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ABSTRACT

Neural ordinary differential equations (neural ODEs) represent a widely-used
class of deep learning models characterized by continuous depth. Understand-
ing the generalization error bound is important to evaluate how well a model is
expected to perform on new, unseen data. Earlier works in this direction involved
considering the linear case on the dynamics function (a function that models the
evolution of state variables) of Neural ODE Marion (2024). Other related work
is on bound for Neural Controlled ODE Bleistein & Guilloux (2023) that de-
pends on the sampling gap. We consider a class of neural ordinary differential
equations (ODEs) with a general nonlinear function for time-dependent and time-
independent cases which is Lipschitz with respect to state variables. We observed
that the solution of the neural ODEs would be of bound variations if we assume
that the dynamics function of Neural ODEs is Lipschitz continuous with respect
to the hidden state. We derive a generalization bound for the time-dependent and
time-independent Neural ODEs. Using the fact that Neural ODEs are limiting
cases of time-dependent Neural ODEs we obtained a bound for the residual neu-
ral networks. We showed the effect of overparameterization and domain bound in
the generalization error bound. This is the first time, the generalization bound for
the Neural ODE with a more general non-linear function has been found.

1 INTRODUCTION

Neural Ordinary Differential Equations (Chen et al. (2018)) are a class of deep learning models
where the transformation between layers is treated as a continuous process defined by an ordinary
differential equation (ODE). This idea generalizes the concept of residual networks (ResNets), where
the evolution of the hidden state z(t) over time is modeled by a differential equation

dz(t)

dt
= f(z(t), t, θ(t)) with z(0) = x, (1.1)

where θ(t) represents the parameters of the model.

Unlike discrete representations from the conventional methods, neural ordinary differential equa-
tions (Neural ODEs) directly learn continuous latent representations (or latent states) based on a
vector field parameterized by a neural network. Kidger et al. (2020) introduced neural controlled
differential equations (Neural CDEs), which are continuous-time analogs of ResNets that use con-
trolled paths to represent irregular time series. Neural ODEs are also extended to neural stochastic
differential equations (Neural SDEs) with a focus on aspects such as gradient computation, varia-
tional inference for latent spaces, and uncertainty quantification. In neural stochastic ODEs (neural
SDEs, Oh et al. (2024)), usually a diffusion term is incorporated but a careful design of drift and
diffusion term is essential.

With neural ODEs, generally, it is difficult to handle irregular time-series data. Neural controlled
differential equations (Kidger et al. (2020)) generalize neural ODEs by incorporating a control
mechanism, allowing them to model the evolution of hidden states as controlled differential
equations. Studying the statistical properties of neural ODEs is not a trivial task. Since standard
measures of statistical complexity in neural networks, such as those discussed by Bartlett et al.
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(2019), typically increase with depth, it is unclear why models with effectively infinite depth, like
neural ODEs, would demonstrate strong generalization capabilities.

Marion (2024) studied the statistical properties of a class of time-dependent neural ODEs
described by the following equation:

dHt

dt
= Wtσ(Ht),

where Wt ∈ Rd×d is a weight matrix that depends on the time index t, and σ : R → R is an
activation function applied component-wise. The model considered by Marion (2024) does not
include the case where there are weights inside the non-linearity since they assume the dynamics at
time t to be linear with respect to the parameters.

Contribution. For a general class of well-posed neural ODEs, where the neural network involves
the non-linear weights within the function, there is no result related to the generalization bound. In
this work, we consider a Neural ODE model parameterized by θ(t) of the following form:

dz(t)

dt
= f(z(t), t, θ(t)) with z(0) = x, (1.2)

where f : Rd × Rd → Rd and z(t) : [0, L] → Rd. We provide a generalization bound for the large
class of parameterized ODEs instead of a linear class, the bound we provided here will hold for a
linear class as well and is stricter than the earlier bounds for the linear class of functions. To the best
of our knowledge, this is the first available bound for neural ODEs for this class of functions.

Organization. Section 1 is devoted to the introduction, and in Section 2, we discuss the realted
works. In section 3, we discuss some of the preliminaries and definitions that are crucial for un-
derstanding the problem setup. In section 4, we formulated the problem statement and section 5
is devoted to derive results related to generalization bounds. We showed applications to residual
neural networks in section 6 and performed numerical experiments in section 7. In the end, some
concluding remarks are given in section 8.

2 RELATED WORKS

Hybridizing deep learning and differential equations. The fusion of deep learning with differen-
tial equations has recently garnered renewed interest, although the concept has been explored since
the 1990s Rico-Martinez et al. (1992; 1994). A notable advancement was presented by Chen et al.
(2018), where they introduced a model that learns a representation u ∈ Rn by setting the initial
condition z(0) = ϕθ(t)(u) for the following ordinary differential equation (ODE):

dz(t)

dt
= f(z(t), t, θ(t))

where both f and ϕθ(t) are neural networks. The solution at the final time t1, denoted z(t1), is then
utilized as input to a conventional machine learning model. This approach seamlessly integrates
neural networks and ODEs, offering a robust framework for learning complex dynamical systems.
Since then, several works have built on this idea, including theoretical advancements and practical
applications as seen in Dupont et al. (2019); Chen et al. (2019; 2020); Finlay et al. (2020). For
a more comprehensive overview, readers may refer to the reviews by Massaroli et al. (2020) and
Kidger (2022), which delve into the intersection of differential equations and deep learning.

Generalization of Neural Controlled Differential Equations. Bleistein & Guilloux (2023) used a
Lipschitz-based argument to obtain a sampling-dependant generalization bound for neural controlled
differential equations (NCDEs). The NCDE considered was of the following form:

dzt = Gψ(zt)dx̃t,

where zt ∈ Rp, and Gψ : Rp → Rp×d is neural network parametrized by ψ, also x̃t ∈ Rp is
continuous path. In this work, it is assumed that (xt) is Lipschitz which implies that x = (xt)t∈[0,1]

is of bounded variation. They also analyzed how approximation and generalization are affected by
irregular sampling.
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Generalization bounds for neural networks. Bartlett et al. (2017a) derived a margin-based mul-
ticlass generalization bound for neural networks that scales with margin-normalized spectral com-
plexity, involving the Lipschitz constant (the product of the spectral norms of the weight matrices)
and a correction factor. Long & Sedghi (2019) established generalization error bounds for convo-
lutional networks based on training loss, parameter count, the Lipschitz constant of the loss, and
the distance between current and initial weights, independent of input size and hidden layer dimen-
sions. Experiments on CIFAR-10 show these bounds align with observed generalization gaps under
varying hyperparameters in deep convolutional networks. Wang & Ma (2022) derive generalization
error bounds for deep neural networks trained via SGD by combining control of parameter norms
with Rademacher complexity estimates. These bounds, which apply to various architectures like
MLPs and CNNs, depend on the training loss and do not require L-smoothness, making them more
broadly applicable than stability-based bounds.

3 PRELIMINARIES

Definition 3.1 (Bartlett et al. (2017b)). Let (M,ρ) be a metric space. A subset T̂ ⊆M is called an
τ -cover of T ⊆ M if for every m ∈ T , there exists an m′ ∈ T̂ such that ρ(m,m′) ≤ τ . T̂ is called
a proper cover if T̂ ⊂ T . The τ covering number of T is the cardinality of the smallest τ -cover of
T , that is

N(τ, T, ρ) = min{|T̂ | : T̂ is an τ cover of T}.

Definition 3.2 (Dutta & Nguyen (2018)). The function u ∈ L1(Ω,R) is a function of bounded
variation on Ω (denoted by BV (Ω,R)) if the distributional derivative of u is representable by a
finite Radon measure in Ω, i.e., if

∫
Ω

u · ∂φ
∂xi

dx = −
∫
Ω

φdDiu for all φ ∈ C1
c (Ω,R), i ∈ {1, 2, . . . , n},

for some Radon measure Du = (D1u,D2u, . . . ,Dnu). We denote by |Du| the total variation of
the vector measure Du, i.e.,

|Du|(Ω) = sup

{∫
Ω

u(x) div(ϕ) dx
∣∣∣∣ϕ ∈ C1

c (Ω,Rn), ∥ϕ∥L∞(Ω) ≤ 1

}
.

Lemma 3.3 (Gautschi (1959)). For x > 0 and 0 < λ < 1, the inequality holds

x1−λ ≤ Γ(x+ 1)

Γ(x+ λ)
≤ (x+ 1)1−λ.

Rademacher Complexity : Rademacher complexity is a concept from statistical learning theory
that measures the richness of a class of functions in terms of how well they can fit random noise. It
is commonly used to derive bounds on the generalization error of learning algorithms.

Definition 3.4 (Mohri (2018)). Given a class of functions H mapping from an input space X to
R and a sample S = {x1, x2, . . . , xn} drawn from a distribution D, the empirical Rademacher
complexity of H with respect to the sample S is defined as:

R̂S(H) = Eσ

[
sup
h∈H

1

n

n∑
i=1

σih(xi)

]
,

where σi are independent Rademacher variables, which take values +1 or −1 with equal probability.
and the expectation Eσ is taken over the distribution of the Rademacher variables.
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Lemma 3.5. (Particular case of Gronwall’s Inequality) Let I denote an interval of the real line of
the form [a,∞) or [a, b] or [a, b) with a < b. Let α, β, and u be real-valued functions defined on
I . Assume that β and u are continuous and that the negative part of α is integrable on every closed
and bounded subinterval of I .

If β is non-negative and if u satisfies the integral inequality and if the function α is non-decreasing,
then

u(t) ≤ α(t) +

∫ t

a

β(s)u(s) ds, ∀t ∈ I,

then

u(t) ≤ α(t) exp

(∫ t

a

β(s) ds

)
, t ∈ I.

Lemma 3.6. (Gronwall’s Lemma for sequences). Let (yk)k≥0, (bk)k≥0, and (fk)k≥0 be positive
sequences of real numbers such that

yn ≤ fn +

n−1∑
l=0

blyl

for all n ≥ 0. Then

yn ≤ fn +

n−1∑
l=0

flbl

n−1∏
j=l+1

(1 + bj)

for all n ≥ 0.

Proof can be found in Holte (2009) and Clark (1987). We need a variant of Gronwall’s Lemma for
sequences.
Lemma 3.7. Let (uk)k≥0 be a sequence such that for all k ≥ 1,

uk ≤ akuk−1 + bk
for (ak)k≥1 and (bk)k≥1 two positive sequences. Then for all k ≥ 1,

uk ≤

 k∏
j=1

aj

u0 +

k∑
j=1

bj

 k∏
i=j+1

ai

 .

Lemma 3.8 (Bartlett et al. (2017b)). For any function class F containing functions f : X → R, we
have that

R̂n(F) ≤ inf
ϵ≥0

4ϵ+ 12

∫ supf∈F

√
E[f̂2]

ϵ

√
logN(τ,F , L2(Pn))

n
dτ


where N(τ,F , L2(Pn)) denotes the covering number of F .
Definition 3.9. Let z(t) be the solution of the neural ODE to 1.1 with x as the initial solution. The
empirical risk over the training data is :

R̂(z(t)) =
1

n

n∑
i=1

ℓ(yi, z(t)).

The expected risk or generalization error over the data distribution is :
R(z(t)) = E(x,y)∼P [ℓ(y, z(t))].

R(z(t)) = E[ℓ(y, z(t))].
Lemma 3.10 (Mohri (2018)). Rademacher complexity regression bounds : Let L : Y × Y → R be
a non-negative loss function, upper bounded by M > 0 (ℓ(y, y′) ≤ M for all y, y′ ∈ Y), and such
that for any fixed y′ ∈ Y , the function y 7→ ℓ(y, y′) is µ-Lipschitz for some µ > 0.

E(x,y)∼D [ℓ(h(x), y)] ≤ 1

n

n∑
i=1

ℓ(h(xi), yi) + 2µR̂S(H) + 3M

√
log 2

δ

2n
.
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4 THE LEARNING PROBLEM

The evolution of the hidden state z(t) over time is modeled by a differential equation
dz(t)

dt
= f(z(t), t, θ(t)) with z(0) = z0, (4.3)

We now detail our learning setup. Let z(t) be the solution of Neural ODE and let yi be the true label
of the differential equation at ith time step to be learned by Neural ODE.

We consider an i.i.d. sample {(yi, ti)}ni=1 ∼ y, t. For a given predictor z(t) ∈ F , define

Rn(z(t)) =
1

n

n∑
i=1

ℓ(yi, z(ti)) and R(z(t)) = Et,y [ℓ(y, z(t))]

as the empirical risk and expected risk on the continuous data. Rn(z(t)) cannot be optimized, since
we do not have access to the continuous data. Let θ̂(t) ∈ argminθ(t) ∈ Θ(t)Rn(z(t)) be an optimal
parameter and ẑ(t) be the optimal predictor obtained by empirical risk minimization. In order to
obtain generalization bounds, the following assumptions on the loss and the outcome are necessary
Mohri (2018).

Assumption 1. f(z(t), t, θ(t)) is assumed to be Lipschitz continuous with respect with z(t).

Assumption 2. Weights Ai(t) and biases bi(t) are Lipschitz continuous.

Assumption 3. The outcome y ∈ Rd is bounded almost surely.

Assumption 4. The loss ℓ : Rd × Rd → R+ is Lipschitz continuous with respect to its second
variable, that is, there exists Lℓ such that for all u, u′ ∈ Y and y ∈ Y ,

|ℓ(y, u)− ℓ(y, u′)| ≤ Lℓ|u− u′|.

This hypothesis is satisfied for most of the classical loss functions, such as the mean squared error,
as long as the outcome and the predictions are bounded. This is true by Assumption 3 and Lemma
5.1. The loss function is thus bounded since it is continuous on a compact set, and we let Mℓ be a
bound on the loss function.

5 MAIN RESULTS

We state and prove important lemmas before proceeding to the proof of the main theorem 5.9. We
assume that f(z(t), t, θ(t)) is Lipschitz continuous with respect to z. So, by the mean value theorem,
the solution to equation 1.1 will be of bounded variation.
Lemma 5.1. For z(t) ∈ Rd, Ai(t) ∈ Rm×d and bi(t) ∈ Rd for i = 1, 2 . . . N

fN (z(t)) := σ (AN (t)σ (AN−1(t)σ (. . . σ (A1(t)z + b1)) + bN−1) + bN ) .

Assume that σ is Lσ Lipschitz, and Ai’s are bounded by A and biased terms are bounded by B. Let
∥Ai(0)∥ ≤ BA0 , ∥bi(0)∥ ≤ Bb0 , t ∈ [0, L] and LA and Lb are Lipschitz constant for weights and
biases respectively.

Using equation A.5 we have, ∥Ai(t)∥ ≤ ∥Ai(0)∥ + LAL ≤ BA0
+ LAL = A and ∥bi(t)∥ ≤

∥bi(0)∥+ LbL ≤ Bb0 + LbL = B. Then,

∥z(t)∥ ≤
(
∥z(0)∥+ tLσB

(LσAN − 1

LσA

)
exp

(
tLfθ(t)

)
.

Corollary 5.2. In the case of time-independent Neural ODE Lipschitz constants for weights and
biases will be 0. hence BA0

= A and Bb0 = B and

∥z(t)∥ ≤

(
∥z(0)∥+ LLσBb0

(LσB
N
A0

− 1

LσBA0

)
exp

(
LLfθ(t)

)
. (5.4)

This bound on the solution will be useful to obtain the explicit form for covering number bound.
This bound involves the Lipschitz constant, bound on biased terms and weights.

5
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Lemma 5.3. Let

V =

(
∥z(0)∥+ LLσB

(LσAN − 1

LσA

)
exp

(
LLfθ(t)

)
and 0 < τ ≤ LV

τ , then

N(τ, I, L2(Pn)) ≤
24

LV
τ

18
.

Remark 5.4. Observe that the covering number bound increases exponentially with domain size and
the bound of solution. We obtain a strict bound on covering number for the class of L1 functions.

Corollary 5.5. Let 0 < τ ≤ LV
τ , then

N(τ,B, L2(Pn)) ≤
216

LV
τ

324
.

Proof. From Dutta & Nguyen (2018), we know that

N(τ,B, L2(Pn)) ≤ N2
(τ
2
, I, L2(Pn)

)
,

which proves the required result.

Remark 5.6. In the above lemma, the bound is dependent on covering number of non-decreasing
functions with the radius of balls getting half. But for the class of bounded variation functions, we
do not assume that the functions are non-decreasing.

Lemma 5.7. Let B′ be the class of Rd valued functions with domain [0, L] that are of bounded
variation, then

R̂n(B′) ≤ 96

√
bLV d

3
2 log 2

√
n

− 576
LV d

3
2 log 2

n
.

Remark 5.8. Lemma 5.7 ensures that the bound on Rademacher complexity increases with the
dimension of range space for bounded variation functions. Also, due to the constant V , we also get
the dependence on weight parameters and Lipschitz constant of activation functions.

Theorem 5.9. (Generalization bound for Neural ODEs) Let V be the upper bound of the solution
of neural ODE, d be the dimension of the solution, ẑ(t) be the optimal predictor and z∗(t) be the
true solution and L be the upper bound for time and M > 0 be an upper bound of non-negative loss
function l : [0, V ] × [0, V ] → R, i.e., l(ẑ(t), z∗(t)) ≤ M for all ẑ(t), z∗(t) ∈ [0, V ]. Also, assume
that for any fixed ẑ(t) ∈ [0, V ], the mapping y 7→ l(ẑ(t), z∗(t)) is µ-Lipschitz for some µ > 0. Then
generalization error is bounded with probability at least 1− δ by:

R(ẑ(t)) ≤ Rn(ẑ(t)) + 2µ

96

√
bLV d

3
2 log 2

√
n

− 576
LV d

3
2 log 2

n

+ 3M

√
log 2

δ

2n
.

Outline of the proof. We observed that the solution of the Neural ODEs described by equation 1.1
will be of bounded variations. We found stricter bound for covering number of this class of functions.
We observed that the covering number is related to the number of positive integer solutions of an
equation which is equal to central binomial coefficients. The central binomial coefficient obeys a
recurrence relation which has a closed form solution. We then used inequality which the ratio of
gamma functions satisfies. In this way, we obtained a stricter bound for the covering number of
bounded variation functions. We assumed the parameters to be Lipschitz continuous and obtained
a bound on Weights and biases. We then found Rademacher complexity bound using Dudley’s
entropy integral stated in Lemma 3.8. Finally, we used the result for the Rademacher complexity
in Lemma 5.7 to regression bound stated in Lemma 3.10. Since Rademacher complexity is non
negative, b ≥ 36LV log 2

n .

Comparison: The bound given in our work is stricter in terms of n. Bound given in Marion (2024)
does not depend on depth but has worse dependence on width, our bound depends on depth but

6
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does not depend on width. In the bound given in Bleistein & Guilloux (2023), if we take the case
x(t) = t, in which case it is neural ODE, the bound is the same in terms of n but the bound depends
on the discretization of time, here it is independent of that and also the bound is simpler in this case
as it contains less number of parameters. More details can be found in appendix A.4.

6 APPLICATION TO RESIDUAL NEURAL NETWORKS

Residual Neural Networks (ResNets) operate on discrete sequences of inputs and produce hidden
states at each time step. The hidden state ht at time step t is updated using the previous hidden state
ht−1 and the current input xt. The update rule for a basic ResNet can be written as:

ht = ht−1 +∆t · f(ht−1, θt)

where ht is the hidden state at time step t, f(ht−1, θt) is the update function (a nonlinear transfor-
mation parameterized by weights θt), and ∆t is the time step size (assumed to be 1). This discrete
update rule resembles the Euler’s method for solving ordinary differential equations (ODEs). If we
interpret ht as a function of continuous time t, we can write:

dh(t)

dt
= f(h(t), t, θ(t)).

This equation describes how the hidden state h(t) evolves continuously over time. The right-hand
side has the same update function as in the discrete ResNet, but in this case, it governs continuous
evolution.

To connect this with Neural ODEs, we take the continuous-time limit of the discrete ResNet. As
∆t→ 0, the discrete ResNet update equation becomes a continuous-time differential equation:

lim
∆t→0

ht+∆t − ht
∆t

= f(h(t), t, θ(t)).

This is exactly the form of a Neural ODE:

dh(t)

dt
= f(h(t), t, θ(t)).

In this case, h(t) is the continuously evolving hidden state, and f(h(t), t, θ(t)) is the neural network
defining the dynamics. The solution to this differential equation gives the evolution of the hidden
state over continuous time, instead of discrete steps as in ResNets. Hence, Neural ODEs can be
seen as the limiting case of ResNets when the time step between updates goes to zero, allowing the
hidden state to evolve continuously.
Theorem 6.1. (Generalization bound for Residual Neural Networks) Let V be the upper bound of
the solution of ResNet, d be the dimension of the solution, ẑ(t) be the optimal predictor and z∗(t) be
the true solution and L be the upper bound for time and M > 0 be an upper bound of non-negative
loss function l : [0, V ] × [0, V ] → R, i.e., l(ẑ(t), z∗(t)) ≤ M for all ẑ(t), z∗(t) ∈ [0, V ], Also,
assume that for any fixed ẑ(t) ∈ [0, V ], the mapping y 7→ l(ẑ(t), z∗(t)) is µ-Lipschitz for some
µ > 0. Then generalization error is bounded with probability at least 1− δ by:

R(ẑ(t)) ≤ Rn(ẑ(t)) + 2µ

96

√
bLV d

3
2 log 2

√
n

− 576
LV d

3
2 log 2

n

+ 3M

√
log 2

δ

2n
.

Outline of the proof.

If L(bound on time domain) is discrete then the final time L of neural ODE will be same as Number
of layers of Resnet, V will hold for any time, it will be same for final time t for Neural ODE and
Resnet, L can be real number and since the number of layers is discrete we takeN = ⌊L⌋. Since f is
same for both, Lf will also be same hence V will be same. N will always be less than or equal to L,
hence covering number for set of solutions by Resnet will be less than or equal to covering number
for set of solutions by Neural ODE. If we use Dudley’s entropy integral then Rademacher complexity
bound will be the same because covering the number of set of hidden states of ResNet will be less
than or equal to covering number of set of solutions of Neural ODEs hence if we substitute this

7
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Rademacher complexity bound to the regression bound by Mohri (2018) then we get same bound.

Comparison: The bound obtained by us depends on depth only, but the bound given in Marion
(2024) depends on width and depth. More details can be found in appendix A.5.

7 NUMERICAL ILLUSTRATIONS

The experiment shown by figure 1 investigates the impact of varying the number of hidden units
in a Neural ODE model on the generalization error. Neural ODEs are continuous-depth neural
networks that model the dynamics of a system using ordinary differential equations. In this setup,
we train a Neural ODE with a hidden layer whose dimension is altered across different experiments.
We utilize a simple two-dimensional input and a synthetic dataset where the target is generated by
applying a sine function to the sum of the input features. The network’s task is to predict the scalar
output corresponding to this target. By adjusting the number of hidden units in the ODE block, we
analyze how the model’s capacity affects its generalization ability, defined as the difference in error
on unseen test data after training. Overall as the number of hidden units increases the generalization
error increases which validates the theorem 5.9, because as the number of hidden units increases the
norm bound increases.

Figure 1: Generalization Error vs Number of Hidden Units in Neural ODE.

In the experiment illustrated by figure 2, we utilized a deeper Neural ODE model to assess the effect
of different regularization parameters on the generalization gap. The synthetic data simulates com-
plex real-life phenomena, such as a particle trajectory in a potential field. Regularization was applied
to the model’s loss function to enforce model stability, and the regularization term V was computed
as a function of various properties of the model, such as the spectral norms of weight matrices. For
each trial, we recorded the generalization gap as the difference between training and test losses. The
results were visualized using a box plot, which shows the distribution of generalization gaps for each
regularization parameter, providing insights into the bound which is directly proportional to V .As
we increase the value of the regularization parameter the mean generalization gap decreases which
indicates that the bound is directly proportional to V . The constant V is dependent on the bound of
weights and bias terms which changes for each training.

8
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Figure 2: Plot of generalization gap against regularization parameter for time-independent Neural
ODE. V which is the bound of the solution is added as a penalty term to the loss function. For each
value of the regularization parameter Neural ODE, 20 trials were done. For each trial, it was trained
for 25 epochs.

The experiment shown by figure 3 is to investigate how the generalization gap is related to the
Lipschitz constant of weights sup0≤k≤L−1 ∥Wk+1 −Wk∥.The Neural ODE is defined with time-
varying weights, where the forward pass involves applying a sinusoidal time dependency to the
weights of the hidden layer. The model computes the Lipschitz constant by calculating the largest
singular value of the weight matrices, which serves as a measure of how sensitive the model is to
input changes. Lipschitz constant of weights is added as a penalty term in the loss function with
different regularization parameters (λ )values. The results are summarized in a box plot, showing
the generalization gap versus λ, to visualize the impact of varying the penalization factor on the
model’s generalization performance. As we increase the value of the penalization factor the average
generalization gap decreases which indicates models with less Lipschitz constant of weights have
less generalization gap.

Figure 3: Plot of generalization gap against regularization parameter for time dependent Neural
ODE. Lipschitz constant for weights which is the bound of solution is added as a penalty term to the
loss function. Four different λ values (0, 0.01, 0.1, and 1) are tested over 20 trials. For each trial, the
generalization gap is calculated as the difference between the validation loss and training loss after
training for 50 epochs.

8 CONCLUSION

We obtain the first generalization bounds for time-independent and time-dependent neural ODEs.
We proved the generalization bound for the time-dependent neural ODEs of the form dHt =
f(Ht, θ(t))dt. Using this result we also obtain the generalization bound for the time-independent
neural ODEs. By extending the reasoning for the time-dependent neural ODEs to the discrete case
we obtain generalization bound for residual neural networks. We also showed how it depends on
the width and depth of the network by considering the term which depends on the depth and width
of the network as it contains the norm which depends on the width of the network. We also showed

9
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how the generalization gap is dependent on the Lipschitz constant of weights for the case of time-
dependent Neural ODEs. Since stochastic Neural ODEs have been found to deep limits of a large
class of residual neural networks, it will be interesting to extend our result to the more involved case
of Neural SDEs.
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APPENDIX

Organization of the Appendix: Section A in appendix provides the proofs for three lemmas which
we used to prove the main theorem. We also provide comparison results in section A. We proved
lemma 5.1, 5.3, and 5.7 in this section. Section B is devoted to details related to numerical experi-
ments.

A PROOFS

A.1 PROOF OF LEMMA 5.1

Proof. Let A(t) be a time-dependent matrix. We assume that A(t) is Lipschitz continuous, meaning
there exists a constant LA such that for all t1, t2 ∈ [t0, tf ]:

∥A(t1)−A(t2)∥ ≤ LA|t1 − t2|

where LA is the Lipschitz constant and ∥ · ∥ is a suitable matrix norm (e.g., Frobenius norm or
operator norm).

To express A(t) as a function of its initial value A(t0), we use the integral representation:

A(t) = A(t0) +

∫ t

t0

dA(s)

ds
ds

where dA(s)
ds is the time derivative of A(s), and the integral captures the accumulation of changes

over time.

Using the assumption that A(t) is Lipschitz continuous, the time derivative dA(s)
ds is bounded by the

Lipschitz constant LA. Therefore, for s ∈ [t0, tf ], we have:∥∥∥∥dA(s)ds

∥∥∥∥ ≤ LA

Substituting this bound into the integral representation of A(t):

∥A(t)−A(t0)∥ ≤
∫ t

t0

∥∥∥∥dA(s)ds

∥∥∥∥ ds ≤ ∫ t

t0

LA ds

This simplifies to:

∥A(t)−A(t0)∥ ≤ LA|t− t0|

Thus, we have the bound:

∥A(t)∥ ≤ ∥A(t0)∥+ LA|t− t0|

Finally, to remove the time dependency, we maximize the bound over the interval [t0, tf ]:

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

∥A(t)∥ ≤ ∥A(t0)∥+ LA(tf − t0)

Thus, the matrix A(t) is uniformly bounded by a time-independent constant MA:

∥A(t)∥ ≤MA = ∥A(t0)∥+ LA(tf − t0)

Since t ∈ [0, L],
MA = ∥A(0)∥+ LAL (A.5)

Let

fN (z(t))

:= σ (AN (t)σ (AN−1(t)σ (. . . σ (A1(t)z + b1(t)))

+bN−1(t)) + bN (t)) .

where z ∈ Rd.
Let us first consider the case when d=1.
Let Dz be the distributional derivative of solution function z and

I = {z ∈ L1([0, L]) | z is non decreasing}

B = {z ∈ L1([0, L]) | |Dz|((0, L)) ≤M}.

We know that finding solution to neural ODE (5.1) is equivalent to finding solution to the integral
equation

z(t) = z(0) +

∫ t

0

f(z(t), t, θ(t) dt. (A.6)

Taking norms, this yields:

∥z(t)∥ ≤ ∥z(0)∥+
∫ t

0

∥f(z(t), t, θ(t))∥ dt. (A.7)

Notice that since we assumed f is Lipschitz with respect to z, we have that for all z ∈ Rd:

∥f(z(t), t, θ(t))∥ ≤ ∥f(z(t), t, θ(t))− f(0, t, θ(t))∥+ ∥f(0, t, θ(t))∥ (A.8)
≤ ∥f(z(t), t, θ(t))− f(0, t, θ(t))∥+ ∥f(0, t, θ(t))∥ (A.9)
≤ Lf∥z(t)∥+ ∥f(0, t, θ(t))∥ (A.10)

where the last inequality follows from the fact that f is Lipschitz. It follows that:

∥z(t)∥ ≤ ∥z(0)∥+
∫ t

0

(Lf∥z∥+ ∥f(0, t, θ(t))∥) dt. (A.11)

Using the fact that
∫ t
0
dt = t, one gets:

∥z(t)∥ ≤ ∥z(0)∥+ t∥f(0, t, θ(t)∥+ Lf

∫ t

0

∥z(t)∥ dt (A.12)

Applying Gronwall’s inequality stated in Lemma 3.5 yields,

∥z(t)∥ ≤ (∥z(0)∥+ t∥f(0, t, θ(t))∥) exp (tLf ) . (A.13)

Let ∥Ai(0)∥ ≤ BA0
and ∥bi(0)∥ ≤ Bb0

Then using equation A.5 we get, ∥Ai(t)∥ ≤ ∥Ai(0)∥ + LAL ≤ BA0
+ LAL = A and ∥bi(t)∥ ≤

∥bi(0)∥+ LbL ≤ Bb0 + LbL = B

12
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Since

∥fN (0)∥ = ∥fN (0)− σ(0)∥ ≤ Lσ∥AN (t)fN−1(0)∥+ LσB, (A.14)

≤ LσA∥fN−1(0)∥+ LσB. (A.15)

Using lemma 3.7,

∥fN (0)∥ ≤ (LσA)
N−1 ∥σ(b1)∥+ LσB

N−2∑
j=0

(LσA)
j
, (A.16)

≤ LσB

N−1∑
j=0

(LσA)
j
, (A.17)

= LσB
(LσA)

N − 1

LσA− 1
. (A.18)

This implies

∥z(t)∥ ≤
(
∥z(0)∥+ tLσB

(LσAN − 1

LσA

)
exp (tLf ) . (A.19)

A.2 PROOF OF LEMMA 5.3

Proof. For a fixed positive integer n, let us set the discretization size as ∆x = L
n , ∆y = V

n . To
each z ∈ I, we associate the pair of functions (ψ+[z], ψ−[z]) defined by

ψ
−
+[z] =

N−1∑
k=0

ψ
−
+
k · I[k ·∆x, (k + 1) ·∆x], (A.20)

where

ψ−
k =

[
z(k ·∆x+ 0)

∆y

]
,

ψ+
k =

[
z((k + 1) ·∆x− 0)

∆y

]
+ 1.

For X
−
+ ∈ I, define

U(X−,X+) = {z ∈ I | X− ≤ z ≤ X+}.
Since z ∈ U(X−[z],X+[z]), the set

U = {U(X−[z],X+[z]) | f ∈ I}
is a covering of I.

Since
#U ≤ {0 ≤ a0 ≤ a1 ≤ · · · ≤ aN−1 ≤ N | (ak ∈ N)}2

and

#{0 ≤ a0 ≤ a1 ≤ · · · ≤ aN−1 ≤ N | (ak ∈ N)}
=

{
(p1, . . . , pN+1) ∈ NN+1 | p1 + · · ·+ pN+1 = N

}
=

(
2N

N

)
,

13
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the covering number for the class of functions in I is bounded by
(
2n
n

)2
. Consider sums of powers

of binomial coefficients: arn =
∑n
k=0

(
n
k

)r
. For r = 2, the closed-form solution is given by

a(2)n =

(
2n

n

)
i.e., the central binomial coefficients. a(2)n obeys the recurrence relation

(n+ 1)a
(2)
n+1 − (4n+ 2)a(2)n = 0.

After solving the recurrence relation we get,(
2n

n

)
= C1

4n−1

Γ(n+ 1)

(
3

2

)
2n−1

((x)n denotes Pochhammer symbol.)

= 2 · 22(n−1)

Γ(n+ 1)

(
3

2

)
2n−1

(since C1 = 2,which we can
obtain by setting n = 0 in previous equation.)

=
22(n−1)

Γ(n+ 1)

Γ( 32 + n− 1)

Γ( 32 )

=
22(n−1)

Γ(n+ 1)

Γ(n+ 1
2 )√

π
2

=
22(n−1)√

π
2

Γ(n+ 1
2 )

Γ(n+ 1)

=
22n√
π

Γ(n+ 1
2 )

Γ(n+ 1)

≤ 22n√
π

1√
n
(using Lemma 3.3)

=
22n√
nπ

.

=⇒
(
2n

n

)2

≤ 24n

nπ

≤ 24n

6π
(if n ≥ 6)

≤ 24n

18
.

Let n =
[
LV
τ

]
+ 1, then

N(τ, I, L2(Pn)) ≤
24

LV
τ

18
.

A.3 PROOF OF LEMMA 5.7

Proof. Since,

N(τ,B′, L2(Pn)) ≤
216

LV
τ

324
.

14
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For z ∈ Rd ,

N(τ,B′, L2(Pn)) ≤

(
216

LV
√

d
τ

324

)d
Observe that, √

logN(τ,B′, L2(Pn)) ≤
4

√
LV d

3
2 log 2

√
τ

= g(τ).

Therefore, ∫ b

a

g(τ)dτ = 8

√
LV d

3
2 log 2

[√
b−

√
a
]

(A.21)

We know that from Lemma (3.8) that empirical Rademacher Complexity R̂n(B′) has the following
bound

R̂n(B′) ≤ inf
ϵ≥0

{
4ϵ+ 12

∫ b

ϵ

√
logN(τ,B′, L2(Pn))

n
dτ

}
,

where b = supf∈B′

√
E[f2]. Using (A.21), we have

R̂n(B′) ≤ inf
ϵ≥0

4ϵ+
96

√
LV d

3
2 log 2

√
n

[√
b−

√
ϵ
] .

This implies

R̂n(B′) ≤ 96

√
bLV d

3
2 log 2

√
n

− 576
LV d

3
2 log 2

n
.

A.4 COMPARISON WITH OTHER BOUNDS (NEURAL ODE)

Theorem A.1. ( Marion (2024) Generalization bound for parameterized ODEs).

H0 = x,

dHt =

m∑
i=1

θi(t)fi(Ht) dt,

Fθ(x) = H1, where,

• θ = (θ1, . . . , θm) is a parameter function mapping [0, 1] to Rm.

• fi(Ht) represents the dynamics associated with the i-th component of the system.

• Ht is the state of the system at time t, with the initial state H0 = x.

• Fθ(x) denotes the output state H1 after the evolution.

Θ = {θ : [0, 1] → Rm | ∥θ∥1,∞ ≤ RΘ and θi is KΘ-Lipschitz for i ∈ {1, . . . ,m}} .
Consider the class of parameterized ODEs FΘ = {Fθ, θ ∈ Θ}. Let δ > 0, then, for n ≥
9max(m−2R−2

Θ , 1), with probability at least 1− δ,

R(θ̂n) ≤ Rn(θ̂n) +B

√
(m+ 1) log(RΘmn)

n
+
Bm

√
KΘ

n1/4
+
B
√

log 1
δ√

n
,

where B is a constant depending on Kℓ, Kf , RW , RX , RY , and M . More precisely,

B = 6KℓKf exp(KfRΘ) (RX +MRΘ exp(KfRΘ) +RY ) .
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Theorem A.2. Bleistein & Guilloux (2023) Let Gψ(z) be the dynamic function as neural network

Gψ(z) = σ
(
Aqσ

(
Aq−1σ

(
· · ·σ

(
A1z + b1

))
+ bq−1

)
+ bq

)
, where (A.22)

(i) The activation function σ is Lσ-Lipschitz. This means that for any x, y ∈ R:

|σ(x)− σ(y)| ≤ Lσ|x− y|.

Moreover, σ(0) = 0, ensuring that the activation function is centered.

(ii) A1, A2, . . . , Aq are weight matrices for each layer of the network, and b1, b2, . . . , bq are
bias vectors for each layer of the network.

(iv) z is the input vector to the multi-layer perceptron (MLP).

With probability at least 1− δ, the generalization error RD(f̂D)−Rn(f̂D) is upper bounded by

24
MD

Θ Lℓ√
2

√
2pUD1 + (q − 1)p(p+ 1)UD2 + dp(2 + p)UD3 +Mℓ

√
log(1/δ)

2n
, with

UD1 := log(
√
nCqK

D
1 ), UD2 := log(

√
npCqK

D
2 ), UD3 := log(

√
ndpCqK

D
2 ),

and Cq := (8q + 12). Here, ∥Ah∥ ≤ BA, ∥bh∥ ≤ Bb, ∥U∥ ≤ BU , ∥v∥ ≤ Bv, ∥Φ∥ ≤ BΦ, K
D
1 and

KD
2 are two discretization and depth-dependent constants equal to

KD
1 := max{BΦM

D
Θ , BvCv}, KD

2 := max{BbCDb , BACDA , BUCU},

where CDA , CDb , Cv , and CU are Lipschitz constants.

MΘ := BΦLσ exp(BALσ)qLx

(
BUBx +Bv + κΘ(0)Lx

)
,

CA := BΦLx exp(LσBA)qLx × max
z∈Ω,1≤i≤q

CiA(z), Cb := BΦLx exp(LσBA)qLx × max
1≤i≤q

Cib,

CU := BΦBx exp(LσBALx)Lσ, Cv := BΦ exp(LσBA).

κΘ(0) =
LσBb
LσBA

(
q − 1

)
LσB

−1
A ,

which serves as an upper bound for ∥Gψ(0)∥op, defined as:

∥Gψ(0)∥op := max
∥u∥=1

∥Gψ(u)∥.

A.5 COMPARISONS WITH OTHER BOUNDS (RESIDUAL NEURAL NETWORKS)

Theorem A.3. (Marion (2024) Let H0 = x, Hk+1 = Hk + 1
LWk+1σ(Hk), 0 ≤ k ≤ L −

1, FW (x) = HL,

W = {W ∈ RL×d×d, ∥W∥1,1,∞ ≤ RW , ∥Wk+1 −Wk∥∞ ≤ KW

L
, for 1 ≤ k ≤ L− 1.}

Consider the class of neural networks FW = {FW ,W ∈ W}. Let δ > 0.Then, for n ≥
9R−1

W max(d−4R−1
W , 1), with probability at least 1− δ,

R(Ŵn) ≤ Rn(Ŵn) +B(d+ 1)

√
log(RW dn)

n
+
Bd2

√
KW

n1/4
+
B
√

log 1
δ√

n
,

where B is a constant depending on Kℓ, Kσ , RW , RX , and RY . More precisely,

B = 6
√
2Kℓmax

{
exp(KσRW )

RW
, 1

}
(RX exp(KσRW ) +RY ) .
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For this case also the bound by this is stricter in terms of n. Bound by Marion does not depend
on depth but has worse dependence on width, this bound depends on depth but does not depend on
width.
Corollary A.4. (Marion (2024)Corollary of Theorem 1.1 of Bartlett et al. (2017b) Consider the
class of neural networks FW̃ = {FW ,W ∈ W̃}, where FW is given by (10) and

W̃ = {W ∈ RL×d×d : ∥W∥1,1,∞ ≤ RW }.
Assume that L ≥ RW and Kσ = 1, and let γ, δ > 0. Consider (x, y), (x1, y1), . . . , (xn, yn) drawn
i.i.d. from any probability distribution over Rd × {1, . . . , d} such that almost surely ∥x∥ ≤ RX .

Then, with probability at least 1− δ, for every W ∈ W̃ ,

P
(
arg max

1≤j≤d
FW (x)j ̸= y

)
≤ Rn(W ) + C

RXRW exp(RW ) log(d)
√
L

γ
√
n

+
C
√

log(1/δ)√
n

,

where

Rn(W ) ≤ 1

n

n∑
i=1

1(FW (xi)yi
≤ γ +max

j ̸=yi
FW (xi)j),

and C is a universal constant.

B EXPERIMENT DETAILS

B.1 FOR EXPERIMENT ILLUSTRATED BY FIGURE 1

The objective of this experiment is to analyze the effect of the number of hidden units on the general-
ization error of a Neural ODE model. The generalization error is defined as the model’s performance
on unseen test data, measured using the mean squared error (MSE). The study investigates the rela-
tionship between model complexity, as determined by the number of hidden units, and its ability to
generalize.

The dataset is synthetically generated and consists of training and testing samples. The training
set comprises 100 samples, while the test set includes 30 samples. Each input sample has two
features, sampled from a standard normal distribution. The target values are computed using a non-
linear function of the inputs with some added randomness. This introduces a non-linear relationship
between inputs and targets, mimicking the challenges of real-world data.

The Neural ODE model used in this experiment consists of three main components. First, a linear
input layer maps the input data into a higher-dimensional space determined by the number of hidden
units. Second, the ODE function models the dynamics of the hidden state using a fully connected
layer with ReLU activation, solving the ODE using the ‘torchdiffeq.odeint‘ solver over the time
interval [0.0, 1.0]. The final state of the ODE solver is passed through an output layer to produce the
scalar prediction.

The independent variable in this study is the number of hidden units, which is varied across the
following values: [100, 200, 300, 400, 500, 600, 700, 800, 900]. For each configuration, the model
is trained for 100 epochs using the Adam optimizer with a learning rate of 0.01. The loss function
used is the mean squared error (MSE), and the training process is conducted on a GPU if available.
The dependent variable is the generalization error, which is evaluated as the mean squared error on
the test dataset.

Reproducibility is ensured by setting random seeds for both torch and numpy. The model per-
formance is evaluated by calculating the MSE on the training and test datasets after training. The
generalization error is analyzed as a function of the number of hidden units, and a line plot is gener-
ated to visualize this relationship. The x-axis represents the number of hidden units, and the y-axis
represents the corresponding generalization error.

The hypothesis of the experiment is that increasing the number of hidden units will initially reduce
the generalization error as the model’s capacity improves. However, beyond a certain point, over-
fitting may occur, leading to an increase in the generalization error. The experiment is designed to
identify this trend and explore the optimal model complexity for the given task.
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B.1.1 DATA GENERATION

The dataset used in this experiment is synthetically generated to test the Neural ODE model’s ca-
pability to generalize to unseen data. The process creates input-output pairs based on random input
vectors and a non-linear transformation for the target values. This ensures that the task is sufficiently
challenging while allowing for reproducibility.

The steps for generating the data are as follows:

1. The input data, denoted as X , is a set of nsamples random vectors, where each vector has
a dimensionality of input dim. The elements of X are drawn from a standard normal
distribution:

X ∼ N (0, 1)nsamples×input dim.

2. The target values, denoted as y, are generated by applying a sinusoidal transformation to
the sum of the elements in each input vector:

yi = sin

input dim∑
j=1

Xij

 , ∀i ∈ {1, 2, . . . , nsamples}.

This non-linear transformation introduces complexity into the data while ensuring a
bounded range for the output values.

3. The inputs X and the corresponding targets y are paired together to form the dataset:

Dataset = {(Xi, yi)}
nsamples
i=1 .

4. Two datasets are generated:

• A training dataset with nsamples = 100.
• A testing dataset with nsamples = 30.

Both datasets are created independently using the same generation process to ensure the
test data remains unseen during training.

5. The generated data is stored as PyTorch tensors, making it compatible with the Neural ODE
model. This enables efficient data loading and processing during training and evaluation.

This synthetic data generation process provides a controlled setup for evaluating the generalization
capabilities of the Neural ODE model. The use of a sinusoidal target function introduces a non-
trivial learning problem while maintaining interpretability and ease of reproducibility.

B.2 FOR EXPERIMENT ILLUSTRATED BY FIGURE 2

The primary objective of this experiment is to evaluate the relationship between regularization pa-
rameters and the generalization gap of a Neural ODE model. The model is trained on a real-life
complex dataset, simulating the trajectory of particles in a potential field. The generalization gap
is computed as the difference between the mean squared error (MSE) on the training and testing
datasets.

The dataset is generated synthetically to simulate realistic particle trajectories. For each trajectory,
the data points are computed by introducing sinusoidal patterns with added Gaussian noise. Specifi-
cally, the x-coordinates are defined as sin(t)+0.5ϵx, and the y-coordinates as cos(t)+0.5ϵy , where
ϵx and ϵy represent Gaussian noise. A total of 2000 samples are generated for both the training
and testing datasets. The generated data is converted into tensors for compatibility with PyTorch
operations.

The Neural ODE model used in the experiment consists of a multi-layer neural network. The ODE
function is parameterized by a deep neural network with four fully connected layers, each containing
100 hidden units and ReLU activation. The integration of the ODE is performed using the ‘torchdif-
feq.odeint‘ solver over the time interval [0.0, 1.0]. Regularization is applied by augmenting the loss
function with a penalty term proportional to the bound V , derived from the norms of the parameters
and Lipschitz constants of the network layers.
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The experiment is conducted for four regularization parameters: 0.0, 0.01, 0.08, and 0.1. For each
parameter, 20 trials are performed, and the model is trained for 25 epochs using the Adam optimizer
with a learning rate of 0.01. During each training step, the gradients of the weights are monitored to
compute the spectral norm and other components required for V .

The generalization gap is computed as the difference between the training and test losses, both
evaluated as MSE. To ensure reproducibility, the random seed is fixed at 100 for PyTorch and NumPy
operations. After the training process, the generalization gaps for all regularization parameters are
plotted using a box plot to visualize their distributions. The x-axis represents the regularization
parameters, and the y-axis represents the generalization gaps.

This experiment highlights the trade-off between regularization and model generalization, offering
insights into how different regularization strengths affect the performance of Neural ODEs on com-
plex datasets.

B.2.1 DATA GENERATION

The data used in this experiment is synthetically generated to simulate realistic particle trajectories
in a potential field. The trajectories are designed to exhibit sinusoidal patterns with added Gaussian
noise, capturing the complexity often found in real-life systems. This synthetic data allows for
controlled experimentation while maintaining a level of realism.

To generate the data, the following procedure is employed:

1. Define a time vector t that spans the interval [0, 10] with nsamples evenly spaced points. For
this experiment, nsamples = 2000 is used for both training and testing datasets.

2. Compute the x-coordinates of the trajectory as:

x = sin(t) + 0.5ϵx,

where ϵx is a Gaussian noise term sampled from N (0, 1).
3. Similarly, compute the y-coordinates of the trajectory as:

y = cos(t) + 0.5ϵy,

where ϵy is another independent Gaussian noise term sampled from N (0, 1).
4. Combine the x and y coordinates to form a dataset of two-dimensional points, represented

as:

data =


x1 y1
x2 y2
...

...
xnsamples ynsamples

 .
5. Convert the generated data into PyTorch tensors for compatibility with the Neural ODE

framework. The data is moved to the computation device (CPU or GPU) to optimize per-
formance during training and evaluation.

The generated dataset exhibits variability in particle trajectories due to the added noise, introducing
challenges similar to those encountered in real-world dynamical systems. This ensures that the
trained Neural ODE model can learn to approximate complex behaviors while being evaluated for
its ability to generalize across different initial conditions. Separate datasets are generated for training
and testing, ensuring that the model is not exposed to test samples during training.

By synthesizing the data in this manner, the experiment captures the intricacies of noisy particle
trajectories, providing a robust benchmark for evaluating the generalization capabilities of the Neural
ODE model.

B.3 FOR EXPERIMENT ILLUSTRATED BY FIGURE 3

This experiment investigates the impact of Lipschitz regularization on the generalization gap in
Neural Ordinary Differential Equation (ODE) models. A Neural ODE model is implemented where
the parameters of the ODE depend on time. The primary goal is to examine how adding a penalty
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term proportional to the Lipschitz constant of the model’s weights influences the generalization gap,
which is defined as the difference between validation loss and training loss.

The Neural ODE model consists of an ODE function with two fully connected layers. The first
layer maps 2-dimensional input data to a hidden representation of size 50 with ReLU activation.
The second layer projects this representation back to a 2-dimensional output. To incorporate time-
dependency, the hidden layer’s output is modulated by a sine function of time, introducing a dynamic
weight adjustment. The ODE is solved using the odeint function from the torchdiffeq library
over a fixed time interval of [0, 1].

To measure and regulate the Lipschitz constant of the model, the singular values of the weight
matrices are computed. The Lipschitz constant is defined as the maximum singular value across all
weight matrices. During training, the loss function combines the mean squared error (MSE) between
model predictions and ground truth labels with a penalty term proportional to the Lipschitz constant.
The overall loss is expressed as:

Loss = MSE + λ · L,
where λ is the regularization strength, and L is the Lipschitz constant of weights.

The datasets for training and validation are synthetically generated. Both datasets consist of 2-
dimensional samples drawn from a standard normal distribution, N (0, 1). The training dataset con-
tains 100 samples, while the validation dataset contains 20 samples. The corresponding labels are
generated by scaling the input data by a factor of 2, resulting in a simple linear relationship. This
ensures a clear evaluation of the model’s generalization capabilities.

B.3.1 DATA GENERATION

In this experiment, the input data and corresponding labels are synthetically generated to evaluate the
generalization capability of a neural ODE model with a Lipschitz constant penalty. The input data
consists of random 2-dimensional points, generated independently from a standard normal distribu-
tion. Specifically, for each input data point x = (x1, x2), both features x1 and x2 are independently
drawn from the standard normal distribution N (0, 1). This ensures that the dataset contains diverse
points distributed across the 2-dimensional space. The dataset used for training consists of 100 such
points, and the dataset used for validation consists of 20 points.

The corresponding labels for the input data are generated by a simple linear transformation. The
label for each data point x = (x1, x2) is computed as twice the value of the input features, i.e.,
y = 2 ·x. This linear transformation ensures that the label is directly related to the input data, which
makes it easier for the model to learn the mapping. The training labels ytrain and validation labels
yval are computed as ytrain = 2 · xtrain and yval = 2 · xval, respectively.

The dataset is randomly split into training and validation datasets. The training dataset consists
of 100 data points, and the validation dataset contains 20 data points. This splitting is done to
ensure that the model is evaluated on unseen data, allowing for the measurement of its generalization
performance.

To summarize, the input data is generated by independently sampling 2-dimensional points from
a standard normal distribution, ensuring a variety of input values. The corresponding labels are
generated through a simple linear scaling by a factor of 2. The dataset is split into training and
validation sets, with 100 samples for training and 20 samples for validation. This dataset setup
serves to evaluate the performance of a neural ODE model with a Lipschitz penalty term.
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