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Abstract

Capsule networks (CapsNets) have been proposed as an alternative to traditional
convolutional neural networks (CNNs), with the promise of better capturing part-
whole relationships and spatial hierarchies. While CNNs are known to exhibit a
strong bias towards texture in visual recognition tasks, human perception is more
shape-biased. In this paper, we aim to investigate whether CapsNets, by design,
demonstrate a stronger bias toward shape than texture, compared to CNNs. We
conducted a series of experiments across multiple capsule architectures on images
with a texture-shape cue conflict. Contrary to theoretical expectations, our results
show that CapsNets do not consistently exhibit a stronger shape bias than CNNs.
Although certain capsule models demonstrate promising shape recognition, they
still rely significantly on texture, and their overall performance remains closer to
that of CNNs than to human perception. These findings highlight the need for
further research and architectural improvements to fully realize the potential of
CapsNets in shape-based recognition.

1 Introduction

In recent years, deep learning models have achieved remarkable success across various visual
tasks, from image classification to object detection. Convolutional neural networks (CNNs) [16],
in particular, have been the cornerstone of many computer vision applications due to their ability
to capture local features through convolutional layers. However, Geirhos et al. [9] has revealed
that CNNs exhibit a significant bias toward texture in visual recognition tasks, often prioritizing
fine-grained local details over the global shape of objects. This texture bias has been associated
with various limitations in CNNs, including their susceptibility to adversarial attacks and reduced
robustness to domain shifts, where object texture may vary but the shape remains consistent.

In contrast, human visual perception is strongly biased toward shape rather than texture [2, 7, 22].
Humans can easily recognize an object based on its overall structure and form, even in the presence
of changes in texture or fine details. A notable example is the Wadi Sura cave paintings in the
Sahara Desert, where ancient artists depicted figures using simple shapes with minimal texture. This
demonstrates the human capacity to identify objects through shape alone. Such observations have led
to growing interest in developing models that align more closely with human-like shape bias in visual
recognition. Figure 1 illustrates how different texture and shape features influence classification.

Capsule Networks (CapsNets), first introduced by Sabour et al. [21], were proposed to overcome
the limitations of CNNs, particularly their inability to capture spatial hierarchies and relationships
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Figure 1: Cue conflict procedure from Geirhos et al. [9] showing a texture of an elephant applied to
an image of a cat. The 1000 classes predictions of the models are grouped into 16 basic classes. If
the decision is an elephant than the model reflects texture bias, otherwise, if the prediction is a cat,
than the model shows shape bias.

between object parts. Capsules are groups of neurons designed to encode the pose and features of the
objects in the scene, allowing them to extract more succinct representations with fewer parameters.
Capsules in different layers are connected thanks to a dynamic routing mechanism that explicitly
models the part-whole or child-parent relationships (e.g., the nose and mouth capsules are children
of the face capsule). This design suggests that capsules may exhibit a stronger bias towards shape,
making them potentially more robust to changes in texture and better aligned with human visual
perception.

However, despite these theoretical advantages, the extent to which CapsNets are truly biased toward
shape or texture remains an open empirical question. Existing studies have predominantly focused on
comparing CNNs and CapsNets regarding performance metrics, such as classification accuracy or
robustness, without explicitly measuring how these models handle shape versus texture in visual data.
This paper aims to address this gap by providing preliminary empirical evidence to assess whether
capsules are indeed more shape-biased or texture-biased. Therefore, we seek to answer the following
research question: Do capsule networks exhibit a stronger shape or texture bias?

To explore this, we conducted experiments with different CapsNets architectures across several
datasets where shape and texture information are systematically manipulated. Our findings reveal
that, contrary to the theoretical expectations, CapsNets do not consistently demonstrate a stronger
shape bias than CNNs. While some CapsNet models show promising results, their overall reliance on
texture remains significant, suggesting that further architectural modifications or training strategies
are required to realize their full potential for shape-based recognition.

2 Related work

To provide context for our investigation, in this section, we review the recent findings on the texture-
shape bias in neural networks and the development of CapsNets, highlighting key contributions that
inform our study.

Shape versus texture bias in neural networks Several researchers tried to investigate and improve
generalization towards shapes in neural networks with two main approaches: data augmentation
and architectural modification. For the first approach, the pioneering work [9] trained CNNs on
Stylized-ImageNet, a stylized version of ImageNet [5] created by applying style transfer techniques
to ImageNet images. This encouraged CNNs trained on the dataset to become more shape-biased.
Hermann et al. [14] mitigated the texture bias by applying simpler, naturalistic, and human-like
augmentation (color distortion, noise, and blur). Their method indicates that differences in how
humans and CNNs process images arise from the differences in the data they see. However, other
techniques rely not on data augmentation but on architectural improvements. For example, Bahng
et al. [1] created a texture-biased model by reducing the receptive field size of CNNs. Others, like
Dehghani et al. [4], scaled up vision transformers (ViTs) into 22 billion parameters, showing a near
human shape bias performance, and Li et al. [17] introduced shape bias into deep learning models by
enforcing sparsity coding constraints.
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Capsule networks They were initially introduced by Sabour et al. [21], and since then, several
advancements have focused on improving their efficiency and performance. For instance, Ribeiro et al.
[20] exploited matrix capsules instead of vector capsules and derived a novel routing algorithm based
on Variational Bayes for fitting a mixture of transforming Gaussians, and Edraki et al. [6] modeled
entities through capsule subspaces, eliminating the need for any routing mechanism. Moreover,
Mazzia et al. [18] replace dynamic routing with self-attention routing to improve generalization, also
relying on depthwise convolutions to reduce the number of capsules. Recently, Geng et al. [11] and
Renzulli et al. [19] removed redundancy in CapsNet, introducing pruning to reduce computational
effort and extract more succinct part-whole relationships, respectively. Additionally, Garau et al.
[8], inspired by the theoretical concepts described by Hinton [15], proposed an interpretable model
that, compared to previous ‘pure’ capsule models, brings together CNNs, transformers, neural fields,
contrastive learning representation, distillation, and capsules. This model learns better part-whole
hierarchies and conceptual-semantic relationships. We have included an overview of the standard
CapsNet architecture [21], along with relevant formulas, in Appendix A.1. For a complete review
and detailed explanation of CapsNets, please refer to the survey of De Sousa Ribeiro et al. [3].

In contrast to the aforementioned studies, our work, to the best of our knowledge, is the first to
empirically investigate the texture-shape bias in CapsNets, providing new insights into how these
models handle fundamental visual features.

3 Shape versus texture bias in capsules

3.1 Experiments

Datasets When studying the biases in CapsNets, there are important aspects to consider beyond
state-of-the-art performance. Despite their potential advantages, as mentioned in Section 1, CapsNets
have not yet seen widespread adoption in the industry or research community, especially compared to
CNNs or ViTs. One significant limitation is the lack of standardized architectures and pre-trained
models for CapsNets, particularly on large-scale datasets like ImageNet. This challenges researchers
and practitioners aiming to benchmark and deploy these models in real-world applications. This gap
makes it more difficult to explore architectural improvements or study inherent biases in CapsNets
without building models from scratch. As a result, in our experiments, instead of using ImageNet-
1000, we trained all models on a subset containing only 224× 224 resized images belonging to the
16 categories (we refer to it as ImageNet-16) that are used in the model-vs-human toolbox [10].
We used this toolbox to benchmark the gap between humans and CapsNets. Note that ImageNet-16
is highly unbalanced, so we weighted the sampling process by the frequencies of occurrences of
each class. Moreover, since there have been no prior results exploring the shape-texture bias in
CapsNets, we trained our model without data augmentation to isolate the natural inductive biases of
the architecture.

Architectures We tested different variants of capsule models, including different architectures,
routing algorithms, and capsule representation (matrix or vector form). We conducted experiments
with ResNet-18, standard CapsNets [21] (DR-CapsNets in this paper), Efficient-CapsNets [18],
Variational Bayes CapsNets [20] (VB-CapsNets) and Agglomerator [8]. For the first three capsule
architectures we extract capsules after three 5× 5 convolutional layers with 32, 64, and 128 output
channels and a stride of 2. We additionally stacked a DR-CapsNet on top of a ResNet-18 [13] model
(ResCapsNet-18). We use the notation architecture-L, where L is the number of capsule layers.
Note that in every architecture, there are at least two capsule layers (known in the literature as primary
capsules and class capsules. When L > 4, we added residual connections between capsules as
described by Gugglberger et al. [12]. We employed 16-th (or 4× 4 for VB-CapsNets) dimensional
capsules in all models. Other hyperparameters, such as the number of routing iterations and training
recipes, are the same as presented in the original paper. The code will be publicly available upon
acceptance of the paper.

3.2 Results

Figure 2 illustrates the shape and texture bias across different models, including ResNets and various
CapsNets, as well as human performance. For the corresponding results on ImageNet-16, please see
Appendix A.2.
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Figure 2: Shape vs. texture biases for stimuli with a texture-shape cue conflict (models trained on
ImageNet-16). Solid lines denote the results averaged across all classes.

Several key trends emerge from the figure. Human performance shows significantly less variance in
biases across different categories and demonstrates a clear preference for shape-based recognition,
as expected from prior research on human visual perception. On the contrary, with deep learning
models, this variance is higher.

Among all models, ResNet-18 exhibits the highest shape bias, but its decisions are heavily biased
towards textures compared to humans. However, CapsNets, in some cases, avoid the extreme texture
bias observed in ResNet-18, particularly in challenging categories like airplane, where CapsNets
focus more on the object itself than background cues. ResCapsNet-18 and VB-CapsNet are the ‘pure’
capsule models that demonstrate a shift towards shape-biased decisions, moving closer to ResNet-18
performance, although they still show a high degree of reliance on texture. Interestingly, adding
capsules to ResNet-18 even decreases the shape bias compared to the standard ResNet-18. Models
such as DR-CapsNet and Efficient-CapsNet exhibit a stronger bias towards textures. We can notice
that adding more capsule layers increases the fraction of shape decisions only for DR-CapsNets. In
our experiments, with L > 8, the training of the models on ImageNet-16 started to diverge.

Agglomerator-3 is the not ‘pure’ capsule-based model with the closest approximation to human-level
shape bias, with a higher fraction of shape-based decisions compared to other CapsNets, suggesting
that its architecture may be more effective at capturing the part-whole relationships that facilitate
shape recognition.

4 Conclusion

In this study, we investigated the shape-texture bias in capsules and compared their performance
to traditional CNNs and human visual recognition. While we hypothesized that CapsNets, due to
their architectural innovations such as dynamic routing and part-whole relationships, would exhibit a
stronger shape bias than CNNs, the results suggest otherwise. Although some CapsNet models show
a shift towards shape-based recognition, their overall performance still demonstrates a noticeable
reliance on texture, with most models performing closer to CNNs like ResNet-18 than humans in
terms of shape bias.

This outcome challenges the original expectation that CapsNets would inherently prioritize shape
over texture, highlighting the need for further exploration and refinement. The variability in shape
bias across different CapsNet architectures and depths underscores that the anticipated advantage of
capsules is less pronounced than we had hoped.

Future work will address these limitations by exploring alternative methods to enhance the shape
bias in CapsNets. One promising approach is to train CapsNets on Stylized-ImageNet [9], a dataset
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designed to reduce texture reliance by randomizing textures while preserving object shapes. Addition-
ally, other architectural modifications or data augmentation techniques to improve shape recognition
will be considered to align capsules with human-like visual perception better.
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A Appendix

A.1 Capsule networks background

Here, we describe the fundamental aspects of CapsNets, focusing on the first routing algorithm
introduced by Sabour et al. [21], commonly known as dynamic routing (DR-CapsNets).

Capsule Networks (CapsNets) organize neurons into capsules, represented as activity vectors u,
where each capsule encodes an object or one of its parts. The individual components of these vectors
correspond to various properties of the object, such as pose, color, and deformation. This work
also refers to the activity vector as the object’s pose. The magnitude ∥u∥2 of a capsule signifies the
probability of the object’s presence in the image.

A typical CapsNet consists of multiple capsule layers, denoted by l, stacked on top of a convolutional
backbone, where l ∈ 1, 2, ..., L. The capsules in layer l are collectively referred to as Ω[l]. There are
three main types of capsule layers: PrimaryCaps (the first layer, built upon convolutional layers),
ConvCaps (capsules with localized receptive fields), and FcCaps (fully-connected capsules, where
each capsule is connected to all the capsules in the previous layer). Generally, a CapsNet consists
of at least two capsule layers: PrimaryCaps and ClassCaps (or FcCaps), with the latter having one
output capsule per object class. Figure 3 depicts an example of a general CapsNet architecture.

l = 2l = 1

PrimaryCaps

Input 

ConvCaps

ClassCaps

Capsule u

Routing l = L - 1 l = L

ConvCaps

Backbone

Figure 3: An example of a general CapsNet architecture comprising a convolutional backbone, a
PrimaryCaps layer (which is a convolutional layer with squash activation and then reshaping), several
ConvCaps layers (where a capsule in layer l is computed using only a subset of capsules in layer
l − 1), and a ClassCaps (or FcCaps, where each capsule in layer l is computed using all the capsules
in layer l − 1) layer.

The process of computing capsules in layer l + 1 from capsules in layer l involves two stages:
part-whole transformation and hierarchical routing. In the first phase, each capsule i in layer l, whose
pose is denoted as u[l]

i , makes a prediction û
[l+1]
i,j , thanks to a transformation matrix W

[l]
i,j , for the

pose u
[l+1]
j of an upper layer capsule j

û
[l+1]
i,j = W

[l]
i,ju

[l]
i . (1)

Then, during the second phase, the unnormalized pose s
[l+1]
j is computed as the weighted average of

votes û[l+1]
i,j

s
[l+1]
j =

∑
i

c
[l]
i,jû

[l+1]
i,j , (2)

where c
[l]
i,j are the coupling coefficients between a capsule i in layer l and a capsule j in layer l + 1.

The pose u
[l+1]
j is then defined as the normalized “squashed” s

[l+1]
j

u
[l+1]
j = squash(s

[l+1]
j ) =

∥s[l+1]
j ∥2

1 + ∥s[l+1]
j ∥2

s
[l+1]
j

∥s[l+1]
j ∥

, (3)

whose magnitude lies in the range [0, 1). The coupling coefficients are computed dynamically and
depend on the input. They are determined by a “routing softmax” activation function, whose initial
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logits b[l]i,j are the log prior probabilities that the i-th capsule should be coupled to the j-th one

c
[l]
i,j = softmax(b

[l]
i,j) =

exp
(
b
[l]
i,j

)
∑
k

exp
(
b
[l]
i,k

) . (4)

At the first step of the routing algorithm, they are equal, and then they are refined by measuring the
agreement (defined as the scalar product) between the pose u

[l+1]
j and the prediction û

[l+1]
i,j for a

given input. At each iteration, the update rule for the logits is

b
[l]
i,j ← b

[l]
i,j + u

[l+1]
j û

[l+1]
i,j . (5)

The steps defined in Equation 2, Equation 3, Equation 4, Equation 5 are repeated for the r iterations of
the routing algorithm. As mentioned in Section 1, the goal of the routing algorithm is to decompose
the scene into objects and parts.

Sabour et al. [21] replaced the cross-entropy loss with a margin loss: the key idea is that the output
capsule for the predicted class should have a long instantiation vector if and only if an object of that
class is present in the input image.

A.2 Additional results on ImageNet-16

Table 1: Accuracy and number of trainable parameters of ResNet-18 and different CapsNets on
ImageNet-16.

Model Accuracy Number of parameters

ResNet-18 0.89 11.2M
ResCapsNet-18 0.91 13.5M
DR-CapsNet-2 0.83 4.9M
DR-CapsNet-8 0.78 5.3M
Efficient-CapsNet-2 0.87 1.7M
Efficient-CapsNet-8 0.84 2.1M
VB-CapsNet-4 0.81 1.4M
Agglomerator-3 0.84 643M

8


	Introduction
	Related work
	Shape versus texture bias in capsules
	Experiments
	Results

	Conclusion
	Appendix
	Capsule networks background
	Additional results on ImageNet-16


