
Thought of Search: Planning with Language Models
Through The Lens of Efficiency

Anonymous Author(s)
Affiliation
Address
email

Abstract

Among the most important properties of algorithms investigated in computer1

science are soundness, completeness, and complexity. These properties, however,2

are rarely analyzed for the vast collection of recently proposed methods for planning3

with large language models. In this work, we alleviate this gap. We analyse these4

properties of using LLMs for planning and highlight that recent trends abandon both5

soundness and completeness for the sake of inefficiency. We propose a significantly6

more efficient approach that can, at the same time, maintain both soundness and7

completeness. We exemplify on four representative search problems, comparing to8

the LLM-based solutions from the literature that attempt to solve these problems.9

We show that by using LLMs to produce the code for the search components we10

can solve the entire datasets with 100% accuracy with only a few calls to the LLM.11

We argue for a responsible use of compute resources; urging research community12

to investigate sound and complete LLM-based approaches that uphold efficiency.13

1 Introduction14

Recent work has addressed the issue of planning in Large Language Models (LLMs), spurred by15

their abilities in natural language tasks. The approaches vary widely from giving a planning problem16

to an LLM and asking it to output an entire plan to asking an LLM to plan step by step, including17

backtracking. Roughly, these approaches can be partitioned into two sets. The first exemplifies yet18

another capability of language models, while the second aims at presenting practical tools for solving19

planning problems. In the latter case, however, since planning problems are often computationally20

hard, it is crucial to understand the properties and the complexity of the algorithms proposed.21

The purpose of our work is precisely that. Going over a collection of recent methods for planning22

with large language models, we analyse the most important properties of the proposed methods23

such as soundness and completeness. We find all these methods to be neither sound nor complete.24

We further investigate the computational efficiency of these methods in terms of the number of25

invocations of their most expensive routine – LLM evaluation. From a pragmatic perspective, the26

cost of LLM evaluations is significant, either in terms of GPU resources, or expensive API calls to27

hosted LLMs. We find that abandoning the soundness and completeness does not provide any benefit28

in computational efficiency, as the proposed methods are prohibitively inefficient, expensive, and29

most importantly harming the environment.30

We propose an alternative named Thought of Search: thinking before searching, an approach that31

exploits the strengths of LLM, while mitigates the weaknesses of the existing approaches, doing so in32

an efficient manner. We propose using the language models for deriving the symbolically represented33

search components that allow for performing the search itself without calling LLMs. That way, the34

search space correctness can be checked before the search is performed, allowing for soundness35

and completeness (and sometimes optimality) of the search algorithms imply these properties of the36

Submitted to 38th Conference on Neural Information Processing Systems (NeurIPS 2024). Do not distribute.

overall solution. Specifically, we focus on the two essential components of any search, successor37

generator and goal test, using the large language models to obtain their implementation in Python.38

We exemplify our proposed approach on four representative search problems, comparing to the LLM-39

based solutions from the literature that attempt to solve these problems and show these approaches40

to be prohibitively expensive. We show that by using LLMs, possibly with human feedback, to41

produce the code for the search components we can solve the entire datasets with 100% accuracy with42

only a few calls to the LLM. We argue for a responsible use of compute resources; urging research43

community to investigate sound and complete LLM-based approaches that uphold efficiency.44

2 Related Work and Beyond: Properties and Complexity45

In this section, we review the related work from the point of view of the soundness and completeness46

properties of the proposed algorithms, as well as their LM Evaluation Complexity. We quantify the47

number of LLM requests required by each algorithm. An algorithm is sound if it produces only valid48

solutions and it is complete if it is guaranteed to produce a solution before terminating successfully.49

For consistency, we unify the notation here. We denote the bound on the number of successors50

generated per state by b, the number of rollouts by T , and the length of a rollout/path by L.51

IO The Input-Output (IO) prompting is the straightforward use of LLMs to generate an output for a52

given input. Some examples that employ IO for planning include querying a pre-trained model [16]53

or fine-tune a model [12, 3]. Here, the model is usually evaluated once, generating an output that may54

include a sequence of steps, making the complexity of this approach O(1). The method is neither55

sound nor complete for planning, as it can generate incorrect solutions and not guaranteed to provide56

a solution if one exists. Further, the methods that fine-tune a model can have a computationally57

intensive step of data generation.58

CoT The Chain-of-Thought approach [17] prompts the model with a predefined example of a chain59

of steps (thoughts) to resolve the question, in an attempt to make the model generate similar chains in60

its output. Here, still the model is evaluated once, so the complexity is O(1) and the approach is still61

neither sound nor complete for planning, for the same reasons as before.62

ReAct The ReAct approach [20] aims at interleaving CoT with acting steps. Each acting step63

may result in a separate evaluation of the language model. Therefore, the number of evaluations is64

worst case linear in the number of steps L in the expected output, O(L). This approach is akin to65

re-planning at each step; or treating LLM as a policy, referenced for each state in the trajectory. Still,66

no guarantees of soundness or completeness can be obtained for this approach.67

ReWOO ReWOO [18] aims at tackling the inefficiency in the number of LLM evaluations, re-68

questing the first model evaluation to plan all future steps, then each step is executed without model69

evaluation if possible (and with, if not), finalizing by a model evaluation with the concatenated output70

of previous states as the input. The best case complexity is therefore O(1), with only two evaluations71

performed and when external tools are not LLM. The worst case complexity is however still O(L),72

where L is the plan’s length, since each of the L external tool calls can be to an LLM. Same as before,73

no guarantees of soundness or completeness can be obtained.74

RAP Reasoning via Planning (RAP) approach performs a search (e.g., MCTS) using the LLM75

for expansion (generate successors) and for heuristic or reward prediction of a state [5]. Here, the76

complexity is the worst among the approaches explored so far, being linear in the size of the search77

space. MCTS is an incomplete algorithm, where the search tree size can be controlled by bounding78

the number of successors generated per state b, number of rollouts T , and their depth L. The overall79

complexity is O(T × b × L). Since the LLM is used for generating successors, it can generate80

incorrect successors, making the approach also not sound.81

ToT Tree of Thoughts [19] approach is similar to that of RAP, where the “thought generator”82

is expanding a state by calling an LLM and the state evaluator is calling an LLM to evaluate the83

generated states. The evaluation can be done per state (one call per state), or across states (one call84

across all the current generated states). Then, a search is performed on the search tree. The worse85

case overall complexity is O(N), where N is the number of states generated by the search algorithm.86

The authors use bounded incomplete versions of the well-known Breadth-First Search (BFS) and87

Depth-First Search (DFS) algorithms, with the depth bound L, branching bound b, and beam size m,88

restricting the complexity to O(b×m×L). Here as well, the successor generation by LLM eliminates89

soundness of the otherwise sound algorithms.90

2

GoT Graph of Thoughts (GoT) [1] is similar to the tree of thought approach, except that it can91

connect the thought nodes in the tree above into a graph for more flexible representations through92

(a) aggregation of thoughts a, (b) improvement of a thought to refine it further i, (c) generation of93

a thought based on existing ones g. In GoT, in addition, repeat operation k defines how often a94

particular operation is repeated. The complexity is similar to that of the ToT, O(N), where N is the95

number of nodes in the graph generated, in practice bounded by the branching bound b and the depth96

bound L, resulting in the overall complexity of O(b×L). Here as well, there are no guarantees of97

soundness or completeness, as the graph is constructed with the language model.98

Reflexion Reflection [14] is a feedback incorporated approach where in addition to a so-called99

actor model, which can be either a CoT or a ReAct approach, it has an internal and external feedback100

component, named an evaluator model and a self-reflection model. The feedback is given within a101

bounded number of trials and a bounded memory that provides additional context to the agent. The102

number of evaluations is dependent on which actor model is used plus a constant (two evaluations,103

one for the evaluator model and one for the self-reflection model) times the number of trials, T . So its104

either O(T) if CoT is used, or O(L× T) if ReAct is used. While the authors report 100% accuracy105

given a large enough T in some domains, the approach is not a complete approach. Similar to the106

other cases, the approach is also not sound.107

LATS Similarly to [5], Language Agent Tree Search (LATS) [21] performs a Monte-Carlo Tree108

Search (MCTS), using language models as algorithm components. Using our notation of b for the109

number of successors generated per state, T for the number of rollouts, and L for their depth, the110

algorithm complexity here as well is O(T × b × L). The authors note that in practice, however,111

their method produce more calls to the LLM than RAP, exploring larger portions of the search space112

and producing somewhat higher accuracy solutions. As mentioned before, MCTS is already an113

incomplete algorithm by itself, and LATS limits it further. Since the successors here as well are114

generated by a language model, the approach is not sound.115

AoT Algorithm of Thoughts (AoT) [13] combines the CoT and the ToT approach in a following116

sense: rather than a standard CoT prompting, it incorporates the search strategy (DFS or BFS) within117

the prompt through the in-context examples. That is they use a standard DFS or BFS to produce118

the in-context examples. The approach is neither sound nor complete, as it relies completely on the119

language model. Further, it assumes an existence of a search component that can solve the in-context120

examples. If such component already exists, the only possible reason to use this approach would121

be if the search component is not efficient, which would imply that the problems are too large to122

be handled by BFS/DFS (e.g., above 1012 states). But then, these search spaces would certainly be123

beyond any imaginable future capabilities of LLMs. While technically AoT makes one call to the124

LLM per problem instance, the input and output number of tokens grows exponentially with the125

instance size. Therefore it would be misleading to say that the complexity of this approach is O(1).126

From the cost perspective, when charged based on the number of input and output tokens, it might127

well be more expensive than the other approaches. Since we do not have an adequate uniform way128

of transforming this single call to multiple calls of similar size to other approaches, we skip this129

approach in our analysis.130

LLM-Modulo Framework The framework suggests to perform planning by a so-called Generate-131

Test-Critique loop [8]. The LLM is generating candidate plans, which are validated/critiqued by132

external means, providing feedback to the LLM. These means are assumed to be sound, thus the133

overall framework is claimed to inherit soundness guarantee. It is not mentioned, however, how134

to obtain such means of sound validation or critique for cases where no symbolic model already135

exists. Once critiques deemed a plan valid, the algorithm stops. Otherwise, next candidate is136

generated. There is no guarantee of convergence towards a valid plan and therefore the algorithm is137

not guaranteed to terminate. This can be fixed by employing a bound on the number of iterations.138

This, however, does not provide completeness guarantees.139

Policy generation with LLMs Focusing on problems where no search is required (e.g., polynomial140

cases) and a general policy (or a generalized plan) exists, the authors propose querying LLMs to141

provide a policy implementation in python directly [15]. The policy is then checked on a few held142

out problem instances from the domain, providing a feedback on problems that are not solved by143

the policy. The number of calls to the LLM is therefore O(1) per domain, and the result can be144

amortised among all the problem instances of that domain. This approach, while tackling the simpler145

case of problems where no search is needed, has served as an inspiration for our proposed approach.146

3

3 Proposed Approach147

In this work, we argue for an efficient and responsible use of compute resources. First and foremost,148

this means using the computationally expensive large language models efficiently and appropriately.149

In the case of solving search problems, as in the focus of this work, we argue against using an LLM150

at each expansion and evaluation. Such an implementation of search algorithms is inefficient, but151

equally importantly, it also sacrifices important properties that search algorithms possess, such as152

soundness and completeness. While completeness is often sacrificed knowingly, in order to limit153

the number of possible calls to the language model, soundness can be lost unintentionally. If the154

state successors are generated by a large language model, there is no guarantee that the produced155

successors are valid. An additional mechanism that validates the produced output would be required156

to render the algorithm sound. Such a mechanism would be symbolic by nature, since it must157

guarantee correctness. However, if such mechanism exists, it may be possible to use that mechanism158

to produce successors, without the need for performing the calls to a large language model at each159

evaluation. The large language models would be a prime candidate for producing such a mechanism.160

The mechanism can be a symbolic planning model, e.g., Planning Domain Definition Language161

(PDDL), from which all the search components can be computed, as is done by classical planners162

that perform heuristic search [7]. Alternatively, large language models can also directly produce the163

search components code: a successor function, a goal test, and even a heuristic function [6] or reward.164

While the former approach has been explored in the literature [4, 11], here we focus on the latter. We165

propose to use large language models for obtaining a Python implementation of two critical search166

components, successor functions and goal test. We query the language model for each component167

separately, using a textual description of the problem at hand. We assume the process to be iterative168

and user-guided, by a person capable of validating the code obtained, leaving automation of the169

process for future work. It is worth noting that if the expensive evaluation of large language models is170

not performed during search, there is no need to artificially restrict the algorithms to their incomplete171

variants. Still, the code must be validated for soundness, ensuring that all produced successors are172

correct, as well as completeness, ensuring that all possible immediate successors are produced.173

4 Experiments174

We exemplify the proposed approach with a variety of popular search problems, demonstrating the175

use of large language models to obtain the search components code for a representative set of the176

same search problems that the vast recent work on planning using LLMs used. Our intention is to177

exemplify the efficiency and accuracy gap created by the unsupervised use of large language models178

at every search step. For each search problem, we count the number of interactions with the language179

model to obtain valid1 successor function and goal test implementations. We then run a standard180

implementation of either a BFS or a DFS algorithm with these two functions on a set of instances181

and report the accuracy and the total time to solve the instances. We repeat the experiment 5 times,182

obtaining 5 implementation variants and compare the efficiency of these variants in terms of total183

time. Note that if the implementation of successor function and goal test obtained from the large184

language model is correct, the accuracy is guaranteed to be 100% (if sufficient resources are given to185

the search). The opposite is not necessarily true, as the set of tested instances might not include some186

corner cases that make the code perform incorrectly. However, we see that as one of the strengths187

of our approach, as such cases can be used for testing and debugging the obtained code. Under the188

assumption of correctness of the successor function and goal test implementations, our approach189

inherits the soundness and completeness guarantees of the search algorithms used [2]. In all our190

experiments we use the GPT-4 model [9], in a chat mode. The code obtained from GPT-4 in all 5191

correspondences is provided in the appendix. The search with the obtained code was run locally, on a192

machine with 2.3 GHz 8-Core Intel Core i9 CPU, no GPUs were used.193

24 game The 24 game [19] takes 4 integers as an input that can be manipulated through the four194

most common arithmetic operations: addition, subtraction, multiplication, and division. The goal of195

the game is to produce a formula (also representable by a sequence of operations) that evaluates to196

24, if one exists. As mentioned before, [19] achieve that with an incomplete algorithm that performs197

≈ 100 calls to the LLM, according to their report. The authors report a success rate of 75% on a198

subset of 100 medium difficulty problems out of a collection of 1362 problems [19].199

1Valid from the perspective of a software developer who understands the problem solved.

4

User: The 24 Game is a mathematical card game in which the objective is to find a way to manipulate four integers so that the end result is
24. The game is played with a list of four numbers, and the player must use all four numbers exactly once, using any combination of addition,
subtraction, multiplication, or division, to arrive at the number 24. If a state is defined by a list of numbers (4 or less), how are successor states
defined? Provide only the python code that returns a list of successor states for a state.

ChatGPT: Below is the Python code that defines how to generate the successor states for a given state in the 24 Game. A state in the 24 Game
is a list of numbers. The successor states are generated by taking two numbers from the state, applying an operation (addition, subtraction,
multiplication, or division if the divisor isn’t zero), and then forming a new list with the result and the remaining unused numbers.

import itertools
def generate_successor_states(state):

successors = []
n = len(state)
for (i, j) in itertools.combinations(range(n), 2):

a, b = state[i], state[j]
remaining = [state[k] for k in range(n) if k != i and k != j]
successors.append(remaining + [a + b])
successors.append(remaining + [a * b])
if a > b:

successors.append(remaining + [a - b])
else:

successors.append(remaining + [b - a])
if b != 0:

successors.append(remaining + [a / b])
if a != 0:

successors.append(remaining + [b / a])
return successors

This function takes a state (a list of numbers), iterates over all pairs of numbers, applies the operations to these pairs, and then forms new lists
with the result of the operation and the other numbers that were not used in the operation. This ensures that each successor state is a valid step
towards finding a solution to reach 24, using all four numbers exactly once along with any of the allowed operations.

User: Provide only the python code that tests whether a state is a goal state.

ChatGPT: Here’s the Python code that tests whether a given state is a goal state in the 24 Game. A goal state is achieved if the list contains
exactly one number, and that number is 24.

def is_goal_state(state):
return len(state) == 1 and state[0] == 24

This function checks if the length of the state list is 1 and whether the sole element in the list is the number 24.

Listing 1: 24 game example correspondence to obtain the successor function and the goal test.

We use an LLM to produce the code for two functions: successor function and goal test. We leave the200

heuristic function to future work, noting that even without it, the search space of the 24 game is rather201

small, up to 1+36+648+3888 = 4573 states. Listing 1 describes an example correspondence with202

the LLM. We observe that the model required 1.2 interactions on average for the successor function203

and 1 interaction for the goal test. We see that, with a minor help from the user, the model is able to204

produce correct successor and goal test functions for this problem. We further tested all 5 successor205

functions and goal test within a simple BFS implementation on the entire suite of 1362 instances206

from ToT [19]. For each of the 5 tested successor functions, BFS found a solution in the 1361 cases207

where a solution exists and report that no solution exists in the only one unsolvable case, a 100%208

success rate. The total time to solve all 1362 problems varies over these 5 cases from 1.92s to 6.83s209

in our naive BFS implementation, hinting that some successor functions can be more efficient than210

other. This is comparable to a single LLM evaluation time; which is ≈ 7s for GPT-4 Chat [10]. Note211

that the generated successor functions are generic enough to be able to solve the generalized version212

of the 24game, Countdown [3], with only minimal adaptation to the goal test.213

Mini crosswords The mini crosswords [19] is a 5x5 crosswords dataset that includes 20 games,214

where the input describes the 5 horizontal and 5 vertical clues and the output is the full 25 letters215

board. We used GPT-4 to produce the two functions: successor function and the goal test and216

repeated the experiment 5 times. The correspondence with the model can be found in the appendix.217

We observe that the model required 2.4 interactions on average to produce a valid successor function,218

and 1.4 interactions on average to produce the goal test, with errors primarily related to not handling219

the corner cases of incorrect input. In all cases, after providing the exact error to the model, it added220

safeguards which fixed the issues. We tested the obtained functions within a standard implementation221

of a DFS with a closed list on the entire suite of 20 games [19]. As our focus in this work is on222

the search aspects, we assume that each clue in each crossword has 10 variants of possible answers,223

including the correct one. All 20 games were solved by all five generated pairs of implementation of224

successor function and goal test (100% accuracy), with a total time for all 20 games varying from 5.5s225

to 346s, yet again signifying the importance of efficient implementation of the successor function.226

5

To compare to the ToT approach, with the bound of 100 on state expansions, it calls the LLM ≈ 200227

times in the worst case for each of the 20 games. To be fair to the ToT approach, it does not assume228

the availability of possible answers, deriving the candidates, at each step, with the help of the language229

model. This, however is a mixed blessing, since the language model does not provide a guarantee of230

including the correct answer among produced variants.231

BlocksWorld Probably the most famous planning domain is BlocksWorld, where the blocks can be232

picked up from the table, put down on the table, unstacked from other blocks or stacked on other233

blocks to transform the initial configuration to a given goal configuration. The domain has a known234

planning model, described in PDDL and it is one of the tasks considered by the reasoning-as-planning235

approach [5]. As in the other cases, we use the GPT-4 model to obtain the successor function and236

the goal test implementation in Python. We use the same textual description of the domain as [5]. A237

correct successor function and goal test are obtained after 2.8 and 1 iterations on average, respectively.238

The mistakes GPT-4 makes when producing the code repeat from one experiment to another, and239

are often easy to fix inline, without additional iterations (e.g., using shallow copy when deep copy is240

needed). In our experiments, however, we did count these as additional iterations. In order to evaluate241

the obtained functions, we used them within a standard implementation of a BFS and experimented242

with the collection of 502 instances from [5]. All 502 tasks were solved by all five generated pairs of243

successor function and goal test (100% accuracy), with the total time for all 502 tasks varying from244

0.56s to 9.7s. The more time efficient approaches represented a state as a set of strings representing245

boolean variables (or logical predicates), while the less efficient representation used dictionaries246

of lists of objects or pairs of objects with predicates as keys. The simpler state representation also247

resulted in a more efficient duplicate detection in our rather naive implementation.248

Note that the accumulated number of expanded (states whose successors are generated) and generated249

states in the most efficient case (with duplicate detection) was 50143 and 129408, respectively. If250

we needed to call the GPT-4 model on each expansion and generation, by the most conservative251

estimation, it would take approximately 14 days and cost over $1000, while not guaranteeing252

correctness of the outcome. Note that the instances considered are quite small - they have only 4 to 5253

blocks. Larger BlocksWorld instances would require significantly more resources. This is true for the254

proposed approach as well, and larger instances mean larger state spaces, becoming too large for an255

uninformed search such as BFS. In such cases, a heuristic function may be of help, either, similarly,256

implemented in Python or automatically derived from a PDDL representation, which in turn may be257

obtained with the help of a large language model [11]. Importantly, BFS not only guarantees that the258

obtained solution is correct, but also that it is optimal, while LLMs can not provide such a guarantee -259

checking whether a given solution is optimal is as hard as finding an optimal solution.260

PrOntoQA Logical reasoning can be viewed as a search problem of finding a sequence of logical261

rules that when applied to the known facts, derive or disprove the target hypothesis. Previous work262

applies Monte-Carlo Tree Search (MCTS) with successor function and rewards obtained by calling263

an LLM, to examples from the PrOntoQA dataset to derive the answer but also the proof, a sequence264

of reasoning steps [5]. The authors report performing 20 iterations for MCTS and 20 samples for265

self-consistency, resulting in 94.2% correct answer rate and 78.8% proof accuracy.266

Similarly to the previous cases, we have generated the successor function and the goal test with the267

help of GPT-4 model and obtained the answer and the proof by running BFS at most twice per268

question: once trying to prove the positive hypothesis and, if not successful, once more trying to269

prove the negation of the hypothesis. The search, if successful, returns a path from the initial state to270

a found goal state, which corresponds precisely to the sequence of applications of the reasoning rules271

– the proof. We performed the experiment 5 times, with the language model being able to produce a272

correct successor function and goal test after 1.6 and 1 iterations on average, respectively. We tested273

the 5 obtained pairs of functions on the entire collection of 4000 questions generated by [5]. All274

4000 questions were answered correctly, with all generated proofs guaranteed to be valid, resulting in275

100% accuracy for both, with the total time for all 4000 questions varying between 2.16s and 2.53s.276

The full correspondence is provided in the appendix.277

5 Discussion278

It is hard to overstate the importance of the ability to solve search problems and it is natural to solve279

these problems by exploring some portion of their state space. All the methods we discuss here do280

6

that in one way or another. The difference between those approaches is in how big is the portion of281

the explored state space and what is the cost of exploring that portion. As all the discussed approaches282

are greedy, unsound, and incomplete, the accuracy of the solutions they provide can only be evaluated283

experimentally for particular problem and a dataset, and the results do not reflect on other problems284

or even datasets within the same problem.285

In this section we perform a thought experiment. We ignore the accuracy of the approaches and only286

compare their estimated cost and the portion of the search space they have the potential to explore.287

For each approach we estimate two values. First, we estimate the number of calls to a language288

model performed if the approach was run on the four datasets from the previous section, as a proxy289

for the cost of using the approach. Second, we estimate the number of states explored during search,290

as a proxy for a portion of the state space size. The actual state space size for these datasets can291

be calculated precisely, and we provide these values. Note that the number of states explored is292

an over-estimation for the portion of the state space explored, since the same state can be explored293

several times. This is true for sound and complete search algorithms as well. These algorithms294

often employ a duplicate detection mechanism to prevent re-evaluating and re-expanding such states,295

when such re-expansions are not needed to guarantee algorithm properties (e.g., optimality when296

admissible but inconsistent heuristics are used). We also provide the actual number of calls to the297

language model and the number of states explored using our proposed approach. The actual number298

of calls for our proposed approach is the number of calls that was sufficient for obtaining soundness299

and completeness (and sometimes optimality). The number of states explored indicated an upper300

bound on the portion of the states space necessary for exploration.301

Datasets size We use the same four representative search problem datasets from previous section.302

The size of each dataset is denoted by D. For the 24 game, D is 1362, for Crossword it is 20,303

for BlocksWorld it is 502, while for PrOntoQA it is 4000. We used the datasets provided by the304

approaches we compare to, but these numbers could also have been significantly larger. For these305

datasets, we have also computed the size of the search problems in terms of the summed number306

of states over the instances in the dataset. For the 24 game, the number of states per instance307

is 4, 573 and therefore the summed number of states is 6, 228, 426. For Crossword, the number308

of states is
∑10

i=0

(
n
i

)
10i = (10 + 1)10 per puzzle, and therefore the summed number of states309

is 518, 748, 492, 020. For BlocksWorld, our dataset includes 447 instances with 4 blocks and 55310

instances with 5 blocks. The instances with 4 blocks have 125 states each and the instances with 5311

blocks have 866 states each, giving us the total of 103, 505 states. Finally, for PrOntoQA, the number312

of states per task varies between 12 and 54, with the total summed number being 97, 608.313

Uniform restriction of the search space Each approach sets limitations to restrict the number calls314

to the language model, which makes it difficult to compare. In this thought experiment, we choose to315

use only the bounds on the breadth/depth of the search and the number of trials, ignoring the absolute316

constant bounds on the number of explored states used by some approaches. For a fair comparison317

across the approaches, we will use the same parameter value for all, even if the original work used318

a different value. We aimed at smaller values among used across the different approaches for each319

parameter. This results in under-approximation of the number of calls in most cases, and possibly320

would have resulted in a lower than reported by the approaches accuracy. In this experiment, however,321

we ignore the accuracy of the approaches. We use the branching bound b = 5, the number of trials322

T = 10, and the beam size m = 5. The only parameter we set according to the dataset is L, the323

bound on the sequence length. This is due to the fact that if L is not sufficiently large, the algorithms324

will not be able to find a solution. In the 24 game L = 3 is sufficient, while in Mini crosswords it325

must be at least 10. In both BlocksWorld and PrOntoQA the length of a plan/proof varies, with the326

maximal length over the instances in the datasets in BlocksWorld being 16 and in PrOntoQA being 6.327

Analysis The complexity analysis performed in the previous section does not tell the whole story.328

It hides the constant multiplier, which in some cases could be significant. We also need an additional329

information about the number of states traversed. Let us take another look at the explored approaches.330

Both IO and CoT only call a language model once per instance. Assuming that the output is a plan,331

it traverses L states. ReAct and ReWOO (worst case) make exactly L calls to the LLM, exploring332

L states. Both RAP and LATS perform MCTS, but the actual number of calls to the LLM varies.333

RAP performs LT + bLT calls (see Algorithm 1 in [5]), while LATS performs 2LT + bLT calls334

(see Algorithm 1 in [21]). The number of states explored in both cases is bLT . Reflection with ReAct335

performs (2 + L)T calls, exploring LT states. ToT introduced their own variants of well-known336

BFS and DFS algorithms with bounds on the branching factor, search depth, but also a limit on the337

7

24Game Crossword BlocksWorld PrOntoQA
Approach Complexity States Calls States Calls States Calls States Calls
IO O(D) 0.02% 1362 4e-9% 20 0.5% 502 4% 4000
CoT O(D) 0.02% 1362 4e-9% 20 0.5% 502 4% 4000
ReAct O(LD) 0.07% 4086 4e-8% 200 7.8% 8032 24.6% 24K
ReWOO O(LD) 0.07% 4086 4e-8% 200 7.8% 8032 24.6% 24K
RAP O(TbLD) 3.3% 245K 2e-6% 12K 388% 482K 1229% 1.44M
ToT O(bmLD) 1.6% 102K 1e-6% 5K 194% 201K 615% 600K
GoT O(bLD) 0.3% 20K 2e-7% 1K 39% 40K 122% 120K
Reflection O(LTD) 0.7% 68K 4e-7% 2.4K 77.6% 90K 245% 320K
LATS O(TbLD) 3.3% 286K 2e-6% 14K 388% 562K 1229% 1.68M
ToS (ours) O(1) 27.0% 2.2 3e-4% 3.8 125% 3.8 175% 2.6

Table 1: The summed number of states and the projected number of LLM calls. D: number of tasks,
L: search/rollout/plan length bound, T : number of rollouts, m: beam size, b: branching bound.

open list size (beam size). While their performance can vary greatly on individual tasks, with DFS338

typically being greedier and therefore faster, in the worst case they both call the LLM bmL times and339

explore bmL states. The GoT approach calls the LLM bL times, exploring bL states.340

Table 1 shows the estimated numbers according to the parameters values and the analysis above. For341

comparison, the last row of the table depicts our proposed approach. %States columns denotes the342

portion of the state space explored. For our approach, this is the actual value from our experiments.343

Recall, in the case of PrOntoQA the BFS search is performed once or twice, until the hypothesis or its344

opposite is proven. For the other approaches, this is an estimate, under the assumptions that the search345

does not explore the same states multiple times. Clearly, this assumption does not hold in practice,346

with the methods exploring the same state many times. This is also true for a sound and complete347

search, albeit to a lower extent, it can generate the same state multiple times. An important property348

of a sound and complete search is that it generates states systematically, and expands them at most349

once. The number of times the same state is generated tends to be higher in MCTS than in BFS/DFS.350

Non-systematic successor generation is also a major contributor to that inefficiency. Having in mind351

that these numbers are very crude over-approximations, we observe that the investigated approaches352

explore only a very small portion of the search space. This is one of the major sources of their low353

accuracy – if the solution is not completely included in that explored portion, then there is no way for354

that solution to be found. In 24 game and crossword, the portion explored tends to be very low, one355

or two orders of magnitude smaller compared to our method. In BlocksWorld it is comparable to our356

method, and in PrOntoQA it is often much higher, order of magnitude larger than the size of the state357

space, indicating that the same states are explored over and over again.358

Looking at the overall number of calls, some methods are more expensive than other. Assuming359

an average of 500 tokens per input2 and 50 tokens per output, according to the current pricing of360

GPT-4-turbo (the cheaper of GPT-4 models), the overall cost varies from $40 for IO/CoT and $200361

for ReAct/ReWOO, to $14, 000 for RAP and $16, 000 for LATS.362

6 Conclusions and Future Work363

The current trends in planning with large language models focus on performing a search when364

the search components are realized through the large language models. We analyze the existing365

approaches and show them to be unsound, incomplete, and quite expensive. We propose to use366

the large language models to instead generate a code for these search components, to be reused367

throughout the entire dataset. The significant differences in the use of computational resources and368

the performance measures clearly demonstrate that LLMs can be effectively employed for planning369

purposes without compromising on soundness, completeness, efficiency or accuracy.370

For future work, we would like to explore the use of large language models to obtain the code for371

search guidance or search pruning techniques. But more importantly, we would like to relax the need372

for human feedback in coming up with valid implementations of the search components. This could373

be done in ways similar to the way a policy is obtained in generalized planning [15].374

2We do not consider in our analysis the length of the input, which is a crucial factor of the evaluation cost.

8

References375

[1] Maciej Besta, Nils Blach, Ales Kubicek, Robert Gerstenberger, Michal Podstawski, Lukas Gianinazzi,376

Joanna Gajda, Tomasz Lehmann, Hubert Niewiadomski, Piotr Nyczyk, and Torsten Hoefler. Graph of377

thoughts: Solving elaborate problems with large language models. In Jennifer Dy and Sriraam Natarajan,378

editors, Proceedings of the Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI 2024), pages379

17682–17690. AAAI Press, 2024.380

[2] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduction to Algorithms. The MIT381

Press, 1990.382

[3] Kanishk Gandhi, Denise Lee, Gabriel Grand, Muxin Liu, Winson Cheng, Archit Sharma, and Noah D.383

Goodman. Stream of Search (SoS): Learning to search in language. arXiv:2404.03683 [cs.LG], 2024.384

[4] Lin Guan, Karthik Valmeekam, Sarath Sreedharan, and Subbarao Kambhampati. Leveraging pre-trained385

large language models to construct and utilize world models for model-based task planning. In Proceedings386

of the Thirty-Seventh Annual Conference on Neural Information Processing Systems (NeurIPS 2023), 2023.387

[5] Shibo Hao, Yi Gu, Haodi Ma, Joshua Hong, Zhen Wang, Daisy Wang, and Zhiting Hu. Reasoning with388

language model is planning with world model. In Proceedings of the 2023 Conference on Empirical389

Methods in Natural Language Processing (EMNLP 2023), 2023.390

[6] Peter E. Hart et al. A formal basis for the heuristic determination of minimum cost paths. IEEE Transactions391

on Systems Science and Cybernetics, 4(2):100–107, 1968.392

[7] Malte Helmert. The Fast Downward planning system. Journal of Artificial Intelligence Research, 26:191–393

246, 2006.394

[8] Subbarao Kambhampati, Karthik Valmeekam, Lin Guan, Kaya Stechly, Mudit Verma, Siddhant Bhambri,395

Lucas Saldyt, and Anil Murthy. LLMs can’t plan, but can help planning in LLM-Modulo frameworks.396

CoRR, abs/2402.01817, 2024.397

[9] OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal, et al. GPT-4 technical report, 2024.398

[10] OpenAI Dev. Forum. Performance analysis of Assistants versus Chat completion. https://community.399

openai.com/t/performance-analysis-of-assistants-versus-chat-completion-chat-co400

mpletion-seems-somewhat-faster-for-complete-message-generation-streaming-taken401

-into-account/628368, Feb 2024.402

[11] James Oswald, Kavitha Srinivas, Harsha Kokel, Junkyu Lee, Michael Katz, and Shirin Sohrabi. Large403

language models as planning domain generators. In Sara Bernardini and Christian Muise, editors, Proceed-404

ings of the Thirty-Fourth International Conference on Automated Planning and Scheduling (ICAPS 2024).405

AAAI Press, 2024.406

[12] Vishal Pallagani, Bharath Muppasani, Keerthiram Murugesan, Francesca Rossi, Lior Horesh, Biplav407

Srivastava, Francesco Fabiano, and Andrea Loreggia. Plansformer: Generating symbolic plans using408

transformers. arXiv:2212.08681 [cs.AI], 2022.409

[13] Bilgehan Sel, Ahmad Al-Tawaha, Vanshaj Khattar, Lu Wang, Ruoxi Jia, and Ming Jin. Algorithm of410

thoughts: Enhancing exploration of ideas in large language models. CoRR, abs/2308.10379, 2023.411

[14] Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflexion: lan-412

guage agents with verbal reinforcement learning. In Proceedings of the Thirty-Seventh Annual Conference413

on Neural Information Processing Systems (NeurIPS 2023), 2023.414

[15] Tom Silver, Soham Dan, Kavitha Srinivas, Josh Tenenbaum, Leslie Pack Kaelbling, and Michael Katz.415

Generalized planning in PDDL domains with pretrained large language models. In Jennifer Dy and Sriraam416

Natarajan, editors, Proceedings of the Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI417

2024). AAAI Press, 2024.418

[16] Karthik Valmeekam, Matthew Marquez, Sarath Sreedharan, and Subbarao Kambhampati. On the planning419

abilities of large language models - A critical investigation. In Proceedings of the Thirty-Seventh Annual420

Conference on Neural Information Processing Systems (NeurIPS 2023), 2023.421

[17] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed H. Chi, Quoc V. Le,422

and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models. In Proceedings423

of the Thirty-Sixth Annual Conference on Neural Information Processing Systems (NeurIPS 2022), pages424

24824–24837, 2022.425

9

https://community.openai.com/t/performance-analysis-of-assistants-versus-chat-completion-chat-completion-seems-somewhat-faster-for-complete-message-generation-streaming-taken-into-account/628368
https://community.openai.com/t/performance-analysis-of-assistants-versus-chat-completion-chat-completion-seems-somewhat-faster-for-complete-message-generation-streaming-taken-into-account/628368
https://community.openai.com/t/performance-analysis-of-assistants-versus-chat-completion-chat-completion-seems-somewhat-faster-for-complete-message-generation-streaming-taken-into-account/628368
https://community.openai.com/t/performance-analysis-of-assistants-versus-chat-completion-chat-completion-seems-somewhat-faster-for-complete-message-generation-streaming-taken-into-account/628368
https://community.openai.com/t/performance-analysis-of-assistants-versus-chat-completion-chat-completion-seems-somewhat-faster-for-complete-message-generation-streaming-taken-into-account/628368
https://community.openai.com/t/performance-analysis-of-assistants-versus-chat-completion-chat-completion-seems-somewhat-faster-for-complete-message-generation-streaming-taken-into-account/628368
https://community.openai.com/t/performance-analysis-of-assistants-versus-chat-completion-chat-completion-seems-somewhat-faster-for-complete-message-generation-streaming-taken-into-account/628368

[18] Binfeng Xu, Zhiyuan Peng, Bowen Lei, Subhabrata Mukherjee, Yuchen Liu, and Dongkuan Xu. ReWOO:426

Decoupling reasoning from observations for efficient augmented language models. arXiv:2305.18323427

[cs.CL], 2023.428

[19] Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik Narasimhan. Tree429

of thoughts: Deliberate problem solving with large language models. In Proceedings of the Thirty-Seventh430

Annual Conference on Neural Information Processing Systems (NeurIPS 2023), 2023.431

[20] Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao. ReAct:432

Synergizing reasoning and acting in language models. In Proceedings of the Eleventh International433

Conference on Learning Representations (ICLR 2023). OpenReview.net, 2023.434

[21] Andy Zhou, Kai Yan, Michal Shlapentokh-Rothman, Haohan Wang, and Yu-Xiong Wang. Language agent435

tree search unifies reasoning acting and planning in language models. CoRR, abs/2310.04406, 2023.436

10

A Search implementation437

The search components successor_states and goal_test are plugged into the search algorithms. In this work we438

used BFS and DFS algorithms, implemented as follows.439

def _str(state):
if isinstance(state, dict):

return str(state)
return " ".join(sorted(list([str(s) for s in state])))

def reconstruct_plan(s, Closed):
plan = []
current = s
while current is not None:

plan.append(current)
c = _str(current)
current = Closed[c]

return plan[::-1]

def bfs(state, successor_states, is_goal):
expanded = 0
generated = 0
s = state
Q = [tuple((s, None))]
Closed = dict()
while len(Q) > 0:

Get the top from the queue
s, parent = Q[0][0], Q[0][1]
del Q[0]
c = _str(s)
if c in Closed:

continue
Closed[c] = parent
if is_goal(s):

return reconstruct_plan(s, Closed), expanded, generated
expanded += 1
for t in successor_states(s):

Q.append(tuple((t,s)))
generated += 1

return None, expanded, generated

def dfs(state, successor_states, is_goal):
expanded = 0
generated = 0
s = state
Q = [tuple((s, None))]
Closed = dict()
while len(Q) > 0:

Get the top from the queue
s, parent = Q[-1][0], Q[-1][1]
del Q[-1]
c = str(s)
if c in Closed:

continue
Closed[c] = parent
if is_goal(s):

return reconstruct_plan(s, Closed), expanded, generated
expanded += 1
for t in successor_states(s):

Q.append(tuple((t,s)))
generated += 1

return None, expanded, generated

11

B Model correspondences440

B.1 24 game441

The prompt for the successor function is as follows.442

The 24 Game is a mathematical card game in which the objective is to find a way to manipulate four integers443

so that the end result is 24. The game is played with a list of four numbers, and the player must use all four444

numbers exactly once, using any combination of addition, subtraction, multiplication, or division, to arrive at445

the number 24. If a state is defined by a list of numbers (4 or less), how are successor states defined? Provide446

only the python code that returns a list of successor states for a state.447

The prompt for the goal test is as follows.448

Provide only the python code that tests whether a state is a goal state.449

B.1.1 Experiment Run 1.450

User: The 24 Game is a mathematical card game in which the objective is to find a way to manipulate four451

integers so that the end result is 24. The game is played with a list of four numbers, and the player must use all452

four numbers exactly once, using any combination of addition, subtraction, multiplication, or division, to arrive453

at the number 24. If a state is defined by a list of numbers (4 or less), how are successor states defined? Provide454

only the python code that returns a list of successor states for a state.455

ChatGPT:456

import itertools

def successor_states(state):
if len(state) == 1:

return []

successors = []
for i, j in itertools.combinations(range(len(state)), 2):

remaining = [state[k] for k in range(len(state)) if k not in (i, j)]

pairs = [
state[i] + state[j],
state[i] - state[j],
state[j] - state[i],
state[i] * state[j],

]

if state[j] != 0:
pairs.append(state[i] / state[j])

if state[i] != 0:
pairs.append(state[j] / state[i])

for result in pairs:
successors.append(remaining + [result])

return successors

User: Provide only the python code that tests whether a state is a goal state.457

ChatGPT:458

def is_goal_state(state):
return len(state) == 1 and abs(state[0] - 24) < 1e-9

B.1.2 Experiment Run 2.459

User: The 24 Game is a mathematical card game in which the objective is to find a way to manipulate four460

integers so that the end result is 24. The game is played with a list of four numbers, and the player must use all461

four numbers exactly once, using any combination of addition, subtraction, multiplication, or division, to arrive462

12

at the number 24. If a state is defined by a list of numbers (4 or less), how are successor states defined? Provide463

only the python code that returns a list of successor states for a state.464

ChatGPT:465

from itertools import permutations, product

def apply_op(a, b, op):
if op == '+':

return a + b
elif op == '-':

return a - b
elif op == '*':

return a * b
elif op == '/':

if b != 0:
return a / b

else:
return None

def generate_successor_states(state):
if len(state) == 1:

return []

successors = []
operators = ['+', '-', '*', '/']

for a, b in permutations(state, 2):
remaining = [x for x in state if x != a and x != b] # exclude a and b

for op in operators:
result = apply_op(a, b, op)
if result is not None:

successors.append(remaining + [result])

return successors

User: Provide only the python code that tests whether a state is a goal state.466

ChatGPT:467

def is_goal_state(state):
return len(state) == 1 and abs(state[0] - 24) < 1e-6

User: In the generate_successor_states function, two of the operations are not symmetric, division and subtraction.468

Please fix the code469

ChatGPT: Here’s the updated Python code for generating successor states that considers the non-symmetry of470

subtraction and division operations:471

from itertools import permutations, product

def apply_op(a, b, op):
if op == '+':

return a + b
elif op == '-':

return a - b
elif op == '*':

return a * b
elif op == '/':

if b != 0:
return a / b

else:
return None

13

def generate_successor_states(state):
if len(state) == 1:

return []

successors = []
operators = ['+', '-', '*', '/']

Iterate over all unique pairs of indices to handle non-commutative operations
n = len(state)
for i in range(n):

for j in range(n):
if i != j:

a, b = state[i], state[j]
remaining = [state[k] for k in range(n) if k != i and k != j]

for op in operators:
result = apply_op(a, b, op)
if result is not None:

new_state = remaining + [result]
successors.append(new_state)

Add the reverse operation if it is '-' or '/'
if op in {'-', '/'}:

result = apply_op(b, a, op)
if result is not None:

new_state = remaining + [result]
successors.append(new_state)

return successors

This code correctly handles the non-commutativity of subtraction and division by explicitly computing the result472

for both a ◦ b and b ◦ a whenever the operator is ’-’ or ’/’.473

B.1.3 Experiment Run 3.474

User: The 24 Game is a mathematical card game in which the objective is to find a way to manipulate four475

integers so that the end result is 24. The game is played with a list of four numbers, and the player must use all476

four numbers exactly once, using any combination of addition, subtraction, multiplication, or division, to arrive477

at the number 24. If a state is defined by a list of numbers (4 or less), how are successor states defined? Provide478

only the python code that returns a list of successor states for a state.479

ChatGPT: Below is the Python code that defines how to generate the successor states for a given state in the 24480

Game. A state in the 24 Game is a list of numbers. The successor states are generated by taking two numbers481

from the state, applying an operation (addition, subtraction, multiplication, or division if the divisor isn’t zero),482

and then forming a new list with the result and the remaining unused numbers.483

import itertools
def generate_successor_states(state):

successors = []
n = len(state)
for (i, j) in itertools.combinations(range(n), 2):

a, b = state[i], state[j]
remaining = [state[k] for k in range(n) if k != i and k != j]
successors.append(remaining + [a + b])
successors.append(remaining + [a * b])
if a > b:

successors.append(remaining + [a - b])
else:

successors.append(remaining + [b - a])
if b != 0:

successors.append(remaining + [a / b])
if a != 0:

successors.append(remaining + [b / a])
return successors

14

This function takes a state (a list of numbers), iterates over all pairs of numbers, applies the operations to these484

pairs, and then forms new lists with the result of the operation and the other numbers that were not used in the485

operation. This ensures that each successor state is a valid step towards finding a solution to reach 24, using all486

four numbers exactly once along with any of the allowed operations.487

User: Provide only the python code that tests whether a state is a goal state.488

ChatGPT: Here’s the Python code that tests whether a given state is a goal state in the 24 Game. A goal state is489

achieved if the list contains exactly one number, and that number is 24.490

def is_goal_state(state):
return len(state) == 1 and state[0] == 24

This function checks if the length of the state list is 1 and whether the sole element in the list is the number 24.491

B.1.4 Experiment Run 4.492

User: The 24 Game is a mathematical card game in which the objective is to find a way to manipulate four493

integers so that the end result is 24. The game is played with a list of four numbers, and the player must use all494

four numbers exactly once, using any combination of addition, subtraction, multiplication, or division, to arrive495

at the number 24. If a state is defined by a list of numbers (4 or less), how are successor states defined? Provide496

only the python code that returns a list of successor states for a state.497

ChatGPT: In the 24 Game, the concept of a "state" can be represented by a list of numbers, with the game498

beginning with four numbers. The "successor states" are generated by applying a binary operation (addition,499

subtraction, multiplication, division) to any pair of numbers in the current state, then replacing these two numbers500

with the result of the operation, which gives a new state with one fewer number. Here’s Python code that defines501

a function to generate all possible successor states from a given state:502

from itertools import combinations, product

def generate_successor_states(numbers):
def apply_operation(x, y):

results = {x + y, x - y, y - x, x * y}
if x != 0:

results.add(y / x)
if y != 0:

results.add(x / y)
return results

successors = []
num_len = len(numbers)
for (i, j) in combinations(range(num_len), 2):

for result in apply_operation(numbers[i], numbers[j]):
new_state = [numbers[k] for k in range(num_len) if k != i and k != j]
new_state.append(result)
successors.append(new_state)

return successors

This code leverages combinations from the itertools module to select each pair of numbers from the current state,503

and then applies every possible operation to these numbers. The apply_operation function computes possible504

outcomes for the operations between two numbers, including division only when the divisor is not zero. Each505

result is used to create a new state, which is added to the list of successor states.506

User: Provide only the python code that tests whether a state is a goal state.507

ChatGPT: Here’s Python code that defines a function to check whether a given state is a goal state in the 24508

Game. The goal state is when the list contains only the number 24.509

def is_goal_state(state):
return len(state) == 1 and state[0] == 24

This function returns True if the list state contains exactly one element and that element is 24, which would510

indicate that the goal of achieving 24 has been successfully reached.511

15

B.1.5 Experiment Run 5.512

User: The 24 Game is a mathematical card game in which the objective is to find a way to manipulate four513

integers so that the end result is 24. The game is played with a list of four numbers, and the player must use all514

four numbers exactly once, using any combination of addition, subtraction, multiplication, or division, to arrive515

at the number 24. If a state is defined by a list of numbers (4 or less), how are successor states defined? Provide516

only the python code that returns a list of successor states for a state.517

ChatGPT: To generate successor states for a given state in the 24 Game, we need to consider pairs of numbers518

from the current state and all possible operations between them. After selecting a pair of numbers and an519

operation, we replace the pair in the current state with the result of the operation to create a new state. This520

process is repeated for every possible pair and operation.521

Here’s a Python function that returns all successor states for a given state:522

from itertools import combinations

def successor_states(state):
def apply_operation(a, b):

Generate all possible results of operations on a and b
results = [a + b, a - b, b - a, a * b]
if b != 0:

results.append(a / b)
if a != 0:

results.append(b / a)
return results

successors = []
n = len(state)
for i, j in combinations(range(n), 2):

Get all possible results of operations between state[i] and state[j]
for result in apply_operation(state[i], state[j]):

Form a new state replacing state[i] and state[j] with the result
new_state = [state[k] for k in range(n) if k != i and k != j]
new_state.append(result)
successors.append(new_state)

return successors

This function works as follows:523

• It iterates over all combinations of two indices from the state.524

• For each pair, it applies all possible arithmetic operations.525

• It forms new states by replacing the chosen pair with the result of the operation and includes all other526

numbers from the original state.527

• It collects and returns all these new states as potential successors.528

User: Provide only the python code that tests whether a state is a goal state.529

ChatGPT: Here’s a Python function to check if a given state is a goal state in the 24 Game. The goal is achieved530

if the state contains exactly one number which is 24:531

def is_goal_state(state):
return len(state) == 1 and state[0] == 24

This function checks whether the list state has only one element and that element is 24, indicating that the532

operations on the initial numbers have successfully resulted in 24.533

B.2 Mini crossword534

The prompt for the successor function is as follows.535

The task is a 5x5 mini crosswords. Given an input of possible answers to horizontal clues and vertical clues,536

come up with a successor state function written in python, where a state is a 2D array representing the current537

puzzle state (initially all empty).538

16

The prompt for the goal test is as follows.539

Can you come up with a goal test function ensuring that all cells are not None and that all words horizontally540

and vertically match at least one of the answers?541

B.2.1 Experiment Run 1.542

User: The task is a 5x5 mini crosswords. Given an input of possible answers to horizontal clues and vertical543

clues, come up with a successor state function written in python, where a state is a 2D array representing the544

current puzzle state (initially all None). The possible clues for each row and each column are given separately.545

Here is an example:546

horizontal_answers = [
["tasks", "goals", "plans", "agend", "chores", "works", "deeds", "items", "lists", "brief"],
["motor", "power", "drive", "diesel", "steam", "pumps", "crank", "gears", "turbn", "motor"],
["grand", "artsy", "showy", "ornate", "fancy", "vain", "proud", "vogue", "swank", "luxus"],
["venue", "salle", "forum", "atria", "lobby", "parls", "court", "malls", "mall", "lobby"],
["jeer", "scoff", "sleer", "deris", "sneer", "scorn", "derid", "gibes", "gibed", "flout"]

]

vertical_answers = [
["amass", "stack", "hoard", "pile", "store", "heaps", "massy", "gathe", "lumps", "mound"],
["nilga", "goral", "eland", "lepus", "gazal", "kudu", "oryx", "gnu", "imps", "carb"],
["scheme", "design", "ettle", "nettle", "sting", "wiles", "plans", "ideas", "plots", "cocks"],
["spout", "nosle", "snout", "mouth", "nostr", "ports", "inlet", "vents", "outlt", "beaks"],
["drier", "arid", "sere", "parch", "dryer", "wring", "drear", "sear", "pall", "lack"]

]

ChatGPT: To create a successor state function for a 5x5 mini crossword puzzle in Python, we’ll consider the547

following:548

1. State Representation: A state will be represented by a 5x5 grid, where each cell can either contain a549

letter or be empty (represented by None or an empty string).550

2. Input: The inputs to the function will be a list of possible answers for horizontal and vertical clues.551

Each answer is exactly 5 characters long since it’s a 5x5 grid.552

3. Successor State Function: This function generates all possible successor states from the current state.553

For each empty row or column, the function will try to place every suitable word from the clues into554

the grid and generate a new state for each valid placement.555

Here is a Python implementation of the successor state function for the 5x5 mini crossword puzzle:556

def is_valid_placement(grid, word, start_row, start_col, is_horizontal):
"""
Checks if a word can be placed at the specified starting row and column.
"""
for i in range(5):

if is_horizontal:
Check horizontal placement
if grid[start_row][start_col + i] not in (None, word[i]):

return False
else:

Check vertical placement
if grid[start_row + i][start_col] not in (None, word[i]):

return False
return True

def place_word(grid, word, start_row, start_col, is_horizontal):
"""
Places a word on the grid at the specified position.
"""
new_grid = [row[:] for row in grid] # Make a copy of the grid
for i in range(5):

if is_horizontal:
new_grid[start_row][start_col + i] = word[i]

else:
new_grid[start_row + i][start_col] = word[i]

return new_grid

17

def successor_states(grid, horizontal_answers, vertical_answers):
"""
Generates all successor states for the current state of the grid.
"""
successors = []

Attempt to place words from horizontal_answers in each row
for row in range(5):

if all(cell is None for cell in grid[row]): # If row is completely empty
for word in horizontal_answers[row]:

if is_valid_placement(grid, word, row, 0, True):
new_grid = place_word(grid, word, row, 0, True)
successors.append(new_grid)

Attempt to place words from vertical_answers in each column
for col in range(5):

if all(grid[row][col] is None for row in range(5)): # If column is completely empty
for word in vertical_answers[col]:

if is_valid_placement(grid, word, 0, col, False):
new_grid = place_word(grid, word, 0, col, False)
successors.append(new_grid)

return successors

Example usage
initial_grid = [[None]*5 for _ in range(5)]

horizontal_answers = [
["tasks", "goals", "plans", "agend", "chores", "works", "deeds", "items", "lists", "brief"],
["motor", "power", "drive", "diesel", "steam", "pumps", "crank", "gears", "turbn", "motor"],
["grand", "artsy", "showy", "ornate", "fancy", "vain", "proud", "vogue", "swank", "luxus"],
["venue", "salle", "forum", "atria", "lobby", "parls", "court", "malls", "mall", "lobby"],
["jeer", "scoff", "sleer", "deris", "sneer", "scorn", "derid", "gibes", "gibed", "flout"]

]
vertical_answers = [

["amass", "stack", "hoard", "pile", "store", "heaps", "massy", "gathe", "lumps", "mound"],
["nilga", "goral", "eland", "lepus", "gazal", "kudu", "oryx", "gnu", "imps", "carb"],
["scheme", "design", "ettle", "nettle", "sting", "wiles", "plans", "ideas", "plots", "cocks"],
["spout", "nosle", "snout", "mouth", "nostr", "ports", "inlet", "vents", "outlt", "beaks"],
["drier", "arid", "sere", "parch", "dryer", "wring", "drear", "sear", "pall", "lack"]

]

Generate successors from the initial state
successors = successor_states(initial_grid, horizontal_answers, vertical_answers)
print("Number of successor states:", len(successors))
for state in successors:

for row in state:
print(row)

print()

Explanation557

• is_valid_placement: Checks if the word can be placed on the grid without conflicting with existing558

characters.559

• place_word: Places the word on the grid and returns the new grid state.560

• successor_states: Iterates over each row and column to find empty spaces and attempts to place each561

clue word, generating new successor states.562

This function will give you all the potential successor states by attempting to fill each empty row and column563

with every possible word from the clues. Note that this example assumes the initial state has no conflicting564

pre-filled characters and does not handle partial word placements or overlaps, which could be extensions to this565

basic successor function.566

User: Can you come up with a goal test function Come up with a goal test function ensuring that all cells are not567

None and that all words horizontally and vertically match at least one of the answers?568

ChatGPT: Certainly! To create a goal test function for the 5x5 mini crossword puzzle, we need to ensure that:569

18

1. No Empty Cells: There should be no cell in the grid that contains None.570

2. Valid Words Horizontally: Each row must contain a word that is present in the list of possible horizontal571

answers for that specific row.572

3. Valid Words Vertically: Each column must contain a word that is present in the list of possible vertical573

answers for that specific column.574

Here is how you could implement such a function in Python:575

def goal_test(grid, horizontal_answers, vertical_answers):
"""
Check if the current grid state is a goal state.
"""
Check for any None values in the grid
if any(None in row for row in grid):

return False

Check horizontal words against possible answers
for row in range(5):

row_word = ''.join(grid[row])
if row_word not in horizontal_answers[row]:

return False

Check vertical words against possible answers
for col in range(5):

col_word = ''.join(grid[row][col] for row in range(5))
if col_word not in vertical_answers[col]:

return False

return True

Example of usage

horizontal_answers = [
["tasks", "goals", "plans", "agend", "chores", "works", "deeds", "items", "lists", "brief"],
["motor", "power", "drive", "diesel", "steam", "pumps", "crank", "gears", "turbn", "motor"],
["grand", "artsy", "showy", "ornate", "fancy", "vain", "proud", "vogue", "swank", "luxus"],
["venue", "salle", "forum", "atria", "lobby", "parls", "court", "malls", "mall", "lobby"],
["jeer", "scoff", "sleer", "deris", "sneer", "scorn", "derid", "gibes", "gibed", "flout"]

]
vertical_answers = [

["amass", "stack", "hoard", "pile", "store", "heaps", "massy", "gathe", "lumps", "mound"],
["nilga", "goral", "eland", "lepus", "gazal", "kudu", "oryx", "gnu", "imps", "carb"],
["scheme", "design", "ettle", "nettle", "sting", "wiles", "plans", "ideas", "plots", "cocks"],
["spout", "nosle", "snout", "mouth", "nostr", "ports", "inlet", "vents", "outlt", "beaks"],
["drier", "arid", "sere", "parch", "dryer", "wring", "drear", "sear", "pall", "lack"]

]

Assume a sample grid which is a valid goal state
sample_grid = [

["t", "a", "s", "k", "s"],
["m", "o", "t", "o", "r"],
["s", "w", "a", "n", "k"],
["m", "a", "l", "l", "s"],
["d", "e", "r", "i", "s"]

]

Test the goal test function
is_goal = goal_test(sample_grid, horizontal_answers, vertical_answers)
print("Is this a goal state?", is_goal)

Function Explanation:576

• The goal_test function iterates over all rows and columns. For rows, it concatenates the elements to577

form a word and checks against the list of possible answers for that row. It repeats a similar process578

for columns. If any word doesn’t match the possible answers or if there’s any None value in the grid,579

the function returns False.580

• If all checks pass, it returns True, indicating that the grid is in a goal state.581

19

User:582

For the successor state generation I am getting the following error:583

Traceback (most recent call last):
File "./gpt4_successors1.py", line 70, in <module>

successors = successor_states(initial_grid, horizontal_answers, vertical_answers)
File "./gpt4_successors1.py", line 38, in successor_states

if is_valid_placement(grid, word, row, 0, True):
File "./gpt4_successors1.py", line 8, in is_valid_placement

if grid[start_row][start_col + i] not in (None, word[i]):
IndexError: string index out of range

ChatGPT: The error message "IndexError: string index out of range" typically indicates an attempt to access an584

index that does not exist in a string. This issue often arises when working with grid-related operations and is585

usually due to one of two reasons in your crossword context:586

1. Mismatch in Word Length: Since your grid cells are designed for 5x5 crosswords, every word used as587

a clue should be exactly 5 characters long. If any word is shorter or longer than this, you’ll encounter588

this error when you try to place it in the grid.589

2. Out-of-Bounds Access: This happens if the code attempts to place a word in a position where it doesn’t590

fit entirely within the grid’s boundaries, although based on your function setup (starting placements at591

row 0 and column 0 for horizontal and vertical placements respectively) and the checks you seem to592

have intended, this shouldn’t normally occur unless the word length is incorrect.593

How to Fix:594

1. Verify Word Lengths: Ensure that all words provided in the horizontal_answers and vertical_answers595

lists are exactly 5 characters long. You can add a validation step or filter out any incorrect entries.596

2. Debugging Additions: Include checks in your is_valid_placement function to ensure you don’t run597

into out-of-bounds errors. This is more of a safeguard than a solution to the current issue but is good598

practice.599

Here’s how you might modify your code to include these fixes:600

def is_valid_placement(grid, word, start_row, start_col, is_horizontal):
"""
Checks if a word can be placed at the specified starting row and column.
"""
if len(word) != 5:

Ensure the word is exactly 5 characters as expected for a 5x5 grid
return False

try:
for i in range(5):

if is_horizontal:
Check horizontal placement
if grid[start_row][start_col + i] not in (None, word[i]):

return False
else:

Check vertical placement
if grid[start_row + i][start_col] not in (None, word[i]):

return False
return True

except IndexError:
return False # Safeguard against out-of-bounds access

Additionally, add a check when preparing data
horizontal_answers = [

[word for word in lst if len(word) == 5] for lst in horizontal_answers
]
vertical_answers = [

[word for word in lst if len(word) == 5] for lst in vertical_answers
]

20

Verify the Data: Before running your grid operations, it’s beneficial to confirm that your input data is as expected:601

Example of verifying the word lengths
all(len(word) == 5 for row in horizontal_answers for word in row) and \
all(len(word) == 5 for col in vertical_answers for word in col)

This code snippet ensures that every word in both the horizontal and vertical clues lists is exactly 5 characters602

long. If this assertion fails, you will need to revise your input data to meet this requirement. This helps prevent603

runtime errors related to string length mismatches in a fixed-size grid context like this.604

B.2.2 Experiment Run 2.605

User: The task is a 5x5 mini crosswords. Given an input of possible answers to horizontal clues and vertical606

clues, come up with a successor state function written in python, where a state is a 2D array representing the607

current puzzle state (initially all None). The possible clues for each row and each column are given separately.608

Here is an example:609

horizontal_answers = [
["tasks", "goals", "plans", "agend", "chores", "works", "deeds", "items", "lists", "brief"],
["motor", "power", "drive", "diesel", "steam", "pumps", "crank", "gears", "turbn", "motor"],
["grand", "artsy", "showy", "ornate", "fancy", "vain", "proud", "vogue", "swank", "luxus"],
["venue", "salle", "forum", "atria", "lobby", "parls", "court", "malls", "mall", "lobby"],
["jeer", "scoff", "sleer", "deris", "sneer", "scorn", "derid", "gibes", "gibed", "flout"]

]

vertical_answers = [
["amass", "stack", "hoard", "pile", "store", "heaps", "massy", "gathe", "lumps", "mound"],
["nilga", "goral", "eland", "lepus", "gazal", "kudu", "oryx", "gnu", "imps", "carb"],
["scheme", "design", "ettle", "nettle", "sting", "wiles", "plans", "ideas", "plots", "cocks"],
["spout", "nosle", "snout", "mouth", "nostr", "ports", "inlet", "vents", "outlt", "beaks"],
["drier", "arid", "sere", "parch", "dryer", "wring", "drear", "sear", "pall", "lack"]

]

Note that some of the possible answers are not exactly 5 character long.610

ChatGPT: To approach the creation of a successor state function for this 5x5 mini crossword problem in Python,611

let’s consider a few key aspects:612

1. State Representation: We’ll represent the state of the puzzle as a 2D list of characters. Each cell in the613

list can either be a specific character or empty (denoted by a space or some placeholder).614

2. Initial State: The initial state will have all cells empty.615

3. Successor State Function: This function will generate all possible states that can be reached from the616

current state by making a single move. A "move" in this context would involve placing a word in a617

row or column that fits with the already placed characters.618

4. Constraints:619

• Words must match the allowed words in horizontal_answers for rows and vertical_answers for620

columns.621

• Any placed word must not conflict with characters already placed in intersecting rows or columns.622

Given the constraints and specifications, we’ll proceed as follows:623

• Successor State Function: For a given state, iterate over each row and column, trying to place each624

possible word from the respective lists. Generate a new state for each valid placement.625

Here’s a simplified Python implementation of this successor state function:626

def is_valid_word_placement(grid, word, row=None, col=None):
"""
Check if a word can be placed at the specified row or column.
"""
n = len(grid)
if row is not None:

for j in range(n):
if grid[row][j] is not None and grid[row][j] != word[j]:

return False
elif col is not None:

21

for i in range(n):
if grid[i][col] is not None and grid[i][col] != word[i]:

return False
return True

def place_word(grid, word, row=None, col=None):
"""
Place a word at the specified row or column.
"""
new_grid = [row[:] for row in grid] # Copy the grid
if row is not None:

new_grid[row] = list(word)
elif col is not None:

for i in range(len(word)):
new_grid[i][col] = word[i]

return new_grid

def generate_successors(state, horizontal_answers, vertical_answers):
"""
Generate all possible successor states from the current state.
"""
n = len(state)
successors = []

Try placing each word in each row
for i in range(n):

for word in horizontal_answers[i]:
if is_valid_word_placement(state, word, row=i):

new_state = place_word(state, word, row=i)
successors.append(new_state)

Try placing each word in each column
for j in range(n):

for word in vertical_answers[j]:
if is_valid_word_placement(state, word, col=j):

new_state = place_word(state, word, col=j)
successors.append(new_state)

return successors

Example usage
initial_state = [[None]*5 for _ in range(5)]
successors = generate_successors(initial_state, horizontal_answers, vertical_answers)

Print first few successor states for demonstration
for s in successors[:3]:

for row in s:
print(''.join(row))

print("---")

This code assumes the answers are all 5 characters long to match the 5x5 grid exactly. For words that are627

not 5 characters, additional preprocessing would be necessary to either filter them out or adjust the grid size628

accordingly. Also, this code only illustrates the initial placement of words without handling intersections; further629

logic is needed to ensure words do not contradict each other at intersecting cells.630

User: Can you write a goal test as well?631

ChatGPT: Certainly! A goal test function for the 5x5 mini crossword puzzle would determine if a complete and632

valid crossword has been formed. Here are the criteria for a complete and valid crossword:633

1. Full Grid: All cells in the grid must be filled with valid letters (no empty spaces allowed).634

2. Valid Words: All words formed in rows and columns must match one of the possible answers given635

for that specific row or column.636

Let’s write a Python function that checks if a given state meets these criteria. This goal test function will:637

22

• Verify that all grid cells are filled.638

• Check that every word in each row is in the respective list from horizontal_answers.639

• Check that every word in each column is in the respective list from vertical_answers.640

Here is the implementation:641

def is_complete(state):
"""
Check if all cells in the state are filled with non-space characters.
"""
return all(state[i][j] is not None for i in range(len(state)) for j in range(len(state[i])))

def is_valid_solution(state, horizontal_answers, vertical_answers):
"""
Check if the current state is a complete and valid solution.
"""
n = len(state)

Check if all rows contain valid words
for i in range(n):

row_word = ''.join(state[i])
if row_word not in horizontal_answers[i]:

return False

Check if all columns contain valid words
for j in range(n):

col_word = ''.join(state[i][j] for i in range(n))
if col_word not in vertical_answers[j]:

return False

return True

def goal_test(state, horizontal_answers, vertical_answers):
"""
Determine if the given state is a goal state.
"""
if not is_complete(state):

return False
return is_valid_solution(state, horizontal_answers, vertical_answers)

Example usage
Assume `final_state` is a hypothetical fully filled grid you want to test
final_state = [

['t', 'a', 's', 'k', 's'],
['m', 'o', 't', 'o', 'r'],
['g', 'r', 'a', 'n', 'd'],
['v', 'e', 'n', 'u', 'e'],
['j', 'e', 'e', 'r', 's']

]

Check if the final_state is a goal state
is_goal = goal_test(final_state, horizontal_answers, vertical_answers)
print("Is the final state a goal?", is_goal)

This goal_test function relies on final_state being fully filled and accurately matching the corresponding answer642

lists. This function can be used in a puzzle-solving algorithm to check if the current state of the board is the643

solution.644

User: I am getting an error645

"new_grid[i][col] = word[i]
IndexError: list index out of range"

23

ChatGPT: The error you’re experiencing suggests that there’s a mismatch between the indices being accessed646

and the size of the grid or word. This usually happens if the grid is initialized incorrectly, or if the word doesn’t647

fit exactly into the intended row or column. Since the code assumes each word perfectly fits a 5x5 grid (5 letters648

per word), any deviation from this can cause an index out of range error.649

Let’s address this by ensuring that:650

1. The grid and the words are correctly aligned in size.651

2. The placement functions are handling indexing safely.652

I’ll revise the place_word function to ensure it correctly handles the dimensions of both rows and columns:653

def place_word(grid, word, row=None, col=None):
"""
Place a word at the specified row or column.
"""
new_grid = [list(r) if r is not None else [None]*5 for r in grid] # Safely copy the grid
n = len(grid)
if row is not None:

if len(word) != n:
Return original grid if word length does not match, preventing index error
return grid

new_grid[row] = list(word)
elif col is not None:

if len(word) != n:
Return original grid if word length does not match, preventing index error
return grid

for i in range(n):
new_grid[i][col] = word[i]

return new_grid

This version of place_word adds checks to ensure that words are only placed if they match the expected length,654

preventing indexing errors.655

Additionally, ensure that the initial grid is correctly populated with None values in each cell:656

initial_state = [[None]*5 for _ in range(5)]

If you are still encountering issues, please double-check that:657

• All words used in horizontal_answers and vertical_answers are exactly 5 characters long.658

• The grid dimensions are strictly 5x5.659

If you need to handle words that aren’t 5 characters long, you’d need additional logic to either skip those words or660

adjust the grid accordingly. If you’re working with dynamic sizes or irregular word lengths, the implementation661

would require more complex adjustments to manage these variations.662

User: I am now getting this error:663

File "./gpt4_successors2.py", line 13, in is_valid_word_placement
if grid[i][col] is not None and grid[i][col] != word[i]:

IndexError: string index out of range

ChatGPT: The error "IndexError: string index out of range" in the is_valid_word_placement function suggests664

that there’s an attempt to access an index in the word that is beyond its length. This can occur if:665

1. The length of the word being checked does not match the expected column height (which should be 5666

for your 5x5 grid).667

2. The column index i exceeds the length of the word.668

To resolve this issue, we should verify that:669

• All words used for placement in rows and columns are exactly 5 characters long (as your grid is a 5x5670

grid).671

24

• The checks within is_valid_word_placement are safely accessing characters in words.672

Here’s an updated version of the is_valid_word_placement function with added safety checks:673

def is_valid_word_placement(grid, word, row=None, col=None):
"""
Check if a word can be placed at the specified row or column.
Ensure the word is the correct length and fits the existing grid values.
"""
n = len(grid)
if len(word) != n:

return False # The word does not fit the expected dimension

if row is not None:
for j in range(n):

if grid[row][j] is not None and grid[row][j] != word[j]:
return False

elif col is not None:
for i in range(n):

if grid[i][col] is not None and grid[i][col] != word[i]:
return False

return True

This modified function includes a check to ensure the word length matches the grid dimension (5 for your 5x5674

grid) before proceeding with any further logic. This should help prevent the "IndexError" you encountered by675

immediately returning False if the word length is incorrect.676

Please ensure that:677

• All words in horizontal_answers and vertical_answers are exactly 5 characters before using them in678

your code.679

• The place_word function is also safely handling word placements, particularly in the columns.680

These changes should help eliminate the index errors by ensuring all accessed indices are within the valid range681

for both the grid and the words. If you have any additional needs or run into further issues, feel free to ask for682

more assistance.683

B.2.3 Experiment Run 3.684

User: The task is a 5x5 mini crosswords. Given an input of possible answers to horizontal clues and vertical685

clues, come up with a successor state function written in python, where a state is a 2D array representing the686

current puzzle state (initially all None). The possible clues for each row and each column are given separately.687

Here is an example:688

horizontal_answers = [
["tasks", "goals", "plans", "agend", "chores", "works", "deeds", "items", "lists", "brief"],
["motor", "power", "drive", "diesel", "steam", "pumps", "crank", "gears", "turbn", "motor"],
["grand", "artsy", "showy", "ornate", "fancy", "vain", "proud", "vogue", "swank", "luxus"],
["venue", "salle", "forum", "atria", "lobby", "parls", "court", "malls", "mall", "lobby"],
["jeer", "scoff", "sleer", "deris", "sneer", "scorn", "derid", "gibes", "gibed", "flout"]

]

vertical_answers = [
["amass", "stack", "hoard", "pile", "store", "heaps", "massy", "gathe", "lumps", "mound"],
["nilga", "goral", "eland", "lepus", "gazal", "kudu", "oryx", "gnu", "imps", "carb"],
["scheme", "design", "ettle", "nettle", "sting", "wiles", "plans", "ideas", "plots", "cocks"],
["spout", "nosle", "snout", "mouth", "nostr", "ports", "inlet", "vents", "outlt", "beaks"],
["drier", "arid", "sere", "parch", "dryer", "wring", "drear", "sear", "pall", "lack"]

]

Note that some of the possible answers are not exactly 5 character long.689

ChatGPT: To address the mini crossword puzzle problem as described, we need to define a successor function690

for generating possible states from a given state. Each state in this problem is represented by a 5x5 grid, where691

each cell can contain a letter or be empty.692

Here’s a high-level plan for the successor function:693

25

1. Initialize State: Start with an empty 5x5 grid.694

2. Identify Next Cell to Fill: Decide on a strategy to fill the grid. A simple approach is row-wise from695

top to bottom, left to right.696

3. Generate Successors: For the next empty cell, consider all possible words that could fit in the row and697

column intersecting at that cell, ensuring that the words do not conflict with already filled cells.698

4. Check Validity: Each attempted word must not only fit the current cell but also not contradict any699

existing letters in intersecting rows and columns.700

5. Create New State: For each valid placement, create a new grid state.701

Below is a Python function to implement this idea. It uses recursion to try placing words in the grid row by702

row and backtracks when no valid placement is possible. It assumes that the lists of words contain only valid703

5-character words fitting exactly in the grid. We’ll have to pre-process the input to ensure this:704

def is_valid(grid, row, col, word, vertical=False):
""" Check if placing the `word` at `row`, `col` is valid in the grid. """
if vertical:

for i in range(5):
Check if the cell is not None and does not match the word character
if grid[row + i][col] is not None and grid[row + i][col] != word[i]:

return False
else:

for i in range(5):
Check if the cell is not None and does not match the word character
if grid[row][col + i] is not None and grid[row][col + i] != word[i]:

return False
return True

def place_word(grid, row, col, word, vertical=False):
""" Place the `word` at `row`, `col` in the grid. """
new_grid = [list(r) for r in grid] # Create a deep copy of the grid
if vertical:

for i in range(5):
new_grid[row + i][col] = word[i]

else:
for i in range(5):

new_grid[row][col + i] = word[i]
return new_grid

def successor(grid, horizontal_answers, vertical_answers):
""" Generate successors by trying to place words into the grid. """
empty_row, empty_col = -1, -1
for r in range(5):

for c in range(5):
if grid[r][c] is None:

empty_row, empty_col = r, c
break

if empty_row != -1:
break

if empty_row == -1: # If no empty cell found, the grid is complete
return [grid]

successors = []
Try to place horizontal words
for word in horizontal_answers[empty_row]:

if is_valid(grid, empty_row, empty_col, word):
successors.append(place_word(grid, empty_row, empty_col, word))

Try to place vertical words
for word in vertical_answers[empty_col]:

if is_valid(grid, empty_row, empty_col, word, vertical=True):
successors.append(place_word(grid, empty_row, empty_col, word, vertical=True))

26

return successors

Initialize the grid with None
initial_grid = [[None]*5 for _ in range(5)]

Example usage
Suppose we have already preprocessed horizontal_answers and vertical_answers to have valid 5-letter words only.
successors = successor(initial_grid, horizontal_answers, vertical_answers)
print("Number of successors from initial state:", len(successors))

This function assumes that all entries in horizontal_answers and vertical_answers are valid 5-character words.705

The function is_valid checks if a word can be placed at a given position without conflicts, and place_word places706

the word on the grid. The successor function generates all possible successor states by trying to place words in707

the first available empty spot.708

User: Can you write a goal test as well?709

ChatGPT: A goal test function for the mini crossword puzzle checks if the crossword puzzle is completely filled710

with valid words according to both the horizontal and vertical constraints. Here’s how you can implement such a711

function:712

1. Check Completion: Verify that all cells in the grid are filled (i.e., none are None).713

2. Validate Words: Ensure that every row and column contains a word from the respective lists of possible714

words (horizontal_answers and vertical_answers).715

Here’s the Python code that implements the goal test:716

def is_complete(grid):
""" Check if all cells in the grid are filled with a character. """
for row in grid:

if any(cell is None for cell in row):
return False

return True

def extract_word(grid, row, col, vertical=False):
""" Extract a word starting from (row, col) horizontally or vertically. """
word = ""
if vertical:

for i in range(5):
word += grid[row + i][col]

else:
for i in range(5):

word += grid[row][col + i]
return word

def validate_words(grid, answers, vertical=False):
""" Validate all rows or columns in the grid against the given answers. """
for i in range(5):

if vertical:
word = extract_word(grid, 0, i, vertical=True)

else:
word = extract_word(grid, i, 0)

if word not in answers[i]:
return False

return True

def goal_test(grid, horizontal_answers, vertical_answers):
""" Determine if the current grid state satisfies the goal conditions. """
if not is_complete(grid):

return False
if not validate_words(grid, horizontal_answers, vertical=False):

return False
if not validate_words(grid, vertical_answers, vertical=True):

return False

27

return True

Example usage of the goal test
Suppose `final_grid` is a grid state you want to check if it meets the goal conditions.
final_grid would typically be a completed grid you're checking for correctness.
goal_result = goal_test(final_grid, horizontal_answers, vertical_answers)
print("Does the final grid meet the goal conditions?", goal_result)

Explanation:717

• is_complete: This function checks if there are any None cells left in the grid. If there are, the grid is718

not yet complete.719

• extract_word: This function extracts a word from a specified starting point either horizontally or720

vertically.721

• validate_words: This function checks each row or column to ensure the extracted word is in the722

provided list of possible answers for that row or column.723

• goal_test: This function combines all the checks to determine if the grid meets the goal conditions.724

This set of functions together forms the complete goal test for the mini crossword problem.725

User:726

I am getting this error:727

File "./gpt4_successors3.py", line 21, in place_word
new_grid[row + i][col] = word[i]

IndexError: string index out of range

ChatGPT: The "IndexError: string index out of range" error you’re encountering suggests that either word[i]728

or new_grid[row + i][col] is trying to access an index that doesn’t exist. This could be happening because of729

several reasons in the context of your crossword puzzle:730

1. Word Length Mismatch: If word is shorter than 5 characters (since you are working with a 5x5 grid),731

trying to access word[i] where i ranges from 0 to 4 will result in an index error if word is shorter than732

this range.733

2. Grid Boundaries: The same error could occur if you try to place a word such that it would extend734

beyond the boundaries of the grid, but this usually would throw a different kind of error unless the735

grid’s structure itself is misdefined.736

Steps to Resolve: First, ensure that all words used in the successors function are exactly 5 characters long. This737

needs to be enforced before words are passed into your place_word and is_valid functions. You can preprocess738

your horizontal_answers and vertical_answers lists to filter out any words that are not exactly 5 characters long:739

horizontal_answers = [list(filter(lambda x: len(x) == 5, row)) for row in horizontal_answers]
vertical_answers = [list(filter(lambda x: len(x) == 5, col)) for col in vertical_answers]

Second, double-check that you are not attempting to place a word vertically or horizontally in a position where it740

doesn’t fit within the grid boundaries. This check should be integrated within your is_valid function to ensure741

that you do not start placing a word too close to the edge of the grid:742

def is_valid(grid, row, col, word, vertical=False):
""" Check if placing the `word` at `row`, `col` is valid in the grid. """
if vertical:

Ensure the word will not go out of the grid's bounds
if row + 4 >= 5:

return False
for i in range(5):

if grid[row + i][col] is not None and grid[row + i][col] != word[i]:
return False

else:
Ensure the word will not go out of the grid's bounds
if col + 4 >= 5:

return False

28

for i in range(5):
if grid[row][col + i] is not None and grid[row][col + i] != word[i]:

return False
return True

Implementing these checks should help prevent the IndexError by ensuring that only suitable words are considered743

and they are always placed within the valid boundaries of the grid. If these solutions do not resolve the issue, I744

recommend printing out the values of row, col, and word just before the error occurs to better understand the745

problematic scenario.746

User:747

I am still getting this error748

"new_grid[row + i][col] = word[i]"

ChatGPT: The error message "IndexError: string index out of range" at new_grid[row + i][col] = word[i]749

suggests an issue with accessing an index that doesn’t exist, either because the word length is incorrect or750

because you’re trying to access a grid position that’s out of range. Since we’ve already checked the word lengths751

to ensure they’re exactly 5 characters, let’s make sure of a few additional things:752

Debugging Steps:753

1. Check Grid Initialization: Verify that your grid is indeed a 5x5 grid and initialized correctly. This error754

might occur if the grid was not initialized as expected.755

2. Confirm Word Lengths: Double-check that the word lengths are exactly 5 characters when they are756

passed into the place_word function. Even though you’ve filtered them before, it’s good to check right757

at the point of use.758

3. Boundary Conditions in Placement: The error might be occurring when trying to place a word759

vertically near the bottom of the grid or horizontally near the right edge, even though you have checks760

to prevent this. Let’s add explicit checks right in the place_word function to avoid going out of bounds.761

Here’s how you can add debugging statements and ensure the grid dimensions and word length:762

Updated Code with Debugging:763

def place_word(grid, row, col, word, vertical=False):
""" Place the `word` at `row`, `col` in the grid. """
new_grid = [list(r) for r in grid] # Create a deep copy of the grid
try:

if vertical:
Additional boundary check to prevent IndexError
if row + 4 >= len(grid):

print(f"Trying to place vertically out of bounds: {word} at ({row},{col})")
return grid

for i in range(5):
new_grid[row + i][col] = word[i]

else:
Additional boundary check to prevent IndexError
if col + 4 >= len(grid[row]):

print(f"Trying to place horizontally out of bounds: {word} at ({row},{col})")
return grid

for i in range(5):
new_grid[row][col + i] = word[i]

return new_grid
except IndexError as e:

print(f"Error placing word: {word} at ({row},{col}), vertical={vertical}")
print(f"Grid dimensions: {len(grid)}x{len(grid[0])}")
print(f"Word length: {len(word)}")
raise e

Ensure this function is called with appropriate checking.
Also, make sure your grid initialization and filtering are correctly applied:
initial_grid = [[None]*5 for _ in range(5)] # Confirming grid initialization
horizontal_answers = [list(filter(lambda x: len(x) == 5, row)) for row in horizontal_answers]

29

vertical_answers = [list(filter(lambda x: len(x) == 5, col)) for col in vertical_answers]

The rest of your implementation

Explanation:764

• Debug Prints: Added debug print statements that will show exactly what word and position are being765

attempted if an error occurs or if a boundary check fails.766

• Boundary Checks: Explicit checks are added right in the place_word function to avoid placing words767

that would extend beyond the grid’s boundaries.768

• Error Handling: If an IndexError is caught, the code will print out detailed debug information before769

re-raising the exception. This can help identify exactly what went wrong.770

Using these additions, you should be able to pinpoint why the error occurs. Ensure all words are properly filtered771

to 5 characters before they are used in the place_word function, and always check your grid initialization and the772

indices you’re accessing.773

User: Instead of throwing error, just skip over the words that are not exactly 5 character long and revise the774

definition.775

ChatGPT: To avoid errors related to word length mismatches and to make your code more robust, I’ll provide776

you with a revised version of the crossword puzzle functions where any words that are not exactly 5 characters777

long are skipped during the placement process. This will ensure that only suitable words are considered when778

generating successor states and checking grid validity.779

Here’s the updated Python code:780

Revised Code to Skip Invalid Length Words and Placement781

def is_valid(grid, row, col, word, vertical=False):
""" Check if placing the `word` at `row`, `col` is valid in the grid. """
if len(word) != 5: # Skip words that are not exactly 5 characters long

return False
if vertical:

if row + 4 >= 5:
return False

for i in range(5):
if grid[row + i][col] is not None and grid[row + i][col] != word[i]:

return False
else:

if col + 4 >= 5:
return False

for i in range(5):
if grid[row][col + i] is not None and grid[row][col + i] != word[i]:

return False
return True

def place_word(grid, row, col, word, vertical=False):
""" Place the `word` at `row`, `col` in the grid. """
if len(word) != 5: # Do not place words that are not exactly 5 characters long

return grid
new_grid = [list(r) for r in grid] # Create a deep copy of the grid
if vertical:

for i in range(5):
new_grid[row + i][col] = word[i]

else:
for i in range(5):

new_grid[row][col + i] = word[i]
return new_grid

def successor(grid, horizontal_answers, vertical_answers):
""" Generate successors by trying to place words into the grid. """
empty_row, empty_col = -1, -1
for r in range(5):

for c in range(5):

30

if grid[r][c] is None:
empty_row, empty_col = r, c
break

if empty_row != -1:
break

if empty_row == -1: # If no empty cell found, the grid is complete
return [grid]

successors = []
Try to place horizontal words
for word in horizontal_answers[empty_row]:

if is_valid(grid, empty_row, empty_col, word):
successors.append(place_word(grid, empty_row, empty_col, word))

Try to place vertical words
for word in vertical_answers[empty_col]:

if is_valid(grid, empty_row, empty_col, word, vertical=True):
successors.append(place_word(grid, empty_row, empty_col, word, vertical=True))

return successors

Initialize the grid with None
initial_grid = [[None]*5 for _ in range(5)]

Example usage
Ensure that all words passed to the successor function are exactly 5 characters long
horizontal_answers = [list(filter(lambda x: len(x) == 5, row)) for row in horizontal_answers]
vertical_answers = [list(filter(lambda x: len(x) == 5, col)) for col in vertical_answers]

successors = successor(initial_grid, horizontal_answers, vertical_answers)
print("Number of successors from initial state:", len(successors))

Key Changes:782

• Word Length Check: Before attempting to place a word or validate its placement, the functions now783

check if the word is exactly 5 characters long. If not, they skip processing that word.784

• Code Efficiency: Filters are applied to ensure that all words considered are of appropriate length before785

any operations are performed with them. This helps avoid unnecessary runtime errors and simplifies786

the logic within the successor functions.787

This approach ensures your crossword solver doesn’t crash due to incorrect word lengths and that it handles788

words dynamically based on actual content suitability.789

B.2.4 Experiment Run 4.790

User: The task is a 5x5 mini crosswords. Given an input of possible answers to horizontal clues and vertical791

clues, come up with a successor state function written in python, where a state is a 2D array representing the792

current puzzle state (initially all None). The possible clues for each row and each column are given separately.793

Here is an example:794

horizontal_answers = [
["tasks", "goals", "plans", "agend", "chores", "works", "deeds", "items", "lists", "brief"],
["motor", "power", "drive", "diesel", "steam", "pumps", "crank", "gears", "turbn", "motor"],
["grand", "artsy", "showy", "ornate", "fancy", "vain", "proud", "vogue", "swank", "luxus"],
["venue", "salle", "forum", "atria", "lobby", "parls", "court", "malls", "mall", "lobby"],
["jeer", "scoff", "sleer", "deris", "sneer", "scorn", "derid", "gibes", "gibed", "flout"]

]

vertical_answers = [
["amass", "stack", "hoard", "pile", "store", "heaps", "massy", "gathe", "lumps", "mound"],
["nilga", "goral", "eland", "lepus", "gazal", "kudu", "oryx", "gnu", "imps", "carb"],
["scheme", "design", "ettle", "nettle", "sting", "wiles", "plans", "ideas", "plots", "cocks"],
["spout", "nosle", "snout", "mouth", "nostr", "ports", "inlet", "vents", "outlt", "beaks"],
["drier", "arid", "sere", "parch", "dryer", "wring", "drear", "sear", "pall", "lack"]

]

Note that some of the possible answers are not exactly 5 character long.795

31

ChatGPT: To solve this problem, we’ll need to define a successor function for a 5x5 crossword puzzle using the796

given possible answers for horizontal and vertical clues. The successor function will produce all possible next797

states from the current state by placing valid words into the crossword, ensuring that the new word fits both the798

horizontal and vertical constraints.799

Here’s a Python function that outlines this process. The function assumes that the state is represented by a 5x5800

grid where each cell can contain a letter or be empty (denoted by a space). The function will attempt to place a801

word from the list of possible answers into the next available row or column that is currently empty, ensuring it802

does not violate any constraints imposed by already placed letters.803

def successor(state, horizontal_answers, vertical_answers):
n = 5 # dimension of the grid
new_states = []

Helper function to check if a word can be placed in a specific row
def can_place_row(word, row, state):

for col in range(n):
if state[row][col] is not None and state[row][col] != word[col]:

return False
return True

Helper function to check if a word can be placed in a specific column
def can_place_col(word, col, state):

for row in range(n):
if state[row][col] is not None and state[row][col] != word[row]:

return False
return True

Helper function to place a word in a specific row
def place_row(word, row, state):

new_state = [list(r) for r in state] # make a deep copy of the state
for col in range(n):

new_state[row][col] = word[col]
return new_state

Helper function to place a word in a specific column
def place_col(word, col, state):

new_state = [list(r) for r in state] # make a deep copy of the state
for row in range(n):

new_state[row][col] = word[row]
return new_state

Attempt to place a word in each row
for i in range(n):

if all(cell is None for cell in state[i]): # check if the row is empty
for word in horizontal_answers[i]:

if can_place_row(word, i, state):
new_states.append(place_row(word, i, state))

Attempt to place a word in each column
for j in range(n):

if all(state[i][j] is None for i in range(n)): # check if the column is empty
for word in vertical_answers[j]:

if can_place_col(word, j, state):
new_states.append(place_col(word, j, state))

return new_states

Example usage:
initial_state = [

[None, None, None, None, None],
[None, None, None, None, None],
[None, None, None, None, None],

32

[None, None, None, None, None],
[None, None, None, None, None]

]

Generate the successor states from the initial state
successors = successor(initial_state, horizontal_answers, vertical_answers)
print("Number of successor states:", len(successors))
for s in successors:

for row in s:
print(''.join(row if row is not None else 'None'))

print()

This function generates successor states by checking each row and column to see if they are completely empty804

and, if so, attempts to place every possible word from the respective answers list into that row or column. Each805

time a word is successfully placed (meaning it does not conflict with any existing letters), a new successor state806

is created. This approach does not yet handle more complex situations where the grid is partially filled and might807

require backtracking or more sophisticated constraint checking, which would be typical in a full crossword808

puzzle solver.809

User: Can you write a goal test as well?810

ChatGPT: Certainly! The goal test function for a crossword puzzle needs to determine if the crossword is fully811

filled with valid words according to the given horizontal and vertical clues. This involves verifying that every row812

and column contains a word from the respective clues list and that these words also agree at every intersection813

point.814

Here’s a Python function for the goal test that you can use in conjunction with the successor function:815

def is_goal_state(state, horizontal_answers, vertical_answers):
n = 5 # dimension of the grid

Helper function to check if a word in a row is valid
def is_valid_row(word, row_answers):

return word in row_answers

Helper function to check if a word in a column is valid
def is_valid_column(word, col_answers):

return word in col_answers

Check all rows
for i in range(n):

row_word = ''.join(state[i])
if not is_valid_row(row_word, horizontal_answers[i]):

return False

Check all columns
for j in range(n):

col_word = ''.join(state[row][j] for row in range(n))
if not is_valid_column(col_word, vertical_answers[j]):

return False

return True

Example usage with a test state that is completely filled:
test_state = [

['t', 'a', 's', 'k', 's'],
['m', 'o', 't', 'o', 'r'],
['g', 'r', 'a', 'n', 'd'],
['v', 'e', 'n', 'u', 'e'],
['j', 'e', 'e', 'r', 's']

]

Assuming this state matches exactly with one of the rows and columns answers:

horizontal_answers = [
["tasks", "goals", "plans", "agend", "chores", "works", "deeds", "items", "lists", "brief"],

33

["motor", "power", "drive", "diesel", "steam", "pumps", "crank", "gears", "turbn", "motor"],
["grand", "artsy", "showy", "ornate", "fancy", "vain", "proud", "vogue", "swank", "luxus"],
["venue", "salle", "forum", "atria", "lobby", "parls", "court", "malls", "mall", "lobby"],
["jeer", "scoff", "sleer", "deris", "sneer", "scorn", "derid", "gibes", "gibed", "flout"]

]

vertical_answers = [
["tasks", "stack", "hoard", "pile", "store", "heaps", "massy", "gathe", "lumps", "mound"],
["motor", "goral", "eland", "lepus", "gazal", "kudu", "oryx", "gnu", "imps", "carb"],
["grand", "design", "ettle", "nettle", "sting", "wiles", "plans", "ideas", "plots", "cocks"],
["venue", "nosle", "snout", "mouth", "nostr", "ports", "inlet", "vents", "outlt", "beaks"],
["jeers", "arid", "sere", "parch", "dryer", "wring", "drear", "sear", "pall", "lack"]

]

print("Is this a goal state?", is_goal_state(test_state, horizontal_answers, vertical_answers))

This function checks each row and column to ensure that they contain valid words from the provided lists. If all816

rows and columns contain valid words and the entire grid is filled (no None or unfilled spaces), the crossword is817

considered complete, and the goal state is achieved.818

This example assumes that the state passed to is_goal_state is a completed state. For a fully functional solver,819

you would typically integrate this check into your search or solving algorithm, to be performed after each new820

state generation.821

User:822

Getting this error: File "./gpt4_goal4.py", line 15, in is_goal_state823

row_word = ''.join(state[i])
TypeError: sequence item 0: expected str instance, NoneType found

ChatGPT: The error you’re encountering occurs because the function tries to join elements of the list that824

contains None values, which join() cannot handle because it expects strings. This can happen if the test data825

provided to the function still contains None values, or if the state isn’t fully filled yet.826

To address this, you should ensure that the state being tested is fully filled with strings (i.e., no None values). If827

you want to test partial states or states that may still contain None, the function needs to be adjusted to skip or828

properly handle these cases.829

Here’s a revised version of the is_goal_state function that checks for None values before attempting to create a830

string from the row or column:831

def is_goal_state(state, horizontal_answers, vertical_answers):
n = 5 # dimension of the grid

Helper function to check if a word in a row is valid
def is_valid_row(word, row_answers):

return word in row_answers

Helper function to check if a word in a column is valid
def is_valid_column(word, col_answers):

return word in col_answers

Check all rows
for i in range(n):

if None in state[i]: # Check if the row is incomplete
continue

row_word = ''.join(state[i])
if not is_valid_row(row_word, horizontal_answers[i]):

return False

Check all columns
for j in range(n):

column = [state[row][j] for row in range(n)]
if None in column: # Check if the column is incomplete

continue
col_word = ''.join(column)
if not is_valid_column(col_word, vertical_answers[j]):

34

return False

Check if the entire grid is filled
for row in state:

if None in row:
return False # Return False if any part of the grid is not filled

return True

Example test
test_state = [

['t', 'a', 's', 'k', 's'],
['m', 'o', 't', 'o', 'r'],
['g', 'r', 'a', 'n', 'd'],
['v', 'e', 'n', 'u', 'e'],
['j', 'e', 'e', 'r', 's']

]

Correct assumption for answers:

horizontal_answers = [
["tasks", "goals", "plans", "agend", "chores", "works", "deeds", "items", "lists", "brief"],
["motor", "power", "drive", "diesel", "steam", "pumps", "crank", "gears", "turbn", "motor"],
["grand", "artsy", "showy", "ornate", "fancy", "vain", "proud", "vogue", "swank", "luxus"],
["venue", "salle", "forum", "atria", "lobby", "parls", "court", "malls", "mall", "lobby"],
["jeer", "scoff", "sleer", "deris", "sneer", "scorn", "derid", "gibes", "gibed", "flout"]

]

vertical_answers = [
["tasks", "stack", "hoard", "pile", "store", "heaps", "massy", "gathe", "lumps", "mound"],
["motor", "goral", "eland", "lepus", "gazal", "kudu", "oryx", "gnu", "imps", "carb"],
["grand", "design", "ettle", "nettle", "sting", "wiles", "plans", "ideas", "plots", "cocks"],
["venue", "nosle", "snout", "mouth", "nostr", "ports", "inlet", "vents", "outlt", "beaks"],
["jeers", "arid", "sere", "parch", "dryer", "wring", "drear", "sear", "pall", "lack"]

]

print("Is this a goal state?", is_goal_state(test_state, horizontal_answers, vertical_answers))

This revision adds checks to ensure that no None values are present in any row or column before attempting to832

create a string from them, and it skips validation for incomplete rows or columns. Additionally, it verifies that833

every part of the grid is filled before confirming it’s a goal state.834

User: I am getting this error, please fix so I don’t get an error. If need to please skip over the words that are not835

exactly 5 character long.836

ChatGPT: To address both the error handling and the requirement to skip over words that are not exactly 5837

characters long in the grid, I’ll adjust the functions to skip these checks and ensure proper handling of grid838

dimensions and word lengths. Here’s an updated version of both the successor and is_goal_state functions that839

includes these conditions:840

Revised successor Function: This function now ensures that only words with exactly 5 characters are considered841

for placement.842

def successor(state, horizontal_answers, vertical_answers):
n = 5 # dimension of the grid
new_states = []

Ensure only 5-character words are considered
horizontal_answers = [[word for word in row if len(word) == 5] for row in horizontal_answers]
vertical_answers = [[word for word in col if len(word) == 5] for col in vertical_answers]

Helper function to check if a word can be placed in a specific row
def can_place_row(word, row, state):

for col in range(n):
if state[row][col] is not None and state[row][col] != word[col]:

return False
return True

35

Helper function to check if a word can be placed in a specific column
def can_place_col(word, col, state):

for row in range(n):
if state[row][col] is not None and state[row][col] != word[row]:

return False
return True

Helper function to place a word in a specific row
def place_row(word, row, state):

new_state = [list(r) for r in state] # make a deep copy of the state
for col in range(n):

new_state[row][col] = word[col]
return new_state

Helper function to place a word in a specific column
def place_col(word, col, state):

new_state = [list(r) for r in state] # make a deep copy of the state
for row in range(n):

new_state[row][col] = word[row]
return new_state

Attempt to place a word in each row
for i in range(n):

if all(cell is None for cell in state[i]): # check if the row is empty
for word in horizontal_answers[i]:

if can_place_row(word, i, state):
new_states.append(place_row(word, i, state))

Attempt to place a word in each column
for j in range(n):

if all(state[i][j] is None for i in range(n)): # check if the column is empty
for word in vertical_answers[j]:

if can_place_col(word, j, state):
new_states.append(place_col(word, j, state))

return new_states

Revised is_goal_state Function: This function now ignores words that are not exactly 5 characters long and843

ensures all cells are filled with valid strings.844

def is_goal_state(state, horizontal_answers, vertical_answers):
n = 5 # dimension of the grid

Ensure only 5-character words are considered
horizontal_answers = [[word for word in row if len(word) == 5] for row in horizontal_answers]
vertical_answers = [[word for word in col if len(word) == 5] for col in vertical_answers]

Check all rows
for i in range(n):

row_word = ''.join(state[i]) if None not in state[i] else None
if row_word and row_word not in horizontal_answers[i]:

return False

Check all columns
for j in range(n):

col_word = ''.join(state[row][j] for row in range(n)) if None not in [state[row][j] for row in range(n)] else None
if col_word and col_word not in vertical_answers[j]:

return False

return all(None not in row for row in state) # Ensure entire grid is filled

Example test state and usage
initial_state = [

[None, None, None, None, None],
[None, None, None, None, None],

36

[None, None, None, None, None],
[None, None, None, None, None],
[None, None, None, None, None]

]

Generate the successor states from the initial state
successors = successor(initial_state, horizontal_answers, vertical_answers)
print("Number of successor states:", len(successors))
for s in successors:

for row in s:
print(''.join(row if row is not None else 'None'))

print()

These modifications should handle scenarios where words are not exactly 5 characters long and avoid errors due845

to incomplete data or mismatches in expected data types.846

B.2.5 Experiment Run 5.847

User: The task is a 5x5 mini crosswords. Given an input of possible answers to horizontal clues and vertical848

clues, come up with a successor state function written in python, where a state is a 2D array representing the849

current puzzle state (initially all None). The possible clues for each row and each column are given separately.850

Here is an example:851

horizontal_answers = [
["tasks", "goals", "plans", "agend", "chores", "works", "deeds", "items", "lists", "brief"],
["motor", "power", "drive", "diesel", "steam", "pumps", "crank", "gears", "turbn", "motor"],
["grand", "artsy", "showy", "ornate", "fancy", "vain", "proud", "vogue", "swank", "luxus"],
["venue", "salle", "forum", "atria", "lobby", "parls", "court", "malls", "mall", "lobby"],
["jeer", "scoff", "sleer", "deris", "sneer", "scorn", "derid", "gibes", "gibed", "flout"]

]

vertical_answers = [
["amass", "stack", "hoard", "pile", "store", "heaps", "massy", "gathe", "lumps", "mound"],
["nilga", "goral", "eland", "lepus", "gazal", "kudu", "oryx", "gnu", "imps", "carb"],
["scheme", "design", "ettle", "nettle", "sting", "wiles", "plans", "ideas", "plots", "cocks"],
["spout", "nosle", "snout", "mouth", "nostr", "ports", "inlet", "vents", "outlt", "beaks"],
["drier", "arid", "sere", "parch", "dryer", "wring", "drear", "sear", "pall", "lack"]

]

Note that some of the possible answers are not exactly 5 character long.852

ChatGPT: To solve the given 5x5 mini crossword puzzle task, we’ll write a Python function that defines the853

successor state function. This function will generate possible next states based on a given state by trying to fill854

the crossword grid progressively with valid words from the provided clues, both horizontally and vertically.855

Each state in our context is a 2D list representing the crossword grid, where each element can be a letter or a856

placeholder (like a dot .) indicating an empty space. The successor state function will take the current state and857

return a list of all valid states that can be reached by making a single valid word placement.858

Here’s a simple approach using Python:859

1. Start with an empty grid.860

2. For each cell in the grid, if it’s empty, try placing each of the potential words that can fit in the row or861

column.862

3. For each word placement, check if the word is compatible with any existing letters in the intersecting863

rows or columns.864

4. If a word placement is valid, create a new state with this word placed and return this as a potential865

successor state.866

Let’s define the Python function:867

def successor_state(state, horizontal_answers, vertical_answers):
import copy
size = len(state)
next_states = []

def is_valid_placement(r, c, word, is_horizontal):

37

Check if the word fits and matches any existing letters.
for i in range(len(word)):

if is_horizontal:
Check if out of bounds or conflicting letter
if c + i >= size or (state[r][c + i] is not None and state[r][c + i] != word[i]):

return False
else:

if r + i >= size or (state[r + i][c] is not None and state[r + i][c] != word[i]):
return False

return True

def place_word(r, c, word, is_horizontal):
new_state = copy.deepcopy(state)
for i in range(len(word)):

if is_horizontal:
new_state[r][c + i] = word[i]

else:
new_state[r + i][c] = word[i]

return new_state

Try to place each word in every possible starting position
for r in range(size):

for c in range(size):
if state[r][c] is None:

Try to place horizontally
for word in horizontal_answers[r]:

if c + len(word) <= size and is_valid_placement(r, c, word, True):
next_states.append(place_word(r, c, word, True))

Try to place vertically
for word in vertical_answers[c]:

if r + len(word) <= size and is_valid_placement(r, c, word, False):
next_states.append(place_word(r, c, word, False))

return next_states

Example usage
initial_state = [[None for _ in range(5)] for _ in range(5)]
next_states = successor_state(initial_state, horizontal_answers, vertical_answers)

Print out the first few successor states to inspect
for state in next_states[:3]: # Only printing the first 3 for brevity

for row in state:
print(''.join([cell if cell is not None else ' ' for cell in row]))

print()

This function starts with an empty grid and tries to fill it by placing each possible word in every row and column,868

respecting the existing letters. The is_valid_placement function checks whether a word can be legally placed in869

a given position, and place_word updates the grid with the new word. The example usage initializes the grid and870

finds the next possible states from an empty board.871

Keep in mind that this approach is simplistic and might not efficiently solve more complex puzzles due to872

combinatorial explosion in larger grids or with more word options. For more efficient solving, one might consider873

using constraint satisfaction techniques or more advanced search algorithms.874

User: Can you write a goal test as well?875

ChatGPT:876

Certainly! A goal test function in the context of a crossword puzzle checks whether the entire grid has been877

filled with valid words from the given clues without any empty cells remaining. Here’s how you could write a878

goal test function for our crossword puzzle setup, assuming the grid uses None to represent empty cells:879

def goal_test(state, horizontal_answers, vertical_answers):
size = len(state)

def word_in_list(word, word_list):

38

return word in word_list

def get_row_word(row):
return ''.join(row)

def get_column_word(state, col_index):
return ''.join(state[row][col_index] for row in range(size))

Check all rows for valid words
for i in range(size):

if None in state[i]: # If there's still a None, it's not complete
return False

row_word = get_row_word(state[i])
if not word_in_list(row_word, horizontal_answers[i]):

return False

Check all columns for valid words
for j in range(size):

col_word = get_column_word(state, j)
if None in col_word: # Check for None in column

return False
if not word_in_list(col_word, vertical_answers[j]):

return False

return True

Example usage
Assuming a complete and valid state (as an example, one must test with actual valid crossword fills)
completed_state = [

['t', 'u', 'r', 'b', 'n'], # Example valid horizontal word
['s', 'c', 'h', 'e', 'm'], # Example valid horizontal word
['a', 't', 'i', 'n', 'g'], # Example valid horizontal word
['l', 'e', 'p', 'u', 's'], # Example valid horizontal word
['l', 'o', 'b', 'b', 'y'] # Example valid horizontal word

]
print("Is the crossword solved? ", goal_test(completed_state, horizontal_answers, vertical_answers))

Here’s what this goal_test function does:880

1. Check Rows and Columns: The function loops through each row and column of the state.881

2. Validation of Content: For each row and column, it forms the word by joining the characters. If any882

cell in the row or column is None, it means the crossword is incomplete, so it returns False.883

3. Word Verification: It checks if the formed word is in the list of possible answers for that row or column.884

If not, the function returns False.885

4. Completion Check: If all rows and columns have valid words and no None values, it returns True.886

This setup ensures that your goal test is strictly validating both the completion of the grid and the correctness887

according to the provided answers. Make sure that the example state you test with corresponds to possible valid888

completions as per your horizontal_answers and vertical_answers.889

User: I am getting this error "line 25, in goal_test890

if None in col_word: # Check for None in column
TypeError: 'in <string>' requires string as left operand, not NoneType"

ChatGPT:891

The error you’re encountering arises because the function get_column_word joins elements into a string, and if892

any of those elements are None, the process of joining fails to include them directly. However, the immediate893

issue seems to be the misunderstanding in the error message. When converting None types to a string during the894

joining process, it doesn’t handle None explicitly, thus trying to check None in the resulting string is not directly895

possible as None would not exist in a string.896

39

To correct the function and the error, you need to ensure that None checks are performed before attempting to897

join the elements. Let’s adjust the get_column_word and its usage in the goal_test function to properly handle898

columns with None:899

def goal_test(state, horizontal_answers, vertical_answers):
size = len(state)

def word_in_list(word, word_list):
return word in word_list

def get_row_word(row):
Join only if no None in row
if None in row:

return None
return ''.join(row)

def get_column_word(state, col_index):
column = [state[row][col_index] for row in range(size)]
Join only if no None in column
if None in column:

return None
return ''.join(column)

Check all rows for valid words
for i in range(size):

row_word = get_row_word(state[i])
if row_word is None or not word_in_list(row_word, horizontal_answers[i]):

return False

Check all columns for valid words
for j in range(size):

col_word = get_column_word(state, j)
if col_word is None or not word_in_list(col_word, vertical_answers[j]):

return False

return True

Example usage
Assuming a complete and valid state (as an example, one must test with actual valid crossword fills)
completed_state = [

['t', 'u', 'r', 'b', 'n'], # Example valid horizontal word
['s', 'c', 'h', 'e', 'm'], # Example valid horizontal word
['a', 't', 'i', 'n', 'g'], # Example valid horizontal word
['l', 'e', 'p', 'u', 's'], # Example valid horizontal word
['l', 'o', 'b', 'b', 'y'] # Example valid horizontal word

]
print("Is the crossword solved? ", goal_test(completed_state, horizontal_answers, vertical_answers))

Changes Made:900

1. Both get_row_word and get_column_word functions now check for None before attempting to join901

elements into a word. If None is present, these functions return None.902

2. This way, when you check row_word and col_word in the goal_test function, you simply test if they903

are None or not valid according to the clues lists. This avoids trying to work with invalid types and904

addresses the error you were encountering.905

This should resolve the error and improve the robustness of the goal_test function.906

B.3 BlocksWorld907

The prompt for the successor function is as follows.908

909

I am playing with a set of blocks where I need to arrange the blocks into stacks. Here are the actions I can do910

40

Pick up a block Unstack a block from on top of another block Put down a block Stack a block on top of another911

block912

I have the following restrictions on my actions: I can only pick up or unstack one block at a time. I can only pick913

up or unstack a block if my hand is empty. I can only pick up a block if the block is on the table and the block is914

clear. A block is clear if the block has no other blocks on top of it and if the block is not picked up. I can only915

unstack a block from on top of another block if the block I am unstacking was really on top of the other block. I916

can only unstack a block from on top of another block if the block I am unstacking is clear. Once I pick up or917

unstack a block, I am holding the block. I can only put down a block that I am holding. I can only stack a block918

on top of another block if I am holding the block being stacked. I can only stack a block on top of another block if919

the block onto which I am stacking the block is clear. Once I put down or stack a block, my hand becomes empty.920

If a state is defined by a list of following predicates "clear block", "on-table block", "arm-empty", "holding921

block", and "on block1 block2", how are successor states defined? Provide only the python code that returns a922

list of successor states for a state.923

The prompt for the goal test is as follows.924

Provide only the python code that tests whether a state is a goal state. Assume that the goal configuration is925

provided in the same format.926

B.3.1 Experiment Run 1.927

User: I am playing with a set of blocks where I need to arrange the blocks into stacks. Here are the actions I can928

do929

Pick up a block Unstack a block from on top of another block Put down a block Stack a block on top of another930

block931

I have the following restrictions on my actions: I can only pick up or unstack one block at a time. I can only pick932

up or unstack a block if my hand is empty. I can only pick up a block if the block is on the table and the block is933

clear. A block is clear if the block has no other blocks on top of it and if the block is not picked up. I can only934

unstack a block from on top of another block if the block I am unstacking was really on top of the other block. I935

can only unstack a block from on top of another block if the block I am unstacking is clear. Once I pick up or936

unstack a block, I am holding the block. I can only put down a block that I am holding. I can only stack a block937

on top of another block if I am holding the block being stacked. I can only stack a block on top of another block938

if the block onto which I am stacking the block is clear. Once I put down or stack a block, my hand becomes939

empty.940

If a state is defined by a list of following predicates "clear block", "on-table block", "arm-empty", "holding941

block", and "on block1 block2", how are successor states defined? Provide only the python code that returns a942

list of successor states for a state.943

ChatGPT:944

To solve this problem, we can write Python code that represents each state of the blocks world and generates all945

valid successor states based on the actions that can be taken. The state can be represented by a dictionary where946

each predicate (like "clear", "on-table", "holding", "on") is a key with a list of items (blocks or tuples of blocks)947

that satisfy the predicate. Here’s a Python function to generate successor states:948

def successor_states(state):
successors = []
import copy

Unpack the current state
clear_blocks = state.get("clear", [])
on_table_blocks = state.get("on-table", [])
arm_empty = state["arm-empty"]
holding_block = state.get("holding", None)
on_blocks = state.get("on", [])

if arm_empty:
Try to pick up clear blocks from the table
for block in clear_blocks:

if block in on_table_blocks:
new_state = copy.deepcopy(state)
new_state["holding"] = block
new_state["arm-empty"] = False
new_state["on-table"].remove(block)

41

new_state["clear"].remove(block)
successors.append(new_state)

Try to unstack any clear block from another block
for (top, bottom) in on_blocks:

if top in clear_blocks:
new_state = copy.deepcopy(state)
new_state["holding"] = top
new_state["arm-empty"] = False
new_state["on"].remove((top, bottom))
new_state["clear"].append(bottom)
new_state["clear"].remove(top)
successors.append(new_state)

else:
Current state involves holding a block
block_held = holding_block

Try to put the held block on the table
new_state = copy.deepcopy(state)
new_state["on-table"].append(block_held)
new_state["clear"].append(block_held)
new_state["arm-empty"] = True
new_state["holding"] = None
successors.append(new_state)

Try to stack the held block on a clear block on the table
for block in clear_blocks:

if block != block_held: # Cannot stack on itself
new_state = copy.deepcopy(state)
new_state["on"].append((block_held, block))
new_state["clear"].remove(block)
new_state["clear"].append(block_held)
new_state["arm-empty"] = True
new_state["holding"] = None
successors.append(new_state)

return successors

This function performs the following:949

When the arm is empty, it attempts to pick up clear blocks from the table or unstack blocks. When a block950

is being held, it considers putting the block down on the table or stacking it onto another clear block. Each951

action generates a new state which is added to the list of successors. The code assumes that the initial state is952

provided with the correct format and content, and does not handle any kind of errors or inconsistencies in the953

input state. You can test this function with different states to explore how it generates successors based on the954

actions allowed.955

User: Provide only the python code that tests whether a state is a goal state. Assume that the goal configuration956

is provided in the same dictionary format.957

ChatGPT:958

To determine if a given state matches a goal configuration in the blocks world, you need to compare relevant959

predicates that define the configuration of blocks. The goal might involve checking specific blocks being "on"960

other blocks, blocks being on the table, and the state of being "clear". Here’s a Python function to check if a961

state is a goal state:962

def is_goal_state(state, goal_state):
Check if all required "on" relationships in the goal are met
if "on" in goal_state:

goal_on = set(tuple(pair) for pair in goal_state["on"])
current_on = set(tuple(pair) for pair in state.get("on", []))
if not goal_on.issubset(current_on):

return False

Check if all required "on-table" blocks in the goal are met

42

if "on-table" in goal_state:
goal_on_table = set(goal_state["on-table"])
current_on_table = set(state.get("on-table", []))
if not goal_on_table.issubset(current_on_table):

return False

Check if all blocks that need to be clear in the goal are clear
if "clear" in goal_state:

goal_clear = set(goal_state["clear"])
current_clear = set(state.get("clear", []))
if not goal_clear.issubset(current_clear):

return False

return True

This function works as follows:963

It checks that all on relationships defined in the goal state are present in the current state. It checks that all964

blocks that should be on the table according to the goal state are indeed on the table in the current state. It965

checks that all blocks that should be clear according to the goal state are clear in the current state. The function966

returns True if all conditions are met, meaning the current state matches the goal state, and False otherwise. This967

function assumes that the state and goal_state dictionaries are properly formatted and contain the necessary keys.968

Adjustments might be needed based on the exact structure of your state definitions.969

User: The successor_states function uses a shallow copy, please rewrite with deep copy970

ChatGPT: To ensure that the changes to nested lists or dictionaries in the state don’t affect other states, it’s971

necessary to use a deep copy of the state in the successor_states function. Here is the revised code using Python’s972

copy module for deep copying:973

import copy

def successor_states(state):
successors = []

Unpack the current state
clear_blocks = state.get("clear", [])
on_table_blocks = state.get("on-table", [])
arm_empty = state["arm-empty"]
holding_block = state.get("holding", None)
on_blocks = state.get("on", [])

if arm_empty:
Try to pick up clear blocks from the table
for block in clear_blocks:

if block in on_table_blocks:
new_state = copy.deepcopy(state)
new_state["holding"] = block
new_state["arm-empty"] = False
new_state["on-table"].remove(block)
new_state["clear"].remove(block)
successors.append(new_state)

Try to unstack any clear block from another block
for (top, bottom) in on_blocks:

if top in clear_blocks:
new_state = copy.deepcopy(state)
new_state["holding"] = top
new_state["arm-empty"] = False
new_state["on"].remove((top, bottom))
new_state["clear"].append(bottom)
new_state["clear"].remove(top)
successors.append(new_state)

else:
Current state involves holding a block

43

block_held = holding_block

Try to put the held block on the table
new_state = copy.deepcopy(state)
new_state["on-table"].append(block_held)
new_state["clear"].append(block_held)
new_state["arm-empty"] = True
new_state["holding"] = None
successors.append(new_state)

Try to stack the held block on a clear block on the table
for block in clear_blocks:

if block != block_held: # Cannot stack on itself
new_state = copy.deepcopy(state)
new_state["on"].append((block_held, block))
new_state["clear"].remove(block)
new_state["clear"].append(block_held)
new_state["arm-empty"] = True
new_state["holding"] = None
successors.append(new_state)

return successors

In this code, copy.deepcopy(state) is used to create a new independent copy of the state dictionary. This prevents974

modifications to the new_state from affecting the original state object or other generated successor states. This975

deep copy is essential when dealing with mutable objects like lists or dictionaries within the state that may976

change from action to action.977

B.3.2 Experiment Run 2.978

User: I am playing with a set of blocks where I need to arrange the blocks into stacks. Here are the actions I can979

do980

Pick up a block Unstack a block from on top of another block Put down a block Stack a block on top of another981

block982

I have the following restrictions on my actions: I can only pick up or unstack one block at a time. I can only pick983

up or unstack a block if my hand is empty. I can only pick up a block if the block is on the table and the block is984

clear. A block is clear if the block has no other blocks on top of it and if the block is not picked up. I can only985

unstack a block from on top of another block if the block I am unstacking was really on top of the other block. I986

can only unstack a block from on top of another block if the block I am unstacking is clear. Once I pick up or987

unstack a block, I am holding the block. I can only put down a block that I am holding. I can only stack a block988

on top of another block if I am holding the block being stacked. I can only stack a block on top of another block989

if the block onto which I am stacking the block is clear. Once I put down or stack a block, my hand becomes990

empty.991

If a state is defined by a list of following predicates "clear block", "on-table block", "arm-empty", "holding992

block", and "on block1 block2", how are successor states defined? Provide only the python code that returns a993

list of successor states for a state.994

ChatGPT:995

To define a function that calculates the successor states based on the rules you provided, we’ll write a Python996

function that takes the current state as input. The state is represented by a list of predicates such as "clear997

blockA", "on-table blockB", "arm-empty", "holding blockC", and "on blockX blockY".998

Here’s a breakdown of how each action affects the state:999

Pick up a block - This action can be taken if:1000

The block is on the table. The block is clear. The arm is empty. It results in the block being held by the arm and1001

the arm no longer being empty. Unstack a block - This action can be taken if:1002

The block is on top of another block. The block is clear. The arm is empty. It results in the block being held, the1003

block below it becoming clear, and the arm no longer being empty. Put down a block - This action can be taken1004

if:1005

The block is being held. It results in the block being on the table, clear, and the arm becoming empty. Stack a1006

block - This action can be taken if:1007

44

A block is being held. The target block is clear. It results in the block being on top of the target block, the target1008

block no longer clear, and the arm becoming empty. Let’s write a Python function that generates successor states1009

for a given state:1010

def generate_successor_states(state):
successors = []
clear_blocks = {pred.split()[1] for pred in state if pred.startswith("clear")}
on_table_blocks = {pred.split()[1] for pred in state if pred.startswith("on-table")}
holding_block = next((pred.split()[1] for pred in state if pred.startswith("holding")), None)
arm_empty = "arm-empty" in state
on_top = {(pred.split()[1], pred.split()[2]) for pred in state if pred.startswith("on")}

Pick up a block
if arm_empty:

for block in clear_blocks & on_table_blocks:
new_state = state[:]
new_state.remove(f"clear {block}")
new_state.remove(f"on-table {block}")
new_state.remove("arm-empty")
new_state.append(f"holding {block}")
successors.append(new_state)

Unstack a block
if arm_empty:

for top, bottom in on_top:
if top in clear_blocks:

new_state = state[:]
new_state.remove(f"clear {top}")
new_state.remove(f"on {top} {bottom}")
new_state.remove("arm-empty")
new_state.append(f"holding {top}")
new_state.append(f"clear {bottom}")
successors.append(new_state)

Put down a block
if holding_block:

new_state = state[:]
new_state.remove(f"holding {holding_block}")
new_state.append(f"on-table {holding_block}")
new_state.append(f"clear {holding_block}")
new_state.append("arm-empty")
successors.append(new_state)

Stack a block
if holding_block:

for block in clear_blocks:
if block != holding_block:

new_state = state[:]
new_state.remove(f"holding {holding_block}")
new_state.remove(f"clear {block}")
new_state.append(f"on {holding_block} {block}")
new_state.append("arm-empty")
successors.append(new_state)

return successors

This function computes the successor states by iterating through possible actions and checking the constraints of1011

each action. It then returns a list of new states based on the applicable actions.1012

User: Provide only the python code that tests whether a state is a goal state. Assume that the goal configuration1013

is provided in the same format.1014

ChatGPT: To check whether a given state matches a goal configuration, you can write a Python function that1015

compares the two states. Here’s a simple Python function that does this by ensuring every predicate in the goal1016

state is present in the current state:1017

45

def is_goal_state(current_state, goal_state):
current_state_set = set(current_state)
goal_state_set = set(goal_state)
return goal_state_set <= current_state_set

This function works by converting both the current state and the goal state into sets and then checking if all1018

elements of the goal state set are contained within the current state set. This approach handles cases where the1019

current state might have extra predicates not relevant to the goal, as long as all predicates describing the goal1020

configuration are satisfied.1021

User: The generate_successor_states function in the case of stack a block does not add clear for the block that it1022

was holding. Please rewrite.1023

ChatGPT: You’re correct about the issue in the "Stack a block" section of the generate_successor_states function1024

where it does not correctly handle the clearing status of the block being held after it is stacked. Here’s the1025

corrected version of the function that ensures the state is correctly updated:1026

def generate_successor_states(state):
successors = []
clear_blocks = {pred.split()[1] for pred in state if pred.startswith("clear")}
on_table_blocks = {pred.split()[1] for pred in state if pred.startswith("on-table")}
holding_block = next((pred.split()[1] for pred in state if pred.startswith("holding")), None)
arm_empty = "arm-empty" in state
on_top = {(pred.split()[1], pred.split()[2]) for pred in state if pred.startswith("on")}

Pick up a block
if arm_empty:

for block in clear_blocks & on_table_blocks:
new_state = state[:]
new_state.remove(f"clear {block}")
new_state.remove(f"on-table {block}")
new_state.remove("arm-empty")
new_state.append(f"holding {block}")
successors.append(new_state)

Unstack a block
if arm_empty:

for top, bottom in on_top:
if top in clear_blocks:

new_state = state[:]
new_state.remove(f"clear {top}")
new_state.remove(f"on {top} {bottom}")
new_state.remove("arm-empty")
new_state.append(f"holding {top}")
new_state.append(f"clear {bottom}")
successors.append(new_state)

Put down a block
if holding_block:

new_state = state[:]
new_state.remove(f"holding {holding_block}")
new_state.append(f"on-table {holding_block}")
new_state.append(f"clear {holding_block}")
new_state.append("arm-empty")
successors.append(new_state)

Stack a block
if holding_block:

for block in clear_blocks:
if block != holding_block:

new_state = state[:]
new_state.remove(f"holding {holding_block}")
new_state.remove(f"clear {block}")
new_state.append(f"on {holding_block} {block}")
new_state.append(f"clear {holding_block}")

46

new_state.append("arm-empty")
successors.append(new_state)

return successors

Now, when stacking a block, the function correctly adds the clear predicate for the block that was previously1027

held, reflecting the fact that after being placed on another block, it is accessible again (unless it gets covered1028

later). This is important for maintaining an accurate description of the state for future actions.1029

User: Also, when getting the on_top blocks from the state, we must differentiate the predicate "on x y" from1030

"on-table x". They both start with "on". Please fix.1031

ChatGPT: You’re right; the current way the function checks for blocks on top of each other can mistakenly1032

include "on-table" predicates due to the substring match. To differentiate properly between "on x y" and "on-table1033

x", we can use a more precise filtering method. Here’s the updated version of the generate_successor_states1034

function with this correction:1035

def generate_successor_states(state):
successors = []
clear_blocks = {pred.split()[1] for pred in state if pred.startswith("clear")}
on_table_blocks = {pred.split()[1] for pred in state if pred.startswith("on-table")}
holding_block = next((pred.split()[1] for pred in state if pred.startswith("holding")), None)
arm_empty = "arm-empty" in state
on_top = {(pred.split()[1], pred.split()[2]) for pred in state if pred.startswith("on ") and len(pred.split()) == 3}

Pick up a block
if arm_empty:

for block in clear_blocks & on_table_blocks:
new_state = state[:]
new_state.remove(f"clear {block}")
new_state.remove(f"on-table {block}")
new_state.remove("arm-empty")
new_state.append(f"holding {block}")
successors.append(new_state)

Unstack a block
if arm_empty:

for top, bottom in on_top:
if top in clear_blocks:

new_state = state[:]
new_state.remove(f"clear {top}")
new_state.remove(f"on {top} {bottom}")
new_state.remove("arm-empty")
new_state.append(f"holding {top}")
new_state.append(f"clear {bottom}")
successors.append(new_state)

Put down a block
if holding_block:

new_state = state[:]
new_state.remove(f"holding {holding_block}")
new_state.append(f"on-table {holding_block}")
new_state.append(f"clear {holding_block}")
new_state.append("arm-empty")
successors.append(new_state)

Stack a block
if holding_block:

for block in clear_blocks:
if block != holding_block:

new_state = state[:]
new_state.remove(f"holding {holding_block}")
new_state.remove(f"clear {block}")
new_state.append(f"on {holding_block} {block}")
new_state.append(f"clear {holding_block}")

47

new_state.append("arm-empty")
successors.append(new_state)

return successors

This update ensures that the function specifically checks for predicates that exactly match the format "on x y" by1036

splitting the string into exactly three parts, which helps accurately identify the "on" relationships between blocks,1037

without confusing them with "on-table" predicates.1038

B.3.3 Experiment Run 3.1039

User: I am playing with a set of blocks where I need to arrange the blocks into stacks. Here are the actions I can1040

do1041

Pick up a block Unstack a block from on top of another block Put down a block Stack a block on top of another1042

block1043

I have the following restrictions on my actions: I can only pick up or unstack one block at a time. I can only pick1044

up or unstack a block if my hand is empty. I can only pick up a block if the block is on the table and the block is1045

clear. A block is clear if the block has no other blocks on top of it and if the block is not picked up. I can only1046

unstack a block from on top of another block if the block I am unstacking was really on top of the other block. I1047

can only unstack a block from on top of another block if the block I am unstacking is clear. Once I pick up or1048

unstack a block, I am holding the block. I can only put down a block that I am holding. I can only stack a block1049

on top of another block if I am holding the block being stacked. I can only stack a block on top of another block1050

if the block onto which I am stacking the block is clear. Once I put down or stack a block, my hand becomes1051

empty.1052

If a state is defined by a list of following predicates "clear block", "on-table block", "arm-empty", "holding1053

block", and "on block1 block2", how are successor states defined? Provide only the python code that returns a1054

list of successor states for a state.1055

ChatGPT: To define the successor states for a block stacking game based on the rules and actions you’ve1056

described, we can create a Python function that checks the current state against possible actions (Pick up, Put1057

down, Stack, Unstack) and returns all valid successor states. Each state is a set of predicates that describe the1058

current situation, such as which blocks are clear, which are on the table, whether the arm is empty, which block1059

is being held, and the stacking relations between blocks.1060

Here’s a Python function to calculate successor states:1061

def get_successor_states(state):
successor_states = []
arm_empty = 'arm-empty' in state
held_block = None
on_table_blocks = set()
clear_blocks = set()
stack_relations = {}

Parsing the current state
for predicate in state:

if predicate.startswith('on-table'):
_, block = predicate.split()
on_table_blocks.add(block)

elif predicate.startswith('clear'):
_, block = predicate.split()
clear_blocks.add(block)

elif predicate.startswith('holding'):
_, block = predicate.split()
held_block = block

elif predicate.startswith('on'):
_, top, bottom = predicate.split()
stack_relations[top] = bottom

Possible actions if the arm is empty
if arm_empty:

Option to pick up a block from the table
for block in clear_blocks.intersection(on_table_blocks):

new_state = state.copy()

48

new_state.remove('arm-empty')
new_state.remove(f'clear {block}')
new_state.remove(f'on-table {block}')
new_state.add(f'holding {block}')
successor_states.append(new_state)

Option to unstack one block from another
for top, bottom in stack_relations.items():

if top in clear_blocks:
new_state = state.copy()
new_state.remove('arm-empty')
new_state.remove(f'clear {top}')
new_state.remove(f'on {top} {bottom}')
new_state.add(f'holding {top}')
new_state.add(f'clear {bottom}')
successor_states.append(new_state)

Possible actions if holding a block
elif held_block:

Option to put down a block on the table
new_state = state.copy()
new_state.add('arm-empty')
new_state.add(f'clear {held_block}')
new_state.add(f'on-table {held_block}')
new_state.remove(f'holding {held_block}')
successor_states.append(new_state)

Option to stack the held block on a clear block
for block in clear_blocks:

if block != held_block: # Can't stack on itself
new_state = state.copy()
new_state.add('arm-empty')
new_state.add(f'on {held_block} {block}')
new_state.remove(f'clear {block}')
new_state.remove(f'holding {held_block}')
successor_states.append(new_state)

return successor_states

This function performs the following steps:1062

Parse the current state to identify clear blocks, blocks on the table, the block being held, and relationships1063

between stacked blocks. Determine possible actions based on whether the arm is empty or holding a block.1064

Generate successor states for each valid action, taking care to update predicates accurately to reflect the new1065

state of the world after the action. Return all successor states. You can use this function by providing it with a1066

set of predicates that describe a current state, and it will return a list of all possible successor states.1067

User: The generate_successor_states function in the case of stack a block does not add clear for the block that it1068

was holding. Please rewrite.1069

ChatGPT: You’re right; when stacking a block, the previously held block should still be clear after the action,1070

since nothing is on top of it in the new state. I’ll update the code to handle this correctly. Here’s the revised1071

version of the function:1072

def get_successor_states(state):
successor_states = []
arm_empty = 'arm-empty' in state
held_block = None
on_table_blocks = set()
clear_blocks = set()
stack_relations = {}

Parsing the current state
for predicate in state:

if predicate.startswith('on-table'):

49

_, block = predicate.split()
on_table_blocks.add(block)

elif predicate.startswith('clear'):
_, block = predicate.split()
clear_blocks.add(block)

elif predicate.startswith('holding'):
_, block = predicate.split()
held_block = block

elif predicate.startswith('on'):
_, top, bottom = predicate.split()
stack_relations[top] = bottom

Possible actions if the arm is empty
if arm_empty:

Option to pick up a block from the table
for block in clear_blocks.intersection(on_table_blocks):

new_state = state.copy()
new_state.remove('arm-empty')
new_state.remove(f'clear {block}')
new_state.remove(f'on-table {block}')
new_state.add(f'holding {block}')
successor_states.append(new_state)

Option to unstack one block from another
for top, bottom in stack_relations.items():

if top in clear_blocks:
new_state = state.copy()
new_state.remove('arm-empty')
new_state.remove(f'clear {top}')
new_state.remove(f'on {top} {bottom}')
new_state.add(f'holding {top}')
new_state.add(f'clear {bottom}')
successor_states.append(new_state)

Possible actions if holding a block
elif held_block:

Option to put down a block on the table
new_state = state.copy()
new_state.add('arm-empty')
new_state.add(f'clear {held_block}')
new_state.add(f'on-table {held_block}')
new_state.remove(f'holding {held_block}')
successor_states.append(new_state)

Option to stack the held block on a clear block
for block in clear_blocks:

if block != held_block: # Can't stack on itself
new_state = state.copy()
new_state.add('arm-empty')
new_state.add(f'on {held_block} {block}')
new_state.add(f'clear {held_block}') # Now the held block is clear
new_state.remove(f'clear {block}')
new_state.remove(f'holding {held_block}')
successor_states.append(new_state)

return successor_states

In this corrected version, when the held block is stacked on another block, the clear predicate for the held block1073

is now added to the state to indicate that nothing is on top of it. This maintains the integrity of the game’s logic1074

and ensures the state reflects the actual conditions after each move.1075

User:1076

Provide only the python code that tests whether a state is a goal state. Assume that the goal configuration is1077

provided in the same format.1078

50

ChatGPT: Here’s a Python function that checks whether a given state matches a specified goal state. This1079

function assumes both the current state and the goal state are provided as sets of predicates in the same format.1080

The function will return True if all predicates in the goal state are present in the current state, indicating that the1081

current state meets all the conditions of the goal state.1082

def is_goal_state(current_state, goal_state):
"""
Check if the current state matches the goal state.

Args:
current_state (set): A set of predicates describing the current state.
goal_state (set): A set of predicates describing the goal state.

Returns:
bool: True if the current state matches the goal state, False otherwise.
"""
return goal_state.issubset(current_state)

This function uses the issubset method of Python sets, which returns True if all elements of the goal_state are1083

present in the current_state. This approach ensures that the current state contains at least all the conditions defined1084

by the goal, but it may also contain additional predicates not specified in the goal, reflecting the possibility of1085

multiple configurations that satisfy the goal requirements.1086

B.3.4 Experiment Run 4.1087

User: I am playing with a set of blocks where I need to arrange the blocks into stacks. Here are the actions I can1088

do1089

Pick up a block Unstack a block from on top of another block Put down a block Stack a block on top of another1090

block1091

I have the following restrictions on my actions: I can only pick up or unstack one block at a time. I can only pick1092

up or unstack a block if my hand is empty. I can only pick up a block if the block is on the table and the block is1093

clear. A block is clear if the block has no other blocks on top of it and if the block is not picked up. I can only1094

unstack a block from on top of another block if the block I am unstacking was really on top of the other block. I1095

can only unstack a block from on top of another block if the block I am unstacking is clear. Once I pick up or1096

unstack a block, I am holding the block. I can only put down a block that I am holding. I can only stack a block1097

on top of another block if I am holding the block being stacked. I can only stack a block on top of another block1098

if the block onto which I am stacking the block is clear. Once I put down or stack a block, my hand becomes1099

empty.1100

If a state is defined by a list of following predicates "clear block", "on-table block", "arm-empty", "holding1101

block", and "on block1 block2", how are successor states defined? Provide only the python code that returns a1102

list of successor states for a state.1103

ChatGPT: To define the successor states for a given state in this blocks world, we can implement a function in1104

Python. This function will take the current state as input and return a list of all possible successor states based1105

on the actions described (pick up, put down, stack, unstack). Each state can be represented as a set of predicates1106

that describe the conditions in the environment.1107

Here is the Python code that defines the function to generate successor states:1108

def successor_states(state):
successors = []

Helpers to check conditions and update states
def is_clear(block):

return f"clear {block}" in state

def is_on_table(block):
return f"on-table {block}" in state

def is_holding(block):
return f"holding {block}" in state

def is_arm_empty():
return "arm-empty" in state

51

def find_block_on_top(block):
for predicate in state:

if predicate.startswith("on ") and predicate.endswith(block):
return predicate.split()[1]

return None

Actions
def pick_up(block):

if is_on_table(block) and is_clear(block) and is_arm_empty():
new_state = state.copy()
new_state.remove(f"on-table {block}")
new_state.remove(f"clear {block}")
new_state.remove("arm-empty")
new_state.add(f"holding {block}")
successors.append(new_state)

def put_down(block):
if is_holding(block):

new_state = state.copy()
new_state.add(f"on-table {block}")
new_state.add(f"clear {block}")
new_state.add("arm-empty")
new_state.remove(f"holding {block}")
successors.append(new_state)

def unstack(block, below):
if is_clear(block) and f"on {block} {below}" in state and is_arm_empty():

new_state = state.copy()
new_state.remove(f"on {block} {below}")
new_state.add(f"clear {below}")
new_state.remove("arm-empty")
new_state.remove(f"clear {block}")
new_state.add(f"holding {block}")
successors.append(new_state)

def stack(block, target):
if is_holding(block) and is_clear(target):

new_state = state.copy()
new_state.add(f"on {block} {target}")
new_state.remove(f"clear {target}")
new_state.add("arm-empty")
new_state.remove(f"holding {block}")
successors.append(new_state)

Try each action with each block
blocks = {predicate.split()[-1] for predicate in state if "block" in predicate.split()[-1]}
for block in blocks:

pick_up(block)
put_down(block)
for other_block in blocks:

if block != other_block:
unstack(block, other_block)
stack(block, other_block)

return successors

Example usage:
current_state = set(["clear A", "on-table A", "clear B", "on-table B", "arm-empty"])
successor_states(current_state)

This code defines four actions (pick up, put down, unstack, stack) and checks for the necessary conditions before1109

applying an action. Each action, when applicable, modifies the state accordingly and adds the new state to the1110

list of successors. The function assumes that each state is uniquely represented by a set of predicates and each1111

block involved in the predicates is uniquely identifiable.1112

52

User: Provide only the python code that tests whether a state is a goal state. Assume that the goal configuration1113

is provided in the same format.1114

ChatGPT: To test whether a given state is a goal state in the blocks world, you can implement a Python function1115

that compares the current state against a specified goal configuration. The function will check if all the predicates1116

in the goal configuration are present in the current state. Here’s the Python code for this function:1117

def is_goal_state(current_state, goal_state):
"""
Checks if the current state meets all the conditions of the goal state.

Parameters:
current_state (set): A set of predicates representing the current state.
goal_state (set): A set of predicates representing the goal configuration.

Returns:
bool: True if the current state is a goal state, False otherwise.
"""
return goal_state <= current_state

This function uses a set containment check (<=), which checks if all elements of the goal state are present in the1118

current state, thus ensuring that all conditions required by the goal are satisfied in the current state.1119

User: The successo_states function in the case of stack a block does not add clear for the block that it was1120

holding. Please rewrite.1121

ChatGPT: You’re correct; in the case of stacking a block on top of another, the code should ensure that the block1122

being stacked becomes "clear" after the action, as there would be nothing on top of it. Let’s revise the stack1123

function within the successor_states method to correctly reflect this:1124

def successor_states(state):
successors = []

Helpers to check conditions and update states
def is_clear(block):

return f"clear {block}" in state

def is_on_table(block):
return f"on-table {block}" in state

def is_holding(block):
return f"holding {block}" in state

def is_arm_empty():
return "arm-empty" in state

def find_block_on_top(block):
for predicate in state:

if predicate.startswith("on ") and predicate.endswith(block):
return predicate.split()[1]

return None

Actions
def pick_up(block):

if is_on_table(block) and is_clear(block) and is_arm_empty():
new_state = state.copy()
new_state.remove(f"on-table {block}")
new_state.remove(f"clear {block}")
new_state.remove("arm-empty")
new_state.add(f"holding {block}")
successors.append(new_state)

def put_down(block):
if is_holding(block):

new_state = state.copy()

53

new_state.add(f"on-table {block}")
new_state.add(f"clear {block}")
new_state.add("arm-empty")
new_state.remove(f"holding {block}")
successors.append(new_state)

def unstack(block, below):
if is_clear(block) and f"on {block} {below}" in state and is_arm_empty():

new_state = state.copy()
new_state.remove(f"on {block} {below}")
new_state.add(f"clear {below}")
new_state.remove("arm-empty")
new_state.remove(f"clear {block}")
new_state.add(f"holding {block}")
successors.append(new_state)

def stack(block, target):
if is_holding(block) and is_clear(target):

new_state = state.copy()
new_state.add(f"on {block} {target}")
new_state.remove(f"clear {target}")
new_state.add(f"clear {block}")
new_state.add("arm-empty")
new_state.remove(f"holding {block}")
successors.append(new_state)

Try each action with each block
blocks = {predicate.split()[-1] for predicate in state if "block" in predicate.split()[-1]}
for block in blocks:

pick_up(block)
put_down(block)
for other_block in blocks:

if block != other_block:
unstack(block, other_block)
stack(block, other_block)

return successors

Example usage:
current_state = set(["clear A", "on-table A", "clear B", "on-table B", "arm-empty"])
successor_states(current_state)

This updated version of the stack function now correctly adds the clear block predicate for the block being1125

stacked, ensuring it’s clear because there’s nothing on top of it after the action. This update reflects the logic1126

needed to maintain a consistent state representation after stacking operations.1127

User: The blocks are not correctly identified from this state representation. Please fix1128

ChatGPT: You’re right; the approach for identifying blocks from the state representation in the previous code is1129

flawed because it inaccurately captures block names when parsing predicates. I’ll correct this by implementing a1130

more reliable method to extract block names directly from the predicates involved in the state.1131

Here’s the revised version of the successor_states function that includes an improved way to determine the set of1132

blocks based on the current state:1133

def successor_states(state):
successors = []

Helpers to check conditions and update states
def is_clear(block):

return f"clear {block}" in state

def is_on_table(block):
return f"on-table {block}" in state

54

def is_holding(block):
return f"holding {block}" in state

def is_arm_empty():
return "arm-empty" in state

def find_block_on_top(block):
for predicate in state:

if predicate.startswith("on ") and predicate.endswith(block):
return predicate.split()[1]

return None

Actions
def pick_up(block):

if is_on_table(block) and is_clear(block) and is_arm_empty():
new_state = state.copy()
new_state.remove(f"on-table {block}")
new_state.remove(f"clear {block}")
new_state.remove("arm-empty")
new_state.add(f"holding {block}")
successors.append(new_state)

def put_down(block):
if is_holding(block):

new_state = state.copy()
new_state.add(f"on-table {block}")
new_state.add(f"clear {block}")
new_state.add("arm-empty")
new_state.remove(f"holding {block}")
successors.append(new_state)

def unstack(block, below):
if is_clear(block) and f"on {block} {below}" in state and is_arm_empty():

new_state = state.copy()
new_state.remove(f"on {block} {below}")
new_state.add(f"clear {below}")
new_state.remove("arm-empty")
new_state.remove(f"clear {block}")
new_state.add(f"holding {block}")
successors.append(new_state)

def stack(block, target):
if is_holding(block) and is_clear(target):

new_state = state.copy()
new_state.add(f"on {block} {target}")
new_state.remove(f"clear {target}")
new_state.add(f"clear {block}")
new_state.add("arm-empty")
new_state.remove(f"holding {block}")
successors.append(new_state)

Extract blocks from the state
blocks = set()
for predicate in state:

parts = predicate.split()
Add block names (assuming the last word in each predicate is a block name or another block)
if "table" not in parts[-1]: # avoid adding 'table' as a block

blocks.update(parts[1:])

Try each action with each block
for block in blocks:

if "block" in block: # Filter to ensure only block names are processed
if True:

pick_up(block)
put_down(block)

55

for other_block in blocks:
if block != other_block:

unstack(block, other_block)
stack(block, other_block)

return successors

Example usage:
current_state = set(["clear A", "on-table A", "clear B", "on-table B", "arm-empty"])
successor_states(current_state)

In this revised version, I have improved the block identification by iterating over all predicates and extracting1134

block names from them directly, ensuring that only valid block names are considered for actions. The revised1135

code assumes that block names can be identified as they don’t contain the word "table", thereby excluding1136

predicates like "on-table". This approach provides a more robust way to handle different naming conventions or1137

additional predicates that might be added to the state.1138

User: There is no need for checking if the string "block" is part of the block name, it might not be. Please update1139

the code.1140

ChatGPT: You’re right; assuming that the term "block" will be a part of the block’s name in predicates is1141

restrictive and may not apply to all scenarios. Instead, we’ll directly gather the block names by processing the1142

appropriate parts of each predicate more accurately. Here’s an updated version of the successor_states function1143

that extracts block names based on the structure of predicates without assuming specific naming conventions:1144

def successor_states(state):
successors = []

Helpers to check conditions and update states
def is_clear(block):

return f"clear {block}" in state

def is_on_table(block):
return f"on-table {block}" in state

def is_holding(block):
return f"holding {block}" in state

def is_arm_empty():
return "arm-empty" in state

def find_block_on_top(block):
for predicate in state:

if predicate.startswith("on ") and predicate.endswith(" " + block):
return predicate.split()[1]

return None

Actions
def pick_up(block):

if is_on_table(block) and is_clear(block) and is_arm_empty():
new_state = state.copy()
new_state.remove(f"on-table {block}")
new_state.remove(f"clear {block}")
new_state.remove("arm-empty")
new_state.add(f"holding {block}")
successors.append(new_state)

def put_down(block):
if is_holding(block):

new_state = state.copy()
new_state.add(f"on-table {block}")
new_state.add(f"clear {block}")
new_state.add("arm-empty")
new_state.remove(f"holding {block}")
successors.append(new_state)

56

def unstack(block, below):
if is_clear(block) and f"on {block} {below}" in state and is_arm_empty():

new_state = state.copy()
new_state.remove(f"on {block} {below}")
new_state.add(f"clear {below}")
new_state.remove("arm-empty")
new_state.remove(f"clear {block}")
new_state.add(f"holding {block}")
successors.append(new_state)

def stack(block, target):
if is_holding(block) and is_clear(target):

new_state = state.copy()
new_state.add(f"on {block} {target}")
new_state.remove(f"clear {target}")
new_state.add(f"clear {block}")
new_state.add("arm-empty")
new_state.remove(f"holding {block}")
successors.append(new_state)

Extract blocks from the state
blocks = set()
for predicate in state:

parts = predicate.split()
if parts[0] in ["on", "clear", "holding", "on-table"]:

Assuming the block names are always the last element in predicates that involve block names
blocks.add(parts[-1])
if parts[0] == "on": # also add the block beneath if predicate starts with "on"

blocks.add(parts[1])

Try each action with each block
for block in blocks:

pick_up(block)
put_down(block)
for other_block in blocks:

if block != other_block:
unstack(block, other_block)
stack(block, other_block)

return successors

This version extracts block names from predicates based on their position in the string, which is typically the last1145

part for predicates like "clear", "on-table", and "holding". For predicates starting with "on", both blocks involved1146

are considered. This method ensures that all blocks are appropriately identified and handled without presuming1147

the presence of specific substrings like "block" in the block names.1148

B.3.5 Experiment Run 5.1149

User: I am playing with a set of blocks where I need to arrange the blocks into stacks. Here are the actions I can1150

do1151

Pick up a block Unstack a block from on top of another block Put down a block Stack a block on top of another1152

block1153

I have the following restrictions on my actions: I can only pick up or unstack one block at a time. I can only pick1154

up or unstack a block if my hand is empty. I can only pick up a block if the block is on the table and the block is1155

clear. A block is clear if the block has no other blocks on top of it and if the block is not picked up. I can only1156

unstack a block from on top of another block if the block I am unstacking was really on top of the other block. I1157

can only unstack a block from on top of another block if the block I am unstacking is clear. Once I pick up or1158

unstack a block, I am holding the block. I can only put down a block that I am holding. I can only stack a block1159

on top of another block if I am holding the block being stacked. I can only stack a block on top of another block1160

if the block onto which I am stacking the block is clear. Once I put down or stack a block, my hand becomes1161

empty.1162

57

If a state is defined by a list of following predicates "clear block", "on-table block", "arm-empty", "holding1163

block", and "on block1 block2", how are successor states defined? Provide only the python code that returns a1164

list of successor states for a state.1165

ChatGPT: To generate successor states based on the actions and restrictions you’ve described, you’ll want a1166

function that checks the current state (represented by a set of predicates), applies possible actions based on the1167

rules, and then produces the new states. Here is a Python function that accomplishes this:1168

def successor_states(state):
Break down the state into predicates
clear = {b for b in state if b.startswith("clear ")}
on_table = {b for b in state if b.startswith("on-table ")}
arm_empty = "arm-empty" in state
holding = {b[8:] for b in state if b.startswith("holding ")}
on = {(b[3:], b2) for b in state for b2 in state if b.startswith("on ") and b.endswith(b2)}
successors = []

if arm_empty:
Pick up a block from the table
for b in clear:

block = b.split()[1]
if f"on-table {block}" in state:

new_state = state.copy()
new_state.remove("arm-empty")
new_state.remove(f"clear {block}")
new_state.remove(f"on-table {block}")
new_state.add(f"holding {block}")
successors.append(new_state)

Unstack a block from another
for (block1, block2) in on:

if f"clear {block1}" in state:
new_state = state.copy()
new_state.remove("arm-empty")
new_state.remove(f"clear {block1}")
new_state.remove(f"on {block1} {block2}")
new_state.add(f"clear {block2}")
new_state.add(f"holding {block1}")
successors.append(new_state)

else:
Put down a block
for block in holding:

new_state = state.copy()
new_state.add("arm-empty")
new_state.add(f"clear {block}")
new_state.add(f"on-table {block}")
new_state.remove(f"holding {block}")
successors.append(new_state)

Stack a block on top of another clear block
for block in holding:

for clear_block in clear:
if clear_block.split()[1] != block:

new_state = state.copy()
new_state.add("arm-empty")
new_state.remove(f"clear {clear_block.split()[1]}")
new_state.remove(f"holding {block}")
new_state.add(f"on {block} {clear_block.split()[1]}")
new_state.add(f"clear {block}")
successors.append(new_state)

return successors

current_state = set(["clear A", "on-table A", "clear B", "on-table B", "arm-empty"])

58

print(successor_states(current_state))

import parse_problem_blocks
def blocks_state_dict_to_list(state):

{'clear': ['b'], 'on-table': ['d'], 'arm-empty': True, 'holding': None, 'on': [('a', 'c'), ('b', 'a'), ('c', 'd')]}
{: ['d'], 'on': [('a', 'c'), ('b', 'a'), ('c', 'd')]}
new_state = []
if "arm-empty" in state and state["arm-empty"]:

new_state.append("arm-empty")
if 'holding' in state and state['holding'] is not None:

new_state.append(f"holding {state['holding']}")

for b in state['clear']:
new_state.append(f"clear {b}")

for b in state['on-table']:
new_state.append(f"on-table {b}")

for top, bottom in state['on']:
new_state.append(f"on {top} {bottom}")

return new_state

def blocks_state_dict_to_set(state):
return set(blocks_state_dict_to_list(state))

init, goal = parse_problem_blocks.parse_pddl_blocks_from_file("blocks_instances/instance-0.pddl")
init = blocks_state_dict_to_set(init)
goal = blocks_state_dict_to_set(goal)
print("Init")
print(init)
print("Goal")
print(goal)
print("------------------")
curr = init.copy()
for i in range(10):

print(curr)
succ = successor_states(curr)
print(succ)
print("------------------")
if len(succ) > 0:

import random

curr = random.choice(succ)

This function assumes that the state parameter is a set of strings representing the predicates. The actions available1169

depend on whether the robot’s arm is empty or holding a block, and whether certain blocks are clear and available1170

on the table or can be unstacked from another block. This function then modifies the state according to the rules1171

of each action and adds each resulting new state to the list of successor states.1172

User: Provide only the python code that tests whether a state is a goal state. Assume that the goal configuration1173

is provided in the same format.1174

ChatGPT: To test whether a given state matches a goal configuration, you can use a Python function that simply1175

checks if all predicates specified in the goal are present in the current state. Here’s a concise function to perform1176

this check:1177

def is_goal_state(state, goal):
return goal.issubset(state)

This function receives two sets: state and goal, where each is a set of strings representing the predicates. The1178

function returns True if all predicates in the goal are contained within the current state, signifying that the state1179

59

meets the goal configuration, and False otherwise. This approach is straightforward and leverages Python’s set1180

operations for efficiency.1181

User: The successor_states function does not correctly parse the state into predicates. Please rewrite.1182

ChatGPT: Certainly! It seems there was a misunderstanding in how predicates like "on" were being parsed. I’ll1183

adjust the parsing logic in the successor_states function to correctly handle the predicates and relations between1184

blocks. Here’s the corrected version of the function:1185

def successor_states(state):
Parse the current state
clear_blocks = {b.split()[1] for b in state if b.startswith("clear")}
on_table_blocks = {b.split()[1] for b in state if b.startswith("on-table")}
arm_empty = "arm-empty" in state
holding_blocks = {b.split()[1] for b in state if b.startswith("holding")}
on_top_of = {(b.split()[1], b.split()[2]) for b in state if b.startswith("on ")}

successors = []

if arm_empty:
Pick up a block from the table
for block in clear_blocks.intersection(on_table_blocks):

new_state = state.copy()
new_state.remove("arm-empty")
new_state.remove(f"clear {block}")
new_state.remove(f"on-table {block}")
new_state.add(f"holding {block}")
successors.append(new_state)

Unstack a block from another
for (top, bottom) in on_top_of:

if f"clear {top}" in state:
new_state = state.copy()
new_state.remove("arm-empty")
new_state.remove(f"clear {top}")
new_state.remove(f"on {top} {bottom}")
new_state.add(f"clear {bottom}")
new_state.add(f"holding {top}")
successors.append(new_state)

else:
Put down a block
for block in holding_blocks:

new_state = state.copy()
new_state.add("arm-empty")
new_state.add(f"clear {block}")
new_state.add(f"on-table {block}")
new_state.remove(f"holding {block}")
successors.append(new_state)

Stack a block on top of another clear block
for block in holding_blocks:

for target in clear_blocks:
if block != target: # Cannot stack a block on itself

new_state = state.copy()
new_state.add("arm-empty")
new_state.remove(f"clear {target}")
new_state.remove(f"holding {block}")
new_state.add(f"on {block} {target}")
new_state.add(f"clear {block}")
successors.append(new_state)

return successors

In this revised function:1186

60

I ensure proper parsing of each predicate to correctly identify which blocks are clear, which are on the table,1187

which one is being held, and the relationships between blocks (on top of). Operations like picking up a block1188

from the table and unstacking are allowed only when the arm is empty, and the corresponding block is clear and1189

either on the table or on top of another block. The stacking and putting down operations are processed when1190

holding a block, respecting the restrictions on clear targets and table placements. This code is more structured1191

and should correctly handle the transition between states according to the provided rules and predicates.1192

User: When getting the on_top blocks from the state, we must differentiate the predicate "on x y" from "on-table1193

x". They both start with "on". Please fix.1194

ChatGPT: You’re right; the initial parsing of the predicates didn’t differentiate between "on-table" and "on" predi-1195

cates correctly. I’ll adjust the function to parse these predicates appropriately. Here’s the updated successor_states1196

function:1197

def successor_states(state):
Parse the current state
clear_blocks = {b.split()[1] for b in state if b.startswith("clear")}
on_table_blocks = {b.split()[1] for b in state if b.startswith("on-table")}
arm_empty = "arm-empty" in state
holding_blocks = {b.split()[1] for b in state if b.startswith("holding")}
on_top_of = {(b.split()[1], b.split()[2]) for b in state if b.startswith("on ") and len(b.split()) == 3}

successors = []

if arm_empty:
Pick up a block from the table
for block in clear_blocks.intersection(on_table_blocks):

new_state = state.copy()
new_state.remove("arm-empty")
new_state.remove(f"clear {block}")
new_state.remove(f"on-table {block}")
new_state.add(f"holding {block}")
successors.append(new_state)

Unstack a block from another
for (top, bottom) in on_top_of:

if f"clear {top}" in state:
new_state = state.copy()
new_state.remove("arm-empty")
new_state.remove(f"clear {top}")
new_state.remove(f"on {top} {bottom}")
new_state.add(f"clear {bottom}")
new_state.add(f"holding {top}")
successors.append(new_state)

else:
Put down a block
for block in holding_blocks:

new_state = state.copy()
new_state.add("arm-empty")
new_state.add(f"clear {block}")
new_state.add(f"on-table {block}")
new_state.remove(f"holding {block}")
successors.append(new_state)

Stack a block on top of another clear block
for block in holding_blocks:

for target in clear_blocks:
if block != target: # Cannot stack a block on itself

new_state = state.copy()
new_state.add("arm-empty")
new_state.remove(f"clear {target}")
new_state.remove(f"holding {block}")
new_state.add(f"on {block} {target}")
new_state.add(f"clear {block}")

61

successors.append(new_state)

return successors

In this revised function:1198

The on_top_of set now ensures that only predicates starting with "on" and having exactly three components1199

(which corresponds to "on X Y") are included. This ensures accurate recognition and handling of the predicates1200

representing blocks stacked on each other while avoiding confusion with "on-table" predicates. The operations1201

within the function continue to account for blocks being picked up, placed, or stacked according to the rules.1202

62

B.4 PrOntoQA1203

The prompt for the successor function is as follows.1204

1205

Logical deduction is performed by applying rules of the form if X then Y to our current knowledge about a world,1206

extending our knowledge with each rule application. A rule if X then Y is applicable if we know X. If a state is1207

defined as our current knowledge of the world, how are successor states defined, given a collection of rules?1208

Provide only the Python implementation of successor states function1209

The prompt for the goal test is as follows.1210

Provide only the python code that tests, given a target fact, whether a state is a goal state.1211

B.4.1 Experiment Run 1.1212

User: Logical deduction is performed by applying rules of the form if X then Y to our current knowledge about1213

a world, extending our knowledge with each rule application. A rule if X then Y is applicable if we know X. If a1214

state is defined as our current knowledge of the world, how are successor states defined, given a collection of1215

rules? Provide only the Python implementation.1216

ChatGPT: In the context of logical deduction using a set of rules, a state can be considered as a set representing1217

our current knowledge about the world. Each element in this set is a fact or a truth that we know about the world.1218

Successor states are defined by applying applicable rules to the current state to extend our knowledge.1219

Here is a Python implementation to model this behavior. This implementation defines a function that takes the1220

current state and a collection of rules, and produces the set of all successor states by applying these rules:1221

def apply_rule(state, rule):
"""Apply a rule to the state if applicable."""
if rule[0] in state:

return state | {rule[1]}
return state

def generate_successor_states(state, rules):
"""Generate all successor states by applying rules to the current state."""
new_states = set()
for rule in rules:

new_state = apply_rule(state, rule)
if new_state != state: # Only add new states

new_states.add(frozenset(new_state))
return new_states

Example usage
current_state = {'rain'}
rules = [('rain', 'wet'), ('sun', 'dry'), ('wet', 'puddles')]

Generate successor states
successor_states = generate_successor_states(current_state, rules)
for state in successor_states:
print(state)
print(generate_successor_states(state, rules))

In this code:1222

apply_rule checks if the antecedent of a rule (first element of the tuple) is in the current state. If it is, it adds the1223

consequent (second element) to the state. generate_successor_states iterates over all rules and applies them to1224

the current state, collecting new states that result from applying each rule. Each new state is added only if it is1225

different from the current state, avoiding duplicates. This model assumes that the rules are simple implication1226

relationships and that the state can be represented as a set of facts. The generated successor states are those that1227

include at least one new fact derived from applying the rules.1228

User: Provide only the python code that tests, given a target fact, whether a state is a goal state.1229

ChatGPT: To test whether a given state is a goal state based on the presence of a target fact, you can define a1230

simple function in Python. This function will check if the target fact is in the current state. Here is how you can1231

implement this:1232

63

def is_goal_state(state, target_fact):
"""Check if the state contains the target fact."""
return target_fact in state

Example usage
state = {'rain', 'wet', 'puddles'}
target_fact = 'wet'

Test if the state is a goal state
print(is_goal_state(state, target_fact)) # Output: True

This function is_goal_state takes two arguments: the state (a set of facts) and the target_fact (a fact that you1233

want to check for). It returns True if the target fact is present in the state, indicating that this state is a goal state1234

with respect to the target fact.1235

B.4.2 Experiment Run 2.1236

User: Logical deduction is performed by applying rules of the form if X then Y to our current knowledge about1237

a world, extending our knowledge with each rule application. A rule if X then Y is applicable if we know X. If a1238

state is defined as our current knowledge of the world, how are successor states defined, given a collection of1239

rules? Provide only the Python implementation of successor states function.1240

ChatGPT: To implement the function for generating successor states using a logical deduction approach, you’ll1241

need a way to represent the current state of knowledge and the rules. Here’s how you might do it in Python:1242

State Representation: Represent the state as a set of facts. Each fact can be a simple string or a more complex1243

structure, depending on your application. Rule Representation: Represent rules as tuples (X, Y), where X is1244

a condition (or set of conditions) and Y is the conclusion. X can be a single fact or a set of facts. Successor1245

Function: The function checks each rule to see if its conditions are met in the current state. If so, it adds the1246

rule’s conclusion to the state, forming a new successor state. Below is the Python implementation for generating1247

successor states:1248

def successor_states(current_state, rules):
"""
Generate all successor states from the current state by applying applicable rules.

Args:
current_state (set): A set of facts known in the current state.
rules (list of tuples): A list where each tuple represents a rule in the form (conditions, conclusion),

where `conditions` can be a single fact or a set of facts.

Returns:
list of sets: A list of all possible successor states.
"""
new_states = []
for conditions, conclusion in rules:

Check if the rule's conditions are met in the current state
if isinstance(conditions, set):

if conditions.issubset(current_state):
Apply the rule: create a new state with the conclusion added
new_state = current_state.union({conclusion})
new_states.append(new_state)

else:
if conditions in current_state:

new_state = current_state.union({conclusion})
new_states.append(new_state)

return new_states

This function checks each rule to see if the conditions are met within the current state. If they are, it creates a1249

new state that includes the conclusion of the rule. This implementation also supports both single conditions and1250

sets of conditions. Adjustments might be needed depending on the specific requirements and the complexity of1251

the conditions and conclusions.1252

User: Provide only the python code that tests, given a target fact, whether a state is a goal state.1253

64

ChatGPT: Here’s a Python function that tests whether a given state contains a target fact, effectively checking if1254

it is a goal state:1255

def is_goal_state(state, target_fact):
"""
Check if the state contains the target fact, indicating it is a goal state.

Args:
state (set): The current state represented as a set of facts.
target_fact (str): The fact that defines the goal state.

Returns:
bool: True if the target fact is in the state, False otherwise.
"""
return target_fact in state

This function simply checks if the target_fact is a member of the state set, returning True if the state meets the1256

goal criteria (i.e., contains the target fact) and False otherwise.1257

B.4.3 Experiment Run 3.1258

User: Logical deduction is performed by applying rules of the form if X then Y to our current knowledge about1259

a world, extending our knowledge with each rule application. A rule if X then Y is applicable if we know X. If a1260

state is defined as our current knowledge of the world, how are successor states defined, given a collection of1261

rules? Provide only the Python implementation of successor states function.1262

ChatGPT: To provide a Python implementation for defining successor states based on a given collection of rules1263

and a current state of knowledge, we need a function that takes the current state (a set of known facts) and the1264

rules (formulated as "if X then Y") and produces all possible successor states by applying these rules.1265

Here’s a straightforward Python function to achieve this:1266

def successor_states(current_state, rules):
"""
Generates all possible successor states by applying rules to the current state.

:param current_state: A set of strings representing known facts.
:param rules: A list of tuples (X, Y) representing the rules 'if X then Y'.
:return: A set of sets, each representing a possible successor state.
"""
new_states = set() # To store unique successor states

Iterate through each rule and apply it if possible
for x, y in rules:

Check if the condition of the rule is satisfied in the current state
if x in current_state:

Create a new state by adding the consequence of the rule to the current state
new_state = current_state.copy()
new_state.add(y)
new_states.add(frozenset(new_state)) # Add as frozenset for immutability

return new_states

Example usage:
current_state = {'X'}
rules = [('X', 'Y'), ('Y', 'Z')]
print(successor_states(current_state, rules))

This function works by iterating through each rule and checking if the antecedent (condition) of the rule is1267

already a known fact in the current_state. If it is, it creates a new state by adding the consequent (result) of the1268

rule to a copy of the current state. Each new state is added to a set of successor states, ensuring that only unique1269

states are stored. Each state is stored as a frozenset to ensure immutability and to allow sets of sets.1270

User: Provide only the python code that tests, given a target fact, whether a state is a goal state.1271

65

ChatGPT: Here’s a Python function to check whether a given state includes a specific target fact, thus determining1272

if it’s a goal state:1273

def is_goal_state(state, target_fact):
"""
Checks if the target fact is in the given state.

:param state: A set of strings representing the current state.
:param target_fact: A string representing the target fact to be achieved.
:return: True if the target fact is in the state, False otherwise.
"""
return target_fact in state

Example usage:
state = {'X', 'Y', 'Z'}
target_fact = 'Y'
print(is_goal_state(state, target_fact)) # Output: True

User: In successor_states, I get AttributeError: ’frozenset’ object has no attribute ’add’1274

ChatGPT: The error arises because I incorrectly used frozenset for the new_state, which is immutable and1275

doesn’t support the add method. We should first modify the mutable set before converting it to a frozenset when1276

adding it to new_states. Let’s correct the implementation:1277

def successor_states(current_state, rules):
"""
Generates all possible successor states by applying rules to the current state.

:param current_state: A set of strings representing known facts.
:param rules: A list of tuples (X, Y) representing the rules 'if X then Y'.
:return: A set of frozensets, each representing a possible successor state.
"""
new_states = set() # To store unique successor states

Iterate through each rule and apply it if possible
for x, y in rules:

Check if the condition of the rule is satisfied in the current state
if x in current_state:

Create a new state by adding the consequence of the rule to the current state
new_state = set(current_state) # Make a mutable copy of the current state
new_state.add(y) # Add the new fact
new_states.add(frozenset(new_state)) # Store as frozenset for immutability

return new_states

Example usage:
current_state = {'X'}
rules = [('X', 'Y'), ('Y', 'Z')]
print(successor_states(current_state, rules))

This revised function ensures that the current_state is copied into a mutable set before adding new elements. After1278

the modifications are done, it is then converted into a frozenset for storage in the new_states set. This approach1279

maintains the immutability of states within new_states and avoids errors related to modifying a frozenset.1280

B.4.4 Experiment Run 4.1281

User: Logical deduction is performed by applying rules of the form if X then Y to our current knowledge about1282

a world, extending our knowledge with each rule application. A rule if X then Y is applicable if we know X. If a1283

state is defined as our current knowledge of the world, how are successor states defined, given a collection of1284

rules? Provide only the Python implementation of successor states function1285

ChatGPT: To implement a Python function for generating successor states from a given state using a set of1286

logical deduction rules, we’ll assume that the state is represented as a set of facts (truths known about the world),1287

66

and the rules are represented as tuples (X, Y), meaning "if X then Y". A rule is applicable if all elements of X1288

are present in the current state. When a rule is applied, Y is added to the state to create a successor state. Here’s1289

how this can be implemented:1290

def successor_states(current_state, rules):
"""
Generate all successor states from the current state using the given rules.

:param current_state: A set of facts known about the world.
:param rules: A list of tuples (X, Y), where each X is a tuple representing conditions and Y is a single fact.
:return: A set of new states, each differing from the current by the addition of a new fact derived from a rule.
"""
new_states = set()

Check each rule to see if it can be applied
for conditions, result in rules:

if all(condition in current_state for condition in conditions):
If all conditions are met, create a new state by adding the result to the current state
new_state = current_state.copy()
new_state.add(result)
new_states.add(frozenset(new_state)) # Use frozenset to ensure the state can be added to a set

return new_states

Example usage
current_state = {'rainy', 'umbrella_open'}
rules = [(({ 'rainy' }, 'wet_ground'), ({ 'umbrella_open', 'rainy' }, 'dry_under_umbrella'))]

Convert rule format to match the function expectation
formatted_rules = [((condition,), result) for condition, result in rules]

new_states = successor_states(current_state, formatted_rules)
print("New States:", [set(state) for state in new_states])

In this example:1291

current_state contains facts ’rainy’ and ’umbrella_open’. rules specify that if it is ’rainy’, then the ’wet_ground’1292

should be true, and if both ’umbrella_open’ and ’rainy’ are true, then ’dry_under_umbrella’ should be true. The1293

function successor_states checks each rule, determines if the conditions are met, and generates new states by1294

adding the results of applicable rules. Each new state is a superset of the current state with one additional fact.1295

User: Provide only the python code that tests, given a target fact, whether a state is a goal state.1296

ChatGPT: Here’s the Python code that tests whether a given state contains a target fact, thereby determining if it1297

is a goal state:1298

def is_goal_state(state, target_fact):
"""
Determine if the given state is a goal state based on the presence of the target fact.

:param state: A set of facts known about the world.
:param target_fact: The fact that if present in the state, identifies it as a goal state.
:return: True if the target fact is in the state, False otherwise.
"""
return target_fact in state

Example usage
state = {'rainy', 'wet_ground', 'umbrella_open'}
target_fact = 'wet_ground'
result = is_goal_state(state, target_fact)
print("Is goal state:", result)

This function simply checks if the target_fact is a part of the current state. If it is, the function returns True,1299

indicating that the state is a goal state; otherwise, it returns False.1300

67

User: In successor_states function, assume that the rules are just pairs of facts, so a single fact condition. Also,1301

you cannot add to a frozenset1302

ChatGPT: Given the revised assumptions where each rule is just a pair of facts and each condition is represented1303

by a single fact, and considering that we cannot add to a frozenset, we can refactor the successor_states function.1304

The function will now operate on a copy of the current state converted to a mutable set, apply the changes, and1305

then convert back to a frozenset for immutability and use in a set of states. Here’s the updated implementation:1306

def successor_states(current_state, rules):
"""
Generate all successor states from the current state using the given rules, where each rule is a pair (X, Y),
meaning if X then Y. Each X is a single fact condition.

:param current_state: A frozenset representing the current state of known facts.
:param rules: A list of tuples (X, Y), where X is a fact and Y is a fact that follows if X is true.
:return: A set of new states, each differing from the current by the addition of a new fact derived from a rule.
"""
new_states = set()
mutable_current_state = set(current_state) # Convert frozenset to a mutable set

Check each rule to see if it can be applied
for condition, result in rules:

if condition in mutable_current_state:
If condition is met, create a new state by adding the result to the current state
new_state = mutable_current_state.copy()
new_state.add(result)
new_states.add(frozenset(new_state)) # Convert back to frozenset for immutability

return new_states

Example usage
current_state = frozenset({'rainy', 'umbrella_open'})
rules = [('rainy', 'wet_ground'), ('umbrella_open', 'dry_under_umbrella')]

new_states = successor_states(current_state, rules)
print("New States:", [set(state) for state in new_states])

This code:1307

Converts the immutable frozenset of the current state to a mutable set to allow modifications. Iterates over each1308

rule, checking if the condition is met in the current state. If the condition is met, it creates a new state by copying1309

the current state, adding the result of the rule, and then converting it back to a frozenset for use in a set (to ensure1310

immutability and unique state management). Returns a set of all new states generated this way.1311

B.4.5 Experiment Run 5.1312

User: Logical deduction is performed by applying rules of the form if X then Y to our current knowledge about1313

a world, extending our knowledge with each rule application. A rule if X then Y is applicable if we know X. If a1314

state is defined as our current knowledge of the world, how are successor states defined, given a collection of1315

rules? Provide only the Python implementation of successor states function1316

ChatGPT: In a logical deduction system, we can model successor states using a function that takes the current1317

state of knowledge (a set of facts) and a collection of rules. Each rule can be represented as a tuple (X, Y) where1318

if X (a precondition) is satisfied by the current state, then Y (a consequence) can be added to the state.1319

Here’s a Python function that computes the successor states by applying all applicable rules to the current state:1320

def apply_rules(state, rules):
"""
Apply rules to the current state to generate successor states.

:param state: A set representing the current state (known facts)
:param rules: A list of tuples, each tuple is a rule (X, Y) where

if X is in the state, Y is added to the state
:return: A new state formed by applying all applicable rules
"""

68

new_state = set(state) # Start with a copy of the current state
changes = True # To check if any new fact was added

while changes:
changes = False
for precondition, consequence in rules:

if precondition in new_state and consequence not in new_state:
new_state.add(consequence)
changes = True # A new fact was added, continue the loop

return new_state

Example usage
current_state = {'X'}
rules = [('X', 'Y'), ('Y', 'Z')]
new_state = apply_rules(current_state, rules)
print(new_state) # Output should be {'X', 'Y', 'Z'}

This function works as follows:1321

It initializes the new state with the current state. It iterates over the rules and checks if the precondition of any1322

rule is met by the current state. If a precondition is met and the consequence is not already in the state, the1323

consequence is added. This process repeats until no new facts can be added, ensuring all applicable rules have1324

been exhausted. The function ensures that all direct and indirect consequences of the initial facts are considered,1325

making it useful for computing successor states in logical deduction systems.1326

User: Provide only the python code that tests, given a target fact, whether a state is a goal state.1327

ChatGPT: Certainly! Below is a Python function that tests whether a given state contains a target fact, which1328

would indicate it’s a goal state:1329

def is_goal_state(state, target_fact):
"""
Check if the state is a goal state by determining if it contains the target fact.

:param state: A set representing the current state (known facts)
:param target_fact: The fact that defines the goal state
:return: True if the target_fact is in the state, False otherwise
"""
return target_fact in state

Example usage
state = {'X', 'Y', 'Z'}
target_fact = 'Y'
result = is_goal_state(state, target_fact)
print(result) # Output should be True

target_fact = 'A'
result = is_goal_state(state, target_fact)
print(result) # Output should be False

This function takes a set state containing all known facts and checks if the target_fact is among them, thus1330

determining if the state is a goal state.1331

The implementation of apply_rules applies all possible rules iteratively. That is not what I asked for, I asked for1332

a successor states function, returning all immediate successor states1333

ChatGPT: Thank you for the clarification. To implement a function that generates all immediate successor1334

states, we need a different approach. Instead of applying all rules iteratively until no more can be applied, we’ll1335

generate a new state for each single rule application, thereby obtaining all the states that are one rule application1336

away from the current state.1337

Here’s the Python implementation for the function that generates all immediate successor states:1338

def successor_states(state, rules):
"""

69

Generate all immediate successor states by applying each applicable rule once.

:param state: A set representing the current state (known facts)
:param rules: A list of tuples, each tuple is a rule (X, Y) where

if X is in the state and Y is not, Y is added to the state
:return: A list of new states, each created by applying one rule to the current state
"""
successors = []

for precondition, consequence in rules:
if precondition in state and consequence not in state:

new_state = set(state)
new_state.add(consequence)
successors.append(new_state)

return successors

Example usage
current_state = {'X'}
rules = [('X', 'Y'), ('Y', 'Z'), ('X', 'A')]
all_successors = successor_states(current_state, rules)

for idx, state in enumerate(all_successors):
print(f"Successor {idx + 1}: {state}")

This function iterates through each rule and checks if the precondition is met and the consequence is not already1339

in the state. If so, it creates a new state with the consequence added and adds this new state to the list of1340

successors. Each state in the list represents a distinct state reached by applying one rule from the initial state.1341

70

	Introduction
	Related Work and Beyond: Properties and Complexity
	Proposed Approach
	Experiments
	Discussion
	Conclusions and Future Work
	Search implementation
	Model correspondences
	24 game
	Experiment Run 1.
	Experiment Run 2.
	Experiment Run 3.
	Experiment Run 4.
	Experiment Run 5.

	Mini crossword
	Experiment Run 1.
	Experiment Run 2.
	Experiment Run 3.
	Experiment Run 4.
	Experiment Run 5.

	BlocksWorld
	Experiment Run 1.
	Experiment Run 2.
	Experiment Run 3.
	Experiment Run 4.
	Experiment Run 5.

	PrOntoQA
	Experiment Run 1.
	Experiment Run 2.
	Experiment Run 3.
	Experiment Run 4.
	Experiment Run 5.

