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ABSTRACT

Generative models, specifically Diffusion Models (DMs), have been quite suc-
cessful in generating high-quality images. However, DMs rely on large-scale
training data. In medical imaging, more specifically for computed tomography
(CT), these models struggle in accurately reconstructing anatomical structures due
to limited training data. This can cause the wrong depiction of organs, which can
impact clinical treatment. Some existing models, although guided by anatomical
structures, ignore dose-dependent noise, which is critical in real-world scenarios.
To tackle this challenge, we propose a novel diffusion model, namely NA-Diff,
which is guided by noise from different dose levels and anatomical structures,
leveraging a dual conditional diffusion framework. To facilitate large-scale train-
ing of DMs on complex structured CT data, we transform natural images emulat-
ing realistic CT noises and leverage them for pre-training, followed by fine-tuning
on small CT data. Extensive experimental results demonstrate that NA-Diff gen-
erates high-fidelity and noise-aware CT images, effectively delineating the organ-
of-interest and bridging the gap between synthetic and real CT. 1

1 INTRODUCTION

Computed tomography (CT) serves a crucial role in modern medical imaging, providing detailed
anatomical visualization for diagnosis and treatment planning. Each year, more than 80 million CT
scans are performed in the United States, and the number keeps growing rapidly Schultz et al. (2020).
However, obtaining high-quality CT images is constrained by radiation dose trade-offs, motion ar-
tifacts, resolution limitations, and scanner technology. Acquiring large labeled medical imaging
datasets can also be challenging due to privacy concerns and expensive annotation processes.

Generative models have shown promise in medical image synthesis, with approaches such as gen-
erative adversarial networks (GANs) Goodfellow et al. (2020); Mirza & Osindero (2014) and vari-
ational autoencoders (VAEs) Kingma et al. (2019) constructing realistic images. However, these
models often suffer from blurring artifacts and difficulties in maintaining fine anatomical structures.
In recent years, diffusion models Rombach et al. (2022); Ho et al. (2020) emerged as a strong al-
ternative for image synthesis by modeling a structured denoising process. Unlike GANs, diffusion
models (DMs) have more stable training dynamics and produce detailed and diverse outputs. DMs
have been successfully adapted to various domains, including medical imaging Bhattacharya et al.
(2024); Konz et al. (2024); al Nomaan Nafi et al. (2024); Munia & Imran (2025), specifically, con-
ditional ones over their unconditional counterparts. Conditional DMs rely on a large amount of
labeled data for effective training. To mitigate this dependency, alternatives such as self-supervised
learning, weak supervision, data augmentation, and synthetic data generation are being explored Liu
et al. (2024); Oh & Jeong (2024). In these scenarios, generated outputs may appear anatomically
plausible but lack clinical precision, while augmentation can introduce hallucinations or structural
distortions, making them inappropriate for medical applications.

For image synthesis tasks, generative models Goodfellow et al. (2020); Mirza & Osindero (2014);
Rombach et al. (2022); Ho et al. (2020) portray remarkable performances, leveraging a satisfactory
amount of large data for image generation. Yet, such extensive datasets are not accessible to the
medical imaging domain or in real-world clinical environments, which limits the scalability of dif-
ferent approaches Song et al. (2023); Chen et al. (2024); al Nomaan Nafi et al. (2024). In response to

1The code will be made available upon acceptance.
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the limited data issue, pre-training generative models on natural image datasets (e.g., ImageNet) can
be a possible solution. Regardless, it leads to domain shift, as the characteristics (e.g., Hounsfield
units, noise patterns) of medical images (e.g., CT images) differ significantly from those of nat-
ural images. This domain shift can degrade the quality of synthesized CT images and limit their
clinical utility Zhang et al. (2018b). Another line of work introduces annotation-guided CT gen-
eration Venkatesh et al. (2024); Bhattacharya et al. (2024); Yang et al. (2024); Konz et al. (2024)
to infuse shape constraints and organ-specific priors into the synthesis process. Textual prompts,
combined with anatomical masks, have been utilized to generate high-quality 3D CT scans Xu et al.
(2024). However, the model is built specifically for 3D volumetric CT synthesis and does not sup-
port 2D image generation. Furthermore, medical image synthesis with DMs can produce unrealistic
artifacts or hallucinations Cho et al. (2025), which can potentially pose severe risks in subsequent
image-based decision-making. Hallucination may arise when the model depends only on anatomy-
guided conditioning without noise awareness, while focusing solely on noise guidance may lead to
the loss of anatomical fidelity. To address the aforementioned challenges, we propose a novel dual
conditional diffusion-based realistic CT image synthesis approach with CT noise and anatomy guid-
ance, leveraging a large number of diverse natural images with emulated CT noise at various dose
levels. The model is pre-trained using emulated CT noise guidance, and this is followed by fine-
tuning with a small number of real CT images guided by dose-aware noise and anatomy maps. First,
we generate CT-like noise–emulated natural images using our proposed strategy, so we can pre-train
on abundant natural images that mimic CT noise characteristics. Then, during fine-tuning on real
CT data, we introduce a dual-conditioning setup with both a noise map (dose-aware) branch and an
anatomy-guidance branch for CT image synthesis. This combination of synthetic noise-emulated
pretraining and dual noise–anatomy conditioning, to our knowledge, has not been explored in prior
CT diffusion work and goes beyond a simple diffusion architecture modification.

The contributions of the paper are summarized as follows:

• A novel framework for CT image synthesis guided by noise and anatomy maps using a dual
conditioning technique for preserving realistic noise-aware anatomical properties.

• Emulation of CT images and CT noise-emulated natural images at different dose levels
with corresponding noise maps. This procedure is effective and adapts to varying radiation
exposures.

• A pre-training strategy utilizing CT noise-emulated natural images at different CT dose
levels to learn useful low-level and high-level features from the large dataset, enabling
better performance with limited CT image data.

• Extensive evaluations, including external validation, across a range of tasks and metrics,
demonstrating consistent and superior performance of NA-Diff in generating realistic CT.

2 RELATED WORK

2.1 DIFFUSION MODELS

Diffusion models have revolutionized generative modeling, demonstrating unprecedented capabili-
ties in image generation by progressively denoising random noise to synthesize realistic visuals Ho
et al. (2020); Song et al. (2020); Song & Ermon (2019). Recent conditional variants refined this
approach, enhancing synthesis control by integrating conditions like textual prompts, segmentation
masks, or style embeddings Dhariwal & Nichol (2021); Ho & Salimans (2022); Lugmayr et al.
(2022); Saharia et al. (2022). Despite significant progress, unconditional models offer limited con-
trol over content and structure, while conditional models are often dependent on the availability and
quality of external conditioning data. Recent works have addressed these challenges by introducing
diffusion Ho et al. (2020); Peebles & Xie (2023) with image conditioning Zhu et al. (2025); Konz
et al. (2024); Zhang et al. (2023); Shi et al. (2024), achieving more robust semantic guidance and
motivating further exploration in domains that demand precise structural fidelity, such as medical
image synthesis.

2.2 DIFFUSION FOR MEDICAL IMAGE SYNTHESIS

Latent diffusion-based model MediSyn Cho et al. (2025) effectively generates diverse medical im-
ages across multiple imaging modalities using textual guidance. However, text-based conditioning
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Figure 1: Overview of the proposed NA-Diff framework, illustrating its two variants: Sep-Diff and
Cat-Diff. In Sep-Diff variant, the model is trained in three stages leveraging separate conditions
while in Cat-Diff, the model utilize dual conditions with two stage training. Gψ , Gϕ, Gω and
Gφ denotes pre-training model on CT noise-emulated natural images with noise map guidance,
fine-tuning model on CT images with noise map guidance, fine-tuning model on CT images with
anatomy guidance, and fine-tuning CT images with corresponding noise map and anatomy guidance
both, respectively.

is inherently imprecise for fine-grained anatomical control, often resulting in unrealistic anatomi-
cal structures Zhang et al. (2024); Chaichuk et al. (2025). While ControlNet Zhang et al. (2023),
initially developed for natural image generation, has a mechanism for adding spatial conditioning
through structural inputs, making it adaptable for medical domains where spatial fidelity is critical.
Yet, direct application to medical domains may suffer from domain shift, limiting anatomical real-
ism and clinical utility without retraining on medical-specific data. Recent anatomy-aware diffusion
frameworks embed structural guidance (e.g., segmentation masks, anatomical labels, semantic lay-
outs) directly into the denoising trajectory to ensure radiologically faithful synthesis. Seg-Diff Konz
et al. (2024) proposed a segmentation-guided diffusion model that generates medical images by
conditioning on segmentation masks at every denoising step. Using cross-attention or dual-stream
architectures, some techniques generate image–mask pairs or condition on latent anatomy embed-
dings, achieving spatial coherence across both 2-D slices and volumetric reconstructions Xing et al.
(2024); Zhang et al. (2025); Zheng et al. (2024); Bhat et al. (2025); Jiang et al. (2025); Mao et al.
(2025); Bose et al. (2025). Their shared strategy shows that anatomy-guided conditioning markedly
boosts structural realism and downstream segmentation performance in CT and related modalities.
However, they only depend on precise anatomy inputs at inference and ignore noise-aware condi-
tioning, leaving the problem of converting noisy CT projections into high-quality volumes largely
unsolved.

2.3 CONTEXT-AWARE MULTI-GUIDANCE DIFFUSION

Relying on a single conditioning process in diffusion models is sometimes flawed, as generating
target-like images may require using more than one type of guidance such as structural, and style
guidance Konz et al. (2024); Xing et al. (2024); Mao et al. (2025). Incorporating multiple guidance
can be positively effective, as it enables the model to capture both stylistic attributes and semantic
content with greater fidelity Krishna et al. (2024); Zhu et al. (2023); Shen et al. (2024). For CT
image synthesis, both noise conditioning (e.g., dose-aware noise maps) and anatomical guidance are
important to enable realistic simulation. The model DCDiff Shen et al. (2024) generates clean CT
images with reduced metal artifacts. However, the model lacks awareness of different dose levels
and may struggle to generate images with varied noise characteristics corresponding to each dose. To
the best of our knowledge, no existing model is able to synthesize CT images that are simultaneously
dose-aware and structure-aware, capturing both noise characteristics and anatomical fidelity within
a unified framework. The conditioning strategy also varies across different models. For encoding
images, most existing models use a VAE-based encoder Kingma et al. (2019) for processing input or

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

conditioning information which is efficient and flexible guidance in the latent space Ho et al. (2020);
Zhang et al. (2023); Esser et al. (2021); Nie et al. (2024); Peebles & Xie (2023). In contrast, for
some cases, CLIP (Contrastive Language-Image Pretraining) Radford et al. (2021) can be used for
image embeddings instead of VAE, as CLIP’s ability to extract semantically rich, global features
from images or text allows more flexible and effective conditioning for diffusion models Zhu et al.
(2025).

3 METHOD

Fig. 1 illustrates our proposed diffusion-based CT image generation framework NA-Diff. NA-Diff
includes two variants: (i) separate conditioning with noise map and anatomy mask (Sep-Diff), and
(ii) concatenate conditioning with noise map and anatomy mask (Cat-Diff). Sep-Diff consists of a
three-stage training process that systematically enables the synthesis of new CT images. The objec-
tive is to synthesize CT images conditioned on noise maps or anatomy maps. However, we cannot
simultaneously condition the model on both the noise map and the corresponding anatomy mask,
as each stage of the model supports only a single conditioning input. In light of this limitation, we
introduce Cat-Diff, a two-stage training process that leverages both noise maps and corresponding
anatomy masks to synthesize CT images.

3.1 DIT

Table 1: Details of the NA-Diff model variants.

Type Model Description

Sep-Diff

NA-Diff-A TrainingGϕ with CT images conditioned on noise map data.

NA-Diff-B Training Gψ with natural image data, followed by fine-
tuning (Gϕ) with CT images conditioned on noise map data.

NA-Diff-C Fine-tuning (Gω) using NA-Diff-A, with CT images condi-
tioned on anatomy map data.

NA-Diff-D Fine-tuning (Gω) using NA-Diff-B, with CT images condi-
tioned on anatomy map data.

Cat-Diff NA-Diff-E Training Gφ with CT images conditioned on noise map and
corresponding anatomy map.

NA-Diff-F Training Gψ with natural image data, followed by fine-
tuning (Gφ) with CT images conditioned on noise map and
corresponding anatomy map.

DiT Peebles & Xie (2023)
is a transformer-based dif-
fusion model that operates
on latent patches for image
generation task, achieving
state-of-the-art image
quality on benchmarks.
It uses a latent diffusion
framework and processes
image representations as
patches following Vision
Transformers (ViTs) Doso-
vitskiy et al. (2020). Given
an input image x0 and a
corresponding condition
y (e.g., text-guided, noise
map, or anatomy-guided
image), the model learns to reconstruct x0 through iterative denoising process: pθ(x̂0|x0, y)
where θ represents the model parameters. Like other diffusion models Rombach et al. (2022);
Ho et al. (2020), DiT follows a forward process that gradually adds Gaussian noise to the input
image and a reverse process that aims to denoise and reconstruct the original image conditioned
on a noise map or anatomy map. The model uses self-attention mechanisms and multi-head
attention layers to model long-range dependencies within the image. This allows the network to
process complex textures and structures efficiently. During DiT training, a noise prediction loss
is minimized: L(θ) = Ex0,y,t,ϵ

[
∥ϵθ(xt, y)− ϵ∥22

]
, where ϵθ(xt, y) is the predicted noise from the

diffusion transformer, ϵ ∼ N (0, I) is the true noise sampled from a Gaussian distribution, and E
represents taking the mean over these random variables, ensuring generalization across varying
noise conditions.

3.2 NATURAL IMAGE PRETRAINING

Emulation of CT noise in natural images: Natural images are by default of high quality. We can
consider them equivalent to full-dose CT images. An RGB image is first converted to grayscale
and we map it to CT water density. For simplicity, we assume 1 × 1 pixel size and projection
angles 0-180◦. The raw projection data (sinogram) r is generated by performing parallel beam
projections (Radon transform). The generated sinogram is fed to inverse Radon (iRadon) transform
to reconstruct the original grayscale CT-like full-dose image xnatfd . To reduce spectral leakage and
enhance interpretation, we select ’Hann’ filter and linear interpolation for iRadon. To match with our
CT dataset, we generate lower-dose image (xld) at the same dose level (ld). Assuming the number
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of photons I0 = 1e5 emitted at full dose and water attenuation of µ = 0.02, we can then calculate
the number of mean transmitted photons for the raw data as Iraw = ld · I0 · exp(−µr). Poisson
quantum noise is inserted into the raw project data at the target dose level. Therefore, the noisy
projection we obtain as:

Inoisy = −log(Poisson(Iraw)/(ld · I0))/µ. (1)

RGB image Noisy image Noise map
Figure 2: Sample noisy image and corresponding noise map
constructed from a natural image by emulating CT noise.

Using iRadon, the noisy image xnatld
is then reconstructed from the noisy
projection data at the target dose
level. Following the approach de-
scribed in Sec. 3.3 for CT images,
natural images are also simulated
at additional dose levels, and corre-
sponding noise maps are constructed
(Fig. 2).

In the pretraining phase, input natural
images are denoted xnat0 , and corre-
sponding noise maps are denoted by
ynatnoise. To synthesize a refined natural image x̂nat0 , we use the DiT model conditioned on ynatnoise,
replacing the text conditioning with an image conditioning strategy. For the pre-training stage of
both Sep-Diff and Cat-Diff variants, x0 and y are mapped into the latent space using a pre-trained
VAE Kingma et al. (2019). Those are patchified and linearly embedded to create token representa-
tions: zx0

= Wxx0+Epos and zy = Wyy+Epos; where Wx,Wy are learned embedding matrices,
Epos is the positional encoding, and zx0

, zy are the patch embeddings. The timestep embedding is
combined with the conditional noise embedding c = fθ(t) + zy; fθ(t) is an MLP-based mapping
timestep t to an embedding, and c is the conditioning vector that modulates the model.

Each Transformer block uses AdaLN-Zero, where the modulation parameters (γt, βt, αt) are pre-
dicted from the conditioning vector c:

(γt, βt, αt) = MLP(LayerNorm(c)), (2)

where γt and βt are feature-wise scaling and shifting parameters, and αt is a learned residual gating
parameter that controls the strength of each residual branch. Given these parameters, a DiT block
updates the hidden representation x as:

x = x+ αt ·MSA(γt · LayerNorm(x) + βt) , (3)

x = x+ αt ·MLP(γt · LayerNorm(x) + βt) , (4)
where the initial hidden state is the image token sequence x = zx0 ; that is, zx0 is the tokenized
representation of the input image, and x is refined iteratively by the stacked Transformer blocks.
The model predicts the noise ϑ̂(xt, t, y) and the output AdaLN-Zero parameters are computed as:

(γ′
t, β

′
t) = MLP(LayerNorm(c)), (4)

and the noise prediction is generated by:

ϑ̂ = MLP(γ′
t · LayerNorm(x) + β′

t) . (5)

The denoised image x̂0 is computed during sampling using the standard DM reconstruction:

x̂0 =
xt −

√
1− ᾱt ϑ̂√
ᾱt

, (6)

where ᾱt is the cumulative product of the variance schedule in the forward diffusion process and x̂0

is the final denoised image. Also, γ′
t and β′

t are dynamically learned based on y and t.

3.3 NOISE-GUIDED CT FINE-TUNING

Low dose simulation: Following Imran et al. (2021), we use the quantum noise properties of low-
dose images, assuming a linear relationship through reconstructions with the relative dose levels.
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Given real full-dose and lower-dose scans, CT scans can be simulated at any arbitrary dose level (d).
With the full-dose noise variance σ2

fd, an image xd can be formed by adding zero-mean independent
noise to the full-dose image xfd.

xd = xfd + xnoise,

where, xnoise ∼ N (0, (1/d− 1)σ2
fd).

(7)

In order to estimate σ2
fd, we use the difference between xfd and the available lower-dose image xld.

We are then able to synthesize images at any arbitrary dose level by determining a from 1 + (1/d−
1)a2 = 1/d.

Noise estimation from single slice/image: After obtaining noise realization from a single slice
of the given xfd and xld, it can be scaled to derive the noise of the desired dose level, i.e., n =
b · (xld − xfd). And we can find b such that

b2 · (1
d
− 1) =

1

d
. (8)

Ideally, noise realizations should be uncorrelated with noise at the routine dose, but correlated with
noise at all other dose levels. It can be verified that noise standard deviation (std) in uniform regions
of an image matches the expected noise levels in HU. It is, therefore, viable to use noise std map as
a means of assessing the quality of CT images at arbitrary dose levels. Using a sliding window with
window size k× k over the noise realization n in the image space at m×m resolution, the std map
is calculated as:

yctn =

√
1

k2

m×m∑
(n(k, k))2. (9)

With the increase in the window size, the noise std scale (HU) is shrunk. We choose k = 5 in order
to keep maximum scale gaps in different dose levels.

In Sep-Diff variant, with the simulated CT images and the corresponding noise (std) maps, the nat-
ural image pre-trained model is fine-tuned on (Gϕ). Similar to pre-training of Gψ , Gϕ is fed by
an input CT image xct0 , and its corresponding noise map yctmap for conditioning. The training pro-
cess is similar to the pre-training phase, and the final layer reconstructs the input CT image x̂ct0 .
However, unlike the DiT approach, which is used in the pre-training phase, the conditioning strat-
egy for CT images corresponding to the map leverages a pre-trained CLIP encoder instead of VAE.
Instead of directly using pixel-level features as a condition, yctmap is first processed using the CLIP
processor and mapped into a global semantic embedding using the CLIP encoder. This embedding
captures high-level semantic information, which is then used to guide the generative process. Using
the diverse dose level images in training, Sep-Diff is enabled to learn the realistic variation in the
image quality, retaining textures. For a single diagnostic task, higher-dose, lower-noise CT images
typically improve performance. However, radiation dose cannot be increased freely in practice, es-
pecially in screening, pediatrics, and repeated follow-ups. Multi-center datasets also contain diverse
protocols and dose levels, leading to substantial variation in noise and texture. Our aim in model-
ing dose-aware, higher-dose, lower-noise CT images is not to promote increased radiation, but to
provide a controllable way to simulate different dose (noise) levels from the same anatomy. This
enables systematic study of how downstream tasks behave across dose levels, generation of virtual
high-dose images from low-dose scans without extra patient dose, and harmonization of heteroge-
neous datasets by mapping images to a standardized noise level.

3.4 ANATOMY-GUIDED CT FINE-TUNING

In Sep-Diff, for the second stage of fine-tuning, we introduce anatomy masks as additional guid-
ance. The main reason for incorporating anatomical guidance in CT image synthesis is to enforce
anatomical constraints in the generated images, and this helps the model to capture the fundamental
structures and distribution of CT images. The anatomy mask is derived from the simulated low-dose
CT images using a segmentation model Ward & Imran (2025). The training process is similar to the
first stage of fine-tuning in Sep-Diff (i.e., xct0 as CT image and yctmask as anatomy guidance). In this
phase, we use the DiT layout, modifying the condition strategy, and the final layer reconstructs the
denoised image. It maintains anatomical plausibility, followed by the anatomy mask.
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Table 2: Consistency evaluation of image quality and liver segmentation between synthetic and input
CT images. IQAreal and IQAgen indicate the average IQA scores obtained for the input CT test
set and the NA-Diff variant generated CT images, respectively. m is the original segmentation liver
mask, and mpred

gen are the predicted masks of the segmentation model from the generated images.
The best and second-best results are bolded and underlined respectively.

NA-Diff Condition Image quality Segmentation

Noise Anatomy IQAreal IQAgen ∆IQA ↓ Dice(mpred
gen ,m) ↑ IoU(mpred

gen ,m) ↑ HD(mpred
gen ,m) ↓ Recall(mpred

gen ,m) ↑ Precision(mpred
gen ,m) ↑

NA-Diff-A ✓ ✗ 1.940 2.260 0.320 0.692 0.532 50.730 0.644 0.781
NA-Diff-B ✓ ✗ 1.940 2.190 0.250 0.711 0.5548 46.725 0.687 0.768
NA-Diff-C ✗ ✓ 1.940 2.150 0.210 0.774 0.633 36.179 0.776 0.791
NA-Diff-D ✗ ✓ 1.940 2.100 0.160 0.779 0.640 30.494 0.797 0.782

NA-Diff-E ✓ ✓ 1.940 2.110 0.170 0.725 0.572 49.135 0.669 0.813
NA-Diff-F ✓ ✓ 1.940 2.080 0.140 0.775 0.633 31.997 0.796 0.781

3.5 DUAL CONDITIONING DIFFUSION

In the Cat-Diff variant, we introduce dual conditioning for the diffusion process that provides one
stage of fine-tuning. In contrast, the Sep-Diff variant follows a two-stage fine-tuning strategy: ini-
tially, the model is fine-tuned using noise map-guided CT images, and subsequently, it is further
fine-tuned with anatomy maps as conditions, utilizing the same CT images from the first stage of
fine-tuning. When fine-tuning the model in two separate stages, first with noise maps and then with
anatomy maps, a limitation becomes evident. During the initial stage of fine-tuning, the model learns
to rely only on the noise map, since it has not seen anatomy-based conditioning. However, after the
second fine-tuning using anatomy maps, the model’s dependency shifts. Its ability to respond to
noise variation decreases, and any influence from the noise map becomes largely random and un-
controlled. To overcome this challenge and ensure the model can utilize both noise and anatomy
maps, we propose the Cat-Diff variant, where the dual conditioning approach allows the model to
incorporate both forms of guidance during the diffusion process. As a result, the final model can
benefit from the complementary information provided by both noise and segmentation maps, en-
abling more flexible and controlled image synthesis. As shown in Fig. 3, in the Cat-Diff approach,
we utilize two conditions by encoding both with a pre-trained CLIP encoder, rather than relying on
VAE-based conditioning. Specifically, each conditioning input y (e.g., a noise-level map ymap and
a segmentation mask ymask) is encoded into a fixed-length global embedding vector of dimension
768 through CLIP. By conditioning on CLIP-derived global embeddings, our model leverages high-
level, semantically meaningful representations and enables effective guidance from both noise-level
and structural modalities.

Figure 3: Dimensionality flow of dual condi-
tioning. Condition maps and masks are en-
coded by a pre-trained CLIP model into global
features, projected and fused with timestep em-
beddings, then combined with image tokens for
the transformer-based diffusion model.

We ensure the generated CT data is reliable by
conditioning the model on both noise maps and
anatomy masks. The noise map guides the model
to reproduce realistic noise patterns, while the
anatomy mask preserves the underlying struc-
tures. As the model must satisfy both constraints,
the generated images maintain correct anatomy
and visually plausible CT noise characteristics.
Different noise levels are clinically relevant, al-
though higher-dose, lower-noise CT scans produce
clearer images, radiation dose cannot be increased
freely due to safety concerns, and real multi-center
datasets often contain scans with very different
noise levels. Being able to simulate multiple noise
conditions from the same anatomy is therefore
useful for understanding how downstream tasks
behave across arbitrary dose levels and for harmo-
nizing heterogeneous datasets.

4 EXPERIMENTS & RESULTS

4.1 IMPLEMENTATION DETAILS

Natural Image Data: We utilize the indoor scene Indoor Scene Recognition dataset Quattoni &
Torralba (2009) and generate CT-like images emulating CT noises at quarter dose. From 15,620
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images, we selected 4,000 images with complex-structured and intricate details. Following Sec. 3.2,
a total of 20,000 natural images and their corresponding noise maps are generated at different dose
levels (i.e., 5%, 10%, 25%, 50%, and 75%).

SDCT Data: SDCT refers to the six-dose computed tomography, representing our emulated CT
dataset. For CT images, we use 40 abdomen scans (25% and 100% doses) from the Low Dose CT
Image and Projection Data McCollough et al. (2020) — 20 for training and 20 for testing. After
simulation of additional dose levels, a total of 13,314 (e.g., 6696 for training and 6618 for testing)
CT images and noise map pairs are obtained. All CT images in our figures are displayed using
a standard soft-tissue window, with a window width (WW) of 400 HU and a window level (WL)
of 40 HU. The anatomy masks are obtained from the simulated low-dose CT images using the liver
segmentation model Ward & Imran (2025). All 13,314 simulated low-dose CT images are processed
to generate the corresponding liver segmentation masks referred to as anatomy maps. Specifically,
liver segmentation models are well-established and generally produce reliable masks. Inaccurate
or noisy masks can directly degrade anatomy-guided synthesis and make it difficult to evaluate the
method itself. Therefore, we focus on the liver organ for this study. However, the approach is not
liver-specific as it can be extended to other organs (e.g., pancreas) with the availability of high-
quality organ masks with relative dose levels.

Table 3: Quantitative comparison of generative perfor-
mance using CFID, KID, CMMD, and LPIPS across state-
of-the-art baseline and our anatomy-guided NA-Diff vari-
ants. Lower scores indicate better fidelity, perceptual qual-
ity, and conditional consistency. ∗ denotes that the model is
trained with our CT image data conditioned on the anatomy
mask.

Methods Performance metrics
CFID ↓ KID ↓ CMMD ↓ LPIPS ↓

Seg-Diff Konz et al. (2024) 249.769 122.358 ± 13.406 0.973 0.703 ± 0.281
Seg-Diff∗ Konz et al. (2024) 111.938 103.993 ± 11.255 0.670 0.664 ± 0.145
ControlNet∗ Zhang et al. (2023) 124.418 104.313 ± 8.5501 0.620 0.580 ± 0.117
NA-Diff-C 89.295 57.601 ± 5.823 0.541 0.387 ± 0.102
NA-Diff-D 53.295 19.039 ± 2.853 0.333 0.382 ± 0.103

Training: We trained the DiT model
from scratch, as our task differs
from ImageNet-trained DiT models.
For training NA-Diff, we start with
the DiT-L/4 model (256×256 reso-
lution). With a patch size of 4, L/4
processes a total of 1024 tokens af-
ter patchifying the 32×32×4 input
latent. To process condition images,
we use a pre-trained CLIP encoder
to obtain global feature embeddings.
Natural images are pre-trained for 25
epochs. For CT image synthesis, we
train the models for 100 epochs with
noise conditioning, 100 epochs with
anatomy conditioning, and 150 epochs with dual conditioning. The models are trained on an Intel
(R) Xeon (R) w7-2475X, 2600MHz machine with dual NVIDIA A4000 GPUs (16X2=32GB).

Baseline and Compared Methods: Considering no existing generative models using CT noise-
emulated natural images with noise map conditioning and anatomy guidance, we compare different
variant types of the NA-Diff model (Table 1). Direct comparison with our dual condition-guided
approach is not entirely applicable; however, we include Seg-Diff Konz et al. (2024) (e.g, the state-
of-the-art anatomy-guided diffusion model for CT images) and ControlNet Zhang et al. (2023),
as the representative anatomy-guided diffusion baseline and trained with our SDCT dataset, only
leveraging anatomy guidance as conditions. For a fairer assessment, we report results from our only
anatomy-conditioned variant alongside the dual-conditioned model. In addition, we have shown
comparisons with the baseline using the LiTS Bilic et al. (2023) dataset.

Table 4: Consistent IQA scores are observed for
NA-Diff-D and NA-Diff-F compared to training
data across different dose levels.

Source Dose Level (%)
5 10 25 50 75 100

Train set 1.500 1.450 1.870 2.110 2.290 2.410
NA-Diff-D 2.090 2.020 2.040 2.140 2.140 2.140
NA-Diff-F 1.910 1.960 2.120 2.140 2.160 2.190

Noise and Anatomy Preservation Evalua-
tion: NA-Diff model variants are evaluated
by predicting diagnostic image quality as-
sessment (IQA). We use a pre-trained IQA
model Rifa et al. (2025b) to provide a measure
of noise level estimation for the generated im-
ages. We also utilize a pretrained segmenta-
tion model Ward & Imran (2024) for generating
liver masks from the generated images.

Image Quality: We use the popular metric
CFID Parmar et al. (2022) and KID Bińkowski et al. (2018) for image realism and CMMD Jaya-
sumana et al. (2024) to provide an unbiased and semantically meaningful evaluation of image quality
using CLIP features, and LPIPS Zhang et al. (2018a) for perceptual similarity.
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Table 5: Ablation study demonstrating the importance of pre-training and dual conditioning. The
best and second-best results are bolded and underlined respectively. Nat. Pre-Train denotes training
Gψ with natural image data.

Methods Nat. Pre-Train Noise Anatomy Performance metrics
CFID ↓ KID ↓ CMMD ↓ LPIPS ↓

NA-Diff-A ✗ ✓ ✗ 245.342 209.733 ± 10.736 1.748 0.415 ± 0.097
NA-Diff-B ✓ ✓ ✗ 152.768 102.657 ± 7.917 0.754 0.383 ± 0.098
NA-Diff-C ✗ ✗ ✓ 89.298 57.601 ± 5.823 0.541 0.387 ± 0.102
NA-Diff-D ✓ ✗ ✓ 53.295 19.039 ± 2.853 0.333 0.382 ± 0.103
NA-Diff-E ✗ ✓ ✓ 78.373 40.328 ± 4.512 0.514 0.389 ± 0.094
NA-Diff-F ✓ ✓ ✓ 64.638 24.811 ± 3.228 0.321 0.376 ± 0.099

Input CT Noise Map Anatomy Map NA-Diff-A NA-Diff-B NA-Diff-C NA-Diff-D NA-Diff-E NA-Diff-F

Figure 4: Qualitative comparison among generated images from different NA-Diff variants.

4.2 RESULTS AND DISCUSSION

As reported in Table 2, we perform comparisons among the variant types of NA-Diff generated im-
ages, leveraging the noise map, the anatomy mask, or both, conditioned. The generated images and
the simulated CT test images are assessed by IQA scores (0-4, higher is better) Lee et al. (2025). The
pretrained IQA model Rifa et al. (2025b) was trained on a different window-level CT dataset, yet it
can approximately estimate the noise level in our generated images. NA-Diff-F has the smallest IQA
gap (∆IQA) among all, demonstrating the effectiveness of the proposed noise-guided training pro-
cesses. Additionally, the larger ∆IQA for the baseline Model A (without natural image pre-training)
highlights the importance of CT noise-emulated pre-training in NA-Diff. Moreover, consistent with
the dose-IQA relationship, NA-Diff-F generated images are of better quality with the increase in
relative dose levels (Table 4), indicating the intrinsic noise aware dose level understanding over NA-
Diff-D. In terms of segmentation in Table 2, we show a comparison between the original mask m and
masks mpred

gen predicted for the generated images. The NA-Diff-D and NA-Diff-F model achieves
comparatively high scores across all metrics, which indicates good anatomical consistency.

Table 6: Segmentation performance on the
downstream task using real data and a combi-
nation of real plus synthetic data. The models
are trained either on real data only or on a mix-
ture of real and synthetic CT images (paired with
masks), and evaluated on the first 1000 cases
from the test set (using real images and masks
only). Incorporating synthetic data leads to com-
parable improvements in Dice and IoU across
both U-Net and TransUNet architectures.

Methods Description Dice IoU

U-Net Ronneberger et al. (2015) Real Data 0.874 0.777
Real + Synthetic Data 0.876 0.779

TransUNet Chen et al. (2021) Real Data 0.872 0.773
Real + Synthetic Data 0.877 0.781

In Table 3, we compare our anatomy-guided
model variants (i.e, NA-Diff-C and NA-Diff-D)
with the baseline model Seg-Diff Konz et al.
(2024). Compared to the anatomy-conditioned
baseline Seg-Diff*, NA-Diff-D achieves sub-
stantial improvements across all metrics, where
CFID improves by 52.4%, KID by 81.7%,
CMMD by 50.4%, and LPIPS by 42.5%. When
benchmarked against the ControlNet* baseline,
NA-Diff-D achieves even larger relative gains,
with CFID reduced by 57.2%, KID by 81.8%,
CMMD by 46.3%, and LPIPS by 34.1%. These
results show that our approach can generate
anatomy-guided CT images with better fidelity,
perceptual quality, and consistency compared to
previous methods. The results of the ablation
study are shown in Table 5. Across all metrics,
natural image pre-training relatively improves performance compared to no pre-training. Comparing
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NA-Diff-D (with pre-training) to NA-Diff-C (without pre-training), we observe substantial improve-
ments in CFID by 40.3%, KID by 66.9%, CMMD by 38.4%, and LPIPS by 1.3%.

For dual conditioning, NA-Diff-F’s CFID and KID are higher than NA-Diff-D because CFID is
conditioned only on anatomy for calculation, favoring NA-Diff-D, and KID reflects greater sample
diversity. However, NA-Diff-F achieves 3.8% lower CMMD and 1.5% lower LPIPS, indicating
better conditional consistency and perceptual similarity with dual conditioning. As shown in Table 6,
adding synthetic data provides comparable gains in Dice and IoU, which demonstrate the potential
of our synthetic CT images for downstream segmentation tasks.

Table 7: The models are fine-tuned (with 3000
random sample images) and evaluated (with 500
random sample images) with segmentation guid-
ance using LiTS Bilic et al. (2023) dataset. Our
synthetic datasets show superior performance to
the baseline. ∗ denotes that the model is trained
with our CT image data conditioned on the
anatomy mask.

Methods Performance metrics
Dice IoU HD Recall Precision

Seg-Diff∗ 0.911 0.838 22.629 0.864 0.968
NA-Diff-C 0.910 0.836 21.382 0.866 0.970
NA-Diff-D 0.920 0.853 20.508 0.872 0.974

For completeness, we report the Dice scores
with 95% confidence intervals: U-Net (Real:
0.874 [0.857–0.892], Real+Synthetic Data:
0.876 [0.858–0.893]) and TransUNet (Real:
0.872 [0.855–0.890], Real+Synthetic Data:
0.877 [0.860–0.894]), showing that the im-
provements are consistent and synthetic data
does not degrade segmentation performance.

Furthermore, the qualitative results are pre-
sented in Fig. 4, where our NA-Diff-F model
generates the CT images according to the noise-
aware semantic mask. In addition, as evidenced
from Table 7, our NA-Diff-D model outper-
forms the baseline when evaluated on the LiTS
dataset. We compare the original segmentation
masks with those predicted from the generated images (i.e., segmentation masks constructed by
applying a segmentation model Ward & Imran (2025) to the generated images). This evaluation
demonstrates that our method effectively preserves anatomical structures in the synthesized CT im-
ages in comparison to the baseline model. Overall, NA-Diff-F performs well while following both
noise and anatomy guidance. However, if we focus only on anatomy guidance, NA-Diff-D gives fa-
vorable results. In addition to the improvement in image generation, NA-Diff can be more resource-
efficient compared to the baseline Seg-Diff. Seg-Diff relies on a high-resource setup with 4×A6000
GPUs (48 GB each), whereas our NA-Diff models were trained using only 2×A4000 GPUs (32 GB
total). Despite using far fewer resource requirements, NA-Diff-D still achieves higher Dice, IoU,
HD, recall, and precision. Regarding data efficiency, Seg-Diff is trained on approximately 10 ×
more real CT images than our NA-Diff model (11000 vs 1116). Considering the scarcity of high-
quality medical datasets, our NA-Diff model reduces reliance on real CT data by leveraging large
natural-image collections through our CT-like noise-emulation and pretraining strategies, enabling
strong synthesis performance with far less real CT data and lower computational cost.

5 CONCLUSIONS

In this study, we present a novel noise and anatomy-guided diffusion model, NA-Diff, that can
generate realistic CT images with dose-level aware noise and liver anatomy map guidance. Our
innovative CT noise-emulated natural image pre-training helps capture complex features from dif-
ferent CT dose labels. In the fine-tuning phase on our emulated data, the model learns complex
CT image features with noise and also anatomical maps. Experimental evaluation on IQA and liver
segmentation demonstrates the realistic quality variation and preservation of anatomical structures,
along with noise-awareness in the generated CT images. While higher-dose and low-noise CT scans
are preferable for diagnosis, noise variation itself is clinically important for downstream tasks such
as CT IQA, dose optimization, and selecting scans suitable for radiologist review or downstream
AI models. These tasks require both high-quality and low-quality examples to accurately identify
when a scan is too noisy, low-dose, or degraded. Therefore, modeling noise variations is necessary
to teach the generative model how CT appearance changes under different dose levels, which is
essential for generating realistic low-quality images and for downstream dose- or quality-aware ap-
plications. Our noise-aware and anatomically consistent design enables NA-Diff to explicitly learn
this dose-quality relationship with the focus on the target organ, rather than collapsing toward only
high-quality reconstructions. Our future work will focus on a more extensive evaluation of NA-Diff
across different CT organs and various downstream tasks.
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A NA-DIFF VARIANTS

A.1 SEP-DIFF

In Sep-Diff, it has three stages of training. In the first stage, the model uses a CT-emulated natural
image and input conditioned on noise maps. This stage is considered a natural image pre-training
phase. Both the input image and the output image are encoded using the VAE Kingma et al. (2019)
encoder. In the second stage, the model is fine-tuned, leveraging CT images and their corresponding
simulated noise maps. In this stage, the input image is also encoded using the VAE encoder; how-
ever, for noise maps, we use the CLIP Radford et al. (2021) model encoder to get a global semantic
embedding as shown in Figure 5. In the final stage, the model fine-tunes utilizing CT images and
their corresponding liver segmentation mask. For the image encoding process, the model follows a
process similar to the second stage.

Figure 5: Dimensionality flow of Sep-Diff variants (excluding pre-training). The CT target image is
encoded by a pre-trained VAE into latent patches (e.g., 4×4×4), flattened and projected to the trans-
former’s hidden space. In parallel, the condition image is processed by a pre-trained CLIP model
to produce a global feature vector, which is linearly projected, fused with timestep embeddings, and
combined with input tokens for the transformer.

A.2 CAT-DIFF

Unlike Sep-Diff, Cat-Diff contains a two-stage training process. In the first stage of training, it
follows the exact same process as Sep-Diff pre-training. However, in the second stage, it combines
the second and third stage training of Sep-Diff into one stage training. Here, the model leverages CT
images with corresponding noise maps and anatomy masks as conditioning. While input images are
encoded using VAE, both conditions use CLIP as an encoder. After getting the global embedding,
we employ concatenation to emphasize dual conditioning. Let ymap, ymask ∈ R768 denote the CLIP
embeddings of the noise map and segmentation mask, respectively. These embeddings are projected
into the transformer’s hidden space using a learnable MLP:

ỹmap = ϕ(ymap), ỹmask = ϕ(ymask), ρ : R768 → RD, (10)

where D is the transformer hidden dimension (e.g., 1024), and ρ is defined as:
ρ(y) =W2 · SiLU(W1y + B1) + B2. (11)
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To preserve the distinct information from both embeddings, we concatenate them along the channel
dimension:

ỹconcat = [ỹmap ∥ ỹmask] ∈ R2D. (12)

The concatenated vector is then fused and projected back to RD using a second MLP:

ỹfinal = η(ỹconcat), η : R2D → RD. (13)

Finally, this fused conditioning vector is added to the sinusoidal timestep embedding γ(t) to form
the complete conditioning representation:

c = ỹfinal + fθ(t), (14)

where fθ(t) ∈ RD is the output of an MLP applied to a sinusoidal timestep embedding. This
conditioning vector c is broadcast to the transformer blocks and modulates each residual path using
adaptive layer normalization (adaLN-Zero).

B IQA AND SEGMENTATION EVALUATION

NA-Diff model variants are evaluated by predicting diagnostic image quality assessment (IQA)
scores, providing a measure of noise level estimation for the generated CT images. Although the
IQA score may not be perfectly accurate due to differences in window center (40) and width (400)
settings between our dataset and the pre-trained IQA model’s Rifa et al. (2025a) training data (as
shown in Fig. 6), a relative comparison is still feasible. We utilize another pretrained model Ward &
Imran (2024) for liver segmentation masks comparison; the generated CT images from our model
are passed through the segmentation model to produce liver masks and show a comparison between
the model-generated mask and the real mask images. This allows us to assess whether the anatom-
ical structures are being effectively preserved in the synthesized images. We report Dice score,
IoU, Precision, Recall, and Hausdorff Distance (HD) to assess how well the segmentation masks
predicted from the generated CT images compare to the real ground-truth masks.

LDCTIQAC

SDCT
Figure 6: Visualization of the samples of IQA-based model’s Rifa et al. (2025b) trained dataset
LDCTIQAC Lee et al. (2023) and our SDCT dataset.

C ADDITIONAL EXPERIMENTS

The IQA scores for NA-Diff-D and NA-Diff-F are quite similar across different dose levels as shown
in Fig. 7. For NA-Diff-F, the IQA scores increase steadily as the dose level rises, indicating that it
is more effective at handling noise in generated images. Qualitative results comparing the baseline
model and our anatomy-guided variants are shown in Fig. 8. Our method preserves anatomical
structures more compared to the baseline.

Moreover, as reported in Table 8, our NA-Diff-D model outperforms the baseline when evaluated
on the LiTS dataset. Compared to the Seg-Diff∗ baseline, our NA-Diff-D model achieves the best
performance across all metrics, improving CFID by 11.98%, KID by 25%, CMMD by 11.4%, and
LPIPS by 0.4%. This highlights the efficacy of our anatomy-guided approach for generating high-
fidelity and perceptually consistent CT images. Also, the results in Table 9 highlight the advantage
of concatenating condition tokens over summing them for dual conditioning.
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Figure 7: Predicted IQA scores for the NA-Diff-F generated CT images compared to input CT
images at different dose levels.

Input CT Noise Map Seg-Diff Seg-Diff∗ NA-Diff-C NA-Diff-D

Figure 8: Qualitative results with baseline and antamody guided variants of NA-Diff.

In Fig. 10, NA-Diff-F demonstrates strong noise map awareness, adapting its generation quality
following varied noise map levels. Furthermore, we have the overlay results from NA-Diff-D and
NA-Diff-F as shown in Fig. 9, which show good anatomical alignment between the generated images
and the segmentation masks.

Algorithm 2 shows how the input data is conditioned. The grayscale image x is first repeated across
three channels and encoded into a latent z using the VAE encoder E . The anatomy map n and mask
m are separately encoded by the CLIP image encoder ϕ to obtain feature vectors fn and fm. These
are projected through Wclip and fused by Wcat to form the condition embedding c.

Algorithm 1 describes the DiT forward pass with adaLN-Zero conditioning. The latent z is patch-
embedded with fixed sinusoidal positional embedding P . A timestep t is mapped into an embedding
et (via a sinusoidal MLP) and added to c to form the global conditioner h. In each DiT block, h is
used by adaLN to generate scale Γ, shift ∆, and gating g parameters that modulate the LayerNorm
outputs before multi-head self-attention (MSA) and MLP layers. After L such blocks, the final layer
produces the predicted noise ϵ̂θ. This prediction is used in the diffusion loss to train the model.

D CT NOISE SIMULATION

Diffusion models require large-scale training data. However, using natural images for pre-training
can lead to domain shift issues. To address this, we emulate CT-specific noise patterns within natural
images, creating CT dose-emulated datasets for the pre-training phase. Fig. 11 illustrates examples
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Input CT Anatomy Map NA-Diff-D NA-Diff-F

Figure 9: Qualitative comparison showing overlay outputs from our NA-Diff-D and NA-Diff-F
variants. The visualization highlights segmentation accuracy and generative performance.

5% Dose 10% Dose 25% Dose 50% Dose 75% Dose 100% Dose

Input CT

NA-Diff-F

Figure 10: Qualitative comparisons at different noise levels show that our NA-Diff-F model effec-
tively captures and adapts to the provided noise maps.
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Table 8: The models are fine-tuned (with 3000 random sample images) and evaluated (with 500
random sample images) with segmentation guidance using the LiTS Bilic et al. (2023) dataset. Our
synthetic datasets show superior performance to the baseline. ∗ denotes that the model is trained
with our CT image data conditioned on the anatomy mask. The best and second-best results are
bolded and underlined respectively.

Methods Performance metrics
CFID ↓ KID ↓ CMMD ↓ LPIPS ↓

Seg-Diff∗ 60.5636 25.3853 ± 3.065 0.376 0.3833 ± 0.1023
NA-Diff-C 89.2949 57.6014 ± 5.8231 0.541 0.3866 ± 0.1021
NA-Diff-D 53.2949 19.0386 ± 2.8532 0.333 0.3817 ± 0.1029

Table 9: Ablation study highlighting the importance of using concatenation in dual conditioning.
The sum and concatenation denotes operations on condition token.

Methods Operation Performance metrics

CFID ↓ KID ↓ CMMD ↓ LPIPS ↓

NA-Diff-F Sum 81.3672 52.7426 ± 5.2481 0.492 0.3824 ± 0.1018

NA-Diff-F Concat. 64.6379 24.8106 ± 3.2275 0.3205 0.3760 ± 0.0994

of natural images augmented with CT-like noise characteristics. Moreover, Fig. 12 visualizes simu-
lated CT images corresponding to relative dose levels.

5% 10%

50% 75%

Figure 11: Visualization of natural images at different simulated dose levels.
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Algorithm 1 DiT forward pass with AdaLN-Zero

Require: latent image tokens z, condition embedding c, timestep embedding t
1: X ← PatchEmbed(z) + P ▷ initial token sequence
2: h← sincosMLP(t) + c ▷ conditioning vector
3: for ℓ = 1 to L do
4: (γ

(ℓ)
t , β

(ℓ)
t , α

(ℓ)
t )← MLP(LN(h))

5: X ← X + α
(ℓ)
t · MSA

(
γ
(ℓ)
t ⊙ LN(X) + β

(ℓ)
t

)
6: X ← X + α

(ℓ)
t · MLP

(
γ
(ℓ)
t ⊙ LN(X) + β

(ℓ)
t

)
7: end for
8: (γ′

t, β
′
t)← MLP(LN(h))

9: ϑ̂← unpatchify
(
Wout

(
γ′
t ⊙ LN(X) + β′

t

))
10: return ϑ̂ ▷ predicted noise

Algorithm 2 Data conditioning

Require: x (gray), n (map), m (mask); E , ϕ
1: z ← 0.18215 · E(repeat(x, 3)).sample()
2: fn ← ϕ(n); fm ← ϕ(m)
3: c←Wcat([Wclip(fn) ∥Wclip(fm) ])
4: return (z, c)

5% 10% 25%

50% 75% 100%

Figure 12: Visualization of CT images across different simulated dose levels (e.g., only 25% and
100% are provided; other levels are constructed using our low-dose simulation technique).
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