.63 54.03 68.52 54.98 69.84

meaning 46.78 64.70 46.56 63.47 44.35 62.07 48.34 64.99 46.56 64.01 52.55 68.57 49.00 65.45 50.55 66.27

Cosine similarity - CLIP
No LLM 33.26 50.76 28.73 46.64 28.94 47.13 30.02 47.96 31.97 49.96 39.09 55.97 32.40 50.72 30.89 48.48

exact 37.72 55.34 38.02 54.82 36.83 53.74 35.33 53.07 42.22 58.73 44.31 61.92 40.42 56.99 40.72 55.99

what_is 37.24 55.91 37.24 54.50 38.41 55.03 38.17 55.40 41.45 58.42 46.14 62.39 41.92 57.88 38.17 55.33

describe 39.34 57.90 45.02 60.39 44.08 59.27 41.23 57.73 40.76 58.20 50.24 66.27 46.45 62.07 41.71 58.13

meaning 38.14 56.35 34.37 52.59 35.25 53.03 39.02 55.48 39.02 56.91 44.79 61.57 42.79 58.42 38.14 54.77

Euclidean distance - CLIP
No LLM 35.85 53.63 32.40 50.51 32.83 51.61 33.69 51.45 36.93 54.85 43.20 60.12 37.58 55.30 38.88 55.42

exact 43.41 61.63 44.31 60.05 42.81 59.67 43.11 60.31 46.11 62.86 52.10 67.77 44.91 61.12 48.20 63.25

what_is 44.26 62.13 44.50 60.57 43.79 60.37 44.26 61.15 47.78 63.67 55.04 69.60 48.95 64.45 46.60 62.91

describe 48.34 64.95 47.39 62.68 47.87 63.17 49.76 64.50 42.65 61.87 58.29 72.28 53.55 67.52 51.66 67.28

meaning 44.57 62.38 43.02 59.86 40.80 58.94 44.57 61.05 45.90 62.72 52.11 67.36 48.56 64.52 45.90 62.39

Manhattan distance - CLIPL

No LLM 38.01 57.95 41.90 60.49 39.96 57.78 45.36 62.24 42.12 60.12 47.52 65.43 44.06 61.20 45.36 62.95

exact 44.61 62.07 45.21 62.40 43.11 60.71 46.11 63.33 48.80 64.89 51.20 67.12 43.11 61.85 49.70 65.13

what_is 43.09 61.97 47.31 64.83 44.73 62.32 50.59 66.57 49.41 65.88 54.10 70.17 49.18 65.85 51.05 67.35

describe 45.97 63.01 48.34 65.36 46.45 63.40 49.29 65.05 46.45 63.57 54.50 70.82 48.82 65.37 52.61 68.64

meaning 45.01 63.42 47.45 64.70 45.68 62.73 50.33 67.02 47.89 65.37 52.55 69.29 45.90 64.44 51.22 67.35

Cosine similarity - CLIPL

No LLM 32.61 51.28 30.67 48.63 31.97 49.48 31.10 49.30 35.64 52.69 34.56 52.87 37.80 55.75 35.42 52.64

exact 35.33 53.38 35.93 53.18 36.83 54.49 34.13 52.73 43.11 58.87 36.83 54.83 42.22 59.53 38.92 55.96

what_is 36.53 55.41 37.00 54.44 38.41 55.33 37.24 55.40 41.22 57.77 39.34 56.80 44.03 61.02 37.70 55.53

describe 37.91 55.86 39.81 56.24 38.86 57.39 40.76 57.42 40.28 57.13 43.60 59.62 47.39 64.94 40.76 58.52

meaning 38.14 56.00 36.36 53.56 36.81 54.32 36.14 54.69 41.24 57.85 37.25 55.44 42.79 60.02 37.25 54.78

Euclidean distance - CLIPL

No LLM 35.85 54.44 32.40 52.91 32.83 54.65 33.69 55.50 36.93 57.62 43.20 62.20 37.58 59.01 38.88 59.30

exact 43.41 58.78 44.31 57.62 42.81 57.93 43.11 60.52 46.11 62.19 52.10 64.91 44.91 60.55 48.20 62.52

what_is 44.26 59.58 44.50 60.61 43.79 60.53 44.26 62.60 47.78 62.62 55.04 67.65 48.95 63.89 46.60 63.59

describe 48.34 60.67 47.39 61.51 47.87 61.35 49.76 62.69 42.65 61.20 58.29 68.81 53.55 62.72 51.66 65.66

meaning 44.57 60.64 43.02 58.67 40.80 60.39 44.57 61.72 45.90 63.40 52.11 67.59 48.56 62.89 45.90 62.13

Table 17: Additional results on phrase-caption retrieval (with and without GPT-3 enhancement) for different
captioning models using different VL transformers for text embeddings.

biguous word with respect to the caption choices.
Different answers are returned in each case; the
no_CoT prompt confidently returns an unsuitable
answer ((B) instead of (G)), while the CoT prompt
retains an uncertain narrative, stating that more con-
text is needed. Even in that case, CoT prompting is
more reliable, not only because it does not indicate

an inappropriate candidate as the right answer, but
also because it better detects the reason why am-
biguity cannot be resolved: a "trotting appendix"
horse breed contains certain characteristics, which
however were not captured by the captioner. Cap-
tions of both images (B) and (G) refer to the seman-
tic "horse" without further details about the animal,



Greedy Beam
BLIP BLIP-L GiT GiT-L BLIP BLIP-L GiT GiT-L
acc. MRR acc. MRR acc. MRR acc. MRR acc. MRR acc. MRR acc. MRR acc. MRR

Manhattan distance - distilroberta base
exact 39.52 56.71 39.09 57.43 38.66 56.94 41.04 58.99 39.52 57.34 46.22 62.29 37.37 56.04 44.49 60.81

what_is 40.17 57.96 41.04 59.18 41.25 59.24 42.33 60.21 39.31 57.56 47.52 64.63 40.39 58.35 45.79 62.07

describe 38.44 57.30 40.39 58.50 42.12 59.68 44.92 61.78 42.12 58.67 47.52 64.47 40.82 58.79 48.38 64.02

meaning 38.23 57.62 42.98 60.57 42.33 60.11 44.49 61.85 43.20 59.84 45.57 63.57 40.39 59.05 47.30 63.38

Manhattan distance - stsb roberta base
exact 38.88 56.84 40.39 58.95 42.33 59.11 40.39 58.95 40.17 57.47 45.36 61.89 43.20 59.87 45.36 61.95

what_is 40.60 58.51 44.06 61.87 39.74 58.31 44.06 61.87 42.98 59.92 44.71 63.28 44.06 61.24 47.73 64.56

describe 42.55 60.03 40.17 57.58 42.12 59.63 45.14 62.17 42.98 60.04 47.95 65.14 45.14 62.48 47.73 64.66

meaning 45.14 61.37 40.17 58.30 41.04 59.02 46.65 63.33 43.63 61.02 49.46 66.34 43.20 61.61 49.89 66.24

Manhattan distance - stsb mpnet base
exact 36.50 56.07 41.04 58.82 41.25 59.10 43.63 60.66 40.60 58.75 46.87 64.34 43.41 61.26 46.00 62.31

what_is 40.39 58.92 42.33 60.80 42.55 60.90 45.14 62.40 43.41 61.05 49.68 66.47 45.14 62.24 49.46 65.19

describe 42.12 60.14 43.41 60.90 44.06 61.67 49.89 65.66 43.20 61.66 47.08 65.61 47.52 64.19 50.11 66.02

meaning 41.25 59.56 43.84 62.06 44.49 62.28 50.76 66.00 44.06 61.86 50.11 67.09 47.52 64.08 50.76 66.71

Manhattan distance - all MiniLM-L6
exact 42.55 59.89 45.36 62.33 41.04 59.53 45.14 61.81 42.98 60.78 49.24 65.45 43.41 61.58 49.24 64.92

what_is 44.49 61.49 44.71 62.44 45.79 62.51 46.22 63.57 42.55 61.10 48.60 66.17 47.52 64.16 50.76 66.74

describe 43.41 61.08 44.49 62.29 41.04 59.91 49.03 65.22 43.63 61.43 50.11 66.69 42.55 61.56 49.24 66.29

meaning 42.12 60.09 45.79 63.28 44.92 62.26 45.57 63.12 43.84 61.46 49.03 66.81 45.79 63.37 51.84 67.58

Manhattan distance - all MiniLM-L12
exact 39.52 57.99 46.22 62.19 40.60 59.30 42.98 60.83 41.04 60.16 48.81 65.19 42.55 60.67 48.60 64.91

what_is 40.39 59.02 43.63 61.88 41.68 60.14 46.00 63.36 42.76 61.36 48.81 66.42 44.71 61.97 49.46 66.10

describe 40.60 59.33 44.28 61.94 41.90 60.48 47.73 64.36 42.12 61.47 48.38 66.11 44.49 62.40 51.40 67.73

meaning 40.60 59.37 43.41 62.00 43.20 61.37 47.52 64.20 42.76 61.46 50.54 67.42 46.44 63.33 49.46 66.37

Manhattan distance - all mpnet base
exact 42.55 60.63 44.71 62.80 42.98 61.06 46.22 63.00 42.98 61.72 50.76 66.84 47.08 63.90 50.32 66.39

what_is 42.55 61.56 46.22 64.69 45.79 63.20 49.24 66.13 43.41 62.80 54.43 70.45 46.65 64.33 50.97 67.57

describe 42.76 61.40 46.00 64.07 43.63 61.87 48.60 65.58 44.06 62.54 52.70 68.71 45.36 63.52 52.27 68.36

meaning 43.84 62.12 49.03 66.06 45.57 62.82 48.81 65.87 44.92 63.55 54.43 70.37 48.38 65.30 50.54 67.68

Manhattan distance - multi-QA distilbert
exact 40.60 59.86 43.41 60.81 42.33 60.13 42.55 60.73 42.98 61.53 49.03 65.71 42.98 61.51 49.24 65.35

what_is 41.47 60.90 44.06 62.50 47.52 63.33 46.22 64.01 44.71 63.42 50.11 67.47 47.73 64.83 49.46 66.49

describe 41.90 60.71 42.76 61.00 47.73 63.65 46.65 63.76 42.55 61.81 49.24 66.61 46.87 64.17 50.11 66.96

meaning 42.55 61.11 44.71 62.70 45.79 62.61 46.65 64.59 45.57 63.70 50.97 68.08 45.57 63.66 50.76 67.46

Manhattan distance - multi-QA MiniLM-L6
exact 39.09 57.37 40.60 58.07 40.39 58.64 41.25 59.06 42.55 60.68 47.52 64.10 39.96 58.96 44.06 61.66

what_is 40.82 59.40 42.76 60.14 40.82 59.49 43.84 61.65 44.28 62.08 49.24 66.57 41.90 61.13 46.87 64.42

describe 38.23 57.35 42.33 59.58 39.74 58.84 45.14 62.05 41.68 60.51 48.38 65.32 40.82 59.65 47.30 64.50

meaning 40.39 59.04 42.33 60.46 41.68 60.05 45.57 62.92 42.33 61.35 48.60 65.93 42.33 61.26 49.89 66.55

Table 18: Results on phrase-caption retrieval with GPT-3 enhancement for different captioning models using SBERT
models for text embeddings.

even though by visually observing the two image
candidates, there are obvious differences in terms
of patterns and colors between the depicted horses.
The rest of the concepts mentioned in the captions

such as "field", "fence", "person", "building" do
not provide any relevant context to the ambiguous
word. Therefore, GPT-3.5-turbo correctly reaches
a tie condition where (B) and (G) captions equally



Baseline LLM-enhance Text retrieval features Image retrieval feat. Metrics
p(i) Prompt p(i) Captioner Embedding Similarity Phrase Embedding Similarity Acc. MRR

- - - - - - - - - 63.93 76.33

- - - - - - - - 68.90 80.04

- - - - - - - - 62.85 75.88

- - - - - - CLIP cosine 70.87 81.36

- - - - - - CLIP euclidean 70.22 81.09

- - - - - - CLIP manhattan 69.78 80.95

- - GiT-L-greedy CLIP cosine t - - 62.85 76.08

- - GiT-L-beam CLIP cosine t - - 63.07 76.14

- - GiT-L-beam CLIP euclidean t - - 62.85 75.85

- - GiT-L-beam CLIP manhattan t - - 62.85 76.11

- - blip-L-greedy CLIP cosine t - - 61.77 75.48

- - blip-L-beam CLIP cosine t - - 62.85 75.94

all - - - - - - 70.37 81.65

meaning - - - - - - - 65.85 78.67

meaning - - - - - - 66.52 79.21

exact - - 65.57 78.25

what_is - - - - - - 67.45 79.55

describe - - - - - - 70.14 80.75

all - - - - CLIP cosine 72.05 82.81

all blip-L-beam CLIP cosine t CLIP cosine 72.05 82.61

all GiT-L greedy CLIP cosine t CLIP cosine 70.81 82.28

all GiT-L-greedy CLIP cosine all te+t CLIP cosine 73.91 83.53

Our best 79.35 87.23

LTR of Dadas (2023) (best results) 77.97 85.88

SemEval organizers’ baseline 60.48 73.87

Table 19: LTR results using feature combinations as extracted from our previous 4 approaches (baseline, LLM
enhancement, text retrieval, image retrieval). CLIP is employed as the VL retriever.

A B C D E

F G H (Gold image) I J

Figure 5: Example 1. Candidate images for the phrase "metal steel".

match the ambiguous phrase, therefore failure to
provide an answer is totally justified.

Example 5 Another example that CoT fails due
to imperfections in captioning is the one corre-
sponding to the phrase "furry cimarron" and the

candidates of Fig. 9. An official description5 of
the term "cimarron" is "wild sheep of mountainous
regions of western North America having massive
curled horns". However, none of the generated
captions contains concepts such as "wild sheep"
or "massive curled horns" which are descriptive

5https://www.vocabulary.com/dictionary/cimarron

https://www.vocabulary.com/dictionary/cimarron


A B C (Gold image) D E

F G H I J

Figure 6: Example 2. Candidate images for the phrase "tender embrace".

A B (Gold image) C D E

F G H I J

Figure 7: Example 3. Candidate images for the phrase "edible sub".

A B (Gold image) C D E

F G H I J

Figure 8: Example 4. Candidate images for the phrase "trotting appendix".

Example 1
Q: What is the most appropriate caption for the metal
steel? Answer Choices: (A) a chocolate bar with three
sides (B) [unused0] and [unused0] at the concert in 2007
(C) a guitar and a guitar are displayed in front of a speaker.
(D) frosty patterns on a window (E) gold in the rocks - -
(F) a black piece of metal with a large black square in the
middle. (G) a jar of honey on a wooden table. (H) a close
up of a metal plate with a pattern of lines. (I) a large white
quartz rock with a clear base. (J) gold jewelry from the
late 19th century.

characteristics of this animal; we assume that the
selected captioner does not contain the knowledge
needed to fuse the appropriate details in the cap-
tion. Therefore, GPT-3.5-turbo correctly avoids
to return an answer. Nevertheless, since the con-
cepts "goat" (caption (A)) and "sheep" (dictionary
description for cimarron) are semantically related,
there should be an inclination towards choosing the
answer (A). Erroneously however, GPT-3.5.turbo
hints about the answer choice (E) "a rocky cliff face
with a body of water in the background", pairing



Example 1
no_CoT

Q: What is the most appropriate [...]
A: The most appropriate caption for the metal steel would
be (F) a black piece of metal with a large black square in
the middle. X

CoT
Q: What is the most appropriate [...]
A: Let’s think step by step.
First, we need to understand what metal steel is and what
its characteristics are. Steel is a hard and strong metal
alloy made mainly of iron and carbon. It is often used in
construction, machinery, and transportation. Based on this
information, the most appropriate caption for metal steel
would be (H) a close up of a metal plate with a pattern of
lines. This caption describes the texture and appearance of
steel, which is often characterized by its distinctive pattern
of lines. The other options do not accurately describe steel
or its unique qualities.
Therefore, among A through J, the answer is (H) a close up
of a metal plate with a pattern of lines."

Table 20: VWSD as QA problem example, with CoT
prompting encouraging the selection of the correct can-
didate. Questions Q are presented truncated.

Example 2
Q: What is the most appropriate caption for the tender
embrace? Answer Choices: (A) a small boat sitting on top
of a dock. (B) a group of people walking on a green hill.
(C) a student gets a hug from a student. (D) a large fly
laying on a rock in the water. (E) the bus stop at the station
(F) a train is parked at a station. (G) a crowd of people
watching a concert. (H) a train station with a sign on the
side of it. (I) a black and red train on a track. (J) a man
laying in the sand on top of a surfboard.

Example 2
no_CoT

Q: What is the most appropriate [...]
A: The most appropriate caption for the tender embrace
would be: (C) a student gets a hug from a student.

CoT
Q: What is the most appropriate [...]
A: Let’s think step by step.
First, we need to understand what the tender embrace is
referring to. Once we know that, we can look at the answer
choices and find the one that best matches the subject of
the photo. Therefore, without further information about the
photo, it is not possible to choose the most appropriate cap-
tion. Could you please provide more context or information
about the photo?
Therefore, among A through J, the answer is not applicable
without more information about the photo." X

Table 21: VWSD as QA problem example, with CoT
prompting encouraging the selection of the correct can-
didate. Questions Q are presented truncated.

the terms "mountainous regions" and "rocky cliff
face" which are semantically related; the choice (E)

Example 3
Q: What is the most appropriate caption for the edible sub?
Answer Choices: (A) a ham ham with a few small spikes on
it (B) a sandwich cut in half on a white paper. (C) candy
canes - the candy cane company (D) a white plate with
a bunch of peanuts. (E) a submarine on the water. (F) a
plate of meats, sausages, and salad. (G) yellow flowers on
a green field (H) a basket filled with apples sitting on top
of a table. (I) a man eating a hot dog in a restaurant. (J) a
plate of sauerkraut with carrots and cheese.

Example 3
no_CoT

Q: What is the most appropriate [...]
A: The most appropriate caption for the edible sub would
be (B) "A delicious sandwich cut in half on a white paper."
This caption accurately describes the image and highlights
the main focus of the picture.

CoT
Q: What is the most appropriate [...]
A: Let’s think step by step.
First, we need to understand what the "edible sub" is refer-
ring to. Is it a sandwich or something else? Once we have
this information, we can consider the answer choices and
determine which one is the most appropriate caption for the
edible sub. Can you provide more information about the
"edible sub"?
Therefore, among A through J, the answer is unclear without
more information about what the "edible sub" actually is."
X

Table 22: VWSD as QA problem example, with CoT
prompting encouraging the selection of the correct can-
didate. Questions Q are presented truncated.

Example 4
Q: What is the most appropriate caption for the trotting
appendix? Answer Choices: (A) a close up of a plant with
a green flower (B) a horse running in a field with a fence
in the background. (C) a close up of a flower inside a plant
(D) a close up of a fish (E) a bird standing on top of a grass
covered field. (F) a dog and a fox laying on the grass. (G)
a person holding a horse in front of a brick building. (H)
the flowers of the [ unused0 ] (I) a photo of a petri dish
with a yellow substance on it. (J) a blue jellyfish with a
long tail.

though does not even describe an animal. There-
fore, despite the caption being deficient in properly
describing the semantics of the image, the LLM
as well seems incapable of inferring the related
semantics.



A (Gold image) B C D E

F G H I J

Figure 9: Example 5. Candidate images for the phrase "furry cimarron".

Example 4
no_CoT

Q: What is the most appropriate [...]
A: The most appropriate caption for the trotting appendix
would be (B) - "A horse running in a field with a fence in
the background." X

CoT
Q: What is the most appropriate [...]
A: Let’s think step by step.
First, we need to identify what a trotting appendix is. As
an intelligent assistant, I do not have enough information to
answer that question. If you could provide more context or
clarification, I would be happy to assist you in finding the
appropriate caption.
Therefore, among A through J, the answer is not applica-
ble." X

Table 23: VWSD as QA problem example, with CoT
prompting encouraging the selection of the correct can-
didate. Questions Q are presented truncated.

Example 5
Q: What is the most appropriate caption for the furry cimar-
ron? Answer Choices: (A) a goat laying on a rock in a
field. (B) a street that has a lot of buildings on it. (C) a
large brick building with a sign on the front. (D) a ring
tailed lemur in a zoo (E) a rocky cliff face with a body of
water in the background. (F) yucca trees in the desert (G)
a street with a person standing in front of it (H) a small
town in the mountains. (I) a river running through a field
with a fence in the background. (J) red fox furs hang from
the ceiling.

G Model details

We provide the exact Huggingface model cards
used in our implementations, or else APIs provided
by the creators:

VL retrieval models

• CLIP (ViT-base)

https://huggingface.co/openai/clip-vit-base-
patch32

Example 5
no_CoT

Q: What is the most appropriate [...]
A: The most appropriate caption for the furry cimarron
would be missing from the answer choices. Could you
please provide some more information or context about
the furry cimarron that could help me suggest a suitable
caption?" X

CoT
Q: What is the most appropriate [...]
A: Let’s think step by step.
First, we need to understand what the subject of the caption
is. The subject is a furry cimarron. Next, we need to think
about what would be an appropriate description for the furry
cimarron. The options provided do not seem to fit with the
subject, except for (E) a rocky cliff face with a body of
water in the background. However, this description still
does not accurately capture the furry cimarron. Therefore,
we need to come up with a new option that specifically
describes the furry cimarron. Here are some options: - "A
majestic cimarron with a thick coat of fur, basking in the
sun" - "A cute and cuddly cimarron taking a nap on a soft
bed of grass" - "An independent and free-spirited cimarron
exploring the great outdoors" Overall, the most appropriate
caption would depend on the context and purpose of the
image.
Therefore, among A through J, the answer is None of the
options are appropriate for describing a furry cimarron. We
need to come up with a new option that specifically de-
scribes the furry cimarron." X

Table 24: VWSD as QA problem example, with CoT
prompting encouraging the selection of the correct can-
didate. Questions Q are presented truncated.

• CLIP-L (ViT-large)

https://huggingface.co/openai/clip-vit-large-
patch14

• ALIGN

https://huggingface.co/kakaobrain/align-
base

• BLIPC (BLIP with ViT base
backbone pre-trained on COCO)

https://huggingface.co/openai/clip-vit-base-patch32
https://huggingface.co/openai/clip-vit-base-patch32
https://huggingface.co/openai/clip-vit-large-patch14
https://huggingface.co/openai/clip-vit-large-patch14
https://huggingface.co/kakaobrain/align-base
https://huggingface.co/kakaobrain/align-base


https://huggingface.co/Salesforce/blip-
itm-base-coco

• BLIP-LC (BLIP with ViT large
backbone trained on COCO)
https://huggingface.co/Salesforce/blip-
itm-large-coco

• BLIPF (BLIP with ViT base back-
bone pre-trained on Flickr30k)
https://huggingface.co/Salesforce/blip-
itm-base-flickr

• BLIP-LF (BLIP with ViT large
backbone pre-trained on Flickr30k)
https://huggingface.co/Salesforce/blip-
itm-base-flickr

Large Language Models

• GPT2-XL (1.5B)

https://huggingface.co/gpt2-xl

• BLOOM-1.7B

https://huggingface.co/bigscience/bloom-
1.7B

• OPT 2.7B

https://huggingface.co/facebook/opt-2.7b

• BLOOMZ-3B

https://huggingface.co/bigscience/bloomz-
3b

• OPT 6.7B

https://huggingface.co/facebook/opt-6.7b

• Galactica 6.7B

https://huggingface.co/facebook/galactica-
6.7b

• GPT-3 text-davinci-003 175B (openai API)

• gpt-3.5-turbo (openai API)

Image captioning

• BLIP Captions

https://huggingface.co/Salesforce/blip-
image-captioning-base

• BLIP-L Captions

https://huggingface.co/Salesforce/blip-
image-captioning-large

• GiT

https://huggingface.co/microsoft/git-base

• GiT-L

https://huggingface.co/microsoft/git-large

Sentence Transformers Implementations re-
garding sentence similarity involve models from
Sentence Transformers https://www.sbert.net/.

https://huggingface.co/Salesforce/blip-itm-base-coco
https://huggingface.co/Salesforce/blip-itm-base-coco
https://huggingface.co/Salesforce/blip-itm-large-coco
https://huggingface.co/Salesforce/blip-itm-large-coco
https://huggingface.co/Salesforce/blip-itm-base-flickr
https://huggingface.co/Salesforce/blip-itm-base-flickr
https://huggingface.co/Salesforce/blip-itm-base-flickr
https://huggingface.co/Salesforce/blip-itm-base-flickr
https://huggingface.co/gpt2-xl
https://huggingface.co/bigscience/bloom-1b7
https://huggingface.co/bigscience/bloom-1b7
https://huggingface.co/facebook/opt-2.7b
https://huggingface.co/bigscience/bloomz-3b
https://huggingface.co/bigscience/bloomz-3b
https://huggingface.co/facebook/opt-6.7b
https://huggingface.co/facebook/galactica-6.7b
https://huggingface.co/facebook/galactica-6.7b
https://huggingface.co/Salesforce/blip-image-captioning-base
https://huggingface.co/Salesforce/blip-image-captioning-base
https://huggingface.co/Salesforce/blip-image-captioning-large
https://huggingface.co/Salesforce/blip-image-captioning-large
https://huggingface.co/microsoft/git-base
https://huggingface.co/microsoft/git-large
https://www.sbert.net/

