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ABSTRACT

Open multi-agent systems are increasingly relevant for modelling the emerging real-
world domains such as smart grids and swarm robotics. This paper addresses the
recently posed problem of n-agent ad hoc teamwork (NAHT), where only a subset
of agents is controllable. We propose an axiomatic game-theoretic framework for
the NAHT, formulated via a cooperative game model which differentiates between
the learning objectives of NAHT and MARL. Within this framework, the axiomatic
characterization of the Shapley value—Efficiency, Symmetry, and Linearity—is
reinterpreted as structural constraints on individual value functions. This yields a
principled design space: enforcing all axioms recovers the Shapley value, while
dropping Efficiency yields the Banzhaf index, leading to our Banzhaf Machine
variant. As concrete instantiations, we develop Shapley Machine and Banzhaf
Machine, which enforce different subsets of axioms during learning. Implemented
on IPPO and POAM, these algorithms provide stronger performance.

1 INTRODUCTION

Multi-agent systems (MAS) have become a prominent paradigm for modelling the emerging real-
world tasks such as smart grids (Wang et al., 2021), railway network management (Zhang et al.,
2024), and swarm robotics (Nayak et al., 2023; Li et al., 2024). Reinforcement learning (RL) (Sutton
& Barto, 2018), and in particular multi-agent reinforcement learning (MARL), has shown promise for
solving such problems. However, MARL struggles under real-world conditions involving openness
(where the number of uncontrolled agents can vary) and generalization (where teammate behaviours
are unknown). To address these challenges, Wang et al. (2025) recently introduced the n-agent ad
hoc teamwork (NAHT), which extends MARL to settings with varying and potentially unknown
teammates. This paper builds on that problem, aiming to establish a theoretical foundation and a
general algorithmic approach for the NAHT.

The initial practical solution to the NAHT, POAM (Wang et al., 2025), augments the IPPO algo-
rithm (De Witt et al., 2020) with an embedding vector that represents each agent’s belief about other
agents’ potential behaviours. Although POAM improves empirical performance, it has several key
limitations: (i) It is designed heuristically without rigorous theoretical grounding, which undermines
trustworthiness—a critical concern for multi-agent systems (Hammond et al., 2025). (ii) The funda-
mental distinction between the learning objectives of NAHT and MARL has been overlooked when
designing algorithms. (iii) POAM employs TD(λ) (Sutton, 1988) to train its critics, but its relation
to the NAHT objective remains unclear, leaving no guarantee that the learned value functions are
aligned with what NAHT fundamentally aims to address.

The Shapley value (Shapley, 1953) is a classic payoff distribution rule from cooperative game theory
that has been widely applied in MARL (Wang et al., 2020; Li et al., 2021; Han et al., 2022; Wang
et al., 2022; Li et al., 2023). Previously, the Shapley value’s formula was used to shape rewards or
value functions under the assumption that all agent are controlled, an assumption that breaks down
in the NAHT setting. To investigate whether the Shapley value’s axioms can provide a principled
foundation for solving the NAHT, we propose a new axiomatic framework for the NAHT based on a
cooperative game structure proposed by Dubey (1975) that can well describe the learning objective
of the NAHT. Specifically, we build on its axiomatic characterization (Efficiency, Symmetry, and
Linearity) to structure individual value functions, which lets us both recover the Shapley value (when
all axioms hold) and design new variants by selectively relaxing a particular axiom.
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The main contributions of this paper are as follows: (1) We cast the NAHT problem as a state-
specific cooperative game, making explicit how openness alters its learning objective compared
with the standard MARL. (2) We extend the Shapley value’s three axioms—Efficiency, Symmetry,
and Linearity—to the NAHT setting and transform them into structural constraints for designing
reinforcement learning algorithms. Notably, the Linearity axiom corresponds to truncated TD(λ)
prediction (Cichosz, 1994). Enforcing all axioms recovers the Shapley value, while relaxing partic-
ular axioms—such as dropping Efficiency—yields alternative payoff allocations like the Banzhaf
index (Banzhaf III, 1964). (3) By instantiating these constraints in learning, we propose the Shapley
Machine, a generic algorithm that can be built on both IPPO and POAM, referred to as SM-IPPO and
SM-POAM. In addition, when the Efficiency axiom is removed, the framework yields the Banzhaf
Machine, producing the corresponding implementations BM-IPPO and BM-POAM.

We evaluate the Shapley Machine and Banzhaf Machine on modified versions of MPE-PP and SMAC
adapted to the NAHT setting (Wang et al., 2025). They consistently outperform the base algorithms,
and our experiments show that relaxing the Efficiency axiom may even surpass enforcing the full
Shapley axioms in agent type generalization. The related work and complete mathematical proofs are
left to Appendices A and D, respectively.

2 BACKGROUND

2.1 N-AGENT AD HOC TEAMWORK

In this section, we describe a problem setting for open multi-agent systems, referred to as n-agent
ad hoc teamwork (NAHT) (Wang et al., 2025). The main challenges of NAHT are as follows: (1)
coordination with potentially unknown types of teammates (generalization), and (2) coping with a
varying number of uncontrolled teammates (openness). A decentralized partially observable Markov
decision process (Dec-POMDP) (Oliehoek et al., 2016) is considered to formalize the problem. There
is a team of agents M whose size is denoted as M , a state space S , a joint action space A = ×i∈MAi,
a per-agent observation space Oi, a transition function PT : S × A → ∆(S), a common reward
function Rt : S × A → R, a discount factor γ ∈ [0, 1] and an episode length T ∈ Z+. Each agent
receives observations via an observation function Oi : S ×A → ∆(Oi). Hi is defined as an agent
i’s space of observation and action histories. Each agent is equipped with a policy πi : Hi → ∆(Ai).

In this problem, there are two groups of agents: a set of controlled agents denoted as C whose size is
denoted as N , and a set of uncontrolled agents denoted as U whose size is denoted as M −N . As
NAHT is an open system, at the beginning of an multi-agent interaction process, a team of agents
M, consisting of N agents randomly drawn from the controlled agent pool C and M −N agents
randomly drawn from the uncontrolled agent pool U . For conciseness, each controlled agent is
characterized by its policy, and the set of controlled agents can be expressed as C(θ) = {πθ

i }Ni=1. The
above sampling procedure is denoted as X(U , C(θ)). The aim of NAHT is learning parameters θ to
solve the following optimization problem:

max
θ

Eπ(M)∼X(U,C(θ))

[
T∑

t=0

γtRt

]
, (1)

where π(M) denotes the joint policy of a team of agents M. Note that different number of controlled
agents N would lead to various teams of agents M.

2.2 REPRESENTATION OF COOPERATIVE GAMES AND THE SHAPLEY VALUE

Definition 2.1 (Representation of Cooperative Games (Dubey, 1975)). We first define such a
function that vzC = z, for any z ∈ R. If C ⊆ D, vzC(D) = z, otherwise, vzC(D) = 0. For a
cooperative game described by a characteristic function v : 2M → R≥0, we can describe a set
of such games over a team of agents M by a set of basis games {v1C | ∅ ≠ C ⊆ M}, such as
G = {w | w =

∑
kCv

1
C , kC ∈ R, ∅ ≠ C ⊆ M}. The analytic form of kC is represented as:

kC =
∑

T⊆C(−1)|C|−|T |v(T ).

Representation of Cooperative Games. A cooperative game is usually described as a characteristic
function v : 2M → R≥0, where M is a team of agents. An arbitrary cooperative game v can be
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uniquely represented by a set of basis games {v1C | ∅ ̸= C ⊆ M} (Dubey, 1975), as delineated in
Definition 2.1. In this paper, we focus on investigating how cooperative games are approximated
over a team of agents. Therefore, we only consider function values v(M) and v1

C(M) for a
team of agents M, instead of other coalitions C ⊂ M. As per previous work in MARL (Wang
et al., 2020), we consider the superadditive games as the game class of G, which is suitable for a
cooperative multi-agent task such as NAHT (see Appendix B.2 for more details). More specifically,
the condition for G restricted to superadditive games is: kC ≥ 0.
Theorem 2.2 (Axioms of Shapley Values (Dubey, 1975)). Shapley value is a unique payoff allocation
function on the cooperative game space G, satisfying Efficiency, Symmetry and Additivity.

Shapley Values. The Shapley value ϕ : G → RM is a multidimensional linear transformation defined
on the set of cooperative game G, given that there are M agents in total. Each dimension of ϕ indicates
the payoff allocation to an agent. It has been proved that Shapley value is a unique payoff allocation
function on the set of cooperative games G which satisfies the following axioms: Efficiency, Symmetry
and Additivity (Dubey, 1975),1 highlighted in Theorem 2.2. Efficiency and Symmetry have been well
investigated in the literature of multi-agent reinforcement learning (Wang et al., 2020; Li et al., 2021;
Han et al., 2021; Wang et al., 2022; Chai et al., 2024), but Additivity still lacks attention. In detail,
Additivity means that ϕ(w1 + w2) = ϕ(w1) + ϕ(w2), for any cooperative games w1, w2 ∈ G. If we
consider m possible games, then we have the following expression: ϕ(

∑m
i=1 wi) =

∑m
i=1 ϕ(wi),

where w1, w2, ..., wm ∈ G and the sum
∑m

i=1 wi can be seen as a game’s value reproduced by the
above games’ values. Linearity is a stronger condition than Additivity (Dubey, 1975; Young, 1985).
Specifically, Linearity requires ϕ(

∑m
i=1 αiwi) =

∑m
i=1 αiϕ(wi), for αi ∈ R. As a special case,

setting all αi = 1 recovers Additivity. In this paper, we focus on the Linearity axiom to establish
Additivity, which underpins the derivation of our method.

3 GAME-STRUCTURED N-AGENT AD HOC TEAMWORK

To fit the dynamic environment setting in NAHT, we extend the cooperative game space G to the state
space S of Dec-POMDP, forming a set of state-specific cooperative games. In more detail, for each
state s ∈ S we have a state-specific cooperative game space G(s) = {ws | ws =

∑
kCv

1
C,s, kC ∈

R, ∅ ≠ C ⊆ M}, which is generated by a set of basis games {v1C,s | ∅ ≠ C ⊆ M}.

Remark 3.1. Given a fixed state s ∈ S, G(s) is isomorphic to a real coordinate space R2M−1,
consistent with the structure of G. As a result, all properties for G also hold for G(s).
Definition 3.2 (Game-Structured NAHT). GNAHT = ×s∈SG(s) denotes the set of all NAHT
processes, where each element is a tuple of state-specific cooperative game values, specifying a team
of agents M, a state space S, and weightings kC associated with basis games of all non-empty
coalitions ∅ ≠ C ⊆ M.

By aggregating the state-specific cooperative game spaces for possible states, we represent possible
NAHT processes for a team of agents as a structure GNAHT, as described in Definition 3.2. The insight
is as follows: (1) Each state-specific cooperative game value captures the characteristics of a team’s
performance in an NAHT process initiated from the corresponding state; (2) The characteristics of
state-specific cooperative game values are shaped following the principle of the cooperative game
theory (see Definition 2.1) which reflects the contributing factor of every agent. Thus, ignoring any
single agent would induce bias to game values; (3) A state-specific cooperative game value can be
decomposed into two learning curricula, each aligned with a distinct learning sub-objective—learning
internal cooperation among controlled agents and learning external teamwork with uncontrolled
agents:

vs =
∑

Cint∈P+(C)

kCint
v1Cint,s︸ ︷︷ ︸

Internal Cooperation

+
∑

Cext∈P+(M)\P+(C)

kCext
v1Cext,s︸ ︷︷ ︸

External Teamwork

,

where P+(·) indicates the powerset of a set excluding the empty set. Related to the NAHT, variation in
the number of controlled agents requires learning to establish internal cooperation, whereas variation

1For an arbitrary characteristic function game value, Shapley value is uniquely determined by the Efficiency,
Additivity, Symmetry, and Dummy Player axioms (Chalkiadakis et al., 2011)[Chap. 2]. Since the Dummy Player
axiom is already embedded in the basis game value construction of Dubey (1975), it is automatically satisfied.
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in the number and types of uncontrolled agents demands learning strategies for robust external
teamwork. In contrast, the standard MARL only requires learning to establish internal cooperation
among a fixed number of controlled agents with no consideration of any uncontrolled agent, so it
does not necessarily require any complex structure for the learning curriculum.

Remark 3.3. A state-specific cooperative game space G(s) is isomorphic to R2M−1. The N
controlled agents C is a subset of a team of agents M, and the M − N uncontrolled agents
U := M\C is necessary for evaluating the controlled agents’ policies (see Eq. 1). The ignorance of
uncontrolled agents will reduce the G(s) to a subspace W := R2N−1, and the external teamwork
will be totally neglected. This introduces bias, as interpreted by the inter-vector angle before and
after ignoring uncontrolled agents, which is explained in Example 3.4.
Example 3.4. As shown in Figure 1, suppose we have a team of agents M = {1, 2} for a state s,
where C = {1} and U = {2}. θ is the angle between two vectors representing two situations, such
that ws ∈ W = span{v1{1},s} and us ∈ G(s) = span{v1{1},s, v

1
{2},s, v

1
{1,2},s}. It is obvious that

ws(M) as a projection of us(M) loses information about the external teamwork.

4 FROM SHAPLEY AXIOMS TO LEARNING FOR NAHT

Figure 1: Example of state-
specific cooperative games.
The red and blue vectors
are two games represented
by different basis game
sets, denoted by ws and
us. Their difference is mea-
sured by the θ. The shad-
ing area in red indicates
the range of generated co-
operative games with that
kC ≥ 0 and

∑
(kC)

2 = 1.

In the following subsections, we show how to incorporate Markovian
dynamics and how to extend the Shapley value’s axioms to the state-
specific cooperative game space for the NAHT. Together, these com-
ponents establish an axiomatic framework in which individual value
functions are shaped by structural constraints derived from the axioms.
This framework provides a principled design space: enforcing all ax-
ioms yields Shapley values, while relaxing some leads to alternatives
such as the Banzhaf index. Moreover, it shows a close connection
between the Linearity axiom and TTD(λ).

4.1 A PRELIMINARY RESULT

By Definition 2.1, we have the expression vzC,s = zv1C,s, for any z ∈
R, such that the condition that if C ⊆ D, vzC,s(D) = z, otherwise,
vzC,s(D) = 0, still holds.

Lemma 4.1. Given a fixed state s ∈ S, each state-specific coop-
erative game’s value vs ∈ G(s) can be uniquely represented by:
vs =

∑
∅̸=C⊆M k′C · vzC,s, where k′C = kC

z and z ̸= 0.

By Lemma 4.1, a cooperative game can be equivalently represented by
the form: vs =

∑
∅̸=C⊆M k′C · vvs(M)

C,s with setting z = vs(M) and k′C = kC

vs(M) , and vs(M) ̸= 0.2

Herein, the set of vvs(M)
C,s become a set of new basis games and k′C are their corresponding weightings.

Proposition 4.2. For the class of superadditive games formed by a set of basis games {vzC,s|∅ ≠

C ⊆ M}, it holds that kC ≥ 0, for all ∅ ≠ C ⊆ M.

Following discussion in Section 2.2, we aim to restrict the state-specific cooperative game class to
the superadditive games. By Proposition 4.2, we can conclude that k′C ≥ 0 is a sufficient condition
for vs belonging to the superadditive game class. In other words, k′

C ≥ 0 is a key condition for
reaching cooperation within a team of agents.

Introducing a linear multidimensional operator ϕ : G(s) → RM on a state-specific cooperative
game vs defined by Lemma 4.1, we derive the following formula such that:

ϕ(vs) = ϕ

 ∑
∅̸=C⊆M

k′C · vvs(M)
C,s

 , (2)

2If vs(M) = 0, it implies that a team of agents unable to cooperate, contradicting the purpose of the NAHT.

4
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where each v
vs(M)
C,s becomes a new basis game and k′C is its corresponding new weighting. By the

Linearity axiom of ϕ, we can transform Eq. 2 as follows:

ϕ(vs) =
∑

∅≠C⊆M

k′C · ϕ
(
v
vs(M)
C,s

)
. (3)

4.2 INCORPORATING MARKOVIAN DYNAMICS INTO GAME-STRUCTURED NAHT

For brevity, we rewrite v
vs(M)
C,s (M) as V (C, s) for all C ⊆ M. Then, we get the following fact:

Fact 4.3. V (C1, s) = V (C2, s) = · · · = V (M, s) = vs(M) for all Ci ∈ P+(M), as per
Definition 2.1 and M ⊇ Ci, where P+(M) indicates the powerset of M excluding the empty set.

Continued from the game-structured NAHT defined in Section 3, we now introduce Markovian
dynamics to establish connection between state-specific cooperative game values of consecutive
states, adapting to the environmental condition in the Dec-POMDP (Oliehoek et al., 2016). The only
postulate is that each state-specific cooperative game value can be represented in the form of rewards,
such that vst(M) = Eπ[

∑T−t−1
τ=0 γτRt+τ | st] ∈ G(s), following the notation in Section 2.1. By the

convention of RL (Sutton & Barto, 2018)[Chap. 7], it is feasible to use the n-step return to express
the vst(M) under a fixed horizon n̄, such that:

vst(M) = Eπ

[
n̄−1∑
τ=0

γτRt+τ + γn̄vst+n̄(M)

∣∣∣∣∣ st
]
:= Eπ [Gt:t+n̄ | st] . (4)

Definition 4.4 (Size–Lexicographic Coalition Order and Horizon Assignment). Set m := 2M −1.
Fix a size-lex enumeration (C1, . . . , Cm) satisfying: (1) |Ci| ≤ |Ci+1| for all i (nondecreasing
by size); (2) within each size, ties are broken by a fixed total order (e.g., lexicographic over agent
indices). Define horizons by n1 := 1, ni := ni−1 + 1 (i ≥ 2). Finally, set the basis game values as:

V (Ci, s) := Eπ

[
Gt:t+ni | st = s

]
, (i = 1, . . . ,m).

We justify Definition 4.4 in Appendix C by illustrating the alignment between the variance ordering
of V (Ci, s) and that of Eπ

[
Gt:t+ni

| st = s
]
.

Proposition 4.5. Under Definition 4.4, for every s ∈ S,(
V (C1, s), . . . , V (Cm, s)

)
=
(
Eπ[Gt:t+n1

| s], . . . ,Eπ[Gt:t+nm
| s]
)
,

and, by Fact 4.3, each coordinate is cardinally equal to V (M, s).

Proof. Immediate from the definition of V (Ci, s); cardinal equality follows from Fact 4.3.

By Fact 4.3 and Proposition 4.5, we obtain the following formula that aligns basis game values of
various coalitions to their n-step returns with corresponding horizons 1 ≤ n ≤ m:

V (Cn, st) = Eπ

[
n−1∑
τ=0

γτRt+τ + γnV (M, st+n)

∣∣∣∣∣ st
]
,∀∅ ≠ Cn ⊆ Cn+1, Cm = M. (5)

4.3 LINEARITY AXIOM FOR GAME-STRUCTURED NAHT

Recall that vvst (M)
Cn,st

(M) is denoted by V (Cn, st), and vst(M) is denoted by V (M, st). Substituting
Eq. 5 into the Linearity axiom in Eq. 3, we obtain the following formula:

ϕ(V (M, st)) =

m∑
n=1

k′Cn
· Eπ

[
n−1∑
τ=0

γτϕ(Rt+τ ) + γnϕ(V (M, st+n))

∣∣∣∣∣ st
]
. (6)

By linearity of the expectation operator, we obtain that:

ϕ(V (M, st)) = Eπ

[
m∑

n=1

k′Cn
·
n−1∑
τ=0

γτϕ(Rt+τ ) + γnϕ(V (M, st+n))

∣∣∣∣∣ st
]
, (7)

5
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where the term within the Eπ[·] takes the form of truncated λ-return (Sutton & Barto, 2018)[Chap.
12], if all k′Cn

are seen as weightings for n-step return components.

In principle, we aim to learn ϕi(V (M, st)) directly for each controlled agent i ∈ C. For brevity, we
represent each ϕi(V (M, st)) as Vi(st), and ϕi(Rt) as Rt,i, respectively. By sampling trajec-
tories using a joint policy π, we derive the following TD(λ) error δt,i (Sutton & Barto, 2018)[Chap.
12] for each agent i such that:

δt,i :=

m∑
n=1

k′Cn
·
n−1∑
τ=0

(γτRt+τ,i + γnVi(st+n))− Vi(st). (8)

4.4 EFFICIENCY AXIOM FOR GAME-STRUCTURED NAHT

Proposition 4.6 (Representation of Transformed Rewards). Given the condition
∑M

i=1 ϕi(Rt) =
Rt, the payoff allocation defined on rewards Rt, can be expressed as:

ϕi(Rt) := Rt −
∑
j ̸=i

(ϕj(V (M, st))− γϕj(V (M, st+1))) . (9)

Note that ϕ(Rt+τ ) in Eq. 7 has not yet been defined. For obeying the state-specific cooperative
game space G(s) for the multidimensional operator ϕ(·), it is necessary to represent ϕ(Rt+τ ) in
the form of ϕ(V (M, s)). To achieve this, we now introduce the Efficiency axiom to define ϕ(Rt).
To satisfy the Efficiency axiom such that

∑M
i=1 ϕi(V (M, st)) = V (M, st), it is reasonable to

presume its sufficient condition holds:
∑M

i=1 ϕi(Rt) = Rt. Literally, each agent’s value expansion
can be expressed independently with its own ϕi(Rt), which will be detailed in the next subsection.
Consequently, the resulting expression of ϕi(Rt) is presented in Proposition 4.6.

Substituting Eq. 9 into Eq. 8 with replacing ϕi(Rt) and ϕi(V (M, st)) by Rt,i and Vi(st), the Rt,i in
Eq. 8 can be rewritten as follows:

Rt,i = Rt −
∑
j ̸=i

(Vj(st)− γVj(st+1)) . (10)

Theorem 4.7 (Principle of Decomposing Value Functions (Oliehoek et al., 2016)). Given an
additively factored reward function, for any timestep t there is a factorization of the transition
function, such that the value of a finite-horizon factored Dec-POMDP is decomposable across agents.

The condition Rt =
∑M

i=1 Rt,i for deriving the Efficiency axiom is also referred to as additively
factored immediate reward function. Theorem 4.7 indicates that the Efficiency axiom always exists in
the Dec-POMDP, given a factorization scheme of the transition function in addition to an additively
factored immediate reward function. Recall that the NAHT is considered in the Dec-POMDP (see
Section 2.1). To guarantee the feasibility of the Efficiency axiom, another constraint is added to
implicitly facilitate searching for a factorization of the transition function such that:

M∑
i=1

Vi(st) = V (M, st). (11)

4.5 SYMMETRY AXIOM FOR GAME-STRUCTURED NAHT

Theorem 4.8. The payoff allocation operator satisfying permutation-equivariance is a sufficient
condition for the Symmetry axiom.

The Symmetry axiom means that two agents who contribute equally to every possible coalition
(excluding themselves) should receive equal payoff allocations (Chalkiadakis et al., 2011)[Chap.
2]. In the literature from Dubey (1975), it was described as the permutation-equivariance of an
multidimensional operator ϕ defined on the cooperative game value function, since permutation-
equivariance is a sufficient condition for the Symmetry axiom (see Theorem 4.8). As a result,
we will focus on how to construct such an operator fulfilling permutation-equivariance. Mathe-
matically, we can express this as: ϕσ(i)(vs) = ϕi(σ(vs)), where σ means relabelling agent IDs to

6
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another ordering, e.g., from (1, 2) to (2, 1). Recall that in the settings of NAHT, the environment is
defined as a Dec-POMDP, where the transition function is defined as PT (st+1|st, at) with at being
a joint action set, implying that the environment is invariant to exchanging agent identities and the
cooperative game values are identical under exchanging agent identities. For this reason, vs = σ(vs)
naturally holds. We now replace ϕ with Vi to keep consistency of notations as the above two axioms.
The rest of requirement to make the permutation-equivariance hold is that the operator’s output is
changed consistently with permuting agent IDs, e.g., (1, 2) 7→ (2, 1) ⇒ (V1, V2) 7→ (V2, V1). This
implies that the operator’s output of each agent ID should be invariant to permutation of its input,
e.g., Vi(σ(inp)) = Vi(inp).
Remark 4.9. The structure of the operator for payoff allocations for fulfilling the Symmetry axiom
is as follows: (1) The operator’s output is changed consistently with permuting agent IDs. (2) The
operator’s output of each agent ID should be invariant to permutation of its input.

4.6 FROM SHAPLEY AXIOMS TO LEARNING ALGORITHMS

Theorem 4.10. Shapley Machine is an algorithm enforcing Vi to fulfil Efficiency, Symmetry and
Linearity, so the Vi is the Shapley value for dynamic scenarios.

The algorithm that enables individual values Vi to fulfil the Efficiency, Linearity and Symmetry
axioms through learning is named Shapley Machine: (1) Shape individual rewards following Eq. 10
and set Eq. 11 as a regularization term, to fulfil the Efficiency axiom. (2) Implement the TD error
following Eq. 8, to fulfil the Linearity axiom. The k′C > 0 is implemented as geometric distribution
following the convention of TD(λ) (Sutton & Barto, 2018)[Chap. 12]. (3) Structure the policy and
value networks to fulfil the Symmetry axiom. Since the Linearity axiom is a sufficient condition for
the Additivity axiom as mentioned in Section 2.2, the individual values Vi satisfying all those axioms
in implementation realizes Shapley values for dynamic scenarios, as highlighted in Theorem 4.10.
In implementation, we use two base algorithms satisfying the conditions of partial observations:
POAM (Wang et al., 2025) and IPPO (De Witt et al., 2020) to realize Shapley Machine, referred to
as: SM-POAM and SM-IPPO, respectively. The details of implementation are left to Appendix E.1.
Remark 4.11. Banzhaf Machine is an algorithm generating Vi, fulfilling Symmetry and Linearity.

Following the same principle of designing algorithms via axiomatic characterization, we also propose
a variant that enforces the Linearity and Symmetry axioms while omitting Efficiency. Since the
resulting Vi aligns with the Banzhaf index (Banzhaf III, 1964)3, we refer to this algorithm as the
Banzhaf Machine. Analogous to the Shapley Machine implementations above, its instantiations on
POAM and IPPO are denoted as BM-POAM and BM-IPPO, respectively.

5 EXPERIMENTS

In experiments, we evaluate the proposed SM-POAM, SM-IPPO, BM-POAM and BM-IPPO on the
modified MPE-PP and SMAC tasks tailored to the NAHT settings (Wang et al., 2025), against
the counterpart baseline algorithms POAM and IPPO. The uncontrolled agents are taken from five
pre-trained policies, which were trained in fully controllable MARL settings using the algorithms
IPPO, MAPPO, VDN, QMIX, and IQL. To avoid confusion between the standard IPPO algorithm
(trained under fully controllable MARL settings) and the version trained within the NAHT process
(where only a subset of agents is controllable), we refer to the latter as IPPO-NAHT. Also, we
validate the game-structured NAHT, a core concept in our theory, by setting the number of n-step
return components considered in TTD(λ) using the number of basis games m. Since the number of
basis games is far more than the preset episode length (511 vs. 150) in 10v11, we approximate the
number of basis games to the episode length as a trade-off. About the 8v9 scenario, the number of
basis games needed in theory is close to the episode length (127 vs. 120), so the number of basis
games can be naturally approximated by the episode length. As a result, for 8v9 and 10v11 Banzhaf
Machine is equivalent to the baseline counterparts in implementation. The details of baselines,
experimental settings and evaluation metrics are provided in Appendix E. All results are obtained by
first computing each metric with 128 episodes and then averaging these per-seed metrics across 5
random seeds, with 95% confidence intervals reported.

3Banzhaf index is a payoff allocation that satisfies Symmetry and Linearity (Additivity), but not vice versa.
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Research Questions. We focus on the following research questions in experimentation: (1) Is the
number of coalitions m used to construct TTD(λ) as defined in Proposition 4.5 a critical factor for
learning performance? Answering this question provides empirical support for the rationality of our
theoretical framework. (2) Are all the axioms characterizing the Shapley value equally appropriate
across scenarios? This question highlights the flexibility of our axiomatic framework: rather than
relying directly on the explicit Shapley formula as in prior work, we treat its axioms as design
elements that can be selectively enforced or relaxed depending on the task. (3) Which axiom is
key to generalization to unseen conventions or unseen agent types? The answer can emphasize the
practicability of our axiomatic perspective.

5.1 MAIN RESULTS AND ANALYSIS
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Figure 2: Experiments verifying that the number of n-step return components in TTD(λ) can be
determined by the number of non-empty basis games. In MPE-PP the number of basis games is
m = 7, in 5v6 it is m = 31, and in 8v9 it is m = 120.

Answer to Question 1. We conduct experiments with varying numbers of basis games m using SM-
POAM as the candidate algorithm. As shown in Figure 2, learning performance in MPE-PP and 8v9
is sensitive to the choice of m, while in 5v6 it is comparatively robust. Overall, these results indicate
that setting the number of n-step return components as the number of non-empty basis games
can nearly maximize learning performance, thereby providing an empirical evidence to support
the mathematical rationale behind Proposition 4.5. Although alternative theories or frameworks may
exist for different choices of m—as seen in the good performance of MPE-PP and 5v6—this does
not undermine the validity of Proposition 4.5.
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Figure 3: Evaluation curves during training in NAHT.

Answer to Question 2. We evaluate all baselines alongside our proposed algorithms. For the large-
scale tasks 8v9 and 10v11, the base algorithms IPPO-NAHT and POAM are effectively equivalent to
BM-IPPO and BM-POAM under the approximation of m, due to limited episode lengths, and are
therefore omitted as separate implementations. Figure 3 shows that, for either IPPO-NAHT or POAM,
at least one of their Shapley Machine or Banzhaf Machine variants achieves the best performance.
Recall that Banzhaf Machine corresponds to dropping the Efficiency axiom. In MPE-PP and 3sv5z
with IPPO-NAHT as the base, Banzhaf Machine performs on par with Shapley Machine. In most
other scenarios (except 10v11 with IPPO-NAHT), Shapley Machine outperforms Banzhaf Machine,
although sometimes by a narrow margin. Moreover, comparisons between the base algorithms and
their Banzhaf counterparts in MPE-PP, 5v6, and 3sv5z underscore the importance of the Linearity
axiom. Overall, the results suggest that all three Shapley axioms generally enhance learning
performance (in possibly unseen team compositions), but the Efficiency axiom can, in some
cases, reduce it. This confirms the value of our proposed axiomatic framework, which flexibly
accommodates both Shapley- and Banzhaf-style formulations.
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in-convention baseline, and the histograms show performance on unseen conventions with error bars.
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(b) Evaluation on unseen agent types. Train set: MAPPO, QMIX, IQL; test set: IPPO, VDN.

Figure 4: Out-of-distribution (OOD) evaluation after training, assessing unseen conventions and
unseen agent types during training, between learned agents (POAM, SM-POAM and BM-POAM)
and uncontrolled agent types (IPPO, VDN, IQL, QMIX and MAPPO). The performance is evaluated
by averaging all pairings of N controlled and M −N uncontrolled agents and their corresponding
random seeds, called M–N score (Wang et al., 2025).

Answer to Question 3. We evaluate all baselines alongside our proposed algorithms after training, to
test their capability of generalization to unseen conventions and unseen agent types, respectively. The
evaluation is conducted by the best model saved during training for each random seed of running
experiments. It can be seen from Figure 4a that SM-POAM outperforms both BM-POAM and POAM
on all scenarios, except for the 10v11 due to the weak learning performance. This implies that in
general all Shapley axioms may be instrumental in tackling unseen conventions. As seen from
Figure 4b, the performance of BM-POAM is comparable to and even better than SM-POAM in most
cases. This implies that the Efficiency axiom could weaken the capability of generalization to
unseen agent types. This phenomenon recurs, and becomes even more pronounced, in the evaluation
of IPPO-NAHT related algorithms, as shown in Figure 10b in Appendix F.3.

5.2 NUMBER AND WEIGHTINGS OF BASIS GAME VALUES

The weightings of basis game values (k′C in Eq. 8) are set up by the probability values of a geometric
distribution governed by λ in this paper, respecting the convention of RL. The λ will influence the
shape of the geometric distribution. When the λ grows larger, the geometric distribution tends to be a
longer tail with the probability decays slowly as the number of basis games m increases, and vice
versa. In other words, controlling m can be implemented by simply changing the weightings of
basis game values, or equivalently, the λ, under the assumption of the geometric distribution.
To verify this result holding in the NAHT, we conduct a case study, as shown in Figure 5. It can
be observed that the number of effective basis games (the probability values over which are non-
zero) for m = 31 and m = 70 is the same under λ = 0.85, resulting in nearly identical learning
performance. This aligns with the conventional view of λ’s impact on TTD(λ) in RL, primarily
as a mechanism for controlling the tail length of the return (Sutton & Barto, 2018)[Chap. 12.3].

Moreover, we demonstrate that even with the same number of basis games, the values of their
corresponding weightings significantly influence the learning performance. As shown in Figure 6,
given the same number of active basis games as m = 7, the learning processes with λ = 0.5 and
λ = 0.85 result in diverse performance. This provides an alternative insight into how λ influences
TTD(λ), diverging from the traditional RL perspective.
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(a) SM-POAM: m = 31 vs.
m = 70 for λ = 0.85.
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Figure 5: Controlling the number of effective basis games can be implemented by changing the
parameters to control the shape of weightings of basis game values. Note that the probability values
for m > 31 are nearly zero.
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Figure 6: Influence of different values of basis games given the same number of effective basis games.
Note that the shapes of geometric distributions vary significantly with different values of λ, under the
same number of effective m.

Final Remark. Based on the above findings, the main results are obtained by the algorithms with λ
that enables weightings to contribute to the effective number of basis games as m. In the future work,
it is valuable to investigate how to generate λ or broader classes of weighting functions, so that it can
control the number of effective basis games (n-return components) for the NAHT.

6 CONCLUSION

Summary. This paper addresses the NAHT through the lens of cooperative game theory. We
propose an axiomatic framework that models individual value functions through the Shapley axioms
(Additivity, Efficiency, Symmetry), leading to the Shapley Machine, which uniquely recovers Shapley
values. Unlike prior MARL work based on the explicit Shapley formula, our approach reveals their
connection to TTD(λ) and establishes a design space: enforcing all axioms yields Shapley-based
methods, while relaxing them gives alternatives such as the Banzhaf Machine.

Limitation and Future Work. Although our work primarily aims to introduce an axiomatic
framework for NAHT, it has several limitations. First, the Efficiency axiom shows limited scalability,
as it does not perform well in large-scale multi-agent scenarios. Second, the physical interpretation
of Proposition 4.5 remains open, leaving its practical grounding incomplete. These limitations
motivate further exploration. A key contribution of our framework is the introduction of state-specific
cooperative game models, where the Linearity axiom provides a game-theoretic explanation for the
weightings of n-step return components in TTD(λ) (Cichosz, 1994). The preliminary case studies
in Section 5.2 suggest a promising research direction: exploring broader classes of weighting
functions beyond the standard geometric distribution. For instance, weightings kC satisfying∑

(kC)
2 = 1 (as illustrated in Figure 1) could define alternative weighting schedules.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

This paper is mixed of theoretical and algorithm contributions. To let the readers understand our main
contributions better, we present extra background knowledge in Appendix B. For all mathematical
claims in the paper, their justifications and proofs can be found in Appendices C and D. The
implementation details of our algorithms and baselines are shown in Appendix E.1. The metrics
for evaluating results, experimental settings and hyperparameters used in experiments are shown
in Appendices E.3, E.4 and E.5, respectively. The computational resources usage and the time for
experiments are exposed in Appendix E.6. Finally, we have uploaded an anonymous version of codes
to supplementary materials.

THE USE OF LARGE LANGUAGE MODELS

We made limited use of large language models (LLMs) during the preparation of this paper. Specif-
ically, LLMs were employed to assist in searching for related work, polishing the language of the
manuscript, and providing clarifications on background knowledge with which the authors were less
familiar. Importantly, LLMs did not contribute to the design of the research, the development of
the methodology, or the generation of research ideas. All content suggested by LLMs was carefully
reviewed and verified by the authors before inclusion in the final version of the paper.

As for polishing the language of the manuscript, every time the authors only input several sentences
or a short paragraph (rather than the whole draft) written by themselves to LLMs. When LLMs
returned the polished words, the authors reviewed the preciseness and authenticity of the contents
generated.

About searching for related work and background knowledge, every time the authors input a query
about the research area of interest and received a summary from LLMs. Then, the authors manually
and carefully checked the materials informed by LLMs, ensuring that LLMs only played the role as
an assistant or an intelligent search engine.
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A RELATED WORK

A.1 TD(λ) IN REINFORCEMENT LEARNING AND MULTI-AGENT REINFORCEMENT LEARNING

Related work on temporal-difference learning with eligibility traces centers on the seminal TD(λ)
algorithm proposed by Sutton (1988), which unified one-step TD and Monte Carlo methods via a trace-
decay parameter λ and introduced the forward- and backward-view equivalence for efficient multi-
step credit assignment. Subsequent theoretical analyses (Dayan, 1992; Dayan & Sejnowski, 1994;
Tsitsiklis & Van Roy, 1996) established convergence guarantees and characterized the bias–variance
trade-off inherent in λ-returns, while extensions by Watkins et al. (1989); Peng & Williams (1994)
adapted eligibility traces for off-policy control, Q(λ). Advances in function approximation, including
true online TD(λ) (Seijen & Sutton, 2014) and gradient-TD methods, further broadened applicability
to large-scale and nonlinear settings, inspiring n-step return techniques such as generalized advantage
estimation (GAE) (Schulman et al., 2015) for policy optimization. In multi-agent reinforcement
learning, algorithms of PPO family such as MAPPO (Yu et al., 2022) and IPPO (De Witt et al., 2020),
applied GAE to optimize policies and thus used TD(λ) as the target values to train critics. This
paper highlights the theoretical link between truncated TD(λ), denoted TTD(λ) (Cichosz, 1994), in
NAHT (a generalization of MARL) and the axioms of the Shapley value. It further shows that the
number of n-step return components in TTD(λ) can be determined by the number of agents. This
insight provides a theoretical foundation that could inform the design of a broader class of multi-agent
reinforcement learning algorithms.

A.2 THEORETICAL MODELS FOR AD HOC TEAMWORK

We now discuss theoretical models describing ad hoc teamwork (AHT). Brafman & Tennenholtz
(1996) pioneered research into AHT by investigating repeated matrix games involving a single
teammate. Subsequent studies expanded this framework to scenarios with multiple teammates,
notably by Agmon & Stone (2012). Later, Agmon et al. (2014) further relaxed earlier assumptions
by allowing teammates’ policies to be selected from a known set. Stone et al. Stone & Kraus
(2010) initially formalized AHT through collaborative multi-armed bandits, albeit under notable
assumptions such as prior knowledge of teammates’ policies and environmental conditions. Albrecht
& Ramamoorthy (2013) advanced this field significantly by introducing the stochastic Bayesian
game (SBG), the first comprehensive theoretical framework accommodating dynamic environments
and unknown teammate behaviours in AHT. Building on SBG, Rahman et al. (2021) proposed the
open stochastic Bayesian game (OSBG), addressing open ad hoc teamwork (OAHT). Zintgraf et al.
(2021) modelled AHT through interactive Bayesian reinforcement learning (IBRL) within Markov
games, specifically targeting non-stationary teammate policies within single episodes. Xie et al.
(2021) introduced the hidden parameter Markov decision process (HiP-MDP) to handle situations
where teammates’ policies vary across episodes but remain stationary during individual episodes.
Most recently, Wang et al. (2024) extended OSBG by incorporating principles from cooperative
game theory, introducing the open stochastic Bayesian coalitional affinity game (OSBG-CAG),
which theoretically justifies a graph-based representation for joint Q-value functions and includes
rigorous convergence proofs for Q-learning algorithms in open team settings. This paper adopts the
perspective of cooperative game theory, introducing an axiomatic framework based on state-specific
cooperative games to address the NAHT problem. Within this framework, the Shapley value’s
axioms are extended and enforced, so that Shapley-based algorithms emerge implicitly by satisfying
these axioms during learning. More importantly, this axiomatic characterization also motivates a
new algorithm, the Banzhaf Machine, which preserves the advantages of the Shapley value while
alleviating some of its limitations.

A.3 SHAPLEY VALUE IN MULTI-AGENT REINFORCEMENT LEARNING

Related work mainly focused on developing the theory of Shapley value in MARL, and incorporated
Shapley value (Shapley, 1953) into MARL algorithms. Early studies (Wang et al., 2020) incorporated
Shapley value into credit assignment scheme in a principled way and proposed an algorithm named
SQDDPG, underpinned by the equivalence between cooperative-game theoretical models in dynamic
scenarios and the shared reward Markov games. Wang et al. (2022) further improved the theory
by proving the existence of Shapley value, and proposed an algorithm named SHAQ, an algorithm
with promising convergence to find an optimal joint policy. It also shed light on the relationship
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between Shapley value and the relevant value decomposition and credit assignment approaches for
MARL. Li et al. (2021) improved the stability of SQDDPG and proposed an algorithm named Shapley
Counterfactual Credits. Han et al. (2021) incorporated Shapley value into the model-based PPO as
each agent’s advantage value, and estimated coalition values by trained transition and reward models.
Chai et al. (2024) continued the idea from Han et al. (2021), by replacing the the transition and
reward models with more powerful world models. Xue et al. (2022) incorporated Shapley value into
multi-agent communication, as a criterion for forming communication between agents. This paper
primarily focuses on learning the Shapley value to address the NAHT, a generalized paradigm to
MARL. More importantly, the Shapley values are learned by complying with their axioms, rather than
by constructing their explicit formulas as implemented in the previous work. This may help overcome
the notorious learning instability issues caused by learning substantial “coalitional values” in the
existing algorithms based on Shapley values. Furthermore, the insight of axiomatic characterization
can facilitate the flexibility of Shapley value approaches in a wide variety of tasks. Specifically, one
can safely drop any part of a learning algorithm, if it is justified that the targeting task does not align
with the corresponding axiom.

B EXTRA BACKGROUND

B.1 λ-RETURN AND TD(λ)

We now introduce an extension of return named λ-return. Mathematically, a λ-return Gλ
t for infinite-

horizon cases can be expressed as follows:

Gt:t+n = Rt + γRt+1 + · · ·+ γn−1Rt+n−1 + γnV (st+n),

Gλ
t = (1− λ)

∞∑
n=1

λnGt:t+n.
(12)

Similarly, the λ-return for finite-horizon cases can be expressed as follows:

Gλ
t = (1− λ)

T−t∑
n=1

λnGt:t+n + λT−tGt:T . (13)

Note that if λ = 1, updating according to the λ-return is a Monte Carlo algorithm. In contrast, if
λ = 0, then the λ-return reduces to Gt:t+1, the one-step return. Monte Carlo algorithm is known as
its high variance but low bias, while one-step return is known as its low variance but high bias. For
this reason, the change of λ can be seen as a tradeoff between bias and variance. The TD prediction
using λ-return as the target value is referred to as TD(λ) (Sutton, 1988).

A variant of TD(λ) by shaping Gλ
t with a designated horizon t < H ≤ T is referred to as

truncated TD(λ), shortened as TTD(λ) (Cichosz, 1994). Mathematically, Gλ
t with a designated

horizon H can be formulated as follows:

Gλ
t = (1− λ)

H−t∑
n=1

λnGt:t+n + λH−tGt:H . (14)

Note that in the convention of RL, the horizon H is defined as the time difference from the starting
point of an episode, denoted by t = 0.
Remark B.1. In this paper, to simply the presentation of our work, we redefine the horizon as the
time difference from each timestep t, denoted as m, such that m = H − t. With the new definition of
horizon, we can rewrite the above formula of Gλ

t as follows:

Gλ
t = (1− λ)

m∑
n=1

λnGt:t+n + λmGt:t+m. (15)

B.2 SUPERADDITIVE GAME AND COOPERATIVE MULTI-AGENT REINFORCEMENT LEARNING

The superadditive game is a subclass of characteristic games that satisfies an additional condition:
v(C ∪D) ≥ v(C) + v(D), for any two distinct coalitions C,D ⊆ M with C ∩D = ∅. Previous
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work in MARL (Wang et al., 2020) has shown the equivalence on the task objective function
between state-based superadditive games with action space and team reward Markov games with
coalition structures.4 Intuitively, the Shapley value is a solution to the stability of a team formation,
resembling cooperation. Since the NAHT is a generalization of MARL, this conclusion still valid in
principle. It has been already proved that the Shapley value exists in superadditive games (Shapley,
1953) and each game instance in superadditive games can be uniquely represented as

∑
kCv

1
C ,

where kC ≥ 0 (Dubey, 1975). In the cooperative game theory, any game can be transformed to
a superadditive game if its value v is transformed by a superadditive cover v∗ such that v∗(C) =
maxCS(C)

∑
D∈CS(C) v(D) (Greco et al., 2011). As a result, it will not lose generality if we

consider the cooperative game space as superadditive games in this paper.

B.3 BASELINE ALGORITHMS: POAM AND IPPO

POAM. In general, POAM is an algorithm built upon IPPO (De Witt et al., 2020). The primary
difference between POAM and IPPO is as follows: For each agent’s policy and value, in addition to
its observation used in IPPO, POAM takes as input an embedding vector to predict other agents’
potential behaviours. More specifically, this embedding vector is trained by an encoder-decoder
structure, wherein the encoder is modeled as RNNs and decoder is modeled as MLPs. For brevity,
−i denotes the set of all agents excluding agent i. Let ht,i = {ok,i, ak−1,i}tk=1 denote agent i’s
history of observations and actions up to timestep t and et,i ∈ Rn denote the resulting embedding
vector of n dimensions. The encoder parameterized by θe is defined as fenc

θe : Hi → Rn. The
embedding vector is decoded by two decoder networks: the observation decoder fdec

θo : Rn → O−i,
and the action decoder fdec

θa : Rn → ∆(A−i). The decider networks are respectively trained to
predict the observations and actions of all other agents on the team at timestep t, ot,−i and at,−i, to
encourage et,i to contain information about collective behaviors corresponding to ht,i. While the
observation decoder directly predicts the observed −i’s observations, the action decoder predicts
the parameters of a probability distribution over the −i’s actions π−i(at,−i; f

dec
θa (fenc

θe (ht,i))). As
we consider continuous observations and discrete actions, the loss function with using categorical
distribution to model π−i is as follows:

Lθe,θo,θa(ht,i, ot,−i, at,−i) = ||fdec
θo (fenc

θe (ht,i))−ot,−i||2−log π−i(at,−i; f
dec
θa (fenc

θe (ht,i))). (16)

For brevity, we define g(h) := (h, fenc
θe (h)) in the following description.

POAM employed generalized advantage estimation (GAE) (Schulman et al., 2015) to form the policy
gradient, and the value function used to form GAE is trained by the following loss function:

Lθc(ht,i) =
1

2

(
V θc

i (g(ht,i))− V̂t,i

)2
, (17)

where V̂t,i is the finite-horizon TD(λ) return, for which the horizon is up to the episode length T .
Each agent i’s GAE estimation is as follows:

At,i =

T∑
l=0

(γλ)lδt+l,i, (18)

where δt,i = Rt + γVi(g(ht,i)) − V θc

i (g(ht,i)) and Vi(g(ht,i)) denotes the non-parameterized
individual value. Based on the GAE defined above, the policy optimization loss is defined as:

Lθ(ht,i, at,i) = min

{
πθ(at,i|g(ht,i))

πθold(at,i|g(ht,i))
At,i, clip

(
πθ(at,i|g(ht,i))

πθold(at,i|g(ht,i))
, 1− ϵ, 1 + ϵ

)
At,i

}
.

(19)

IPPO. By removing the loss for the encoder-decoder structure as shown in Eq. 16 and replacing the
input g(ht,i) by ht,i in the above set of equations, we get the loss functions of IPPO.

4In Wang et al. (2020), state-based convex games with action space were proved to be equivalent to team
reward Markov games. However, setting C ∩D = ∅ can relax a convex game to a superadditive game.
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C JUSTIFICATION AND DISCUSSION OF SIZE–LEXICOGRAPHIC COALITION
ORDER AND HORIZON ASSIGNMENT

In this section, we will justify the insight behind the size–lexicographic coalition order and horizon
assignment, as shown in Definition 4.4. In the beginning, we define a discrete-time stochastic process
of TD error terms (Zn)n∈N0

, where vπ(st) denotes a generic state value function:

Zn+1 := Rt+n + γvπ(st+n+1)− vπ(st+n), so Gt:t+n+1 = Gt:t+n + γnZn+1.

We first show a generic result related to the one-step increment term in Lemma C.1. Then, we
make the coalition-variance monotonicity assumption in Assumption C.2, which can be justified by
Remark C.3, with evidence from the basis game values of the game-structured NAHT, as shown
in Definition 3.2. By Lemma C.1 and Assumption C.2, we get that for the coalition enumeration
{i} there exist nondecreasing orderings of variances for both the sequence of basis game values
of coalitions nondecreasing by sizes and the sequence of n-step returns with the horizon schedule
ni = ni−1 + 1. This motivates that we can define the following term under this monotone-variance
regularity:

V (Ci, s) := Eπ

[
Gt:t+ni

| st = s
]
, (i = 1, . . . ,m).

The justification of Definition 4.4 completes.

Remark C.5 highlights that alternative horizon schedules (e.g., ni = ni−1 + k, n1 = 1, k > 0) can
be incorporated, offering additional design possibilities within our axiomatic framework.

Lemma C.1. If (Zn) has nonnegative autocovariances given st = s, then n 7→ Var(Gt:t+n | s) is
nondecreasing, with Var(Gt:t+n+1 | s) = Var(Gt:t+n | s) iff Var(Zn+1 | s) = 0.

Proof. Use Gt:t+n+1 = Gt:t+n + γnZn+1 and expand the variance conditioning on st = s, we can
get the following formula:

Var(Gt:t+n+1 | s) = Var(Gt:t+n | s) + 2γnCov
(
Gt:t+n, Zn+1 | s

)
+ γ2nVar(Zn+1 | s).

We prove if (Zn) has nonnegative autocovariances given st = s, then n 7→ Var(Gt:t+n | s)
is nondecreasing.

Using the sum of TD errors to represent the Monte Carlo error (Sutton & Barto, 2018)[Chap. 6], we
have the following formula:

Gt:t+n − vπ(st) =

n−1∑
k=0

γkZk+1.

Given the linear property of covariance and a fact that the covariance of a constant is zero, we can get:

Cov
(
Gt:t+n, Zn+1 | s

)
=

n−1∑
k=0

γkCov(Zk+1, Zn+1 | s).

Therefore, if all autocovariances Cov(Zi, Zj | s) ≥ 0, then Cov
(
Gt:t+n, Zn+1 | s

)
≥ 0.

Since Var(Zn+1 | s) ≥ 0 must hold, we can directly get:

Var(Gt:t+n+1 | s) ≥ Var(Gt:t+n | s).

That is, n 7→ Var(Gt:t+n | s) is nondecreasing.

We prove Var(Gt:t+n+1 | s) = Var(Gt:t+n | s) iff Var(Zn+1 | s) = 0.

It is a fact that Var(Gt:t+n+1 | s) = Var(Gt:t+n | s) iff

Var(Zn+1 | s) = 0, Cov
(
Gt:t+n, Zn+1 | s

)
= 0.

We aim to prove that Var(Zn+1 | s) = 0 is sufficient for Cov
(
Gt:t+n, Zn+1 | s

)
= 0.
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If a nonnegative random variable (r.v.) W ≥ 0 satisfies E [W | s] = 0, then W = 0 almost surely
(a.s.) given s (Williams, 1991)[Chap. 9].

Apply this with W = (Zn+1 − E [Zn+1 | s])2. If Var(Zn+1 | s) = 0, then

E
[
(Zn+1 − E [Zn+1 | s])2 | s

]
= 0 ⇒ (Zn+1−E [Zn+1 | s])2 = 0 a.s. ⇒ Zn+1 = E [Zn+1 | s] a.s.

The covariance Cov
(
Gt:t+n, Zn+1 | s

)
can be expressed as the following formula:

Cov
(
Gt:t+n, Zn+1 | s

)
= E

[(
Gt:t+n − E[Gt:t+n | s]

)(
Zn+1 − E[Zn+1 | s]

) ∣∣ s] .
Since Zn+1 − E [Zn+1 | s] = 0 a.s., we get the following result:

Cov
(
Gt:t+n, Zn+1 | s

)
= 0.

Assumption C.2 (Coalition-Variance Monotonicity). Let V̂ (C, s) be an unbiased estimator of
vπ(s) from on-policy data restricted to agents in C. Assume Var(V̂ (C, s)) is nondecreasing in |C|
(larger coalitions ⇒ richer interactions ⇒ higher variance).

Remark C.3 (Coalition-Variance Monotonicity in Game-Structured NAHT). Recall from Sec-
tion 4.1 that vvs(M)

C,s = vs(M)v1C,s, and v1C,s in a given state s is isomorphic to v1C . Following

Definition 2.1, we can express vvs(M)
C,s as follows:

v
vs(M)
C,s (D) =

{
vs(M) if C ⊆ D,

0 otherwise.

As described in Definition 3.2, a basis game value vvs(M)
C,s (D) can effectively evaluate the performance

of a team of agents C5 with an agent-type composition denoted by ×i∈DTi, where Ti indicates the
agent i’s type.

As the size of the coalition C increases, it requires more experience for exploring agent-type composi-
tions during agent interactions, so that the value of V (C, s) := v

vs(M)
C,s (M) can predict vs(M). It

implies that as the coalition size increases, higher variance of the value prediction is incurred to get
vs(M), due to the growing agent-type composition space. Similarly, if the sizes of two coalition are
equal, their variances are equal.

Proposition C.4 (Variance Monotonicity along the Coalition Enumeration). Fix s ∈ S and the
sequence (Ci, ni) of Definition 4.4. Under the nonnegative-autocovariance condition of Lemma C.1
and Assumption C.2, the sequences

i 7→ Var(V̂ (Ci, s)) and i 7→ Var(Gt:t+ni | s)

are both nondecreasing in i. Moreover, i 7→ Var(Gt:t+ni
| s) is strictly increasing at every index

where Var(Zni+1 | s) > 0.

Proof. Since ni = ni−1+1 is strictly increasing, Lemma C.1 yields nondecreasing variance in i, with
strictness when the added step contributes nonzero variance. Assumption C.2 gives nondecreasing
Var(V̂ (Ci, s)) as |Ci| (hence i) increases.

Remark C.5 (Minimality of Horizon Schedule). Among all sequences (ñi) with ñ1 = 1, ñi > ñi−1,
and ñi ≥ |Ci| for all i, the schedule in Definition 4.4 is pointwise minimal: ñi ≥ ni for every i.

5For any team of agents D ⊃ C, the basis game value would be the same as vvs(M)
C,s (C), so it is ineffective

to evaluate the performance of the D with the larger size than C.
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D COMPLETE MATHEMATICAL PROOFS

Lemma 4.1. Given a fixed state s ∈ S , each state-specific cooperative game’s value vs ∈ G(s) can
be uniquely represented by: vs =

∑
∅̸=C⊆M k′C · vzC,s, where k′C = kC

z and z ̸= 0.

Proof. We can represent each kC in an equivalent form as kC ·z
z , where z ̸= 0. Substituting this term

into the formula vs =
∑

∅̸=C⊆M kCv
1
C,s in Definition 2.1, we can get the following formula such

that:

vs =
∑

∅̸=C⊆M

kC · z
z

· v1C,s.

Since vzC,s = z · v1C,s by Definition 2.1, we have the following formula such that:

vs =
∑

∅≠C⊆M

kC
z

· vzC,s.

Proposition 4.2. For the class of superadditive games formed by a set of basis games {vzC,s|∅ ≠

C ⊆ M}, it holds that kC ≥ 0, for all ∅ ≠ C ⊆ M.

Proof. We first consider a cooperative game space G (a broader space of superadditive games). As
per Dubey (1975), a game v : G → R≥0 belonging to G can be uniquely represented as follows:

v =
∑

∅≠C⊆Ñ

kCv
1
C .

The analytic form of kC under G is represented as follows:

kC =
∑
T⊆C

(−1)|C|−|T |v(T ).

The condition for v to be a superadditive game is as follows:

v(T1 ∪ T2) ≥ v(T1) + v(T2), T1, T2 ⊆ C.

Following the result from Dubey (1975), if the above condition holds, kC ≥ 0 has to be satisfied.6

We now extend the G to a state-specific cooperative game space G(s), for a fixed state s ∈ S. Since
the G(s) is isomorphic to a game space G, the characteristics satisfied in the G also holds in the G(s)
by Remark 3.1. Therefore, vs : G(s) → R≥0 can be uniquely represented as vs =

∑
∅̸=C⊆M kCv

1
C,s.

As we consider G(s) as a space of superadditive games, kC ≥ 0 should hold.

By Lemma 4.1, we have vs =
∑

∅̸=C⊆M k′C · vzC,s, where k′C = kC

z and z ̸= 0. This implies that
any set of basis games in the form {vzC,s|∅ ≠ C ⊆ M} can form a state-specific cooperative game
belonging to superadditive games.

Proposition 4.6 (Representation of Transformed Rewards). Given the condition
∑M

i=1 ϕi(Rt) =
Rt, the payoff allocation defined on rewards Rt, can be expressed as:

ϕi(Rt) := Rt −
∑
j ̸=i

( ϕj(V (M, st))− γϕj(V (M, st+1)) ) .

Proof. Recall that ϕ(·) ∈ RM is a multidimensional linear transformation, where M is the number
of agents. We now express ϕ(Rt) by introducing the Efficiency axiom.

6For example, if C = {1, 2}, then T = ∅, {1}, {2}, {1, 2}. As a result, kC = v(∅)− v({1})− v({2}) +
v({1, 2}), where v(∅) = 0 by default. If v is assumed to be a superadditive game, kC ≥ 0 has to hold.
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To satisfy the Efficiency axiom such that
∑M

i=1 ϕi(V (M, st)) = V (M, st), it is reasonable to
assume that

∑M
i=1 ϕi(Rt) = Rt. In other words, each agent’s value expansion can be expressed

independently in its own ϕi(Rt), justified by Theorem 4.7.

Next, we aim to show how each ϕi(Rt) is expressed in terms of ϕ(V (M, st)).

It is not difficult to observe that for each agent i ∈ M, we have

ϕi(V (M, st)) = ϕi(Rt) + γϕi(V (M, st+1)).

By the condition
∑M

i=1 ϕi(Rt) = Rt, we can derive a formula such that:

ϕi(Rt) = Rt −
∑
j ̸=i

ϕj(Rt).

Since ϕj(Rt) = ϕj(V (M, st))− γϕj(V (M, st+1)), we can express ϕi(Rt) as follows:

ϕi(Rt) := Rt −
∑
j ̸=i

( ϕj(V (M, st))− γϕj(V (M, st+1)) ) .

Theorem 4.8. The payoff allocation operator satisfying permutation-equivariance is a sufficient
condition for the Symmetry axiom.

Proof. Let M = {1, . . . ,M}. Let G be the set of cooperative games v : 2M → R, and SC be a
permutation group acting on C ⊆ M.

Let SC act on an arbitrary C ⊆ M by exchanging agents:

(σ ·v)(C) := v(σ−1(C)), σ ∈ SM, C ⊆ M.

Let a payoff allocation operator F : G → RM output payoffs F (v) = (F1(v), . . . , Fn(v)).

Let SM act on RM by permuting coordinates: (σ ·x)i := xσ−1(i).

F is permutation-equivariant if

F (σ ·v) = σ ·F (v), ∀σ ∈ SM, v ∈ G. (20)

Recall that agents i and j are symmetric in v if

v(C ∪ {i}) = v(C ∪ {j}) ∀C ⊆ M\ {i, j}.

Equivalently, the transposition τ = (i j) leaves the game value invariant:

τ ·v = v. (21)

Next, we aim to show Fi(v) = Fj(v) to prove the statement in the theorem.

By Eqs. 20 and 21, we have

F (v) = F (τ ·v) = τ ·F (v).

Note that τ ·F (v) is just F (v) with coordinates i and j swapped. Therefore, F (v) = τ ·F (v) implies
the i-th and j-th entries are equal:

Fi(v) = Fj(v).

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Theorem 4.10. Shapley Machine is an algorithm enforcing Vi to fulfil Efficiency, Symmetry and
Linearity, so the Vi is the Shapley value for dynamic scenarios.

Proof. By construction, the Shapley Machine enforces the individual value functions Vi (payoff
allocation functions) to satisfy the axioms of Efficiency, Symmetry, and Linearity. Each state-specific
cooperative game space G(s) is isomorphic to the canonical cooperative game space G (Remark 3.1).
Hence, properties of payoff allocation functions that hold on G also hold on G(s).
Now, recall that the Shapley value is uniquely characterized as the value function that satisfies
Efficiency, Symmetry, and Additivity (Theorem 2.2). Since Linearity is a stronger condition than
Additivity (indeed, setting all αi = 1 in the definition of Linearity yields Additivity), any payoff
allocation function that is Efficient, Symmetric, and Linear must coincide with the Shapley value.
Therefore, the individual value functions Vi produced by the Shapley Machine are exactly the Shapley
values for dynamic scenarios.

E EXPERIMENTAL DETAILS

E.1 IMPLEMENTATION DETAILS

Our algorithm is built upon POAM and IPPO. All loss functions for training the encoder-decoder
model, policy networks and value networks have been remained. Please refer to Appendix B.3 for
details. For conciseness, we only list the novel loss functions proposed in this paper as below.

E.1.1 SHAPLEY MACHINE

We now describe the details about implementing our proposed algorithm, referred to as Shapley
Machine. In general, our algorithm is established based on the base algorithms POAM and IPPO,
with modification to fulfil all the three axioms of Shapley value: Efficiency, Linearity and Symmetry.
Since Symmetry has been implemented by structuring the inputs as shown in Remark 4.9, we only
need to fulfil Efficiency and Linearity as follows.

Implementing the Linearity Axiom. In general, both POAM and IPPO have implemented TD(λ),
which does not strictly conform to the principle of the Linearity axiom. To this end, we change
the TD(λ) to TTD(λ), where the number of n-step return components is equal to the number of the
non-empty coalitions in theory. Note that in some scenarios the episode length is smaller than the
number of non-empty coalitions. In these cases, the TTD(λ) can be reduced to the TD(λ) for the
finite-horizon tasks with the episode length as T , equivalently, the TTD(λ) with m = T . Alternatively,
we can select a value of m for each task based on extra conditions, which is left for the future work.
In this paper, we set m = T for the scenarios 8v9 and 10v11. For the 8v9 scenario, the episode length
as 120 is not too far from the number of non-empty coalitions as 127. For the 10v11 scenario, the
episode length is 150, while the number of non-empty coalitions is 511.

Implementing the Efficiency Axiom. By introducing the partial observation in Dec-POMDP, the
Eq. 10 we have derived the condition for realizing the Efficiency axiom is transformed as follows:

Rt,i = Rt −
∑
j ̸=i

(Vj(ht,j)− γVj(ht+1,j)) ,

where Vj(ht,j) indicates an agent j’s non-parameterized individual value. During the practical train-
ing procedure, the Vj(ht,j) generated by the individual value network could be severely inaccurate in
the beginning, which may result in the instability of learning. To mitigate this issue, we add an extra
coefficient α ∈ (0, 1) to the term

∑
j ̸=i (Vj(ht,j)− γVj(ht+1,j)), such that:

Rt,i = Rt − α
∑
j ̸=i

(Vj(ht,j)− γVj(ht+1,j)) . (22)

This coefficient α can be either manually set up as a fixed value, or implemented by a scheduler
starting from 0 to some preset upper limit. The Rt in Lθ(ht,i, at,i) and Lθc(ht,i) is replaced by the
above Rt,i. To clarify this change, the two new losses are expressed as: L̂θ(ht,i, at,i) and L̂θc(ht,i).
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Furthermore, it is needed to search the underlying factorization scheme of the transition function in
the Dec-POMDP, according to Theorem 4.7. To implement this requirement, we need to fulfil the
following condition:

M∑
i=1

Vi(ht,i) = V (M, ht). (23)

The above equality is implemented as a regularization term during training.

To maintain consistency with the critic losses, we consider to use the λ-return denoted by Ĝλ
t to

represent V (M, ht). In turn, the above equation can be expressed as:

V (M, ht) = Eπ

[
Gλ

t

∣∣ht

]
,

where each Ĝt:t+n contributing to the Ĝλ
t represented in TTD(λ) is expressed as follows:

Ĝt:t+n = Rt + γRt+1 + · · ·+ γn−1Rt+n−1 + γnV (M, ht+n)

= Rt + γRt+1 + · · ·+ γn−1Rt+n−1 + γn
M∑
i=1

Vi(ht+n,i) (By Eq. 23).

Substituting the above formula into Eq. 23, we can obtain the regularization term referred to as the
efficiency loss for one timestep t, as follows:

Le
θc(ht,i) =

1

2

(
Ĝλ

t −
M∑
i=1

V θc

i (ht,i)

)2

.

In summary, the total loss function of Shapley Machine for POAM (SM-POAM) is as follows:

LSM-POAM =
1

T

T∑
t=1

(∑
i∈Ct

L̂θ(ht,i, at,i) + β1

∑
i∈M

L̂θc(ht,i) + β2L
e
θc(ht,i) + Lθe,θo,θa(ht,i, ot,−i, at,−i)

)
,

where T is the episode length; β1, β2 ∈ (0, 1) are two coefficients to control the importance of the
two losses; as well as Ct indicates the controlled agent set at timestep t and M indicates the ad hoc
team following the convention in Wang et al. (2025).

Similarly, the total loss function of Shapley Machine for IPPO (SM-IPPO) is as follows:

LSM-IPPO =
1

T

T∑
t=1

(∑
i∈Ct

L̂θ(ht,i, at,i) + β1

∑
i∈M

L̂θc(ht,i) + β2L
e
θc(ht,i)

)
.

Implementation of k′
C > 0. As mentioned in Section 4.1, it is necessary to fulfil k′C > 0 for

reaching cooperation, which can be implemented following the convention of TD(λ) in RL (Sutton,
1988). Specifically, the weightings for m basis games (k′C1

, k′C2
, · · · , k′Cm

) are generated using a
geometric distribution Pλ with the parameter 0 < λ < 1, such that k′Cn

= Pλ(n), resulting a tuple
((1− λ), (1− λ)λ, · · · , (1− λ)λm−1, λm). With this condition, Eq. 8 becomes the TD error of the
well-known truncated TD(λ) prediction, shortened as TTD(λ) (Cichosz, 1994).

Partial Observations. In practice, a controlled agent is only able to receive an observation, following
the settings of Dec-POMDPs. Therefore, an agent is required to infer the state of the environment as
an individual hidden state, through the history of observations. To this end, the policy and individual
networks are realized by recurrent neural networks (RNNs) (e.g., GRUs (Chung et al., 2014)), where
observations or representations transformed from observations are as inputs. In implementation,
we use two base algorithms satisfying the conditions of partial observations: POAM (Wang et al.,
2025) and IPPO (De Witt et al., 2020) to realize Shapley Machine, referred to as: SM-POAM and
SM-IPPO, respectively.

Implementation of the Symmetry Axiom. It can be observed that both POAM and IPPO are
implemented by the sharing parameters, with agent ID to differentiate agent identities. Given an agent
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ID, its input is either individual observations or individual observations + teammate embeddings,
where the teammate embeddings are transformed from individual observations. As per Remark 4.9,
the structures of SM-POAM and SM-IPPO satisfies the Symmetry axiom.

Estimation of Uncontrolled Agent Individual Values. We maintain all possible controlled agent
policy and individual values networks as implemented by Wang et al. (2025), given that the maximum
number of controlled agents is known in the experimental settings of the NAHT, but only part of
controlled agents in an episode can make decision. Thanks to the sharing parameters technique, this
can be simply implemented by maintaining one policy or individual value network with a tuple of
agent IDs across all possible controlled agents. During the training phase, the uncontrolled agent
individual values are also required to implement the Efficiency axiom, as informed in Eq. 11, but
they are unknown to controlled agents. To this end, the uncontrolled agent individual values are
approximated by the maintained individual values of the controlled agents which are not activated.

E.1.2 POAM AND IPPO

The implementations of POAM and IPPO have been detailed in Appendix B.3.

In summary, the total loss function of POAM is as follows:

LPOAM =
1

T

T∑
t=1

(∑
i∈Ct

Lθ(ht,i, at,i) + β1

∑
i∈M

Lθc(ht,i) + Lθe,θo,θa(ht,i, ot,−i, at,−i)

)
.

The total loss function of IPPO is as follows:

LIPPO =
1

T

T∑
t=1

(∑
i∈Ct

Lθ(ht,i, at,i) + β1

∑
i∈M

Lθc(ht,i)

)
.

E.1.3 BANZHAF MACHINE

The overall loss function and implementation of the Banzhaf Machine closely follow those of POAM
and IPPO. The only distinction is that Banzhaf Machine employs TTD(λ) in place of the TD(λ) used
in POAM and IPPO.

E.2 EXPERIMENTAL DOMAINS

We now briefly introduce the experimental domains for running experiments. If one would like to
know more about details, please refer to Wang et al. (2025).

E.2.1 MPE PREDATOR PREY (MPE-PP)

The MPE Predator Prey (MPE-PP) environment is a predator-prey task implemented within the Multi-
Agent Particle Environment (MPE) framework. It simulates interactions within a two-dimensional
space populated by two static obstacles, where three pursuer agents must cooperate to capture a
single adversarial evader. A successful capture is defined as at least two pursuers simultaneously
colliding with the evader, upon which the pursuers receive a positive reward of +1. If the capture
is unsuccessful, no reward is granted. This environment is designed to test the ability of agents to
coordinate under spatial and dynamic constraints.

E.2.2 THE STARCRAFT MULTI-AGENT CHALLENGE (SMAC)

The StarCraft Multi-Agent Challenge (SMAC) serves as a benchmark suite for evaluating MARL
algorithms in partially observable, cooperative settings. Built atop the StarCraft II game engine,
SMAC presents a variety of micromanagement tasks where each agent (e.g., a Marine or Stalker)
operates based on limited local observations and must coordinate actions with teammates to overcome
enemy units. In this work, we focus on four specific SMAC scenarios: 5v6: Five allied Marines
versus six enemy Marines, 8v9: Eight allied Marines versus nine enemy Marines, 10v11: Ten allied
Marines versus eleven enemy Marines, 3s5z: Three allied Stalkers versus five enemy Zealots. At each
timestep, agents receive a shaped reward proportional to the damage they inflict on opponents, along
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with bonus rewards of 10 points for each enemy defeated and 200 points for achieving overall victory
by eliminating all adversaries. The total return is normalized so that the maximum achievable return
in each scenario is 20. The action space in SMAC is discrete, enabling each agent to choose actions
such as attacking a particular enemy, moving in a specific direction, or remaining idle. Notably, the
variation in the number and type of agents and opponents across tasks results in scenario-specific
observation and action space dimensionalities, thereby introducing further diversity and complexity
for algorithmic evaluation. The length of an episode varies across different scenarios: MPE-PP with
T = 100, 3sv5z with T = 250, 5v6 with T = 70, 8v9 with T = 120 and 10v11 with T = 150.

E.3 EVALUATION METRICS

For in-distribution evaluation, the mean return (or winrate) is computed over E randomly sampled
episodes. In each episode, we form a joint policy π(M) by sampling N agents uniformly from C
and the remaining M −N agents from U . For the out-of-distribution (OOD) evaluation, the M–N
score (Wang et al., 2025) is applied. Given a set of controllable agents C and uncontrolled agents U ,
the M–N score measures how well mixed teams of these agents cooperate in the NAHT setting. The
score is computed exhaustively by varying the number of controllable agents included in the team.
Specifically, for each N ∈ {1, . . . ,M − 1}, we form a joint policy π(M) by sampling N agents
uniformly from C and the remaining M −N agents from U . The mixed team is then evaluated on the
task for E episodes. This procedure yields (M − 1) ·E returns (or winrates) in total, whose average
defines the M–N score. For the OOD evaluation on unseen conventions, the M–N score is computed
by averaging the per-convention M–N scores across 4 other conventions for each agent type. For the
OOD evaluation on unseen agent types, the per-convention M–N score is computed by averaging
the per-convention M–N score across 5 conventions for each unseen agent type. Each convention of
uncontrolled agents is a random seed that pretrains them. All results are obtained by first computing
each metric with 128 episodes and then averaging these per-seed metrics across 5 random seeds, with
95% confidence intervals reported.

E.4 EXPERIMENTAL SETTINGS

The training procedure of the n-agent ad hoc teamwork (NAHT) process is briefly introduced here.
For more details, please refer to Wang et al. (2025). For each scenario (e.g. MPE, 3sv5z, 5v6,
8v9 and 10v11), there are five groups of pretrained agents (e.g. IQL, MAPPO, VDN, QMIX and
IPPO) acting as the uncontrolled agents. For each episode evaluation, the number of uncontrolled
agents M −N is sampled, and then a group of pretrained agents is sampled. Given that each task
specifies a fixed total number of agents M , the number of controlled agents is N . Note that this
is still a special case of openness. For a varying number of controlled agents, the number of
uncontrolled agents is also varied in correspondence, constrained by the total number of agents
related to the task specifications. The distribution for all sampling procedures are modelled as the
multinational distribution with no replacement. Each uncontrolled agent executes the greedy policy
in both training and testing procedures. In contrast, each controlled agent executes the on-policy
sampling via the parameterized policy during the training procedure, while the greedy policy during
the testing procedure.

E.5 HYPERPARAMETER SETTINGS

Since our algorithm is established based on POAM and IPPO, most hyperparameter settings follow
that in Wang et al. (2025). First, the actors and critics are implemented in recurrent neural networks,
with full parameter sharing. Specifically, they are implemented by two fully connected layers followed
by a GRU layer and an output layer. Each layer has 64 dimensions with a ReLU activation function,
and layer normalization is applied. The encoder-decoder networks for inferring agent characteristics
are also implemented in parameter sharing. The encoder is implemented by a GRU layer, followed
by a fully connected layer with a ReLU activation function and an output layer. The decoder is
implemented by two fully connected layers with ReLU activation functions, followed by an output
layer. Adam Optimizer is used to train all models. The detailed hyperparameter for experiments is
shown in Tables 1 and 2. For the scenarios such as MPE, 3sv5z and 5v6, the values of m are set
as the number of non-empty coalitions. For the scenarios such as 8v9 and 10v11, the values of m
is simply set as the length of an episode (see Appendix E.1 for more details). Note that the term
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∑
j ̸=i (Vj(st)− γVj(st+1)) in shaped rewards is standardised to match the scales of standardised

rewards. To stabilize learning in large-scale scenarios, we add a value loss clip to Shapley Machine
and Banzhaf Machine for POAM on both 8v9 and 10v11, and for IPPO on 10v11 only.

Table 1: Key hyperparameters of Shapley and Banzhaf Machine: λ indicates the parameter for the
weighting functions of TTD(λ), m indicates the number of basis games, α controls the importance
of the term

∑
j ̸=i (Vj(st)− γVj(st+1)) in Eq. 22, β1 controls the importance of the critic loss∑

i∈M L̂θc(ht,i), and β2 controls the importance of the efficiency loss Le
θc(ht,i).

Algorithm Task λ m α β1 β2

Shapley Machine MPE-PP 0.85 7 0.01 0.5 0.01
3sv5z 0.85 7 0.01 0.5 0.01
5v6 0.85 31 0.01 0.5 0.001
8v9 0.95 120 0.01 0.5 0.001

10v11 0.95 150 0.01 0.5 0.001
Banzhaf Machine MPE-PP 0.85 7 N/A 0.5 N/A

3sv5z 0.85 7 N/A 0.5 N/A
5v6 0.85 31 N/A 0.5 N/A
8v9 0.95 120 N/A 0.5 N/A

10v11 0.95 150 N/A 0.5 N/A

Table 2: Common hyperparameters of RL settings for both IPPO and POAM.

Hyperparameter Value
LR 0.0005

Epochs 5
Minibatches 1
Buffer size 256

Entropy coefficient 0.05
Clip 0.2

ED LR 0.0005
ED epochs 1

ED Minibatches 1
Optim_alpha (Adam) 0.99
Optim_eps (Adam) 0.00001

Use_obs_norm True
Use_orthogonal_init True

Use_adv_std True
Standardise_rewards True
num_parallel_envs 8

E.6 COMPUTATIONAL RESOURCES

All experiments are conducted on Intel Xeon Gold 6230 CPUs and Nvidia V100-SXM2 GPUs. Each
experiment run on MPE takes approximately 7 hours, utilizing 20 CPU cores and 1 GPU. Each
experiment run on SMAC takes between 8 and 19 hours, utilizing 30 CPU cores and 1 GPU. All
experiments are trained with 20M timesteps. The post-training evaluation for each scenario takes
between 6 and 16 hours, utilizing 8 CPU cores and 1 GPU.

F ADDITIONAL EXPERIMENTS

F.1 EMPIRICAL EVIDENCE FOR THE STRENGTH OF THE AXIOMATIC FRAMEWORK

We now discuss the phenomenon observed from the performance under stochastic policy
exploration during training. Discussing this phenomenon is meaningful. When a machine learning
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algorithm is deployed and has to adapt to real-world environments through online learning due to the
mismatch between simulators and real-world environments, it is expected that random exploration
diminishes rapidly over time to avoid the damage on real-world environments (e.g. physical systems).

Recall that the PPO family algorithms implement exploration by the natural stochastic policy sampling
from the learned policy distribution and maximizing policy entropy. As seen from Figure 7, either
Shapley- or Banzhaf-based algorithms can outperform their base algorithm counterparts with a large
margin. The reasons are as follows. As shown in Figure 8, policy entropy decreases rapidly over
the course of training (except for the IPPO implementation on 3sv5z, which underperforms due
to incompatibility between IPPO and the task). This indicates that the learned policies become
more deterministic than those of the base algorithms, despite all methods being optimized with
an entropy-maximization objective. A possible explanation for this phenomenon is illustrated in
Figure 9: the critic loss of Shapley and Banzhaf Machine decreases faster than that of their base
algorithm counterparts. This provides evidence for the advantage of structured individual value
functions under our proposed axiomatic framework.
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Figure 7: Performance under the stochastic exploration policy during training in NAHT.
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Figure 8: Policy entropy across scenarios during training in NAHT.
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Figure 9: Critic loss across scenarios during training in NAHT.

F.2 ANALYZING EFFECTS OF EFFICIENCY AXIOMS

We now demonstrate the association between the changing of the mean shaping rewards and the
response of corresponding testing returns. As shown in Figure 12, the shaped rewards increases
in the beginning and then gradually reaches a plateau. The efficiency loss also exhibits the similar
phenomenon. As shown in Figure 13, it can be observed that when instability happens during training
as evidenced by the sudden changes of test returns, the shaped rewards can consistently manifest
this situation (as highlighted in red vertical dashed lines). This feature is crucial in the NAHT, since
it could be a frequent and typical case when an unseen agent appears in the environment, which
may perturb the training stability. This justifies the effectiveness of the shaping rewards Rt,i we
propose to fulfil the Efficiency axiom. More importantly, this highlights the importance and
necessity of the Efficiency axiom to perceive and measure the changing of environments.
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(a) Evaluation on unseen conventions (identical algorithms with different random seeds). The star denotes the
in-convention baseline, and the histograms show performance on unseen conventions with error bars.
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(b) Evaluation on unseen agent types. Train set: MAPPO, QMIX, IQL; test set: IPPO, VDN.

Figure 10: Out-of-distribution (OOD) evaluation after training, assessing unseen conventions and
unseen agent types during training, between learned agents (IPPO-NAHT, SM-IPPO and BM-IPPO)
and uncontrolled agent types (IPPO, VDN, IQL, QMIX and MAPPO). The performance is evaluated
by averaging all pairings of N controlled and M −N uncontrolled agents and their corresponding
random seeds, called M–N score (Wang et al., 2025).

F.3 EXTRA RESULTS OF OOD EVALUATION
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Figure 14: Average evaluation per-
formance on unseen conventions
across 4 SMAC tasks. The star
denotes the in-convention baseline,
and the histograms denotes the un-
seen conventions.

We also conducted experiments on evaluating the OOD per-
formance of Shapley Machine and Banzhaf Machine on the
base algorithm IPPO (IPPO-NAHT). As seen from Figure 10a,
Banzhaf Machine is competitive to Shapley Machine on dealing
with unseen conventions. Although it seems the result is oppo-
site to the conclusion drawn from the POAM related results, the
underlying reason could be the general weaker performance of
IPPO than POAM due to the lack of agent modelling, as shown
in Figure 14. This could inhibit the full capability of Shapley
Machine. As seen from Figure 10b, the general performance
of Banzhaf Machine is better than Shapley Machine. This is
consistent with the conclusion drawn from the POAM related
results. In Figure 11, we show additional comparisons between
algorithms: POAM vs. IPPO, SM-POAM vs. SM-IPPO and
BM-POAM vs. BM-IPPO. We find no strong evidence that
the axioms are sensitive to the choice of base algorithm.

F.4 POTENTIAL INSTABILITY OF SHAPLEY MACHINE FOR LARGE-SCALE SCENARIOS

During our repeated trials, we observe that the performance of Shapley Machine is not stable in large-
scale scenarios (e.g. 8v9 and 10v11), compared with in small-scale scenarios (e.g. MPE-PP, 3sv5z
and 5v6). We now analyze the potential reason behind this phenomenon. As observed from Figures 15
and 16, it can be confirmed that the instability of shaped rewards is the key reason to cause
the instability of learning procedure for large-scale scenarios. According to the functionality of
shaping rewards discussed in Appendix F.2, we hypothesize that the instability could be caused by
the unstable changing of value difference in the shaping reward:

∑∑∑
j ̸=i (Vj(st)− γVj(st+1)).

Specifically, when the number of agents increases, the accumulating prediction error of individual
value functions will be amplified.
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(a) Evaluation on unseen agent types between POAM and IPPO (IPPO-NAHT).
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(b) Evaluation on unseen agent types between SM-POAM and SM-IPPO.
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(c) Evaluation on unseen agent types between BM-POAM and BM-IPPO. Since the implementation of Banzhaf
Machine is equivalent to its counterpart baseline algorithms for 8v9 and 10v11 due to approximating the number
of non-empty basis games as the episode length, we ignore their evaluation here.

Figure 11: Out-of-distribution (OOD) evaluation after training, assessing unseen conventions during
training, between learned agents (IPPO-NAHT, SM-IPPO, and BM-IPPO) and uncontrolled agent
types (IPPO, VDN, IQL, QMIX and MAPPO). The performance is evaluated by averaging all pairings
of N controlled and M −N uncontrolled agents and their corresponding random seeds, called M–N
score (Wang et al., 2025).
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Figure 12: One run of MPE to show the variation of test return, shaped reward and efficiency loss.

To mitigate the above issue, we have added the value loss clip to stabilize the learning procedure
of individual value functions for the large-scale scenarios such as 8v9 and 10v11. As seen from
Figure 3, even with the value loss clip the instability of SM-IPPO is still out of control. This could be
the cascading effect caused by the lack of agent modelling in contrast to SM-POAM, the instability
of which is far beyond the capability of value loss clip. On the other hand, this reflects the value of
agent modelling in POAM for tackling the large-scale multi-agent scenarios.

As seen from Figure 17, the learning procedures with the value loss clip for the SM-POAM apparently
perform more stably than those without. This verifies our initial hypothesis. Due to this strategy will
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Figure 13: One run of 5v6 to show the variation of test return, shaped reward and efficiency loss.
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Figure 15: A case of 8v9 with SM-POAM to show the instability of learning progress via the mean
shaped rewards. The range bounded by two red dashed lines shows the fluctuation of the learning
process.
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Figure 16: A case of 10v11 with SM-POAM to show the instability of learning progress via the mean
shaped rewards. The range bounded by two red dashed lines shows the fluctuation of the learning
procedure.

slow down and even hinder the performance for the other three scenarios, we have not posted this as
a common strategy. We believe this deserves further investigation in the future before any claims
can be made about its general performance.
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Figure 17: Comparison between the learning procedure of SM-POAM with and without the value
loss clip in the 8v9 and 10v11 scenarios.
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F.5 OOD EVALUATION ACROSS DIFFERENT NUMBERS OF CONTROLLED AGENTS

We report the results on unseen conventions and agent types across each specific number of controlled
agents N in Figures 18–21, by fixing the N value in the M–N score.
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Figure 18: Out-of-distribution (OOD) evaluation after training, assessing unseen conventions during
training, between learned agents (IPPO-NAHT, SM-IPPO and BM-IPPO) and uncontrolled agent
types (IPPO, VDN, IQL, QMIX and MAPPO).
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Figure 19: Out-of-distribution (OOD) evaluation after training, assessing unseen agent types during
training, between learned agents (IPPO-NAHT, SM-IPPO and BM-IPPO) and unseen uncontrolled
agent types (IPPO and VDN).
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Figure 20: Out-of-distribution (OOD) evaluation after training, assessing unseen conventions during
training, between learned agents (POAM, SM-POAM, and BM-POAM) and uncontrolled agent types
(IPPO, VDN, IQL, QMIX and MAPPO).
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Figure 21: Out-of-distribution (OOD) evaluation after training, assessing unseen agent types during
training, between learned agents (POAM, SM-POAM and BM-POAM) and unseen uncontrolled
agent types (IPPO and VDN).
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