

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 NOISE AND ANATOMY-GUIDED DIFFUSION MODEL FOR REALISTIC CT IMAGE SYNTHESIS

Anonymous authors

Paper under double-blind review

ABSTRACT

Generative models, specifically Diffusion Models (DMs), have been quite successful in generating high-quality images. However, DMs rely on large-scale training data. In medical imaging, more specifically for computed tomography (CT), these models struggle in accurately reconstructing anatomical structures due to limited training data. This can cause the wrong depiction of organs, which can impact clinical treatment. Some existing models, although guided by anatomical structures, ignore dose-dependent noise, which is critical in real-world scenarios. To tackle this challenge, we propose a novel diffusion model, namely NA-Diff, which is guided by noise from different dose levels and anatomical structures, leveraging a dual conditional diffusion framework. To facilitate large-scale training of DMs on complex structured CT data, we transform natural images emulating realistic CT noises and leverage them for pre-training, followed by fine-tuning on small CT data. Extensive experimental results demonstrate that NA-Diff generates high-fidelity and noise-aware CT images, effectively delineating the organ-of-interest and bridging the gap between synthetic and real CT.¹

1 INTRODUCTION

Computed tomography (CT) serves a crucial role in modern medical imaging, providing detailed anatomical visualization for diagnosis and treatment planning. Each year, more than 80 million CT scans are performed in the United States, and the number keeps growing rapidly Schultz et al. (2020). However, obtaining high-quality CT images is constrained by radiation dose trade-offs, motion artifacts, resolution limitations, and scanner technology. Acquiring large labeled medical imaging datasets can also be challenging due to privacy concerns and expensive annotation processes.

Generative models have shown promise in medical image synthesis, with approaches such as generative adversarial networks (GANs) Goodfellow et al. (2020); Mirza & Osindero (2014) and variational autoencoders (VAEs) Kingma et al. (2019) constructing realistic images. However, these models often suffer from blurring artifacts and difficulties in maintaining fine anatomical structures. In recent years, diffusion models Rombach et al. (2022); Ho et al. (2020) emerged as a strong alternative for image synthesis by modeling a structured denoising process. Unlike GANs, diffusion models (DMs) have more stable training dynamics and produce detailed and diverse outputs. DMs have been successfully adapted to various domains, including medical imaging Bhattacharya et al. (2024); Konz et al. (2024); al Nomaan Nafi et al. (2024); Munia & Imran (2025), specifically, conditional ones over their unconditional counterparts. Conditional DMs rely on a large amount of labeled data for effective training. To mitigate this dependency, alternatives such as self-supervised learning, weak supervision, data augmentation, and synthetic data generation are being explored Liu et al. (2024); Oh & Jeong (2024). In these scenarios, generated outputs may appear anatomically plausible but lack clinical precision, while augmentation can introduce hallucinations or structural distortions, making them inappropriate for medical applications.

For image synthesis tasks, generative models Goodfellow et al. (2020); Mirza & Osindero (2014); Rombach et al. (2022); Ho et al. (2020) portray remarkable performances, leveraging a satisfactory amount of large data for image generation. Yet, such extensive datasets are not accessible to the medical imaging domain or in real-world clinical environments, which limits the scalability of different approaches Song et al. (2023); Chen et al. (2024); al Nomaan Nafi et al. (2024). In response to

¹The code will be made available upon acceptance.

the limited data issue, pre-training generative models on natural image datasets (e.g., ImageNet) can be a possible solution. Regardless, it leads to domain shift, as the characteristics (e.g., Hounsfield units, noise patterns) of medical images (e.g., CT images) differ significantly from those of natural images. This domain shift can degrade the quality of synthesized CT images and limit their clinical utility Zhang et al. (2018b). Another line of work introduces annotation-guided CT generation Venkatesh et al. (2024); Bhattacharya et al. (2024); Yang et al. (2024); Konz et al. (2024) to infuse shape constraints and organ-specific priors into the synthesis process. Textual prompts, combined with anatomical masks, have been utilized to generate high-quality 3D CT scans Xu et al. (2024). However, the model is built specifically for 3D volumetric CT synthesis and does not support 2D image generation. Furthermore, medical image synthesis with DMs can produce unrealistic artifacts or hallucinations Cho et al. (2025), which can potentially pose severe risks in subsequent image-based decision-making. Hallucination may arise when the model depends only on anatomy-guided conditioning without noise awareness, while focusing solely on noise guidance may lead to the loss of anatomical fidelity. To address the aforementioned challenges, we propose a novel dual conditional diffusion-based realistic CT image synthesis approach with CT noise and anatomy guidance, leveraging a large number of diverse natural images with emulated CT noise at various dose levels. The model is pre-trained using emulated CT noise guidance, and this is followed by fine-tuning with a small number of real CT images guided by dose-aware noise and anatomy maps. **First, we generate CT-like noise-emulated natural images using our proposed strategy, so we can pre-train on abundant natural images that mimic CT noise characteristics. Then, during fine-tuning on real CT data, we introduce a dual-conditioning setup with both a noise map (dose-aware) branch and an anatomy-guidance branch for CT image synthesis. This combination of synthetic noise-emulated pretraining and dual noise-anatomy conditioning, to our knowledge, has not been explored in prior CT diffusion work and goes beyond a simple diffusion architecture modification.**

The contributions of the paper are summarized as follows:

- A novel framework for CT image synthesis guided by noise and anatomy maps using a dual conditioning technique for preserving realistic noise-aware anatomical properties.
- Emulation of CT images and CT noise-emulated natural images at different dose levels with corresponding noise maps. This procedure is effective and adapts to varying radiation exposures.
- A pre-training strategy utilizing CT noise-emulated natural images at different CT dose levels to learn useful low-level and high-level features from the large dataset, enabling better performance with limited CT image data.
- Extensive evaluations, including external validation, across a range of tasks and metrics, demonstrating consistent and superior performance of NA-Diff in generating realistic CT.

2 RELATED WORK

2.1 DIFFUSION MODELS

Diffusion models have revolutionized generative modeling, demonstrating unprecedented capabilities in image generation by progressively denoising random noise to synthesize realistic visuals Ho et al. (2020); Song et al. (2020); Song & Ermon (2019). Recent conditional variants refined this approach, enhancing synthesis control by integrating conditions like textual prompts, segmentation masks, or style embeddings Dhariwal & Nichol (2021); Ho & Salimans (2022); Lugmayr et al. (2022); Saharia et al. (2022). Despite significant progress, unconditional models offer limited control over content and structure, while conditional models are often dependent on the availability and quality of external conditioning data. Recent works have addressed these challenges by introducing diffusion Ho et al. (2020); Peebles & Xie (2023) with image conditioning Zhu et al. (2025); Konz et al. (2024); Zhang et al. (2023); Shi et al. (2024), achieving more robust semantic guidance and motivating further exploration in domains that demand precise structural fidelity, such as medical image synthesis.

2.2 DIFFUSION FOR MEDICAL IMAGE SYNTHESIS

Latent diffusion-based model MediSyn Cho et al. (2025) effectively generates diverse medical images across multiple imaging modalities using textual guidance. However, text-based conditioning

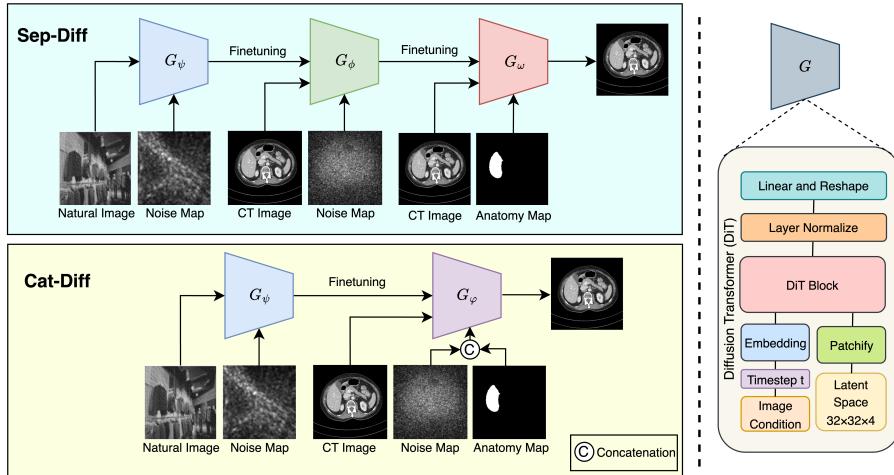


Figure 1: Overview of the proposed NA-Diff framework, illustrating its two variants: Sep-Diff and Cat-Diff. In Sep-Diff variant, the model is trained in three stages leveraging separate conditions while in Cat-Diff, the model utilize dual conditions with two stage training. G_ψ , G_ϕ , G_ω and G_φ denotes pre-training model on CT noise-emulated natural images with noise map guidance, fine-tuning model on CT images with noise map guidance, fine-tuning model on CT images with anatomy guidance, and fine-tuning CT images with corresponding noise map and anatomy guidance both, respectively.

is inherently imprecise for fine-grained anatomical control, often resulting in unrealistic anatomical structures Zhang et al. (2024); Chaichuk et al. (2025). While ControlNet Zhang et al. (2023), initially developed for natural image generation, has a mechanism for adding spatial conditioning through structural inputs, making it adaptable for medical domains where spatial fidelity is critical. Yet, direct application to medical domains may suffer from domain shift, limiting anatomical realism and clinical utility without retraining on medical-specific data. Recent anatomy-aware diffusion frameworks embed structural guidance (e.g., segmentation masks, anatomical labels, semantic layouts) directly into the denoising trajectory to ensure radiologically faithful synthesis. Seg-Diff Konz et al. (2024) proposed a segmentation-guided diffusion model that generates medical images by conditioning on segmentation masks at every denoising step. Using cross-attention or dual-stream architectures, some techniques generate image–mask pairs or condition on latent anatomy embeddings, achieving spatial coherence across both 2-D slices and volumetric reconstructions Xing et al. (2024); Zhang et al. (2025); Zheng et al. (2024); Bhat et al. (2025); Jiang et al. (2025); Mao et al. (2025); Bose et al. (2025). Their shared strategy shows that anatomy-guided conditioning markedly boosts structural realism and downstream segmentation performance in CT and related modalities. However, they only depend on precise anatomy inputs at inference and ignore noise-aware conditioning, leaving the problem of converting noisy CT projections into high-quality volumes largely unsolved.

2.3 CONTEXT-AWARE MULTI-GUIDANCE DIFFUSION

Relying on a single conditioning process in diffusion models is sometimes flawed, as generating target-like images may require using more than one type of guidance such as structural, and style guidance Konz et al. (2024); Xing et al. (2024); Mao et al. (2025). Incorporating multiple guidance can be positively effective, as it enables the model to capture both stylistic attributes and semantic content with greater fidelity Krishna et al. (2024); Zhu et al. (2023); Shen et al. (2024). For CT image synthesis, both noise conditioning (e.g., dose-aware noise maps) and anatomical guidance are important to enable realistic simulation. The model DCDiff Shen et al. (2024) generates clean CT images with reduced metal artifacts. However, the model lacks awareness of different dose levels and may struggle to generate images with varied noise characteristics corresponding to each dose. To the best of our knowledge, no existing model is able to synthesize CT images that are simultaneously dose-aware and structure-aware, capturing both noise characteristics and anatomical fidelity within a unified framework. The conditioning strategy also varies across different models. For encoding images, most existing models use a VAE-based encoder Kingma et al. (2019) for processing input or

162 conditioning information which is efficient and flexible guidance in the latent space Ho et al. (2020);
 163 Zhang et al. (2023); Esser et al. (2021); Nie et al. (2024); Peebles & Xie (2023). In contrast, for
 164 some cases, CLIP (Contrastive Language-Image Pretraining) Radford et al. (2021) can be used for
 165 image embeddings instead of VAE, as CLIP’s ability to extract semantically rich, global features
 166 from images or text allows more flexible and effective conditioning for diffusion models Zhu et al.
 167 (2025).

168 3 METHOD

170 Fig. 1 illustrates our proposed diffusion-based CT image generation framework NA-Diff. NA-Diff
 171 includes two variants: (i) separate conditioning with noise map and anatomy mask (Sep-Diff), and
 172 (ii) concatenate conditioning with noise map and anatomy mask (Cat-Diff). Sep-Diff consists of a
 173 three-stage training process that systematically enables the synthesis of new CT images. The objec-
 174 tive is to synthesize CT images conditioned on noise maps or anatomy maps. However, we cannot
 175 simultaneously condition the model on both the noise map and the corresponding anatomy mask,
 176 as each stage of the model supports only a single conditioning input. In light of this limitation, we
 177 introduce Cat-Diff, a two-stage training process that leverages both noise maps and corresponding
 178 anatomy masks to synthesize CT images.

179 3.1 DiT

180 DiT Peebles & Xie (2023)
 181 is a transformer-based dif-
 182 fusion model that operates
 183 on latent patches for image
 184 generation task, achieving
 185 state-of-the-art image
 186 quality on benchmarks.
 187 It uses a latent diffusion
 188 framework and processes
 189 image representations as
 190 patches following Vision
 191 Transformers (ViTs) Dosov-
 192 vitskiy et al. (2020). Given
 193 an input image x_0 and a
 194 corresponding condition
 195 y (e.g., text-guided, noise
 196 map, or anatomy-guided

197 image), the model learns to reconstruct x_0 through iterative denoising process: $p_\theta(\hat{x}_0|x_0, y)$
 198 where θ represents the model parameters. Like other diffusion models Rombach et al. (2022);
 199 Ho et al. (2020), DiT follows a forward process that gradually adds Gaussian noise to the input
 200 image and a reverse process that aims to denoise and reconstruct the original image conditioned
 201 on a noise map or anatomy map. The model uses self-attention mechanisms and multi-head
 202 attention layers to model long-range dependencies within the image. This allows the network to
 203 process complex textures and structures efficiently. During DiT training, a noise prediction loss
 204 is minimized: $L(\theta) = \mathbb{E}_{x_0, y, t, \epsilon} [\|\epsilon_\theta(x_t, y) - \epsilon\|_2^2]$, where $\epsilon_\theta(x_t, y)$ is the predicted noise from the
 205 diffusion transformer, $\epsilon \sim \mathcal{N}(0, \mathbf{I})$ is the true noise sampled from a Gaussian distribution, and \mathbb{E}
 206 represents taking the mean over these random variables, ensuring generalization across varying
 207 noise conditions.

208 3.2 NATURAL IMAGE PRETRAINING

209 **Emulation of CT noise in natural images:** Natural images are by default of high quality. We can
 210 consider them equivalent to full-dose CT images. An RGB image is first converted to grayscale
 211 and we map it to CT water density. For simplicity, we assume 1×1 pixel size and projection
 212 angles $0\text{--}180^\circ$. The raw projection data (sinogram) r is generated by performing parallel beam
 213 projections (Radon transform). The generated sinogram is fed to inverse Radon (iRadon) transform
 214 to reconstruct the original grayscale CT-like full-dose image x_{fd}^{nat} . To reduce spectral leakage and
 215 enhance interpretation, we select ‘Hann’ filter and linear interpolation for iRadon. To match with our
 CT dataset, we generate lower-dose image (x_{ld}) at the same dose level (ld). Assuming the number

Table 1: Details of the NA-Diff model variants.

Type	Model	Description
Sep-Diff	NA-Diff-A	Training G_ϕ with CT images conditioned on noise map data.
	NA-Diff-B	Training G_ψ with natural image data, followed by fine-tuning (G_ϕ) with CT images conditioned on noise map data.
	NA-Diff-C	Fine-tuning (G_ω) using NA-Diff-A, with CT images conditioned on anatomy map data.
Cat-Diff	NA-Diff-D	Fine-tuning (G_ω) using NA-Diff-B, with CT images conditioned on anatomy map data.
	NA-Diff-E	Training G_φ with CT images conditioned on noise map and corresponding anatomy map.
	NA-Diff-F	Training G_ψ with natural image data, followed by fine-tuning (G_φ) with CT images conditioned on noise map and corresponding anatomy map.

of photons $I_0 = 1e^5$ emitted at full dose and water attenuation of $\mu = 0.02$, we can then calculate the number of mean transmitted photons for the raw data as $I_{raw} = ld \cdot I_0 \cdot \exp(-\mu r)$. Poisson quantum noise is inserted into the raw project data at the target dose level. Therefore, the noisy projection we obtain as:

$$I_{noisy} = -\log(Poisson(I_{raw})/(ld \cdot I_0))/\mu. \quad (1)$$

Using iRadon, the noisy image x_{ld}^{nat} is then reconstructed from the noisy projection data at the target dose level. Following the approach described in Sec. 3.3 for CT images, natural images are also simulated at additional dose levels, and corresponding noise maps are constructed (Fig. 2).

In the pretraining phase, input natural images are denoted x_0^{nat} , and corresponding noise maps are denoted by y_{noise}^{nat} . To synthesize a refined natural image \hat{x}_0^{nat} , we use the DiT model conditioned on y_{noise}^{nat} , replacing the text conditioning with an image conditioning strategy. For the pre-training stage of both Sep-Diff and Cat-Diff variants, x_0 and y are mapped into the latent space using a pre-trained VAE Kingma et al. (2019). Those are patchified and linearly embedded to create token representations: $z_{x_0} = W_x x_0 + E_{pos}$ and $z_y = W_y y + E_{pos}$, where W_x, W_y are learned embedding matrices, E_{pos} is the positional encoding, and z_{x_0}, z_y are the patch embeddings. The timestep embedding is combined with the conditional noise embedding $c = f_\theta(t) + z_y$; $f_\theta(t)$ is an MLP-based mapping timestep t to an embedding, and c is the conditioning vector that modulates the model.

Each Transformer block uses AdaLN-Zero, where the modulation parameters $(\gamma_t, \beta_t, \alpha_t)$ are predicted from the conditioning vector c :

$$(\gamma_t, \beta_t, \alpha_t) = \text{MLP}(\text{LayerNorm}(c)), \quad (2)$$

where γ_t and β_t are feature-wise scaling and shifting parameters, and α_t is a learned residual gating parameter that controls the strength of each residual branch. Given these parameters, a DiT block updates the hidden representation x as:

$$x = x + \alpha_t \cdot \text{MSA}(\gamma_t \cdot \text{LayerNorm}(x) + \beta_t), \quad (3)$$

$$x = x + \alpha_t \cdot \text{MLP}(\gamma_t \cdot \text{LayerNorm}(x) + \beta_t), \quad (4)$$

where the initial hidden state is the image token sequence $x = z_{x_0}$; that is, z_{x_0} is the tokenized representation of the input image, and x is refined iteratively by the stacked Transformer blocks. The model predicts the noise $\hat{\vartheta}(x_t, t, y)$ and the output AdaLN-Zero parameters are computed as:

$$(\gamma'_t, \beta'_t) = \text{MLP}(\text{LayerNorm}(c)), \quad (4)$$

and the noise prediction is generated by:

$$\hat{\vartheta} = \text{MLP}(\gamma'_t \cdot \text{LayerNorm}(x) + \beta'_t). \quad (5)$$

The denoised image \hat{x}_0 is computed during sampling using the standard DM reconstruction:

$$\hat{x}_0 = \frac{x_t - \sqrt{1 - \bar{\alpha}_t} \hat{\vartheta}}{\sqrt{\bar{\alpha}_t}}, \quad (6)$$

where $\bar{\alpha}_t$ is the cumulative product of the variance schedule in the forward diffusion process and \hat{x}_0 is the final denoised image. Also, γ'_t and β'_t are dynamically learned based on y and t .

3.3 NOISE-GUIDED CT FINE-TUNING

Low dose simulation: Following Imran et al. (2021), we use the quantum noise properties of low-dose images, assuming a linear relationship through reconstructions with the relative dose levels.

Given real full-dose and lower-dose scans, CT scans can be simulated at any arbitrary dose level (d). With the full-dose noise variance σ_{fd}^2 , an image x_d can be formed by adding zero-mean independent noise to the full-dose image x_{fd} .

$$x_d = x_{fd} + x_{noise}, \quad (7)$$

where, $x_{noise} \sim \mathcal{N}(0, (1/d - 1)\sigma_{fd}^2)$.

In order to estimate σ_{fd}^2 , we use the difference between x_{fd} and the available lower-dose image x_{ld} . We are then able to synthesize images at any arbitrary dose level by determining a from $1 + (1/d - 1)a^2 = 1/d$.

Noise estimation from single slice/image: After obtaining noise realization from a single slice of the given x_{fd} and x_{ld} , it can be scaled to derive the noise of the desired dose level, i.e., $n = b \cdot (x_{ld} - x_{fd})$. And we can find b such that

$$b^2 \cdot \left(\frac{1}{d} - 1\right) = \frac{1}{d}. \quad (8)$$

Ideally, noise realizations should be uncorrelated with noise at the routine dose, but correlated with noise at all other dose levels. It can be verified that noise standard deviation (std) in uniform regions of an image matches the expected noise levels in HU. It is, therefore, viable to use noise std map as a means of assessing the quality of CT images at arbitrary dose levels. Using a sliding window with window size $k \times k$ over the noise realization n in the image space at $m \times m$ resolution, the std map is calculated as:

$$y_n^{ct} = \sqrt{\frac{1}{k^2} \sum_{m \times m} (n(k, k))^2}. \quad (9)$$

With the increase in the window size, the noise std scale (HU) is shrunk. We choose $k = 5$ in order to keep maximum scale gaps in different dose levels.

In Sep-Diff variant, with the simulated CT images and the corresponding noise (std) maps, the natural image pre-trained model is fine-tuned on (G_ϕ). Similar to pre-training of G_ψ , G_ϕ is fed by an input CT image x_0^{ct} , and its corresponding noise map y_{map}^{ct} for conditioning. The training process is similar to the pre-training phase, and the final layer reconstructs the input CT image \hat{x}_0^{ct} . However, unlike the DiT approach, which is used in the pre-training phase, the conditioning strategy for CT images corresponding to the map leverages a pre-trained CLIP encoder instead of VAE. Instead of directly using pixel-level features as a condition, y_{map}^{ct} is first processed using the CLIP processor and mapped into a global semantic embedding using the CLIP encoder. This embedding captures high-level semantic information, which is then used to guide the generative process. Using the diverse dose level images in training, Sep-Diff is enabled to learn the realistic variation in the image quality, retaining textures. **For a single diagnostic task, higher-dose, lower-noise CT images typically improve performance. However, radiation dose cannot be increased freely in practice, especially in screening, pediatrics, and repeated follow-ups. Multi-center datasets also contain diverse protocols and dose levels, leading to substantial variation in noise and texture. Our aim in modeling dose-aware, higher-dose, lower-noise CT images is not to promote increased radiation, but to provide a controllable way to simulate different dose (noise) levels from the same anatomy. This enables systematic study of how downstream tasks behave across dose levels, generation of virtual high-dose images from low-dose scans without extra patient dose, and harmonization of heterogeneous datasets by mapping images to a standardized noise level.**

3.4 ANATOMY-GUIDED CT FINE-TUNING

In Sep-Diff, for the second stage of fine-tuning, we introduce anatomy masks as additional guidance. The main reason for incorporating anatomical guidance in CT image synthesis is to enforce anatomical constraints in the generated images, and this helps the model to capture the fundamental structures and distribution of CT images. The anatomy mask is derived from the simulated low-dose CT images using a segmentation model Ward & Imran (2025). The training process is similar to the first stage of fine-tuning in Sep-Diff (i.e., x_0^{ct} as CT image and y_{mask}^{ct} as anatomy guidance). In this phase, we use the DiT layout, modifying the condition strategy, and the final layer reconstructs the denoised image. It maintains anatomical plausibility, followed by the anatomy mask.

324
 325
 326
 327
 328
 Table 2: Consistency evaluation of image quality and liver segmentation between synthetic and input
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349
 1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403
 1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457
 1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479
 1480
 1481
 1482
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511
 1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533
 1534
 1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565
 1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619
 1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1630
 1631
 1632
 1633
 1634
 1635
 1636
 1637
 1638
 1639
 1640
 1641
 1642
 1643
 1644
 1645
 1646
 1647
 1648
 1649
 1650
 1651
 1652
 1653
 1654
 1655
 1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673
 1674
 1675
 1676
 1677
 1678
 1679
 1680
 1681
 1682
 1683
 1684
 1685
 1686
 1687
 1688
 1689
 1690
 1691
 1692
 1693
 1694
 1695
 1696
 1697
 1698
 1699
 1700
 1701
 1702
 1703
 1704
 1705
 1706
 1707
 1708
 1709
 1710
 1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727
 1728
 1729
 1730
 1731
 1732
 1733
 1734
 1735
 1736
 1737
 1738
 1739
 1740
 1741
 1742
 1743
 1744
 1745
 1746
 1747
 1748
 1749
 1750
 1751
 1752
 1753
 1754
 1755
 1756
 1757
 1758
 1759
 1760
 1761
 1762
 1763
 1764
 1765
 1766
 1767
 1768
 1769
 1770
 1771
 1772
 1773
 1774
 1775
 1776
 1777
 1778
 1779
 1780
 1781
 1782
 1783
 1784
 1785
 1786
 1787
 1788
 1789
 1790
 1791
 1792
 1793
 1794
 1795
 1796
 1797
 1798
 1799
 1800
 1801
 1802
 1803
 1804
 1805
 1806
 1807
 1808
 1809
 1810
 1811
 1812
 1813
 1814
 1815
 1816
 1817
 1818
 1819
 1820
 18

378 images, we selected 4,000 images with complex-structured and intricate details. Following Sec. 3.2,
 379 a total of 20,000 natural images and their corresponding noise maps are generated at different dose
 380 levels (i.e., 5%, 10%, 25%, 50%, and 75%).
 381

SDCT Data: SDCT refers to the six-dose computed tomography, representing our emulated CT dataset. For CT images, we use 40 abdomen scans (25% and 100% doses) from the Low Dose CT Image and Projection Data McCollough et al. (2020) — 20 for training and 20 for testing. After simulation of additional dose levels, a total of 13,314 (e.g., 6696 for training and 6618 for testing) CT images and noise map pairs are obtained. **All CT images in our figures are displayed using a standard soft-tissue window, with a window width (WW) of 400 HU and a window level (WL) of 40 HU.** The anatomy masks are obtained from the simulated low-dose CT images using the liver segmentation model Ward & Imran (2025). All 13,314 simulated low-dose CT images are processed to generate the corresponding liver segmentation masks referred to as anatomy maps. Specifically, liver segmentation models are well-established and generally produce reliable masks. Inaccurate or noisy masks can directly degrade anatomy-guided synthesis and make it difficult to evaluate the method itself. Therefore, we focus on the liver organ for this study. However, the approach is not liver-specific as it can be extended to other organs (e.g., pancreas) with the availability of high-quality organ masks with relative dose levels.

Training: We trained the DiT model from scratch, as our task differs from ImageNet-trained DiT models. For training NA-Diff, we start with the DiT-L/4 model (256×256 resolution). With a patch size of 4, L/4 processes a total of 1024 tokens after patchifying the $32 \times 32 \times 4$ input latent. To process condition images, we use a pre-trained CLIP encoder to obtain global feature embeddings. Natural images are pre-trained for 25 epochs. For CT image synthesis, we train the models for 100 epochs with noise conditioning, 100 epochs with anatomy conditioning, and 150 epochs with dual conditioning. The models are trained on an Intel (R) Xeon (R) w7-2475X, 2600MHz machine with dual NVIDIA A4000 GPUs (16X2=32GB).

Baseline and Compared Methods: Considering no existing generative models using CT noise-emulated natural images with noise map conditioning and anatomy guidance, we compare different variant types of the NA-Diff model (Table 1). Direct comparison with our dual condition-guided approach is not entirely applicable; however, we include Seg-Diff Konz et al. (2024) (e.g, the state-of-the-art anatomy-guided diffusion model for CT images) and ControlNet Zhang et al. (2023), as the representative anatomy-guided diffusion baseline and trained with our SDCT dataset, only leveraging anatomy guidance as conditions. For a fairer assessment, we report results from our only anatomy-conditioned variant alongside the dual-conditioned model. In addition, we have shown comparisons with the baseline using the LiTS Bilic et al. (2023) dataset.

Noise and Anatomy Preservation Evaluation: NA-Diff model variants are evaluated by predicting diagnostic image quality assessment (IQA). We use a pre-trained IQA model Rifa et al. (2025b) to provide a measure of noise level estimation for the generated images. We also utilize a pretrained segmentation model Ward & Imran (2024) for generating liver masks from the generated images.

Image Quality: We use the popular metric CFID Parmar et al. (2022) and KID Bińkowski et al. (2018) for image realism and CMMD Jayasumana et al. (2024) to provide an unbiased and semantically meaningful evaluation of image quality using CLIP features, and LPIPS Zhang et al. (2018a) for perceptual similarity.

Table 3: Quantitative comparison of generative performance using CFID, KID, CMMD, and LPIPS across state-of-the-art baseline and our anatomy-guided NA-Diff variants. Lower scores indicate better fidelity, perceptual quality, and conditional consistency. * denotes that the model is trained with our CT image data conditioned on the anatomy mask.

Methods	Performance metrics			
	CFID ↓	KID ↓	CMMD ↓	LPIPS ↓
Seg-Diff Konz et al. (2024)	249.769	122.358 ± 13.406	0.973	0.703 ± 0.281
Seg-Diff* Konz et al. (2024)	111.938	103.993 ± 11.255	0.670	0.664 ± 0.145
ControlNet* Zhang et al. (2023)	124.418	104.313 ± 8.5501	0.620	0.580 ± 0.117
NA-Diff-C	89.295	57.601 ± 5.823	0.541	0.387 ± 0.102
NA-Diff-D	53.295	19.039 ± 2.853	0.333	0.382 ± 0.103

Table 4: Consistent IQA scores are observed for NA-Diff-D and NA-Diff-F compared to training data across different dose levels.

Source	Dose Level (%)					
	5	10	25	50	75	100
Train set	1.500	1.450	1.870	2.110	2.290	2.410
NA-Diff-D	2.090	2.020	2.040	2.140	2.140	2.140
NA-Diff-F	1.910	1.960	2.120	2.140	2.160	2.190

432
433
434
Table 5: Ablation study demonstrating the importance of pre-training and dual conditioning. The
best and second-best results are **bolded** and underlined respectively. Nat. Pre-Train denotes training
 G_ψ with natural image data.

435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 Methods	435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 Nat. Pre-Train	435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 Noise	435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 Anatomy	435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 Performance metrics
				CFID \downarrow
				KID \downarrow
				CMMID \downarrow
				LPIPS \downarrow
NA-Diff-A	\times	✓	\times	245.342
NA-Diff-B	✓	✓	\times	152.768
NA-Diff-C	\times	\times	✓	89.298
NA-Diff-D	✓	\times	✓	53.295
NA-Diff-E	\times	✓	✓	78.373
NA-Diff-F	✓	✓	✓	<u>64.638</u>
				24.811 \pm 3.228
				0.321
				0.376 \pm 0.099

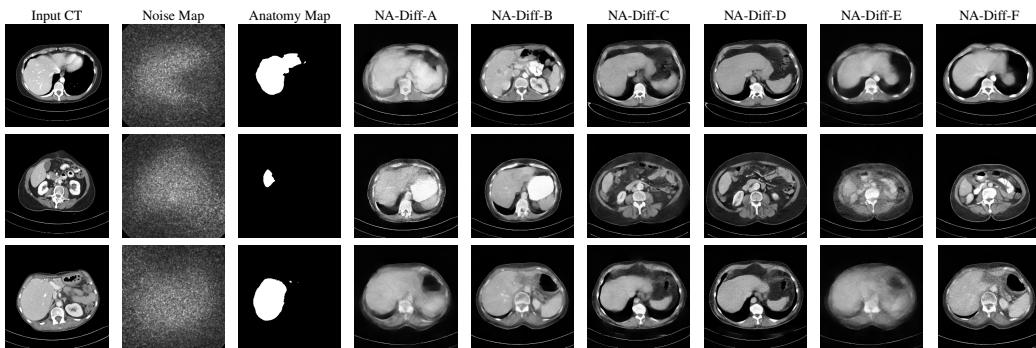


Figure 4: Qualitative comparison among generated images from different NA-Diff variants.

4.2 RESULTS AND DISCUSSION

As reported in Table 2, we perform comparisons among the variant types of NA-Diff generated images, leveraging the noise map, the anatomy mask, or both, conditioned. The generated images and the simulated CT test images are assessed by IQA scores (0-4, higher is better) Lee et al. (2025). The pretrained IQA model Rifa et al. (2025b) was trained on a different window-level CT dataset, yet it can approximately estimate the noise level in our generated images. NA-Diff-F has the smallest IQA gap (Δ_{IQA}) among all, demonstrating the effectiveness of the proposed noise-guided training processes. Additionally, the larger Δ_{IQA} for the baseline Model A (without natural image pre-training) highlights the importance of CT noise-emulated pre-training in NA-Diff. Moreover, consistent with the dose-IQA relationship, NA-Diff-F generated images are of better quality with the increase in relative dose levels (Table 4), indicating the intrinsic noise aware dose level understanding over NA-Diff-D. In terms of segmentation in Table 2, we show a comparison between the original mask m and masks m_{gen}^{pred} predicted for the generated images. The NA-Diff-D and NA-Diff-F model achieves comparatively high scores across all metrics, which indicates good anatomical consistency.

In Table 3, we compare our anatomy-guided model variants (i.e., NA-Diff-C and NA-Diff-D) with the baseline model Seg-Diff Konz et al. (2024). Compared to the anatomy-conditioned baseline Seg-Diff*, NA-Diff-D achieves substantial improvements across all metrics, where CFID improves by 52.4%, KID by 81.7%, CMMID by 50.4%, and LPIPS by 42.5%. When benchmarked against the ControlNet* baseline, NA-Diff-D achieves even larger relative gains, with CFID reduced by 57.2%, KID by 81.8%, CMMID by 46.3%, and LPIPS by 34.1%. These results show that our approach can generate anatomy-guided CT images with better fidelity, perceptual quality, and consistency compared to previous methods. The results of the ablation study are shown in Table 5. Across all metrics, natural image pre-training relatively improves performance compared to no pre-training. Comparing

Table 6: Segmentation performance on the downstream task using real data and a combination of real plus synthetic data. The models are trained either on real data only or on a mixture of real and synthetic CT images (paired with masks), and evaluated on the first 1000 cases from the test set (using real images and masks only). Incorporating synthetic data leads to comparable improvements in Dice and IoU across both U-Net and TransUNet architectures.

Methods	Description	Dice	IoU
U-Net Ronneberger et al. (2015)	Real Data	0.874	0.777
	Real + Synthetic Data	0.876	0.779
TransUNet Chen et al. (2021)	Real Data	0.872	0.773
	Real + Synthetic Data	0.877	0.781

486 NA-Diff-D (with pre-training) to NA-Diff-C (without pre-training), we observe substantial improvements
 487 in CFID by 40.3%, KID by 66.9%, CMMMD by 38.4%, and LPIPS by 1.3%.

488 For dual conditioning, NA-Diff-F’s CFID and KID are higher than NA-Diff-D because CFID is
 489 conditioned only on anatomy for calculation, favoring NA-Diff-D, and KID reflects greater sample
 490 diversity. However, NA-Diff-F achieves 3.8% lower CMMMD and 1.5% lower LPIPS, indicating
 491 better conditional consistency and perceptual similarity with dual conditioning. As shown in Table 6,
 492 adding synthetic data provides comparable gains in Dice and IoU, which demonstrate the potential
 493 of our synthetic CT images for downstream segmentation tasks.

494 For completeness, we report the Dice scores
 495 with 95% confidence intervals: U-Net (Real:
 496 0.874 [0.857–0.892], Real+Synthetic Data:
 497 0.876 [0.858–0.893]) and TransUNet (Real:
 498 0.872 [0.855–0.890], Real+Synthetic Data:
 499 0.877 [0.860–0.894]), showing that the im-
 500 provements are consistent and synthetic data
 501 does not degrade segmentation performance.

502 Furthermore, the qualitative results are pre-
 503 sented in Fig. 4, where our NA-Diff-F model
 504 generates the CT images according to the noise-
 505 aware semantic mask. In addition, as evidenced
 506 from Table 7, our NA-Diff-D model outper-
 507 forms the baseline when evaluated on the LiTS
 508 dataset. We compare the original segmenta-
 509 tion

510 masks with those predicted from the generated images (i.e., segmentation masks constructed by
 511 applying a segmentation model Ward & Imran (2025) to the generated images). This evaluation
 512 demonstrates that our method effectively preserves anatomical structures in the synthesized CT im-
 513 ages in comparison to the baseline model. Overall, NA-Diff-F performs well while following both
 514 noise and anatomy guidance. However, if we focus only on anatomy guidance, NA-Diff-D gives fa-
 515 vorable results. **In addition to the improvement in image generation, NA-Diff can be more resource-
 516 efficient compared to the baseline Seg-Diff.** Seg-Diff relies on a high-resource setup with $4 \times$ A6000
 517 GPUs (48 GB each), whereas our NA-Diff models were trained using only $2 \times$ A4000 GPUs (32 GB
 518 total). Despite using far fewer resource requirements, NA-Diff-D still achieves higher Dice, IoU,
 519 HD, recall, and precision. Regarding data efficiency, Seg-Diff is trained on approximately $10 \times$
 520 more real CT images than our NA-Diff model (11000 vs 1116). Considering the scarcity of high-
 521 quality medical datasets, our NA-Diff model reduces reliance on real CT data by leveraging large
 522 natural-image collections through our CT-like noise-emulation and pretraining strategies, enabling
 523 strong synthesis performance with far less real CT data and lower computational cost.

5 CONCLUSIONS

524 In this study, we present a novel noise and anatomy-guided diffusion model, NA-Diff, that can
 525 generate realistic CT images with dose-level aware noise and liver anatomy map guidance. Our
 526 innovative CT noise-emulated natural image pre-training helps capture complex features from dif-
 527 ferent CT dose labels. In the fine-tuning phase on our emulated data, the model learns complex
 528 CT image features with noise and also anatomical maps. Experimental evaluation on IQA and liver
 529 segmentation demonstrates the realistic quality variation and preservation of anatomical structures,
 530 along with noise-awareness in the generated CT images. **While higher-dose and low-noise CT scans
 531 are preferable for diagnosis, noise variation itself is clinically important for downstream tasks such
 532 as CT IQA, dose optimization, and selecting scans suitable for radiologist review or downstream
 533 AI models.** These tasks require both high-quality and low-quality examples to accurately identify
 534 when a scan is too noisy, low-dose, or degraded. Therefore, modeling noise variations is necessary
 535 to teach the generative model how CT appearance changes under different dose levels, which is
 536 essential for generating realistic low-quality images and for downstream dose- or quality-aware ap-
 537 plications. Our noise-aware and anatomically consistent design enables NA-Diff to explicitly learn
 538 this dose-quality relationship with the focus on the target organ, rather than collapsing toward only
 539 high-quality reconstructions. Our future work will focus on a more extensive evaluation of NA-Diff
 across different CT organs and various downstream tasks.

Table 7: The models are fine-tuned (with 3000 random sample images) and evaluated (with 500 random sample images) with segmentation guidance using LiTS Bilic et al. (2023) dataset. Our synthetic datasets show superior performance to the baseline. * denotes that the model is trained with our CT image data conditioned on the anatomy mask.

Methods	Performance metrics				
	Dice	IoU	HD	Recall	Precision
Seg-Diff*	0.911	0.838	22.629	0.864	0.968
NA-Diff-C	0.910	0.836	21.382	0.866	0.970
NA-Diff-D	0.920	0.853	20.508	0.872	0.974

540 REFERENCES
541

542 Abdullah al Nomaan Nafi, Md Alamgir Hossain, Rakib Hossain Rifat, Md Mahabub Uz Zaman,
543 Md Manjurul Ahsan, and Shivakumar Raman. Diffusion-based approaches in medical image
544 generation and analysis. *arXiv e-prints*, pp. arXiv–2412, 2024.

545 Aditya Bhat, Rupak Bose, Chinedu Innocent Nwoye, and Nicolas Padoy. Simgen: A diffusion-based
546 framework for simultaneous surgical image and segmentation mask generation. *arXiv preprint*
547 *arXiv:2501.09008*, 2025.

548 Moinak Bhattacharya, Gagandeep Singh, Shubham Jain, and Prateek Prasanna. Radgazegen: Ra-
549 diomics and gaze-guided medical image generation using diffusion models. *arXiv preprint*
550 *arXiv:2410.00307*, 2024.

551 Patrick Bilic, Patrick Christ, Hongwei Bran Li, Eugene Vorontsov, Avi Ben-Cohen, Georgios
552 Kaassis, Adi Szeskin, Colin Jacobs, Gabriel Efrain Humpire Mamani, Gabriel Chartrand, et al.
553 The liver tumor segmentation benchmark (lits). *Medical image analysis*, 84:102680, 2023.

554 Mikołaj Bińkowski, Danica J Sutherland, Michael Arbel, and Arthur Gretton. Demystifying mmd
555 gans. *arXiv preprint arXiv:1801.01401*, 2018.

556 Rupak Bose, Chinedu Innocent Nwoye, Aditya Bhat, and Nicolas Padoy. Cosimgen: Controllable
557 diffusion model for simultaneous image and mask generation. *arXiv preprint arXiv:2503.19661*,
558 2025.

559 Mikhail Chaichuk, Sushant Gautam, Steven Hicks, and Elena Tutubalina. Prompt to polyp: Medical
560 text-conditioned image synthesis with diffusion models. *arXiv preprint arXiv:2505.05573*, 2025.

561 Jieneng Chen, Yongyi Lu, Qihang Yu, Xiangde Luo, Ehsan Adeli, Yan Wang, Le Lu, Alan L Yuille,
562 and Yuyin Zhou. Transunet: Transformers make strong encoders for medical image segmentation.
563 *arXiv preprint arXiv:2102.04306*, 2021.

564 Ying Chen, Hongping Lin, Wei Zhang, Wang Chen, Zonglai Zhou, Ali Asghar Heidari, Huijing
565 Chen, and Guohui Xu. Icycle-gan: Improved cycle generative adversarial networks for liver
566 medical image generation. *Biomedical Signal Processing and Control*, 92:106100, 2024.

567 Joseph Cho, Mrudang Mathur, Cyril Zakka, Dhamanpreet Kaur, Matthew Leipzig, Alex Dalal, Ar-
568 avind Krishnan, Eubee Koo, Karen Wai, Cindy S. Zhao, Rohan Shad, Robyn Fong, Ross Wight-
569 man, Akshay Chaudhari, and William Hiesinger. Medisyn: A generalist text-guided latent diffu-
570 sion model for diverse medical image synthesis, 2025.

571 Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. *Advances*
572 *in neural information processing systems*, 34:8780–8794, 2021.

573 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
574 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
575 image is worth 16x16 words: Transformers for image recognition at scale. *arXiv preprint*
576 *arXiv:2010.11929*, 2020.

577 Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming transformers for high-resolution image
578 synthesis. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recogni-
579 tion*, pp. 12873–12883, 2021.

580 Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
581 Aaron Courville, and Yoshua Bengio. Generative adversarial networks. *Communications of the*
582 *ACM*, 63(11):139–144, 2020.

583 Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. *arXiv preprint*
584 *arXiv:2207.12598*, 2022.

585 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in*
586 *neural information processing systems*, 33:6840–6851, 2020.

594 Abdullah-Al-Zubaer Imran, Debashish Pal, Bhavik Patel, and Adam Wang. Ssiqa: Multi-task learn-
 595 ing for non-reference ct image quality assessment with self-supervised noise level prediction. In
 596 *2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI)*, pp. 1962–1965. IEEE,
 597 2021.

598 Sadeep Jayasumana, Sri Kumar Ramalingam, Andreas Veit, Daniel Glasner, Ayan Chakrabarti, and
 599 Sanjiv Kumar. Rethinking fid: Towards a better evaluation metric for image generation. In *Pro-
 600 ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 9307–
 601 9315, 2024.

602 Yifan Jiang, Yannick Lemaréchal, Josée Bafaro, Jessica Abi-Rjeile, Philippe Joubert, Philippe De-
 603 sprés, and Venkata Manem. Lung-ddpm: Semantic layout-guided diffusion models for thoracic
 604 ct image synthesis. *arXiv preprint arXiv:2502.15204*, 2025.

605 Diederik P Kingma, Max Welling, et al. An introduction to variational autoencoders. *Foundations
 606 and Trends® in Machine Learning*, 12(4):307–392, 2019.

607 Nicholas Konz, Yuwen Chen, Haoyu Dong, and Maciej A Mazurowski. Anatomically-controllable
 608 medical image generation with segmentation-guided diffusion models. In *International Confer-
 609 ence on Medical Image Computing and Computer-Assisted Intervention*, pp. 88–98. Springer,
 610 2024.

611 Arjun Krishna, Ge Wang, and Klaus Mueller. Multi-conditioned denoising diffusion probabilistic
 612 model (mddpm) for medical image synthesis. *arXiv preprint arXiv:2409.04670*, 2024.

613 Wonkyeong Lee, Fabian Wagner, Adrian Galdran, Yongyi Shi, Wenjun Xia, Ge Wang, Xuanqin
 614 Mou, Md Atik Ahmed, Abdullah Al Zubaer Imran, Ji Eun Oh, et al. Low-dose computed to-
 615 mography perceptual image quality assessment. *Medical Image Analysis*, 99:103343, 2025.

616 Wonkyeong Lee et al. Low-dose Computed Tomography Perceptual Image Quality Assessment
 617 Grand Challenge Dataset. In *Medical Image Computing and Computer Assisted Intervention*,
 618 2023. doi: 10.5281/zenodo.7833096.

619 Xinyu Liu, Wuyang Li, and Yixuan Yuan. Diffrect: Latent diffusion label rectification for semi-
 620 supervised medical image segmentation. In *International Conference on Medical Image Comput-
 621 ing and Computer-Assisted Intervention*, pp. 56–66. Springer, 2024.

622 Andreas Lugmayr, Martin Danelljan, Andres Romero, Fisher Yu, Radu Timofte, and Luc Van Gool.
 623 Repaint: Inpainting using denoising diffusion probabilistic models. In *Proceedings of the
 624 IEEE/CVF conference on computer vision and pattern recognition*, pp. 11461–11471, 2022.

625 Jiawei Mao, Yuhang Wang, Yucheng Tang, Daguang Xu, Kang Wang, Yang Yang, Zongwei Zhou,
 626 and Yuyin Zhou. Medsegfactory: Text-guided generation of medical image-mask pairs. *arXiv
 627 preprint arXiv:2504.06897*, 2025.

628 Cynthia McCollough, Bin Chen, David R. Holmes III, Xiaohui Duan, Zhiqiang Yu, Lifeng Yu,
 629 Shuai Leng, and Joel Fletcher. Low dose ct image and projection data (ldct-and-projection-data)
 630 (version 6), 2020. URL <https://doi.org/10.7937/9NPB-2637>.

631 Mehdi Mirza and Simon Osindero. Conditional generative adversarial nets. *arXiv preprint
 632 arXiv:1411.1784*, 2014.

633 Nusrat Munia and Abdullah Al Zubaer Imran. Prompting medical vision-language models to miti-
 634 gate diagnosis bias by generating realistic dermoscopic images. In *2025 IEEE 22nd International
 635 Symposium on Biomedical Imaging (ISBI)*, pp. 1–4. IEEE, 2025.

636 Xingyang Nie, Su Pan, Xiaoyu Zhai, Shifei Tao, Fengzhong Qu, Biao Wang, Huilin Ge, and Guojie
 637 Xiao. Image-conditional diffusion transformer for underwater image enhancement. *arXiv preprint
 638 arXiv:2407.05389*, 2024.

639 Hyun-Jic Oh and Won-Ki Jeong. Controllable and efficient multi-class pathology nuclei data aug-
 640 mentation using text-conditioned diffusion models. In *International Conference on Medical Im-
 641 age Computing and Computer-Assisted Intervention*, pp. 36–46. Springer, 2024.

648 Gaurav Parmar, Richard Zhang, and Jun-Yan Zhu. On aliased resizing and surprising subtleties
 649 in gan evaluation. In *Proceedings of the IEEE/CVF conference on computer vision and pattern*
 650 *recognition*, pp. 11410–11420, 2022.

651

652 William Peebles and Saining Xie. Scalable diffusion models with transformers. In *Proceedings of*
 653 *the IEEE/CVF international conference on computer vision*, pp. 4195–4205, 2023.

654 Ariadna Quattoni and Antonio Torralba. Recognizing indoor scenes. In *2009 IEEE conference on*
 655 *computer vision and pattern recognition*, pp. 413–420. IEEE, 2009.

656

657 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 658 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 659 models from natural language supervision. In *International conference on machine learning*, pp.
 660 8748–8763. PMLR, 2021.

661

662 Kazi Ramisa Rifa, Md Atik Ahamed, Jie Zhang, and Abdullah Imran. Tfkt v2: task-focused knowl-
 663 edge transfer from natural images for computed tomography perceptual image quality assessment.
 664 *Journal of Medical Imaging*, 12(5):051805–051805, 2025a.

665

666 Kazi Ramisa Rifa, Md. Atik Ahamed, Jie Zhang, and Abdullah-Al-Zubaer Imran. Task-focused
 667 knowledge transfer from natural images for ct image quality assessment. In *Medical Imaging*
 668 *2025: Image Processing*. International Society for Optics and Photonics (SPIE), 2025b.

669

670 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 671 resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF confer-
 672 ence on computer vision and pattern recognition*, pp. 10684–10695, 2022.

673

674 Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomed-
 675 ical image segmentation. In *International Conference on Medical image computing and computer-
 676 assisted intervention*, pp. 234–241. Springer, 2015.

677

678 Chitwan Saharia, William Chan, Huiwen Chang, Chris Lee, Jonathan Ho, Tim Salimans, David
 679 Fleet, and Mohammad Norouzi. Palette: Image-to-image diffusion models. In *ACM SIGGRAPH*
 680 *2022 conference proceedings*, pp. 1–10, 2022.

681

682 Carl H Schultz, Romeo Fairley, Linda Suk-Ling Murphy, and Mohan Doss. The risk of cancer from
 683 ct scans and other sources of low-dose radiation: a critical appraisal of methodologic quality.
 684 *Prehospital and disaster medicine*, 35(1):3–16, 2020.

685

686 Ruochong Shen, Xiaoxu Li, Yuan-Fang Li, Chao Sui, Yu Peng, and QiuHong Ke. Dcdiff: Dual-
 687 domain conditional diffusion for ct metal artifact reduction. In *International Conference on Med-
 688 ical Image Computing and Computer-Assisted Intervention*, pp. 223–232. Springer, 2024.

689

690 Yongyi Shi, Wenjun Xia, Ge Wang, and Xuanqin Mou. Blind ct image quality assessment using
 691 ddpm-derived content and transformer-based evaluator. *IEEE Transactions on Medical Imaging*,
 692 43(10):3559–3569, 2024.

693

694 Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. *arXiv*
 695 *preprint arXiv:2010.02502*, 2020.

696

697 Wenbo Song, Yan Jiang, Yin Fang, Xinyu Cao, Peiyan Wu, Hanshuo Xing, and Xinglong Wu.
 698 Medical image generation based on latent diffusion models. In *2023 International Conference on*
 699 *Artificial Intelligence Innovation (ICAI)*, pp. 89–93. IEEE, 2023.

700

701 Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.
 702 *Advances in neural information processing systems*, 32, 2019.

703

704 Danush Kumar Venkatesh, Dominik Rivoir, Micha Pfeiffer, Fiona Kolbinger, and Stefanie Speidel.
 705 Data augmentation for surgical scene segmentation with anatomy-aware diffusion models, 2024.

706

707 Tyler Ward and Abdullah-Al-Zubaer Imran. Annotation-efficient task guidance for medical segment
 708 anything. *arXiv preprint arXiv:2412.08575*, 2024.

702 Tyler Ward and Abdullah Al Zubaer Imran. Annotation-efficient task guidance for medical segment
 703 anything. In *2025 IEEE 22nd International Symposium on Biomedical Imaging (ISBI)*, pp. 1–4.
 704 IEEE, 2025.

705

706 Zhaohu Xing, Sicheng Yang, Sixiang Chen, Tian Ye, Yijun Yang, Jing Qin, and Lei Zhu. Cross-
 707 conditioned diffusion model for medical image to image translation. In *International Conference*
 708 *on Medical Image Computing and Computer-Assisted Intervention*, pp. 201–211. Springer, 2024.

709

710 Yanwu Xu, Li Sun, Wei Peng, Shuyue Jia, Katelyn Morrison, Adam Perer, Afroz Zandifar, Shyam
 711 Visweswaran, Motahhare Eslami, and Kayhan Batmanghelich. Medsyn: Text-guided anatomy-
 712 aware synthesis of high-fidelity 3-d ct images. *IEEE Transactions on Medical Imaging*, 2024.

713

714 Yulin Yang, Qingqing Chen, Yinhao Li, Fang Wang, Xian-Hua Han, Yutaro Iwamoto, Jing Liu,
 715 Lanfen Lin, Hongjie Hu, and Yen-Wei Chen. Segmentation guided crossing dual decoding gen-
 716 erative adversarial network for synthesizing contrast-enhanced computed tomography images.
IEEE Journal of Biomedical and Health Informatics, 2024.

717

718 Li Zhang, Basu Jindal, Ahmed Alaa, Robert Weinreb, David Wilson, Eran Segal, James Zou, and
 719 Pengtao Xie. Generative ai enables medical image segmentation in ultra low-data regimes. *Nature*
Communications, 16(1):6486, 2025.

720

721 Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding conditional control to text-to-image
 722 diffusion models. In *Proceedings of the IEEE/CVF international conference on computer vision*,
 pp. 3836–3847, 2023.

723

724 Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable
 725 effectiveness of deep features as a perceptual metric. In *Proceedings of the IEEE conference on*
726 computer vision and pattern recognition, pp. 586–595, 2018a.

727

728 Zheyuan Zhang, Lanhong Yao, Bin Wang, Debesh Jha, Gorkem Durak, Elif Keles, Alpay Mede-
 729 talibeyoglu, and Ulas Bagci. Diffboost: Enhancing medical image segmentation via text-guided
730 diffusion model. IEEE Transactions on Medical Imaging, 2024.

731

732 Zizhao Zhang, Lin Yang, and Yefeng Zheng. Translating and segmenting multimodal medical vol-
 733 umes with cycle-and shape-consistency generative adversarial network. In *Proceedings of the*
734 IEEE conference on computer vision and pattern Recognition, pp. 9242–9251, 2018b.

735

736 Jian-Qing Zheng, Yuanhan Mo, Yang Sun, Jiahua Li, Fuping Wu, Ziyang Wang, Tonia Vincent, and
 Bartłomiej W Papież. Deformation-recovery diffusion model (drdm): instance deformation for
 737 image manipulation and synthesis. *arXiv preprint arXiv:2407.07295*, 2024.

738

739 Qiang Zhu, Kuan Lu, Menghao Huo, and Yuxiao Li. Image-to-image translation with diffusion
 740 transformers and clip-based image conditioning. *arXiv preprint arXiv:2505.16001*, 2025.

741

742 Yuanzhi Zhu, Zhaohai Li, Tianwei Wang, Mengchao He, and Cong Yao. Conditional text image
 743 generation with diffusion models. In *Proceedings of the IEEE/CVF Conference on Computer*
 744 *Vision and Pattern Recognition*, pp. 14235–14245, 2023.

745

746

747

748

749

750

751

752

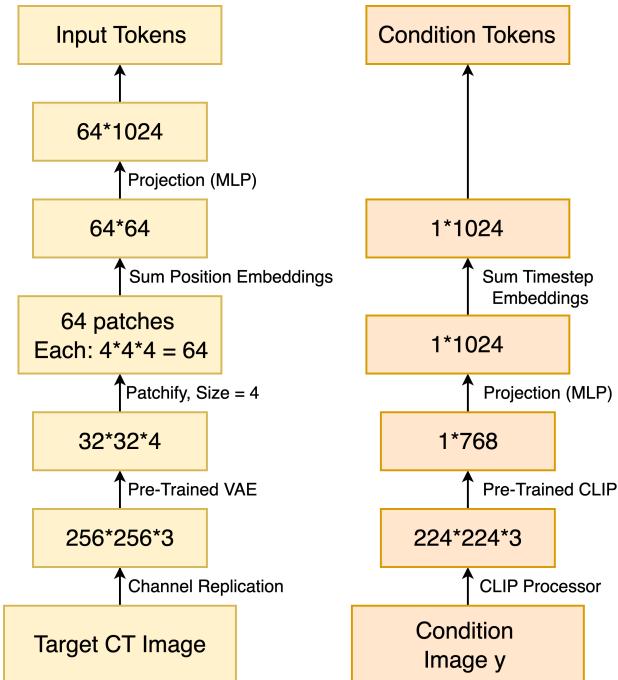
753

754

755

756 A NA-DIFF VARIANTS
757758 A.1 SEP-DIFF
759

760 In Sep-Diff, it has three stages of training. In the first stage, the model uses a CT-emulated natural
761 image and input conditioned on noise maps. This stage is considered a natural image pre-training
762 phase. Both the input image and the output image are encoded using the VAE Kingma et al. (2019)
763 encoder. In the second stage, the model is fine-tuned, leveraging CT images and their corresponding
764 simulated noise maps. In this stage, the input image is also encoded using the VAE encoder; how-
765 ever, for noise maps, we use the CLIP Radford et al. (2021) model encoder to get a global semantic
766 embedding as shown in Figure 5. In the final stage, the model fine-tunes utilizing CT images and
767 their corresponding liver segmentation mask. For the image encoding process, the model follows a
768 process similar to the second stage.



791 Figure 5: Dimensionality flow of Sep-Diff variants (excluding pre-training). The CT target image is
792 encoded by a pre-trained VAE into latent patches (e.g., 4x4x4), flattened and projected to the trans-
793 former’s hidden space. In parallel, the condition image is processed by a pre-trained CLIP model
794 to produce a global feature vector, which is linearly projected, fused with timestep embeddings, and
795 combined with input tokens for the transformer.

796 A.2 CAT-DIFF
797

798 Unlike Sep-Diff, Cat-Diff contains a two-stage training process. In the first stage of training, it
799 follows the exact same process as Sep-Diff pre-training. However, in the second stage, it combines
800 the second and third stage training of Sep-Diff into one stage training. Here, the model leverages CT
801 images with corresponding noise maps and anatomy masks as conditioning. While input images are
802 encoded using VAE, both conditions use CLIP as an encoder. After getting the global embedding,
803 we employ concatenation to emphasize dual conditioning. Let $y_{\text{map}}, y_{\text{mask}} \in \mathbb{R}^{768}$ denote the CLIP
804 embeddings of the noise map and segmentation mask, respectively. These embeddings are projected
805 into the transformer’s hidden space using a learnable MLP:

$$\tilde{y}_{\text{map}} = \phi(y_{\text{map}}), \quad \tilde{y}_{\text{mask}} = \phi(y_{\text{mask}}), \quad \rho : \mathbb{R}^{768} \rightarrow \mathbb{R}^{\mathcal{D}}, \quad (10)$$

806 where \mathcal{D} is the transformer hidden dimension (e.g., 1024), and ρ is defined as:

$$\rho(y) = \mathcal{W}_2 \cdot \text{SiLU}(\mathcal{W}_1 y + \mathcal{B}_1) + \mathcal{B}_2. \quad (11)$$

810 To preserve the distinct information from both embeddings, we concatenate them along the channel
 811 dimension:

$$\tilde{y}_{\text{concat}} = [\tilde{y}_{\text{map}} \parallel \tilde{y}_{\text{mask}}] \in \mathbb{R}^{2D}. \quad (12)$$

814 The concatenated vector is then fused and projected back to \mathbb{R}^D using a second MLP:

$$\tilde{y}_{\text{final}} = \eta(\tilde{y}_{\text{concat}}), \quad \eta : \mathbb{R}^{2D} \rightarrow \mathbb{R}^D. \quad (13)$$

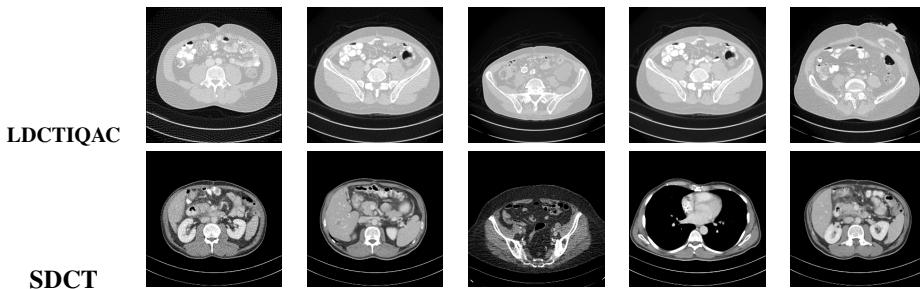
818 Finally, this fused conditioning vector is added to the sinusoidal timestep embedding $\gamma(t)$ to form
 819 the complete conditioning representation:

$$c = \tilde{y}_{\text{final}} + f_{\theta}(t), \quad (14)$$

822 where $f_{\theta}(t) \in \mathbb{R}^D$ is the output of an MLP applied to a sinusoidal timestep embedding. This
 823 conditioning vector c is broadcast to the transformer blocks and modulates each residual path using
 824 adaptive layer normalization (adaLN-Zero).

826 B IQA AND SEGMENTATION EVALUATION

828 NA-Diff model variants are evaluated by predicting diagnostic image quality assessment (IQA)
 829 scores, providing a measure of noise level estimation for the generated CT images. Although the
 830 IQA score may not be perfectly accurate due to differences in window center (40) and width (400)
 831 settings between our dataset and the pre-trained IQA model’s Rifa et al. (2025a) training data (as
 832 shown in Fig. 6), a relative comparison is still feasible. We utilize another pretrained model Ward &
 833 Imran (2024) for liver segmentation masks comparison; the generated CT images from our model
 834 are passed through the segmentation model to produce liver masks and show a comparison between
 835 the model-generated mask and the real mask images. This allows us to assess whether the anatomical
 836 structures are being effectively preserved in the synthesized images. We report Dice score,
 837 IoU, Precision, Recall, and Hausdorff Distance (HD) to assess how well the segmentation masks
 838 predicted from the generated CT images compare to the real ground-truth masks.



840
 841
 842
 843
 844
 845
 846
 847
 848 Figure 6: Visualization of the samples of IQA-based model’s Rifa et al. (2025b) trained dataset
 849 LDCTIQAC Lee et al. (2023) and our SDCT dataset.

851 C ADDITIONAL EXPERIMENTS

854 The IQA scores for NA-Diff-D and NA-Diff-F are quite similar across different dose levels as shown
 855 in Fig. 7. For NA-Diff-F, the IQA scores increase steadily as the dose level rises, indicating that it
 856 is more effective at handling noise in generated images. Qualitative results comparing the baseline
 857 model and our anatomy-guided variants are shown in Fig. 8. Our method preserves anatomical
 858 structures more compared to the baseline.

859 Moreover, as reported in Table 8, our NA-Diff-D model outperforms the baseline when evaluated
 860 on the LiTS dataset. Compared to the Seg-Diff* baseline, our NA-Diff-D model achieves the best
 861 performance across all metrics, improving CFID by 11.98%, KID by 25%, CMMD by 11.4%, and
 862 LPIPS by 0.4%. This highlights the efficacy of our anatomy-guided approach for generating high-
 863 fidelity and perceptually consistent CT images. Also, the results in Table 9 highlight the advantage
 864 of concatenating condition tokens over summing them for dual conditioning.

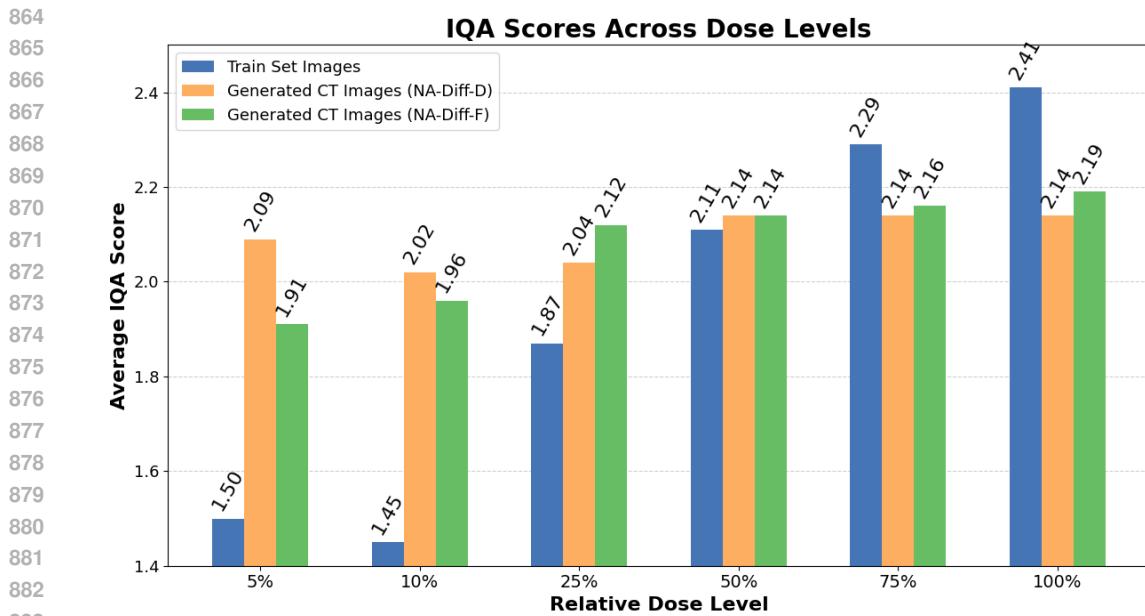


Figure 7: Predicted IQA scores for the NA-Diff-F generated CT images compared to input CT images at different dose levels.

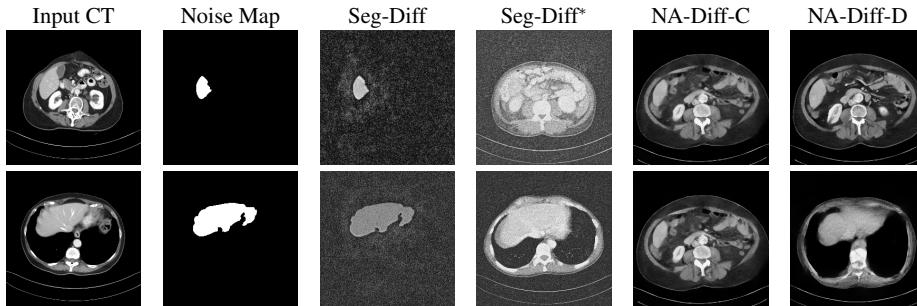


Figure 8: Qualitative results with baseline and antamody guided variants of NA-Diff.

In Fig. 10, NA-Diff-F demonstrates strong noise map awareness, adapting its generation quality following varied noise map levels. Furthermore, we have the overlay results from NA-Diff-D and NA-Diff-F as shown in Fig. 9, which show good anatomical alignment between the generated images and the segmentation masks.

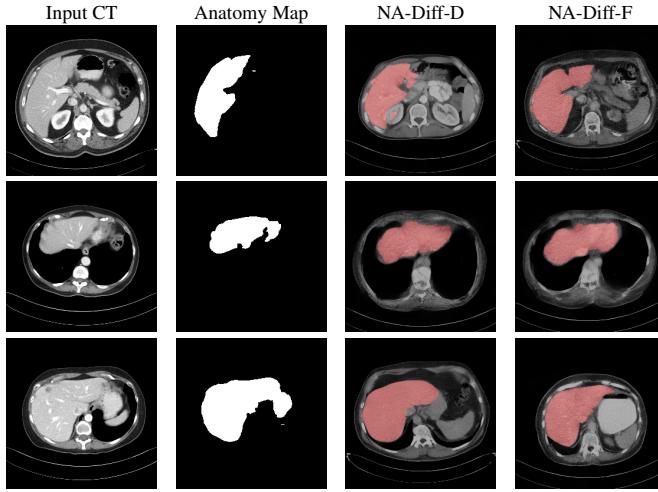
Algorithm 2 shows how the input data is conditioned. The grayscale image x is first repeated across three channels and encoded into a latent z using the VAE encoder \mathcal{E} . The anatomy map n and mask m are separately encoded by the CLIP image encoder ϕ to obtain feature vectors f_n and f_m . These are projected through W_{clip} and fused by W_{cat} to form the condition embedding c .

Algorithm 1 describes the DiT forward pass with adaLN-Zero conditioning. The latent z is patch-embedded with fixed sinusoidal positional embedding P . A timestep t is mapped into an embedding e_t (via a sinusoidal MLP) and added to c to form the global conditioner h . In each DiT block, h is used by adaLN to generate scale Γ , shift Δ , and gating g parameters that modulate the LayerNorm outputs before multi-head self-attention (MSA) and MLP layers. After L such blocks, the final layer produces the predicted noise $\hat{\epsilon}_\theta$. This prediction is used in the diffusion loss to train the model.

D CT NOISE SIMULATION

Diffusion models require large-scale training data. However, using natural images for pre-training can lead to domain shift issues. To address this, we emulate CT-specific noise patterns within natural images, creating CT dose-emulated datasets for the pre-training phase. Fig. 11 illustrates examples

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939



940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Figure 9: Qualitative comparison showing overlay outputs from our NA-Diff-D and NA-Diff-F variants. The visualization highlights segmentation accuracy and generative performance.

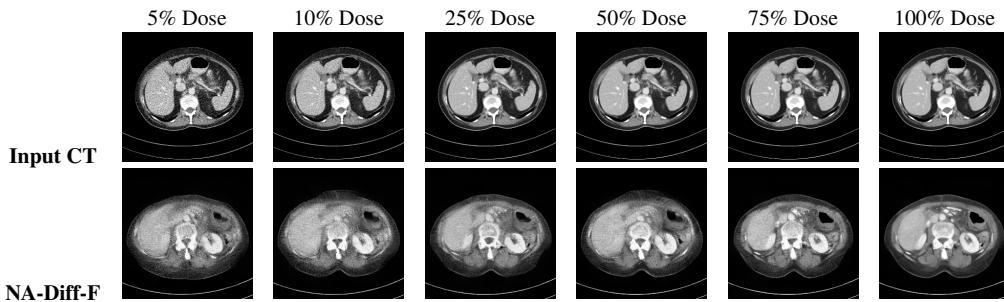


Figure 10: Qualitative comparisons at different noise levels show that our NA-Diff-F model effectively captures and adapts to the provided noise maps.

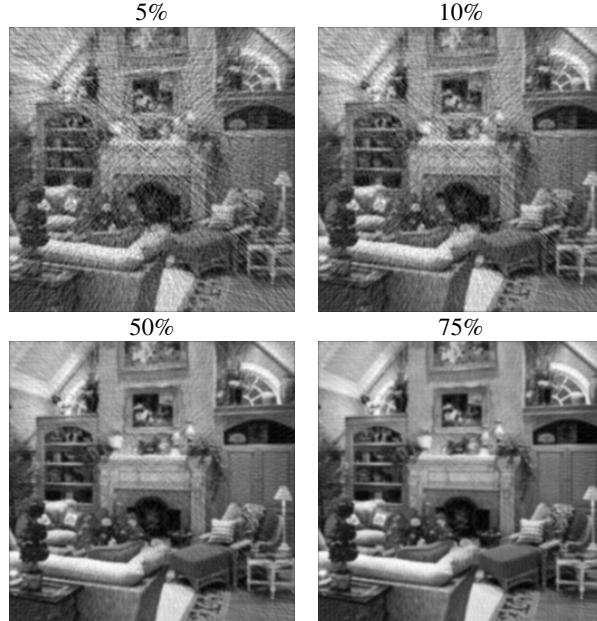
972
 973
 974
 975
 976
 Table 8: The models are fine-tuned (with 3000 random sample images) and evaluated (with 500
 977 random sample images) with segmentation guidance using the LiTS Bilic et al. (2023) dataset. Our
 978 synthetic datasets show superior performance to the baseline. * denotes that the model is trained
 979 with our CT image data conditioned on the anatomy mask. The best and second-best results are
 980 **bolded** and underlined respectively.
 981

977 Methods	978 Performance metrics			
	979 CFID ↓	980 KID ↓	981 CMMMD ↓	982 LPIPS ↓
983 Seg-Diff*	60.5636	25.3853 ± 3.065	0.376	0.3833 ± 0.1023
984 NA-Diff-C	89.2949	57.6014 ± 5.8231	0.541	0.3866 ± 0.1021
985 NA-Diff-D	53.2949	19.0386 ± 2.8532	0.333	0.3817 ± 0.1029

982 Table 9: Ablation study highlighting the importance of using concatenation in dual conditioning.
 983 The sum and concatenation denotes operations on condition token.
 984

985 Methods	986 Operation	987 Performance metrics			
		988 CFID ↓	989 KID ↓	990 CMMMD ↓	991 LPIPS ↓
992 NA-Diff-F	993 Sum	81.3672	52.7426 ± 5.2481	0.492	0.3824 ± 0.1018
994 NA-Diff-F	995 Concat.	64.6379	24.8106 ± 3.2275	0.3205	0.3760 ± 0.0994

996 of natural images augmented with CT-like noise characteristics. Moreover, Fig. 12 visualizes simulated CT images corresponding to relative dose levels.
 997
 998
 999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014



1015 Figure 11: Visualization of natural images at different simulated dose levels.
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025

1026
1027**Algorithm 1** DiT forward pass with AdaLN-Zero

1028
1029
1030 **Require:** latent image tokens z , condition embedding c , timestep embedding t
1031 1: $X \leftarrow \text{PatchEmbed}(z) + P$ ▷ initial token sequence
1032 2: $h \leftarrow \text{sincosMLP}(t) + c$ ▷ conditioning vector
1033 3: **for** $\ell = 1$ to L **do**
1034 4: $(\gamma_t^{(\ell)}, \beta_t^{(\ell)}, \alpha_t^{(\ell)}) \leftarrow \text{MLP}(\text{LN}(h))$
1035 5: $X \leftarrow X + \alpha_t^{(\ell)} \cdot \text{MSA}(\gamma_t^{(\ell)} \odot \text{LN}(X) + \beta_t^{(\ell)})$
1036 6: $X \leftarrow X + \alpha_t^{(\ell)} \cdot \text{MLP}(\gamma_t^{(\ell)} \odot \text{LN}(X) + \beta_t^{(\ell)})$
1037 7: **end for**
1038 8: $(\gamma'_t, \beta'_t) \leftarrow \text{MLP}(\text{LN}(h))$
1039 9: $\hat{\vartheta} \leftarrow \text{unpatchify}(W_{\text{out}}(\gamma'_t \odot \text{LN}(X) + \beta'_t))$
1040 10: **return** $\hat{\vartheta}$ ▷ predicted noise
1041

1042
1043
1044
1045
1046**Algorithm 2** Data conditioning

1047
1048 **Require:** x (gray), n (map), m (mask); \mathcal{E}, ϕ
1049 1: $z \leftarrow 0.18215 \cdot \mathcal{E}(\text{repeat}(x, 3)).\text{sample}()$
1050 2: $f_n \leftarrow \phi(n); f_m \leftarrow \phi(m)$
1051 3: $c \leftarrow W_{\text{cat}}([W_{\text{clip}}(f_n) \parallel W_{\text{clip}}(f_m)])$
1052 4: **return** (z, c)
1053

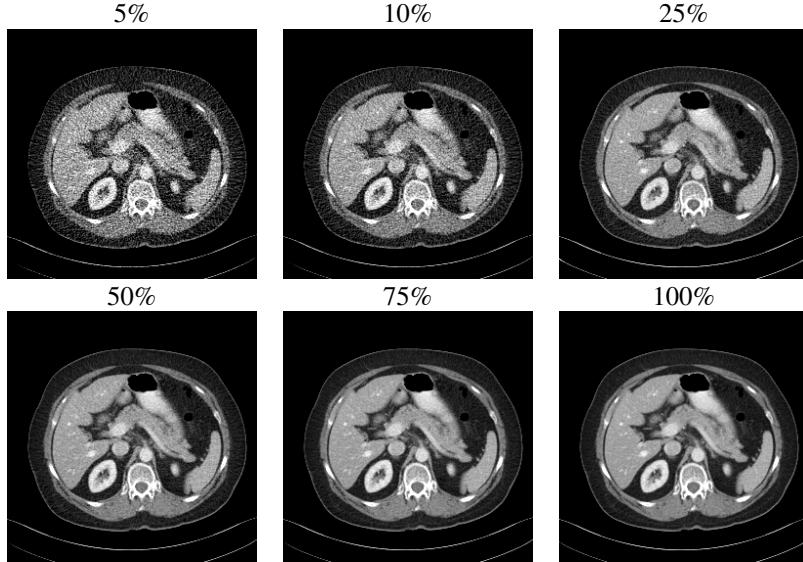
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Figure 12: Visualization of CT images across different simulated dose levels (e.g., only 25% and 100% are provided; other levels are constructed using our low-dose simulation technique).