NOISE AND ANATOMY-GUIDED DIFFUSION MODEL FOR REALISTIC CT IMAGE SYNTHESIS

Anonymous authorsPaper under double-blind review

ABSTRACT

Generative models, specifically Diffusion Models (DMs), have been quite successful in generating high-quality images. However, DMs rely on large-scale training data. In medical imaging, more specifically for computed tomography (CT), these models struggle in accurately reconstructing anatomical structures due to limited training data. This can cause the wrong depiction of organs, which can impact clinical treatment. Some existing models, although guided by anatomical structures, ignore dose-dependent noise, which is critical in real-world scenarios. To tackle this challenge, we propose a novel diffusion model, namely NA-Diff, which is guided by noise from different dose levels and anatomical structures, leveraging a dual conditional diffusion framework. To facilitate large-scale training of DMs on complex structured CT data, we transform natural images emulating realistic CT noises and leverage them for pre-training, followed by fine-tuning on small CT data. Extensive experimental results demonstrate that NA-Diff generates high-fidelity and noise-aware CT images, effectively delineating the organ-of-interest and bridging the gap between synthetic and real CT.

1 Introduction

Computed tomography (CT) serves a crucial role in modern medical imaging, providing detailed anatomical visualization for diagnosis and treatment planning. Each year, more than 80 million CT scans are performed in the United States, and the number keeps growing rapidly Schultz et al. (2020). However, obtaining high-quality CT images is constrained by radiation dose trade-offs, motion artifacts, resolution limitations, and scanner technology. Acquiring large labeled medical imaging datasets can also be challenging due to privacy concerns and expensive annotation processes.

Generative models have shown promise in medical image synthesis, with approaches such as generative adversarial networks (GANs) Goodfellow et al. (2020); Mirza & Osindero (2014) and variational autoencoders (VAEs) Kingma et al. (2019) constructing realistic images. However, these models often suffer from blurring artifacts and difficulties in maintaining fine anatomical structures. In recent years, diffusion models Rombach et al. (2022); Ho et al. (2020) emerged as a strong alternative for image synthesis by modeling a structured denoising process. Unlike GANs, diffusion models (DMs) have more stable training dynamics and produce detailed and diverse outputs. DMs have been successfully adapted to various domains, including medical imaging Bhattacharya et al. (2024); Konz et al. (2024); al Nomaan Nafi et al. (2024); Munia & Imran (2025), specifically, conditional ones over their unconditional counterparts. Conditional DMs rely on a large amount of labeled data for effective training. To mitigate this dependency, alternatives such as self-supervised learning, weak supervision, data augmentation, and synthetic data generation are being explored Liu et al. (2024); Oh & Jeong (2024). In these scenarios, generated outputs may appear anatomically plausible but lack clinical precision, while augmentation can introduce hallucinations or structural distortions, making them inappropriate for medical applications.

For image synthesis tasks, generative models Goodfellow et al. (2020); Mirza & Osindero (2014); Rombach et al. (2022); Ho et al. (2020) portray remarkable performances, leveraging a satisfactory amount of large data for image generation. Yet, such extensive datasets are not accessible to the medical imaging domain or in real-world clinical environments, which limits the scalability of different approaches Song et al. (2023); Chen et al. (2024); al Nomaan Nafi et al. (2024). In response to the limited data issue, pre-training generative models on natural image datasets (e.g., ImageNet) can

056

059

060

061 062

063 064

065

066

067

068 069

071

072

073

074

075076077

078

079

081

083

084

085

087

090

091

092

094

096

098

099

102 103

105 106

107

Figure 1: Overview of the proposed NA-Diff framework, illustrating its two variants: Sep-Diff and Cat-Diff. In Sep-Diff variant, the model is trained in three stages leveraging separate conditions while in Cat-Diff, the model utilize dual conditions with two stage training. G_{ψ} , G_{ϕ} , G_{ω} and G_{φ} denotes pre-training model on CT noise-emulated natural images with noise map guidance, fine-tuning model on CT images with noise map guidance, fine-tuning model on CT images with anatomy guidance, and fine-tuning CT images with corresponding noise map and anatomy guidance both, respectively.

be a possible solution. Regardless, it leads to domain shift, as the characteristics (e.g., Hounsfield units, noise patterns) of medical images (e.g., CT images) differ significantly from those of natural images. This domain shift can degrade the quality of synthesized CT images and limit their clinical utility Zhang et al. (2018b). Another line of work introduces annotation-guided CT generation Venkatesh et al. (2024); Bhattacharya et al. (2024); Yang et al. (2024); Konz et al. (2024) to infuse shape constraints and organ-specific priors into the synthesis process. Textual prompts, combined with anatomical masks, have been utilized to generate high-quality 3D CT scans Xu et al. (2024). However, the model is built specifically for 3D volumetric CT synthesis and does not support 2D image generation. Furthermore, medical image synthesis with DMs can produce unrealistic artifacts or hallucinations Cho et al. (2025), which can potentially pose severe risks in subsequent image-based decision-making. Hallucination may arise when the model depends only on anatomyguided conditioning without noise awareness, while focusing solely on noise guidance may lead to the loss of anatomical fidelity. To address the aforementioned challenges, we propose a novel dual conditional diffusion-based realistic CT image synthesis approach with CT noise and anatomy guidance, leveraging a large number of diverse natural images with emulated CT noise at various dose levels. The model is pre-trained using emulated CT noise guidance, and this is followed by fine-tuning with a small number of real CT images guided by dose-aware noise. For enhanced robustness and anatomical consistency in CT images, we further fine-tune the model by incorporating anatomy-guided image generation.

The contributions of the paper are summarized as follows:

- A novel framework for CT image synthesis guided by a noise map and an anatomy mask using a dual conditioning technique for preserving realistic noise-aware anatomical properties.
- Emulation of CT images and CT noise-emulated natural images at different dose levels with corresponding noise maps. This procedure is effective and adapts to varying radiation exposures.
- A pre-training strategy utilizing CT noise-emulated natural images at different CT dose levels to learn useful low-level and high-level features from the large dataset, enabling better performance with limited CT image data.
- Extensive evaluations, including external validation, across a range of tasks and metrics, demonstrating consistent and superior performance of NA-Diff in generating realistic CT.

2 RELATED WORK

108

109

110 111

112

113

114

115

116

117

118

119

120

121

122 123

124 125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144 145

146 147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

2.1 DIFFUSION MODELS

Diffusion models have revolutionized generative modeling, demonstrating unprecedented capabilities in image generation by progressively denoising random noise to synthesize realistic visuals Ho et al. (2020); Song et al. (2020); Song & Ermon (2019). Recent conditional variants refined this approach, enhancing synthesis control by integrating conditions like textual prompts, segmentation masks, or style embeddings Dhariwal & Nichol (2021); Ho & Salimans (2022); Lugmayr et al. (2022); Saharia et al. (2022). Despite significant progress, unconditional models offer limited control over content and structure, while conditional models are often dependent on the availability and quality of external conditioning data. Recent works have addressed these challenges by introducing diffusion Ho et al. (2020); Peebles & Xie (2023) with image conditioning Zhu et al. (2025); Konz et al. (2024); Zhang et al. (2023); Shi et al. (2024), achieving more robust semantic guidance and motivating further exploration in domains that demand precise structural fidelity, such as medical image synthesis.

2.2 DIFFUSION FOR MEDICAL IMAGE SYNTHESIS

Latent diffusion-based model MediSyn Cho et al. (2025) effectively generates diverse medical images across multiple imaging modalities using textual guidance. However, text-based conditioning is inherently imprecise for fine-grained anatomical control, often resulting in unrealistic anatomical structures Zhang et al. (2024); Chaichuk et al. (2025). While ControlNet Zhang et al. (2023), initially developed for natural image generation, has a mechanism for adding spatial conditioning through structural inputs, making it adaptable for medical domains where spatial fidelity is critical. Yet, direct application to medical domains may suffer from domain shift, limiting anatomical realism and clinical utility without retraining on medical-specific data. Recent anatomy-aware diffusion frameworks embed structural guidance (e.g., segmentation masks, anatomical labels, semantic layouts) directly into the denoising trajectory to ensure radiologically faithful synthesis. Seg-Diff Konz et al. (2024) proposed a segmentation-guided diffusion model that generates medical images by conditioning on segmentation masks at every denoising step. Using cross-attention or dual-stream architectures, some techniques generate image-mask pairs or condition on latent anatomy embeddings, achieving spatial coherence across both 2-D slices and volumetric reconstructions Xing et al. (2024); Zhang et al. (2025); Zheng et al. (2024); Bhat et al. (2025); Jiang et al. (2025); Mao et al. (2025); Bose et al. (2025). Their shared strategy shows that anatomy-guided conditioning markedly boosts structural realism and downstream segmentation performance in CT and related modalities. However, they only depend on precise anatomy inputs at inference and ignore noise-aware conditioning, leaving the problem of converting noisy CT projections into high-quality volumes largely unsolved.

2.3 Context-Aware Multi-Guidance Diffusion

Relying on a single conditioning process in diffusion models is sometimes flawed, as generating target-like images may require using more than one type of guidance such as structural, and style guidance Konz et al. (2024); Xing et al. (2024); Mao et al. (2025). Incorporating multiple guidance can be positively effective, as it enables the model to capture both stylistic attributes and semantic content with greater fidelity Krishna et al. (2024); Zhu et al. (2023); Shen et al. (2024). For CT image synthesis, both noise conditioning (e.g., dose-aware noise maps) and anatomical guidance are important to enable realistic simulation. The model DCDiff Shen et al. (2024) generates clean CT images with reduced metal artifacts. However, the model lacks awareness of different dose levels and may struggle to generate images with varied noise characteristics corresponding to each dose. To the best of our knowledge, no existing model is able to synthesize CT images that are simultaneously dose-aware and structure-aware, capturing both noise characteristics and anatomical fidelity within a unified framework. The conditioning strategy also varies across different models. For encoding images, most existing models use a VAE-based encoder Kingma et al. (2019) for processing input or conditioning information which is efficient and flexible guidance in the latent space Ho et al. (2020); Zhang et al. (2023); Esser et al. (2021); Nie et al. (2024); Peebles & Xie (2023). In contrast, for some cases, CLIP (Contrastive Language-Image Pretraining) Radford et al. (2021) can be used for image embeddings instead of VAE, as CLIP's ability to extract semantically rich, global features from images or text allows more flexible and effective conditioning for diffusion models Zhu et al. (2025).

3 METHOD

Fig. 1 illustrates our proposed diffusion-based CT image generation framework NA-Diff. NA-Diff includes two variants: (i) separate conditioning with noise map and anatomy mask (Sep-Diff), and (ii) concatenate conditioning with noise map and anatomy mask (Cat-Diff). Sep-Diff consists of a three-stage training process that systematically enables the synthesis of new CT images. The objective is to synthesize CT images conditioned on noise maps or anatomy maps. However, we cannot simultaneously condition the model on both the noise map and the corresponding anatomy mask, as each stage of the model supports only a single conditioning input. In light of this limitation, we introduce Cat-Diff, a two-stage training process that leverages both noise maps and corresponding anatomy masks to synthesize CT images.

3.1 DIT

DiT Peebles & Xie (2023) is a transformer-based diffusion model that operates on latent patches for image generation task, achieving state-of-the-art image quality on benchmarks. It uses a latent diffusion framework and processes image representations as patches following Vision Transformers (ViTs) Dosovitskiy et al. (2020). Given an input image x_0 and a corresponding condition y (e.g., text-guided, noise map, or anatomy-guided image), the model learns to reconstruct x_0 through iterative denoising process: $p_{\theta}(\hat{x}_0|x_0,y)$

Table 1: Details of the NA-Diff model variants.

Туре	Model	Description
	NA-Diff-A	Training G_ϕ with CT images conditioned on noise map data.
		Training G_{ψ} with natural image data, followed by finetuning (G_{ϕ}) with CT images conditioned on noise map data.
	NA-Diff-C	Fine-tuning (G_ω) using NA-Diff-A, with CT images conditioned on anatomy map data.
	NA-Diff-D	Fine-tuning (G_ω) using NA-Diff-B, with CT images conditioned on anatomy map data.
Cat-Diff	NA-Diff-E	Training G_{φ} with CT images conditioned on noise map and corresponding anatomy map.
	NA-Diff-F	Training G_{ψ} with natural image data, followed by finetuning (G_{φ}) with CT images conditioned on noise map and corresponding anatomy map.

where θ represents the model parameters. Like other diffusion models Rombach et al. (2022); Ho et al. (2020), DiT follows a forward process that gradually adds Gaussian noise to the input image and a reverse process that aims to denoise and reconstruct the original image conditioned on a noise map or anatomy map. The model uses self-attention mechanisms and multi-head attention layers to model long-range dependencies within the image. This allows the network to process complex textures and structures efficiently. During DiT training, a noise prediction loss is minimized: $L_{(\theta)} = \mathbb{E}_{x_0,y,t,\epsilon} \left[\|\epsilon_{\theta}(x_t,y) - \epsilon\|_2^2 \right]$, where $\epsilon_{\theta}(x_t,y)$ is the predicted noise from the diffusion transformer, $\epsilon \sim \mathcal{N}(0,\mathbf{I})$ is the true noise sampled from a Gaussian distribution, and \mathbb{E} represents taking the mean over these random variables, ensuring generalization across varying noise conditions.

3.2 NATURAL IMAGE PRETRAINING

Emulation of CT noise in natural images: Natural images are by default of high quality. We can consider them equivalent to full-dose CT images. An RGB image is first converted to grayscale and we map it to CT water density. For simplicity, we assume 1×1 pixel size and projection angles $0\text{-}180^\circ$. The raw projection data (sinogram) r is generated by performing parallel beam projections (Radon transform). The generated sinogram is fed to inverse Radon (iRadon) transform to reconstruct the original grayscale CT-like full-dose image x_{fd}^{rat} . To re-

RGB image Noi

Noisy image Noise map

Figure 2: Sample noisy image and corresponding noise map constructed from a natural image by emulating CT noise.

duce spectral leakage and enhance interpretation, we select 'Hann' filter and linear interpolation for iRadon. To match with our CT dataset, we generate lower-dose image (x_{ld}) at the same dose level (ld). Assuming the number of photons $I_0=1e^5$ emitted at full dose and water attenuation of $\mu=0.02$, we can then calculate the number of mean transmitted photons for the raw data as $I_{raw}=ld\cdot I_0\cdot \exp(-\mu r)$. Poisson quantum noise is inserted into the raw project data at the target

dose level. Therefore, the noisy projection we obtain as:

$$I_{noisy} = -log(Poisson(I_{raw})/(ld \cdot I_0))/\mu. \tag{1}$$

Using iRadon, the noisy image x_{ld}^{nat} is then reconstructed from the noisy projection data at the target dose level. Following the approach described in Sec. 3.3 for CT images, natural images are also simulated at additional dose levels, and corresponding noise maps are constructed (Fig. 2).

In the pretraining phase, input natural images are denoted x_0^{nat} , and corresponding noise maps are denoted by y_{noise}^{nat} . To synthesize a refined natural image \hat{x}_0^{nat} , we use the DiT model conditioned on y_{noise}^{nat} , replacing the text conditioning with an image conditioning strategy. For the pre-training stage of both Sep-Diff and Cat-Diff variants, x_0 and y are mapped into the latent space using a pre-trained VAE Kingma et al. (2019). Those are patchified and linearly embedded to create to-ken representations: $z_{x_0} = W_x x_0 + E_{\rm pos}$ and $z_y = W_y y + E_{\rm pos}$; where W_x, W_y are learned embedding matrices, $E_{\rm pos}$ is the positional encoding, and z_{x_0}, z_y are the patch embeddings. The timestep embedding is combined with the conditional noise embedding $c = f_{\theta}(t) + z_y$; $f_{\theta}(t)$ is an MLP-based mapping timestep t to an embedding, and c is the conditioning vector that modulates the model. The Transformer layers use AdaLN-Zero, where the modulation parameters are:

$$\gamma_t, \beta_t = \text{MLP}(\text{LayerNorm}(z_y) + c), \tag{2}$$

and the modulated features are computed as:

$$\hat{x} = \gamma_t \cdot \text{LayerNorm}(x) + \beta_t, \tag{3}$$

where γ_t, β_t are learned scaling and shifting parameters, respectively, influenced by y. The first latent representation is x after patch embedding: $x = z_{x_0}$ (z_{x_0} is the initial token representation of the input image and after the initial embedding, x is updated iteratively inside the Transformer), and LayerNorm normalizes the Transformer activations. Each DiT block applies self-attention and MLP layers with image-conditioned normalization:

$$x = x + MSA(LayerNorm(x)) + MLP(LayerNorm(x)).$$
 (4)

Here, Multi-Head Self-Attention (MSA) Vaswani et al. (2017) enables global patch interaction, and the MLP further processes features. The final layer reconstructs the denoised image:

$$\gamma_t', \beta_t' = \text{MLP}(\text{LayerNorm}(z_{v_{nat}}) + t_{\text{emb}}),$$
 (5)

$$\hat{x}_0 = \text{MLP}(\gamma_t' \cdot \text{LayerNorm}(x) + \beta_t'), \tag{6}$$

where \hat{x}_0 is the final denoised image, γ'_t and β'_t are dynamically learned based on y and t, and AdaLN-Zero is applied again to ensure proper conditioning before generating the output \hat{x}_0 .

3.3 Noise-guided CT Fine-tuning

Low dose simulation: Following Imran et al. (2021), we use the quantum noise properties of low-dose images, assuming a linear relationship through reconstructions with the relative dose levels. Given real full-dose and lower-dose scans, CT scans can be simulated at any arbitrary dose level (d). With the full-dose noise variance σ_{fd}^2 , an image x_d can be formed by adding zero-mean independent noise to the full-dose image x_{fd} .

$$x_d = x_{fd} + x_{noise},$$
where, $x_{noise} \sim \mathcal{N}(0, (1/d - 1)\sigma_{fd}^2).$ (7)

In order to estimate σ_{fd}^2 , we use the difference between x_{fd} and the available lower-dose image x_{ld} . We are then able to synthesize images at any arbitrary dose level by determining a from $1 + (1/d - 1)a^2 = 1/d$.

Noise estimation from single slice/image: After obtaining noise realization from a single slice of the given x_{fd} and x_{ld} , it can be scaled to derive the noise of the desired dose level, i.e., $n = b \cdot (x_{ld} - x_{fd})$. And we can find b such that

$$b^2 \cdot (\frac{1}{d} - 1) = \frac{1}{d}. (8)$$

Ideally, noise realizations should be uncorrelated with noise at the routine dose, but correlated with noise at all other dose levels. It can be verified that noise standard deviation (std) in uniform regions of an image matches the expected noise levels in HU. It is, therefore, viable to use noise std map as a means of assessing the quality of CT images at arbitrary dose levels. Using a sliding window with window size $k \times k$ over the noise realization n in the image space at $m \times m$ resolution, the std map is calculated as:

$$y_n^{ct} = \sqrt{\frac{1}{k^2} \sum_{k=1}^{m \times m} (n(k,k))^2}.$$
 (9)

With the increase in the window size, the noise std scale (HU) is shrunk. We choose k=5 in order to keep maximum scale gaps in different dose levels.

In Sep-Diff variant, with the simulated CT images and the corresponding noise (std) maps, the natural image pre-trained model is fine-tuned on (G_{ϕ}) . Similar to pre-training of G_{ψ} , G_{ϕ} is fed by an input CT image x_0^{ct} , and its corresponding noise map y_{map}^{ct} for conditioning. The training process is similar to the pre-training phase, and the final layer reconstructs the input CT image \hat{x}_0^{ct} . However, unlike the DiT approach, which is used in the pre-training phase, the conditioning strategy for CT images corresponding to the map leverages a pre-trained CLIP encoder instead of VAE. Instead of directly using pixel-level features as a condition, y_{map}^{ct} is first processed using the CLIP processor and mapped into a global semantic embedding using the CLIP encoder. This embedding captures high-level semantic information, which is then used to guide the generative process. Using the diverse dose level images in training, Sep-Diff is enabled to learn the realistic variation in the image quality, retaining textures.

3.4 ANATOMY-GUIDED CT FINE-TUNING

In Sep-Diff, for the second stage of fine-tuning, we introduce anatomy masks as additional guidance. The main reason for incorporating anatomical guidance in CT image synthesis is to enforce anatomical constraints in the generated images, and this helps the model to capture the fundamental structures and distribution of CT images. The anatomy mask is derived from the simulated low-dose CT images using a segmentation model Ward & Imran (2025). The training process is similar to the first stage of fine-tuning in Sep-Diff (i.e., x_0^{ct} as CT image and y_{mask}^{ct} as anatomy guidance). In this phase, we use the DiT layout, modifying the condition strategy, and the final layer reconstructs the denoised image. It maintains anatomical plausibility, followed by the anatomy mask.

3.5 DUAL CONDITIONING DIFFUSION

In the Cat-Diff variant, we introduce dual conditioning for the diffusion process that provides one stage of fine-tuning. In contrast, the Sep-Diff variant follows a two-stage fine-tuning strategy: initially, the model is fine-tuned using noise map-guided CT images, and subsequently, it is further fine-tuned with anatomy maps as conditions, utilizing the same CT images from the first stage of fine-tuning. When fine-tuning the model in two separate stages, first with noise maps and then with anatomy maps, a limitation becomes evident. During the initial stage of fine-tuning, the model learns to rely only on the noise map, since it has not seen anatomy-based conditioning. However, after the second fine-tuning using anatomy maps, the model's dependency shifts. Its ability to respond to noise variation decreases, and any influence from the noise map becomes largely random and uncontrolled. To overcome this

Figure 3: Dimensionality flow of dual conditioning. Condition maps and masks are encoded by a pre-trained CLIP model into global features, projected and fused with timestep embeddings, then combined with image tokens for the transformer-based diffusion model.

challenge and ensure the model can utilize both noise and anatomy maps, we propose the Cat-Diff variant, where the dual conditioning approach allows the model to incorporate both forms of guid-

Table 2: Consistency evaluation of image quality and liver segmentation between synthetic and input CT images. IQA_{real} and IQA_{gen} indicate the average IQA scores obtained for the input CT test set and the NA-Diff variant generated CT images, respectively. m is the original segmentation liver mask, and m_{gen}^{pred} are the predicted masks of the segmentation model from the generated images. The best and second-best results are **bolded** and <u>underlined</u> respectively.

NA-Diff	Co	ndition	Iı	nage qualit	y	Segmentation				
	Noise	Anatomy	IQA_{real}	IQA_{gen}	$\Delta_{IQA} \downarrow$	$Dice(m_{gen}^{pred}, m) \uparrow$	$IoU(m_{gen}^{pred}, m) \uparrow$	$HD(m_{gen}^{pred}, m) \downarrow$	$Recall(m_{gen}^{pred}, m) \uparrow$	$Precision(m_{gen}^{pred}, m) \uparrow$
NA-Diff-A	✓	Х	1.940	2.260	0.320	0.692	0.532	50.730	0.644	0.781
NA-Diff-B	✓	X	1.940	2.190	0.250	0.711	0.5548	46.725	0.687	0.768
NA-Diff-C	Х	✓	1.940	2.150	0.210	0.774	0.633	36.179	0.776	0.791
NA-Diff-D	Х	✓	1.940	2.100	0.160	0.779	0.640	30.494	0.797	0.782
NA-Diff-E	✓	✓	1.940	2.110	0.170	0.725	0.572	49.135	0.669	0.813
NA-Diff-F	✓	✓	1.940	2.080	0.140	0.775	0.633	31.997	0.796	0.781

ance during the diffusion process. As a result, the final model can benefit from the complementary information provided by both noise and segmentation maps, enabling more flexible and controlled image synthesis. As shown in Fig. 3, in the Cat-Diff approach, we utilize two conditions by encoding both with a pre-trained CLIP encoder, rather than relying on VAE-based conditioning. Specifically, each conditioning input y (e.g., a noise-level map y_{map} and a segmentation mask y_{mask}) is encoded into a fixed-length global embedding vector of dimension 768 through CLIP. By conditioning on CLIP-derived global embeddings, our model leverages high-level, semantically meaningful representations and enables effective guidance from both noise-level and structural modalities.

4 EXPERIMENTS & RESULTS

4.1 IMPLEMENTATION DETAILS

Natural Image Data: We utilize the indoor scene Indoor Scene Recognition dataset Quattoni & Torralba (2009) and generate CT-like images emulating CT noises at quarter dose. From 15,620 images, we selected 4,000 images with complex-structured and intricate details. Following Sec. 3.2, a total of 20,000 natural images and their corresponding noise maps are generated at different dose levels (i.e., 5%, 10%, 25%, 50%, and 75%).

SDCT Data: SDCT refers to the six-dose computed tomography, representing our emulated CT dataset. For CT images, we use 40 abdomen scans (25% and 100% doses) from the Low Dose CT Image and Projection Data McCollough et al. (2020) — 20 for training and 20 for testing. After simulation of additional dose levels, a total of 13,314 (e.g., 6696 for training and 6618 for testing) CT images and noise map pairs are obtained. The anatomy masks are obtained from the simulated low-dose CT images using the liver segmenta-

Table 3: Quantitative comparison of generative performance using CFID, KID, CMMD, and LPIPS across state-of-the-art baseline and our anatomy-guided NA-Diff variants. Lower scores indicate better fidelity, perceptual quality, and conditional consistency. * denotes that the model is trained with our CT image data conditioned on the anatomy mask.

Methods		Performance metrics					
	CFID ↓	KID↓	CMMD \downarrow	LPIPS ↓			
Seg-Diff Konz et al. (2024)	249.769	122.358 ± 13.406	0.973	0.703 ± 0.281			
Seg-Diff* Konz et al. (2024)	111.938	103.993 ± 11.255	0.670	0.664 ± 0.145			
ControlNet* Zhang et al. (2023)	124.418	104.313 ± 8.5501	0.620	0.580 ± 0.117			
NA-Diff-C	89.295	57.601 ± 5.823	0.541	0.387 ± 0.102			
NA-Diff-D	53.295	19.039 ± 2.853	0.333	$\textbf{0.382} \pm \textbf{0.103}$			

tion model Ward & Imran (2025). All 13,314 simulated low-dose CT images are processed to generate the corresponding liver segmentation masks referred to as anatomy maps.

Training: We trained the DiT model from scratch, as our task differs from ImageNet-trained DiT models. For training NA-Diff, we start with the DiT-L/4 model $(256 \times 256 \text{ resolution})$. With a patch size of 4, L/4 processes a total of 1024 tokens after patchifying the $32 \times 32 \times 4$ input latent. To process condition images, we use a pre-trained CLIP encoder to obtain global feature embeddings. Natural images are pre-trained for 25 epochs. For CT image synthesis, we train the models for 100 epochs with noise conditioning, 100 epochs with anatomy conditioning, and 150 epochs with dual conditioning. The models are trained on an Intel (R) Xeon (R) w7-2475X, 2600MHz machine with dual NVIDIA A4000 GPUs (16X2=32GB).

Baseline and Compared Methods: Considering no existing generative models using CT noise-emulated natural images with noise map conditioning and anatomy guidance, we compare different

Figure 4: Qualitative comparison among generated images from different NA-Diff variants. Table 5: Ablation study demonstrating the importance of pre-training and dual conditioning. The best and second-best results are **bolded** and <u>underlined</u> respectively. Nat. Pre-Train denotes training G_{ψ} with natural image data.

Methods	Nat. Pre-Train	Noise	Anatomy	Performance metrics			
				CFID ↓	KID↓	CMMD ↓	LPIPS ↓
NA-Diff-A	Х	√	Х	245.342	209.733 ± 10.736	1.748	0.415 ± 0.097
NA-Diff-B	\checkmark	\checkmark	X	152.768	102.657 ± 7.917	0.754	0.383 ± 0.098
NA-Diff-C	X	Х	\checkmark	89.298	57.601 ± 5.823	0.541	0.387 ± 0.102
NA-Diff-D	\checkmark	Х	\checkmark	53.295	19.039 ± 2.853	0.333	0.382 ± 0.103
NA-Diff-E	X	✓	\checkmark	78.373	40.328 ± 4.512	$\overline{0.514}$	0.389 ± 0.094
NA-Diff-F	\checkmark	\checkmark	\checkmark	64.638	24.811 ± 3.228	0.321	$\textbf{0.376} \pm \textbf{0.099}$

variant types of the NA-Diff model (Table 1). Direct comparison with our dual condition-guided approach is not entirely applicable; however, we include Seg-Diff Konz et al. (2024) (e.g, the state-of-the-art anatomy-guided diffusion model for CT images) and ControlNet Zhang et al. (2023), as the representative anatomy-guided diffusion baseline and trained with our SDCT dataset, only leveraging anatomy guidance as conditions. For a fairer assessment, we report results from our only anatomy-conditioned variant alongside the dual-conditioned model. In addition, we have shown comparisons with the baseline using the LiTS Bilic et al. (2023) dataset.

Noise and Anatomy Preservation Evaluation: NA-Diff model variants are evaluated by predicting diagnostic image quality assessment (IQA) scores using pre-trained IQA model's Rifa et al. (2025b) to provide a measure of noise level estimation for the generated CT images. We utilize another pretrained model Ward & Imran (2024) for liver segmentation masks comparison of the generated images.

Table 4: Consistent IQA scores are observed for NA-Diff-D and NA-Diff-F compared to training data across different dose levels.

Source			Dose Le	evel (%)		
Source	5	10	25	50	75	100
Train set	1.500	1.450	1.870	2.110	2.290	2.410
NA-Diff-D	2.090	2.020	2.040	2.140	2.140	2.140
NA-Diff-F	1.910	1.960	2.120	2.140	2.160	2.190

Image Quality: We use the popular metric CFID Parmar et al. (2022) and KID Bińkowski et al. (2018) for image realism and CMMD Jayasumana et al. (2024) to provide an unbiased and semantically meaningful evaluation of image quality using CLIP features, and LPIPS Zhang et al. (2018a) for perceptual similarity.

4.2 RESULTS AND DISCUSSION

As reported in Table 2, we perform comparisons among the variant types of NA-Diff generated images, leveraging the noise map, the anatomy mask, or both, conditioned. The generated images and the simulated CT test images are assessed by IQA scores (0-4, higher is better) Lee et al. (2025). The pretrained IQA model Rifa et al. (2025b) was trained on a different window-level CT dataset, yet it can approximately estimate the noise level in our generated images. NA-Diff-F has the smallest IQA gap (Δ_{IQA}) among all, demonstrating the effectiveness of the proposed noise-guided training processes. Additionally, the larger Δ_{IQA} for the baseline Model A (without natural image pre-training) highlights the importance of CT noise-emulated pre-training in NA-Diff. Moreover, consistent with the dose-IQA relationship, NA-Diff-F generated images are of better quality with the increase in relative dose levels (Table 4), indicating the intrinsic noise aware dose level understanding over NA-

 Diff-D. In terms of segmentation in Table 2, we show a comparison between the original mask m and masks m_{gen}^{pred} predicted for the generated images. The NA-Diff-D and NA-Diff-F model achieves comparatively high scores across all metrics, which indicates good anatomical consistency.

In Table 3, we compare our anatomy-guided model variants (i.e, NA-Diff-C and NA-Diff-D) with the baseline model Seg-Diff Konz et al. (2024). Compared to the anatomy-conditioned baseline Seg-Diff*, NA-Diff-D achieves substantial improvements across all metrics, where CFID improves by 52.4%, KID by 81.7%, CMMD by 50.4%, and LPIPS by 42.5%. When benchmarked against the ControlNet* baseline, NA-Diff-D achieves even larger relative gains, with CFID reduced by 57.2%, KID by 81.8%, CMMD by 46.3%, and LPIPS by 34.1%. These results show that our approach can generate anatomy-guided CT images with better fidelity, perceptual quality, and consistency compared to previous methods. The results of the ablation study are shown in Table 5. Across all metrics,

Table 6: Segmentation performance on the downstream task using real data and a combination of real plus synthetic data. The models are trained either on real data only or on a mixture of real and synthetic CT images (paired with masks), and evaluated on the first 1000 cases from the test set (using real images and masks only). Incorporating synthetic data leads to comparable improvements in Dice and IoU across both U-Net and TransUNet architectures.

Methods	Description	Dice	IoU
U-Net Ronneberger et al. (2015)	Real Data	0.874	0.777
	Real + Synthetic Data	0.876	0.779
TransUNet Chen et al. (2021)	Real Data	0.872	0.773
	Real + Synthetic Data	0.877	0.781

natural image pre-training relatively improves performance compared to no pre-training. Comparing NA-Diff-D (with pre-training) to NA-Diff-C (without pre-training), we observe substantial improvements in CFID by 40.3%, KID by 66.9%, CMMD by 38.4%, and LPIPS by 1.3%.

For dual conditioning, NA-Diff-F's CFID and KID are higher than NA-Diff-D because CFID is conditioned only on anatomy for calculation, favoring NA-Diff-D, and KID reflects greater sample diversity. However, NA-Diff-F achieves 3.8% lower CMMD and 1.5% lower LPIPS, indicating better conditional consistency and perceptual similarity with dual conditioning. As shown in Table 6, adding synthetic data provides comparable gains in Dice and IoU, which demonstrate the potential of our synthetic CT images for downstream segmentation tasks. Furthermore, the qualitative results are presented in Fig. 4, where our NA-Diff-F model generates the CT images according to the noise-

Table 7: The models are fine-tuned (with 3000 random sample images) and evaluated (with 500 random sample images) with segmentation guidance using LiTS Bilic et al. (2023) dataset. Our synthetic datasets show superior performance to the baseline. * denotes that the model is trained with our CT image data conditioned on the anatomy mask.

Methods		Performance metrics							
	Dice	IoU	HD	Recall	Precision				
Seg-Diff*	0.911	0.838	22.629	0.864	0.968				
NA-Diff-C	0.910	0.836	21.382	0.866	0.970				
NA-Diff-D	0.920	0.853	20.508	0.872	0.974				

aware semantic mask. In addition, as evidenced from Table 7, our NA-Diff-D model outperforms the baseline when evaluated on the LiTS dataset. We compare the original segmentation masks with those predicted from the generated images (i.e., segmentation masks constructed by applying a segmentation model Ward & Imran (2025) to the generated images). This evaluation demonstrates that our method effectively preserves anatomical structures in the synthesized CT images in comparison to the baseline model. Overall, NA-Diff-F performs well while following both noise and anatomy guidance. However, if we focus only on anatomy guidance, NA-Diff-D gives favorable results.

5 Conclusions

In this study, we present a novel noise and anatomy-guided diffusion model, NA-Diff, that can generate realistic CT images with dose-level aware noise and liver anatomy map guidance. Our innovative CT noise-emulated natural image pre-training helps capture complex features from different CT dose labels. In the fine-tuning phase on our emulated data, the model learns complex CT image features with noise and also anatomical maps. Experimental evaluation on IQA and liver segmentation demonstrates the realistic quality variation and preservation of anatomical structures, along with noise-awareness in the generated CT images. Our future work will focus on a more extensive evaluation of NA-Diff across different CT organs and various downstream tasks.

REFERENCES

- Abdullah al Nomaan Nafi, Md Alamgir Hossain, Rakib Hossain Rifat, Md Mahabub Uz Zaman, Md Manjurul Ahsan, and Shivakumar Raman. Diffusion-based approaches in medical image generation and analysis. *arXiv e-prints*, pp. arXiv–2412, 2024.
- Aditya Bhat, Rupak Bose, Chinedu Innocent Nwoye, and Nicolas Padoy. Simgen: A diffusion-based framework for simultaneous surgical image and segmentation mask generation. *arXiv* preprint *arXiv*:2501.09008, 2025.
- Moinak Bhattacharya, Gagandeep Singh, Shubham Jain, and Prateek Prasanna. Radgazegen: Radiomics and gaze-guided medical image generation using diffusion models. *arXiv preprint arXiv:2410.00307*, 2024.
- Patrick Bilic, Patrick Christ, Hongwei Bran Li, Eugene Vorontsov, Avi Ben-Cohen, Georgios Kaissis, Adi Szeskin, Colin Jacobs, Gabriel Efrain Humpire Mamani, Gabriel Chartrand, et al. The liver tumor segmentation benchmark (lits). *Medical image analysis*, 84:102680, 2023.
- Mikołaj Bińkowski, Danica J Sutherland, Michael Arbel, and Arthur Gretton. Demystifying mmd gans. *arXiv preprint arXiv:1801.01401*, 2018.
- Rupak Bose, Chinedu Innocent Nwoye, Aditya Bhat, and Nicolas Padoy. Cosimgen: Controllable diffusion model for simultaneous image and mask generation. *arXiv preprint arXiv:2503.19661*, 2025
- Mikhail Chaichuk, Sushant Gautam, Steven Hicks, and Elena Tutubalina. Prompt to polyp: Medical text-conditioned image synthesis with diffusion models. *arXiv preprint arXiv:2505.05573*, 2025.
- Jieneng Chen, Yongyi Lu, Qihang Yu, Xiangde Luo, Ehsan Adeli, Yan Wang, Le Lu, Alan L Yuille, and Yuyin Zhou. Transunet: Transformers make strong encoders for medical image segmentation. *arXiv preprint arXiv:2102.04306*, 2021.
- Ying Chen, Hongping Lin, Wei Zhang, Wang Chen, Zonglai Zhou, Ali Asghar Heidari, Huiling Chen, and Guohui Xu. Icycle-gan: Improved cycle generative adversarial networks for liver medical image generation. *Biomedical Signal Processing and Control*, 92:106100, 2024.
- Joseph Cho, Mrudang Mathur, Cyril Zakka, Dhamanpreet Kaur, Matthew Leipzig, Alex Dalal, Aravind Krishnan, Eubee Koo, Karen Wai, Cindy S. Zhao, Rohan Shad, Robyn Fong, Ross Wightman, Akshay Chaudhari, and William Hiesinger. Medisyn: A generalist text-guided latent diffusion model for diverse medical image synthesis, 2025.
- Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. *Advances in neural information processing systems*, 34:8780–8794, 2021.
- Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An image is worth 16x16 words: Transformers for image recognition at scale. *arXiv preprint arXiv:2010.11929*, 2020.
- Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming transformers for high-resolution image synthesis. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 12873–12883, 2021.
- Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial networks. *Communications of the ACM*, 63(11):139–144, 2020.
- Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. *arXiv preprint arXiv:2207.12598*, 2022.
 - Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in neural information processing systems*, 33:6840–6851, 2020.

Abdullah-Al-Zubaer Imran, Debashish Pal, Bhavik Patel, and Adam Wang. Ssiqa: Multi-task learning for non-reference ct image quality assessment with self-supervised noise level prediction. In 2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI), pp. 1962–1965. IEEE, 2021.

Sadeep Jayasumana, Srikumar Ramalingam, Andreas Veit, Daniel Glasner, Ayan Chakrabarti, and Sanjiv Kumar. Rethinking fid: Towards a better evaluation metric for image generation. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 9307–9315, 2024.

- Yifan Jiang, Yannick Lemaréchal, Josée Bafaro, Jessica Abi-Rjeile, Philippe Joubert, Philippe Després, and Venkata Manem. Lung-ddpm: Semantic layout-guided diffusion models for thoracic ct image synthesis. *arXiv preprint arXiv:2502.15204*, 2025.
- Diederik P Kingma, Max Welling, et al. An introduction to variational autoencoders. *Foundations and Trends® in Machine Learning*, 12(4):307–392, 2019.
- Nicholas Konz, Yuwen Chen, Haoyu Dong, and Maciej A Mazurowski. Anatomically-controllable medical image generation with segmentation-guided diffusion models. In *International Conference on Medical Image Computing and Computer-Assisted Intervention*, pp. 88–98. Springer, 2024.
- Arjun Krishna, Ge Wang, and Klaus Mueller. Multi-conditioned denoising diffusion probabilistic model (mddpm) for medical image synthesis. *arXiv* preprint arXiv:2409.04670, 2024.
- Wonkyeong Lee, Fabian Wagner, Adrian Galdran, Yongyi Shi, Wenjun Xia, Ge Wang, Xuanqin Mou, Md Atik Ahamed, Abdullah Al Zubaer Imran, Ji Eun Oh, et al. Low-dose computed tomography perceptual image quality assessment. *Medical Image Analysis*, 99:103343, 2025.
- Wonkyeong Lee et al. Low-dose Computed Tomography Perceptual Image Quality Assessment Grand Challenge Dataset. In *Medical Image Computing and Computer Assisted Intervention*, 2023. doi: 10.5281/zenodo.7833096.
- Xinyu Liu, Wuyang Li, and Yixuan Yuan. Diffrect: Latent diffusion label rectification for semisupervised medical image segmentation. In *International Conference on Medical Image Computing and Computer-Assisted Intervention*, pp. 56–66. Springer, 2024.
- Andreas Lugmayr, Martin Danelljan, Andres Romero, Fisher Yu, Radu Timofte, and Luc Van Gool. Repaint: Inpainting using denoising diffusion probabilistic models. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 11461–11471, 2022.
- Jiawei Mao, Yuhan Wang, Yucheng Tang, Daguang Xu, Kang Wang, Yang Yang, Zongwei Zhou, and Yuyin Zhou. Medsegfactory: Text-guided generation of medical image-mask pairs. *arXiv* preprint arXiv:2504.06897, 2025.
- Cynthia McCollough, Bin Chen, David R. Holmes III, Xiaohui Duan, Zhiqiang Yu, Lifeng Yu, Shuai Leng, and Joel Fletcher. Low dose ct image and projection data (ldct-and-projection-data) (version 6), 2020. URL https://doi.org/10.7937/9NPB-2637.
- Mehdi Mirza and Simon Osindero. Conditional generative adversarial nets. *arXiv preprint* arXiv:1411.1784, 2014.
- Nusrat Munia and Abdullah Al Zubaer Imran. Prompting medical vision-language models to mitigate diagnosis bias by generating realistic dermoscopic images. In 2025 IEEE 22nd International Symposium on Biomedical Imaging (ISBI), pp. 1–4. IEEE, 2025.
- Xingyang Nie, Su Pan, Xiaoyu Zhai, Shifei Tao, Fengzhong Qu, Biao Wang, Huilin Ge, and Guojie Xiao. Image-conditional diffusion transformer for underwater image enhancement. *arXiv* preprint *arXiv*:2407.05389, 2024.
- Hyun-Jic Oh and Won-Ki Jeong. Controllable and efficient multi-class pathology nuclei data augmentation using text-conditioned diffusion models. In *International Conference on Medical Image Computing and Computer-Assisted Intervention*, pp. 36–46. Springer, 2024.

- Gaurav Parmar, Richard Zhang, and Jun-Yan Zhu. On aliased resizing and surprising subtleties in gan evaluation. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 11410–11420, 2022.
- William Peebles and Saining Xie. Scalable diffusion models with transformers. In *Proceedings of the IEEE/CVF international conference on computer vision*, pp. 4195–4205, 2023.
- Ariadna Quattoni and Antonio Torralba. Recognizing indoor scenes. In 2009 IEEE conference on computer vision and pattern recognition, pp. 413–420. IEEE, 2009.
- Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual models from natural language supervision. In *International conference on machine learning*, pp. 8748–8763. PmLR, 2021.
- Kazi Ramisa Rifa, Md Atik Ahamed, Jie Zhang, and Abdullah Imran. Tfkt v2: task-focused knowledge transfer from natural images for computed tomography perceptual image quality assessment. *Journal of Medical Imaging*, 12(5):051805–051805, 2025a.
- Kazi Ramisa Rifa, Md. Atik Ahamed, Jie Zhang, and Abdullah-Al-Zubaer Imran. Task-focused knowledge transfer from natural images for ct image quality assessment. In *Medical Imaging* 2025: *Image Processing*. International Society for Optics and Photonics (SPIE), 2025b.
- Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 10684–10695, 2022.
- Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical image segmentation. In *International Conference on Medical image computing and computer-assisted intervention*, pp. 234–241. Springer, 2015.
- Chitwan Saharia, William Chan, Huiwen Chang, Chris Lee, Jonathan Ho, Tim Salimans, David Fleet, and Mohammad Norouzi. Palette: Image-to-image diffusion models. In *ACM SIGGRAPH* 2022 conference proceedings, pp. 1–10, 2022.
- Carl H Schultz, Romeo Fairley, Linda Suk-Ling Murphy, and Mohan Doss. The risk of cancer from ct scans and other sources of low-dose radiation: a critical appraisal of methodologic quality. *Prehospital and disaster medicine*, 35(1):3–16, 2020.
- Ruochong Shen, Xiaoxu Li, Yuan-Fang Li, Chao Sui, Yu Peng, and Qiuhong Ke. Dcdiff: Dual-domain conditional diffusion for ct metal artifact reduction. In *International Conference on Medical Image Computing and Computer-Assisted Intervention*, pp. 223–232. Springer, 2024.
- Yongyi Shi, Wenjun Xia, Ge Wang, and Xuanqin Mou. Blind ct image quality assessment using ddpm-derived content and transformer-based evaluator. *IEEE Transactions on Medical Imaging*, 43(10):3559–3569, 2024.
- Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. *arXiv* preprint arXiv:2010.02502, 2020.
- Wenbo Song, Yan Jiang, Yin Fang, Xinyu Cao, Peiyan Wu, Hanshuo Xing, and Xinglong Wu. Medical image generation based on latent diffusion models. In *2023 International Conference on Artificial Intelligence Innovation (ICAII)*, pp. 89–93. IEEE, 2023.
- Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution. *Advances in neural information processing systems*, 32, 2019.
- Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in neural information processing systems*, 30, 2017.
- Danush Kumar Venkatesh, Dominik Rivoir, Micha Pfeiffer, Fiona Kolbinger, and Stefanie Speidel. Data augmentation for surgical scene segmentation with anatomy-aware diffusion models, 2024.

- Tyler Ward and Abdullah-Al-Zubaer Imran. Annotation-efficient task guidance for medical segment anything. *arXiv preprint arXiv:2412.08575*, 2024.
- Tyler Ward and Abdullah Al Zubaer Imran. Annotation-efficient task guidance for medical segment anything. In 2025 IEEE 22nd International Symposium on Biomedical Imaging (ISBI), pp. 1–4. IEEE, 2025.
- Zhaohu Xing, Sicheng Yang, Sixiang Chen, Tian Ye, Yijun Yang, Jing Qin, and Lei Zhu. Cross-conditioned diffusion model for medical image to image translation. In *International Conference on Medical Image Computing and Computer-Assisted Intervention*, pp. 201–211. Springer, 2024.
- Yanwu Xu, Li Sun, Wei Peng, Shuyue Jia, Katelyn Morrison, Adam Perer, Afrooz Zandifar, Shyam Visweswaran, Motahhare Eslami, and Kayhan Batmanghelich. Medsyn: Text-guided anatomyaware synthesis of high-fidelity 3-d ct images. *IEEE Transactions on Medical Imaging*, 2024.
- Yulin Yang, Qingqing Chen, Yinhao Li, Fang Wang, Xian-Hua Han, Yutaro Iwamoto, Jing Liu, Lanfen Lin, Hongjie Hu, and Yen-Wei Chen. Segmentation guided crossing dual decoding generative adversarial network for synthesizing contrast-enhanced computed tomography images. *IEEE Journal of Biomedical and Health Informatics*, 2024.
- Li Zhang, Basu Jindal, Ahmed Alaa, Robert Weinreb, David Wilson, Eran Segal, James Zou, and Pengtao Xie. Generative ai enables medical image segmentation in ultra low-data regimes. *Nature Communications*, 16(1):6486, 2025.
- Lymin Zhang, Anyi Rao, and Maneesh Agrawala. Adding conditional control to text-to-image diffusion models. In *Proceedings of the IEEE/CVF international conference on computer vision*, pp. 3836–3847, 2023.
- Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable effectiveness of deep features as a perceptual metric. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 586–595, 2018a.
- Zheyuan Zhang, Lanhong Yao, Bin Wang, Debesh Jha, Gorkem Durak, Elif Keles, Alpay Medetalibeyoglu, and Ulas Bagci. Diffboost: Enhancing medical image segmentation via text-guided diffusion model. *IEEE Transactions on Medical Imaging*, 2024.
- Zizhao Zhang, Lin Yang, and Yefeng Zheng. Translating and segmenting multimodal medical volumes with cycle-and shape-consistency generative adversarial network. In *Proceedings of the IEEE conference on computer vision and pattern Recognition*, pp. 9242–9251, 2018b.
- Jian-Qing Zheng, Yuanhan Mo, Yang Sun, Jiahua Li, Fuping Wu, Ziyang Wang, Tonia Vincent, and Bartłomiej W Papież. Deformation-recovery diffusion model (drdm): instance deformation for image manipulation and synthesis. *arXiv preprint arXiv:2407.07295*, 2024.
- Qiang Zhu, Kuan Lu, Menghao Huo, and Yuxiao Li. Image-to-image translation with diffusion transformers and clip-based image conditioning. *arXiv preprint arXiv:2505.16001*, 2025.
- Yuanzhi Zhu, Zhaohai Li, Tianwei Wang, Mengchao He, and Cong Yao. Conditional text image generation with diffusion models. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 14235–14245, 2023.

A NA-DIFF VARIANTS

A.1 SEP-DIFF

In Sep-Diff, it has three stages of training. In the first stage, the model uses a CT-emulated natural image and input conditioned on noise maps. This stage is considered a natural image pre-training phase. Both the input image and the output image are encoded using the VAE Kingma et al. (2019) encoder. In the second stage, the model is fine-tuned, leveraging CT images and their corresponding simulated noise maps. In this stage, the input image is also encoded using the VAE encoder; however, for noise maps, we use the CLIP Radford et al. (2021) model encoder to get a global semantic embedding as shown in Figure 5. In the final stage, the model fine-tunes utilizing CT images and their corresponding liver segmentation mask. For the image encoding process, the model follows a process similar to the second stage.

Figure 5: Dimensionality flow of Sep-Diff variants (excluding pre-training). The CT target image is encoded by a pre-trained VAE into latent patches (e.g., 4×4×4), flattened and projected to the transformer's hidden space. In parallel, the condition image is processed by a pre-trained CLIP model to produce a global feature vector, which is linearly projected, fused with timestep embeddings, and combined with input tokens for the transformer.

A.2 CAT-DIFF

Unlike Sep-Diff, Cat-Diff contains a two-stage training process. In the first stage of training, it follows the exact same process as Sep-Diff pre-training. However, in the second stage, it combines the second and third stage training of Sep-Diff into one stage training. Here, the model leverages CT images with corresponding noise maps and anatomy masks as conditioning. While input images are encoded using VAE, both conditions use CLIP as an encoder. After getting the global embedding, we employ concatenation to emphasize dual conditioning. Let $y_{\text{map}}, y_{\text{mask}} \in \mathbb{R}^{768}$ denote the CLIP embeddings of the noise map and segmentation mask, respectively. These embeddings are projected into the transformer's hidden space using a learnable MLP:

$$\tilde{y}_{\text{map}} = \phi(y_{\text{map}}), \quad \tilde{y}_{\text{mask}} = \phi(y_{\text{mask}}), \quad \rho : \mathbb{R}^{768} \to \mathbb{R}^{\mathcal{D}},$$
 (10)

where \mathcal{D} is the transformer hidden dimension (e.g., 1024), and ρ is defined as:

$$\rho(y) = \mathcal{W}_2 \cdot \text{SiLU}(\mathcal{W}_1 y + \mathcal{B}_1) + \mathcal{B}_2. \tag{11}$$

To preserve the distinct information from both embeddings, we concatenate them along the channel dimension:

$$\tilde{y}_{\text{concat}} = [\tilde{y}_{\text{map}} \parallel \tilde{y}_{\text{mask}}] \in \mathbb{R}^{2\mathcal{D}}.$$
 (12)

The concatenated vector is then fused and projected back to $\mathbb{R}^{\mathcal{D}}$ using a second MLP:

$$\tilde{y}_{\text{final}} = \eta(\tilde{y}_{\text{concat}}), \quad \eta: \mathbb{R}^{2\mathcal{D}} \to \mathbb{R}^{\mathcal{D}}.$$
 (13)

Finally, this fused conditioning vector is added to the sinusoidal timestep embedding $\gamma(t)$ to form the complete conditioning representation:

$$c = \tilde{y}_{\text{final}} + f_{\theta}(t), \tag{14}$$

where $f_{\theta}(t) \in \mathbb{R}^{\mathcal{D}}$ is the output of an MLP applied to a sinusoidal timestep embedding. This conditioning vector c is broadcast to the transformer blocks and modulates each residual path using adaptive layer normalization (adaLN-Zero).

B IQA AND SEGMENTATION EVALUATION

NA-Diff model variants are evaluated by predicting diagnostic image quality assessment (IQA) scores, providing a measure of noise level estimation for the generated CT images. Although the IQA score may not be perfectly accurate due to differences in window center (40) and width (400) settings between our dataset and the pre-trained IQA model's Rifa et al. (2025a) training data (as shown in Fig. 6), a relative comparison is still feasible. We utilize another pretrained model Ward & Imran (2024) for liver segmentation masks comparison; the generated CT images from our model are passed through the segmentation model to produce liver masks and show a comparison between the model-generated mask and the real mask images. This allows us to assess whether the anatomical structures are being effectively preserved in the synthesized images. We report Dice score, IoU, Precision, Recall, and Hausdorff Distance (HD) to assess how well the segmentation masks predicted from the generated CT images compare to the real ground-truth masks.

Figure 6: Visualization of the samples of IQA-based model's Rifa et al. (2025b) trained dataset LDCTIQAC Lee et al. (2023) and our SDCT dataset.

C ADDITIONAL EXPERIMENTS

The IQA scores for NA-Diff-D and NA-Diff-F are quite similar across different dose levels as shown in Fig. 7. For NA-Diff-F, the IQA scores increase steadily as the dose level rises, indicating that it is more effective at handling noise in generated images. Qualitative results comparing the baseline model and our anatomy-guided variants are shown in Fig. 8. Our method preserves anatomical structures more compared to the baseline.

Moreover, as reported in Table 8, our NA-Diff-D model outperforms the baseline when evaluated on the LiTS dataset. Compared to the Seg-Diff* baseline, our NA-Diff-D model achieves the best performance across all metrics, improving CFID by 11.98%, KID by 25%, CMMD by 11.4%, and LPIPS by 0.4%. This highlights the efficacy of our anatomy-guided approach for generating high-fidelity and perceptually consistent CT images. Also, the results in Table 9 highlight the advantage of concatenating condition tokens over summing them for dual conditioning.

Figure 7: Predicted IQA scores for the NA-Diff-F generated CT images compared to input CT images at different dose levels.

Figure 8: Qualitative results with baseline and antamody guided variants of NA-Diff.

In Fig. 10, NA-Diff-F demonstrates strong noise map awareness, adapting its generation quality following varied noise map levels. Furthermore, we have the overlay results from NA-Diff-D and NA-Diff-F as shown in Fig. 9, which show good anatomical alignment between the generated images and the segmentation masks.

Algorithm 2 shows how the input data is conditioned. The grayscale image x is first repeated across three channels and encoded into a latent z using the VAE encoder $\mathcal E$. The anatomy map n and mask m are separately encoded by the CLIP image encoder ϕ to obtain feature vectors f_n and f_m . These are projected through W_{clip} and fused by W_{cat} to form the condition embedding c.

Algorithm 1 describes the DiT forward pass with adaLN-Zero conditioning. The latent z is patchembedded with fixed sinusoidal positional embedding P. A timestep t is mapped into an embedding e_t (via a sinusoidal MLP) and added to c to form the global conditioner h. In each DiT block, h is used by adaLN to generate scale Γ , shift Δ , and gating g parameters that modulate the LayerNorm outputs before multi-head self-attention (MSA) and MLP layers. After L such blocks, the final layer produces the predicted noise $\hat{\epsilon}_{\theta}$. This prediction is used in the diffusion loss to train the model.

D CT Noise Simulation

Diffusion models require large-scale training data. However, using natural images for pre-training can lead to domain shift issues. To address this, we emulate CT-specific noise patterns within natural images, creating CT dose-emulated datasets for the pre-training phase. Fig. 11 illustrates examples

Figure 9: Qualitative comparison showing overlay outputs from our NA-Diff-D and NA-Diff-F variants. The visualization highlights segmentation accuracy and generative performance.

Figure 10: Qualitative comparisons at different noise levels show that our NA-Diff-F model effectively captures and adapts to the provided noise maps.

Table 8: The models are fine-tuned (with 3000 random sample images) and evaluated (with 500 random sample images) with segmentation guidance using the LiTS Bilic et al. (2023) dataset. Our synthetic datasets show superior performance to the baseline. * denotes that the model is trained with our CT image data conditioned on the anatomy mask. The best and second-best results are **bolded** and <u>underlined</u> respectively.

Methods	Performance metrics							
	CFID ↓	KID↓	CMMD↓	LPIPS ↓				
Seg-Diff*	60.5636	25.3853 ± 3.065	0.376	0.3833 ± 0.1023				
NA-Diff-C	89.2949	57.6014 ± 5.8231	0.541	0.3866 ± 0.1021				
NA-Diff-D	53.2949	19.0386 ± 2.8532	0.333	$\textbf{0.3817} \pm \textbf{0.1029}$				

Table 9: Ablation study highlighting the importance of using concatenation in dual conditioning. The sum and concatenation denotes operations on condition token.

Methods	Operation	Performance metrics					
		CFID ↓	$KID\downarrow$	$CMMD \downarrow$	LPIPS \downarrow		
NA-Diff-F	Sum	81.3672	52.7426 ± 5.2481	0.492	0.3824 ± 0.1018		
NA-Diff-F	Concat.	64.6379	24.8106 ± 3.2275	0.3205	0.3760 ± 0.0994		

of natural images augmented with CT-like noise characteristics. Moreover, Fig. 12 visualizes simulated CT images corresponding to relative dose levels.

Figure 11: Visualization of natural images at different simulated dose levels.

Algorithm 1 DiT forward with adaLN-Zero

```
 \begin{array}{lll} \textbf{Require:} & \text{latent } z, \text{ condition } c, \text{ timestep } t \\ 1: & X \leftarrow \texttt{PatchEmbed}(z) + P; & h \leftarrow \texttt{sincos-MLP}(t) + c \\ 2: & \textbf{for } \ell = 1 \text{ to } L \textbf{ do} \\ 3: & X \leftarrow X + g^{(1)} \cdot \texttt{MSA}(\Gamma^{(1)} \odot \texttt{LN}(X) + \Delta^{(1)}) \\ 4: & X \leftarrow X + g^{(2)} \cdot \texttt{MLP}(\Gamma^{(2)} \odot \texttt{LN}(X) + \Delta^{(2)}) \\ 5: & \textbf{end for} \\ 6: & \hat{\epsilon}_{\theta} \leftarrow \texttt{unpatchify}(W_{\texttt{out}}(\Gamma \odot \texttt{LN}(X) + \Delta)) \\ 7: & \textbf{return } \hat{\epsilon}_{\theta} \\ \end{array}
```

Algorithm 2 Data conditioning

```
Require: x (gray), n (map), m (mask); \mathcal{E}, \phi

1: z \leftarrow 0.18215 \cdot \mathcal{E}(\text{repeat}(x,3)).\text{sample}()

2: f_n \leftarrow \phi(n); f_m \leftarrow \phi(m)

3: c \leftarrow W_{\text{cat}}([W_{\text{clip}}(f_n) \parallel W_{\text{clip}}(f_m)])

4: return (z,c)
```


Figure 12: Visualization of CT images across different simulated dose levels (e.g., only 25% and 100% are provided; other levels are constructed using our low-dose simulation technique).