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Since its use in the Lottery Ticket Hypothesis, iterative magnitude pruning (IMP)
has become a popularmethod for extracting sparse subnetworks that can be trained
to high performance. Despite its success, the mechanism that drives the success of
IMP remains unclear. One possibility is that IMP is capable of extracting subnet-
works with good inductive biases that facilitate performance. Supporting this idea,
recent work showed that applying IMP to fully connected neural networks (FCNs)
leads to the emergence of local receptive fields (RFs), a feature of mammalian vi-
sual cortex and convolutional neural networks that facilitates image processing.
However, it remains unclear why IMP would uncover localised features in the first
place. Inspired by results showing that training on synthetic images with highly
non-Gaussian statistics (e.g., sharp edges) is sufficient to drive the emergence of
local RFs in FCNs, we hypothesize that IMP iteratively increases the non-Gaussian
statistics of FCN representations, creating a feedback loop that enhances localiza-
tion. Here, we demonstrate first that non-Gaussian input statistics are indeed nec-
essary for IMP to discover localized RFs. We then develop a new method for mea-
suring the effect of individual weights on the statistics of the FCN representations
(“cavity method”), which allows us to show that IMP systematically increases the
non-Gaussianity of pre-activations, leading to the formation of localised RFs. Our
work, which is the first to study the effect of IMP on the statistics of the represen-
tations of neural networks, sheds parsimonious light on one way in which IMP can
drive the formation of strong inductive biases.

1. Introduction
Iterative magnitude pruning (IMP) [1] has emerged as a powerful tool for identifying sparse sub-
networks (“winning tickets”) that can be trained to perform as well as the dense neural network
model from which they are extracted [2, 3]. That IMP, despite its simplicity, is more robust in dis-
covering such winning tickets than more complex pruning schemes [4] suggests that its iterative
coarse-graining [5] is especially capable of extracting andmaintaining strong inductive biases. This
perspective is strengthened by observations that winning tickets discovered by IMP are transferable
across related tasks [6–13] and architectures [14]; that they can outperform densemodels on classes
with limited data [15]; and that they are less prone to overconfident predictions [16].
The first direct evidence for IMP discovering good inductive biases came from Pellegrini and Biroli
[17], who found that the sparse subnetworks extracted by IMP from fully-connected neural net-
works (FCNs) had local receptive fields (RF) (Fig. 1A). Localised RFs are well-suited for image
processing, and are also found in the visual cortex [18, 19] and in convolutional neural networks
(CNNs) [20, 21]. Comparing the sparse subnetworks found by IMP and oneshot pruning (Fig. 1B),
Pellegrini and Biroli [17] argued that the iterative nature of IMP was essential for refining the lo-
cal RF structure. However, an understanding of how IMP, a pruning method based purely on the
magnitude of the network parameters, is able to yield localised receptive fields remains unknown.
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Figure 1: IMP discovers more localized RFs than oneshot magnitude pruning in FCNs. (A) Localized
RFs are present after applying IMP for 10 rounds of pruning (each round pruning s = 30% of the remaining
weights), leading to a subnetwork with s = 97.2%. (B) Noisier, less localized RFs are present in the masks
found after oneshot pruning FCNs trained on ImageNet32 to s = 97.2% sparsity. Pruned weights are shown
in black and remaining weights are colored by which input channel (red, green, blue) they are connected to.
The masks shown correspond to the 120 hidden units with the greatest number of weights remaining [17].

Historically, the study of local RFs has focused on specific features of natural images (e.g., sharp
edges), and it has been shown that, with regularization, it is possible for local RFs to emerge in
FCNs [22–25]. Recent work has built upon this, showing that synthetic images with sufficiently
strong non-Gaussian statistics can, without any regularization, drive the formation of local RFs in
FCNs [26, 27]. Inspired by this, we hypothesize that IMP (Sec. 2.1) is able to discover local RFs
(Sec. 2.2) in FCNs by iteratively increasing the non-Gaussian statistics present in its internal rep-
resentation. This could create a feedback loop, where the amplification of non-Gaussian statistics
leads to greater localization, which leads to further increases in non-Gaussian statistics. Because
of IMP’s broad success in computer vision, we hypothesize that IMP maximally increases the non-
Gaussian statistics, by removing exactly the weights that maximize the “non-Gaussanity” of the
internal representations. We formalize our hypothesis below (with kurtosis and pre-activations
defined precisely in Sec. 3).
Hypothesis (H∗): IMP discovers local RFs in FCNs by maximally increasing the kurtosis of the network’s
preactivations.

While this is a challenging hypothesis to prove, we provide the following evidence in support of it:

• Training FCNs on a “Gaussian clone” [28] that matches the original dataset’s first two cu-
mulants (mean and covariance), while containing no higher-order cumulants, we find that
IMP does not discover localized RFs. This demonstrates that non-Gaussian statistics are
necessary for IMP to discover local RFs in FCNs (Sec. 3.1).

• Measuring the non-Gaussian statistics present in the preactivations of the FCN, we find
that IMP leads to representations withmore strongly non-Gaussian statistics, as compared to
oneshot pruning (Sec. 3.2). This difference increases with each round of pruning, demon-
strating the importance of the iterative nature of IMP.

• Developing a method that measures the effect individual weights have on the statistics of
the FCN representations, we find that IMP removes weights precisely when their pruning
would increase the non-Gaussanity of the FCN representations (Sec. 3.3). This suggests
that IMP not just increases, but maximizes, the non-Gaussian statistics at each round of
pruning.

Collectively, our work provides the first in-depth analysis of how IMP affects the statistics of the
internal representations of DNNs, as well as provides insight on how these statistics interact with
the iteratively evolving architecture achieved by IMP. Additionally, it highlights the importance of
going beyond the assumption of Gaussian features that dominates the current theory of machine
learning [29–35]. Our work motivates further study of how IMP learns parsimonious structure in
DNNs, and provides tools (Gaussian data clones and the cavity method) to achieve this goal.
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2. Background

2.1. Iterative magnitude pruning

Given a neural network f(θ;X ), where θ are its N parameters (e.g. its weights, biases) and X is a
set of data samples used for training, IMP [1, 2] performs the following iterative pruning proce-
dure. First, f(θ,X ) is trained for T iterations, resulting in f [θ(T );X ]. Then, a mask m ∈ {0, 1}N is
computed by assigning mi = 0 if the magnitude of the ith weight θi(T ) is smaller than some fixed
threshold τ > 0. For network parameters with magnitude greater than τ , mi = 1. Typically, τ is
set such that s = 1 − 1

N

∑N
i=1 mi, for a desired sparsity s ∈ (0, 1]. Having computed the mask, the

network parameter values are “rewound” [36, 37] to a previous value, θ(trewind), where trewind ≪ T .
The original work leveraging IMP to discover winning tickets demonstrated that winning tickets
could be found at initialization (i.e. trewind = 0). Subsequent work on has found it necessary to set
trewind > 0 [3], particularlywhen considering architectures larger thanLeNet [21] anddatasetsmore
complex thanMNIST. A common approach is to set trewind ≈ 0.01T . The network f [θ(trewind)⊙m;X ]
is then trained for T − trewind training iterations, where ⊙ denotes element-wise multiplication.
This train, prune, and rewind procedure is then repeated, with round n of IMP involving train-
ing f [θ(trewind) ⊙ m(n − 1);X ] and computing the mask m(n) ∈ {0, 1}N from the remaining
(non-pruned) parameters θ(T ) ⊙ m(n − 1). The masks m(n) are non-trainable parameters, and∑N

i=1 mi(n) <
∑N

i=1 mi(n− 1). This is repeated for NIMP rounds.
IMP has been used to discover sparse subnetworks that can be trained to good performance across
a wide range of architectures and tasks [3, 6, 7, 11, 12, 14, 38–42], demonstrating its robustness.
Work studying the effectiveness of IMP has focused on the associated loss landscapes[3, 43–45],
which has provided evidence supporting the hypothesis that IMP derived subnetworks converge
to similar solutions as the full, dense model. Connections between IMP and the renormalization
group, a tool used in statistical physics to extract the “relevant” degrees of freedom [46], have been
made, allowing for interpretation of “universality” of winning tickets across tasks [5]. The interplay
between IMP and the amount of data used to train DNNs has been explored [45, 47, 48], with IMP
being more successful when the intrinsic dimensionality of the data is lower.
To the best of our knowledge, our work is the first to analyze the effect of IMP on the statistics of the
internal representations in neural networks.

2.2. Local receptive fields

Early work on local receptive fields Local RFs were first discovered in mammalian primary visual
cortex (V1) [18, 19, 49], where individual V1 neurons were found to respond to specific visual
features (e.g. the presence of lines) in a local range of visual space. The computational paradigm of
breaking input space into local patches, over which a hierarchical representation could be learned,
inspired the development of CNNs [21, 50]. Early work studying how local RFs might emerge in
artificial neural networks showed that L1 regularization of hidden unit activations was capable of
driving localization in FCNs [22–25]. Thus, while sparsity in activations was known to lead to local
RFs, it was not until subsequent effort using a variant of LASSO regression (β-LASSO) on network
parameters that it was appreciated that sparsity in the weights could also lead to localized RFs
[51]. Unlike this prior literature, our work focuses on the emergence of local RFs without explicit
regularization [17, 26, 27].

Quantifying the locality of receptive fields To quantify the locality of the IMPmasks,m(n), we use
the following metric. Let X ∈ X , be a square image with N2

p ∈ N pixels (Np in the x−dimension
and Np in the y−dimension). Let the locations of two pixels of X be denoted as z = (x, y) and
z′ = (x′, y′), where z, z′ ∈ [1, ..., Np] × [1, ..., Np]. Let the relative position of z and z′ be denoted as
dzz′ = z − z′. We define the number of pixels in X , with relative position d, that are connected to
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Figure 2: Non-Gaussian statistics contain local information in ImageNet32. (A) By maximizing the non-
Gaussanity of a lower dimensional representation of the 50,000 validation images from ImageNet32, ICA ex-
tracts features, some of which are localized. (B) In contrast, considering only the covariance of the validation
images from ImageNet32 leads PCA to extract features that are periodic and thus, non-local.

unit i in the first hidden layer of an FCN, at IMP round n, by

Si(d, n) =
∑
z

∑
z′

δ(dzz′ − d) ·miz(n) ·miz′(n), (1)

where δ(dzz′ − d) is a delta function that is equal to 1 when dzz′ = d, and 0 otherwise. Si(d, n) acts
as a correlation function on the mask associated with unit i,mi(n). Pelligrini and Biroli (2022) [17]
previously used S(d, n) to visualize the locality of the IMP masks. We further use it to quantify the
localization by computing the standard deviations, σx and σy , of a two-dimensional Gaussian fit
to Si(d, n) (Fig. S1A). These standard deviations act as a measure of correlation length, with the
smaller σx and σy are, the more localized the RFs of the IMP masks are. We report σx as the RF
width (similar results are found with σy). Note that, because the Gaussian fits are applied to this
correlation function, Si(d, n), it can be appropriate and capture aspects of local RF width, even in
cases where IMP masks do not appear to be Gaussian (Fig. S1). For more details, see Appendix A.

3. Results

3.1. Non-Gaussian statistics are necessary for IMP to discover local RFs in FCNs
Key statistical properties of images are encoded in their non-Gaussian statistics. A key prop-
erty of natural images is the presence of sharp changes in luminosity, for example at the edges of
objects. Edges have long been recognized as a hallmark of natural images [22–25]. Statistically
speaking, these edges manifest themselves at the level of higher-order cumulants (HOCs), which
capture the correlations between groups of three or more pixels that cannot be decomposed into
products of correlations between smaller groups of pixels. For example, the fourth-order cumulant
captures four-pixel correlations that cannot be decomposed into products of pair-wise correlations.
HOCs are intrinsically non-Gaussian: in a Gaussian distribution, all HOCs are equal to zero. Hence
some of the key features of images, such as the presence of sharp edges, cannot be reproduced
using a Gaussian model for images here all cumulants after the second are zero. Seminal work on
learning local RFs has emphasized the importance of these non-Gaussian statistics for unsupervised
learning [22–25], while more recent work demonstrated that synthetic images with strongly non-
Gaussian statistics can be sufficient to drive local RF formation in FCNs trained on a supervised
classification task [26, 27].
Themost non-Gaussian projections of images are localised To illustratewhy non-Gaussian statis-
tics play a crucial role in the learning of local RFs, we perform independent component analysis
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Figure 3: IMP does not discover local RFs when applied to FCNs trained on a Gaussian clone of Ima-
geNet32. (A) Example images from ImageNet32 and ImageNet32-GP. Note the lack of sharp edges in the case
of ImageNet32-GP. (B) Pruning mask found after 10 rounds of IMP. Compare these diffuse masks with the lo-
calized masks found on ImageNet32 (Fig. 1A). (C) Median RF width for masks found by IMP on ImageNet32
and ImageNet32-GP. The smaller the width, the more localized the mask. Error bars are minimum and maxi-
mum of three independently trained and pruned FCNs.

(ICA) [52] and principal component analysis (PCA) on images from the ImageNet32 dataset [53],
a downsampled version of the original ImageNet dataset (see Appendix B for more details). ICA
looks for linear projections, λ = W · X , which maximize the “non-Gaussianity” of the features λ.
Running this algorithm on ImageNet32 leads to componentsW that have largely localized features
(Fig. 2A). In contrast, running PCA, which only acts on the covariance of the inputs (and thus, only
has access to the Gaussian features of the data), yields W with oscillating components (Fig. 2B).
Similar results are found when applying ICA and PCA to the full ImageNet dataset. These oscilla-
tions provide a spatially distributed and thus, non-local, representation of the images. Therefore,
local information is carried primarily by the non-Gaussian statistics of natural images. While both
the IMP masks and the ICA components are localized, the exact features they discover differ (Fig.
S2). This suggests that IMP is not providing an approximation to ICA. This could be due to the fact
that IMP is applied to FCNs trained on an image classification task, as opposed to ICA, which is
applied as an image reconstruction task.
IMPdoes not discover local RFswhen applied to FCNs trained on datawith onlyGaussian statis-
tics. Given the results from Fig. 2, we hypothesize that non-Gaussian statistics are necessary for IMP
to find local RFs in FCNs. To test this, we generate a Gaussian clone of ImageNet32 (ImageNet32
sampled from aGaussian process – “ImageNet32-GP”) [28]. This dataset matches themean and co-
variance of ImageNet32, but is explicitly constructed to not contain any higher-order cumulants (Fig.
3A – see Appendix C.1, for details). Unlike when IMP is applied to FCNs trained on ImageNet32,
IMP fails to find local RFs in the ImageNet32-GP setting. The masks contain no obvious structure
(Fig. 3B) and our metric for localization (Sec. 2.2) shows that the masks found on ImageNet32-GP
have a significantly larger correlation length than the masks found on ImageNet32. These results
demonstrate that non-Gaussian statistics, in the form of higher-order cumulants, are necessary for
local RFs to emerge via IMP.

3.2. IMP increases non-Gaussian statistics of FCN representations

Because the non-Gaussian statistics present in natural images contain information that is localized,
a neural network that develops local RFs should increasingly represent these non-Gaussian statis-
tics [26]. To quantitatively probe this, we can measure the “non-Gaussanity” of a given neural
network’s representations. One such way of doing this is by computing the excess kurtosis of the
pre-activations, as we describe below.
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The pre-activations of fully-connected neural networks The activation of units in the first hidden
layer of the neural network, f(θ;X ), for an image X ∈ X , are given by

ai(X) = σ

N2
p∑

j=1

WijXj + bi

 , (2)

where σ(·) is a nonlinear function (e.g., ReLU), Wij is the weight of pixel j to hidden unit i (in the
first layer), and bi is the bias of unit i. The “preactivation” of the ith unit (i.e., the value of the hidden
unit before the application of the activation function), for a given input X , is thus defined as

λi(X) =

N2
p∑

j=1

WijXj + bi. (3)

In caseswhere batch normalization [54] is used, the input is transformed, becoming X̃j = γjXj+βj ,
where γj and βj are parameters that are learned during the course of training. In this case, Eq. 3 is
modified such that λi(X̃) =

∑N2
p

j=1 WijX̃j + bi.
Measuring non-Gaussian statistics in neural networks representations. At initialization, the
weights of the network are drawn i.i.d. from a uniform distribution. The preactivations, λ, there-
fore follow a normal distribution, by the Central Limit Theorem. To quantify how the statistics of λ
evolve during training, the kurtosis can be measured, which is defined as

kurt(λi) =
EX [λi(X)− EXλi(X)]

4(
[λi(X)− EXλi(X)]

2
)2 , (4)

where EX is the expectation computed over all the inputs X ∈ X . The kurtosis allows us to quan-
tify how non-Gaussian the distribution of preactivations is. If λi is distributed according to a Gaus-
sian, then kurt(λi) = 3. If kurt(λi) > 3, then the distribution is more peaked than a Gaussian. If
kurt[λi] < 3, the distribution is more broad than a Gaussian. The extent to which a distribution of
preactivations is non-Gaussian can measured by its excess kurtosis, defined as |3− kurt(λi)|. We
chose to use the kurtosis (as opposed to another metric), as it was previously shown by Ingrosso
and Goldt (2022) [26] that the kurtosis significantly increased with training as FCNs developed
localized RFs.
IMP increases FCN preactivation kurtosis, relative to oneshot pruning. Given that IMP leads to
more localized RFs than oneshot pruning (Fig. 1) [17], we hypothesize that IMP increases the non-
Gaussian statistics being represented by the FCN more strongly than oneshot pruning. In particu-
lar, because IMP is applied iteratively, we hypothesize that each round of pruning leads its starting
point, f [θ(trewind) ⊙ m(n − 1);X ], to have a greater representation of non-Gaussian statistics, pro-
viding a kind of feedback loop that drives the emergence of more localized RFs.
To test this, we compute the kurtosis of the preactivations of f [θ(trewind) ⊙ m(n − 1);X ], for the
masks found by both IMP and oneshot pruning. We also compare with a random pruning base-
line, to identify how much the observed change in kurtosis is due sparsity alone. As expected, we
find that both IMP and oneshot pruning discover masks with significantly more localized structure
than random pruning (Fig. 4A). In-line with non-Gaussian statistics driving localization, we find
significant increases in the kurtosis of the preactivations only for IMP and oneshot pruning (Fig.
4B). This demonstrates that the increase in local non-Gaussian statistics is not merely a product of
sparsification, as random pruning does not see this effect.
When comparing IMP and oneshot pruning, we find that IMP leads to greater preactivation kurtosis
(Fig. 4B), at a sparsity that precedes IMP’s greater localization (Fig. 4A). In addition, we find that
the preactivation kurtosis increases almostmonotonically for IMP. This supports our hypothesis that
IMP increases the non-Gaussanity of its representations with each round of pruning, to a greater
extent than would be achieved by oneshot pruning. Thus, the iterative nature of IMP is playing an
important role in amplifying the non-Gaussian statistics.
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Figure 4: IMP increases localization of RFs and preactivation kurtosis in FCNs trained on ImageNet32, to
a greater extent than oneshot pruning. (A) Mean RF width, as a function of sparsity induced by IMP (black
line), oneshot pruning (blue line), or random pruning (red line). (B) Mean kurtosis of preactivations, per
class, as a function of sparsity induced by IMP, oneshot pruning, and random pruning. Note that a kurtosis
> 3 implies more non-Gaussian statistics. In (A)-(B), solid line is mean and shaded area is minimum and
maximum of three independently trained and pruned FCNs.

Pellegrini and Biroli [17] also found localization of the masks in the later layers of their FCN. The
interpretation of this localization is more nuanced, as the hidden units in the later layers are not
directly connected to the inputs. However, if non-Gaussianity is a key to localization, thenwe expect
the preactivations in all layers that exhibit localization to becomemore non-Gaussian across rounds
of IMP. Indeed, we find that the preactivation kurtosis in the second layer of our FCN also increases
with IMP round (Fig. S3), demonstrating that IMP is also able to increase the non-Gaussianity in
later FCN layers.

3.3. IMP maximally increases non-Gaussian statistics of FCN representations
Probing the role of individual weights on the statistics of FCN representations. While the results
presented in Fig. 4 demonstrate that the sparse subnetworks IMP finds after each round of pruning,
f [θ(trewind) ⊙ m(n − 1);X ], start with increasingly non-Gaussian representations, as compared to
oneshot pruning, they do not provide insight onwhether the parameters IMP removes are “optimal”
in driving the largest increase in non-Gaussanity. Evidence for this would directly support our
central hypothesis (H∗).
Because IMP removes multiple parameters at once, identifying the choice that maximizes the non-
Gaussian representation is intractable due to its combinatorial complexity. We can nonetheless ap-
proach testing this hypothesis by considering a simplified setting. In particular, we take inspiration
from the “cavity method” of statistical physics [55], and evaluate the impact a given weight in the
first hidden layer,Wij , has on the statistics of the preactivations λi by computing the kurtosis of the
preactivations, with and without the weight1. To quantify weight Wij ’s impact on the statistics, we
develop a metric we call the “cavity score”, computed as

cavity(Wij) =


(
kurt[λ(−j)

i ]− kurt[λi]
)
/ kurt(λi) if kurt(λi) > 3

(
kurt[λi]− kurt[λ(−j)

i ]
)
/ kurt(λi) if kurt(λi) < 3,

(5)

where the preactivation with Wij removed, λ(−j)
i (x), is defined as,

λ
(−j)
i (X) =

N2
p∑

k=1

WikXk −WijXj . (6)

1We consider only weights here, as removing the biases does not change the kurtosis of the preactivations,
as it is just corresponds to a translation of the distribution.
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Figure 5: IMP selectively prunes weights when their removal would most increase the non-Gaussianity of
the preactivations. (A) A schematic overview of how the cavity score (Eq. 5) is computed. For a given unit
in the first hidden layer, the kurtosis of its preactivation is computed (top). Then, the preactivation kurtosis is
recomputed, with a given weight Wij removed (bottom). If the distribution of preactivations becomes more
Gaussian once Wij is removed, cavity(Wij) < 0. If the distribution of preactivations instead becomes less
Gaussian, cavity(Wij) > 0. (B) Mean cavity score, computed at IMP round 0, for weights grouped according
to the round of IMP they ultimately get removed during. Note that the weights that get removed later during
IMP have negative cavity score, while weights that get removed early during IMP have positive cavity score.
(C) Same as (B), but when computing the cavity score of the remaining weights, θ(trewind) ⊙ m(n − 1), after
each round of IMP. Gray dashed line is used to highlight the fact that the mean cavity score of the weights
that get removed at IMP round 8 is negative for all rounds of IMP, until after the 7th round of pruning. In
(B)-(C), solid line denote mean, and shaded area is minimum and maximum of three independently trained
and pruned FCNs.

A negative cavity score signifies that removing Wij decreases the excess kurtosis of the preactiva-
tions (making them more Gaussian), and a positive cavity score signifies that removing Wij in-
creases the excess kurtosis of the preactivations (making them less Gaussian). A schematic of the
approach is shown in Fig. 5A.
To get the most accurate estimate of the cavity score, we compute Eq. 5 using the entire ImageNet32
test set. However, this is computationally expensive. To reduce this cost, we could compute the
cavity score over a subset of the test set. In particular, we could reduce the number of classes used
to compute the cavity score (i.e. consider the average kurtosis across 10 classes of images, instead
of 1000). This would accelerate the computation, as currently our method has to recompute the
cavity score for each class separately. Future work could explore the trade-off between accuracy of
computed cavity score and the number of test data points or classes used. We imagine that a large
reduction can be achieved, while still maintaining accurate cavity score computations.
The order in which IMP prunes maximizes the representation of non-Gaussian statistics in
FCNs. We use the cavity score to probe whether the ordering with which IMP removes weights
selectively shapes the preactivation excess kurtosis to be less Gaussian. Re-analyzing the IMP ex-
periments used in Fig. 4, we compute the cavity score for all weights, based on their value at the
rewind point, θ(trewind) (before any pruning has been performed, i.e. IMP round 0). We then group
the weights by which round of IMP they ultimately get pruned during2. Plotting the average cavity
score, for each grouping, we see that the weights that get removed in the first and second round
of IMP have positive cavity score, while the weights that get removed during IMP round 4 or later
have negative cavity score (with the weights that get removed at IMP round 3 having cavity score
approximately equal to zero) (Fig. 5B). Thus, for aweight that gets removed during the later rounds
of IMP (n ≥ 4), its removal at this initial stage would decrease the non-Gaussianity of the preac-
tivations. In contrast, for a weight that is removed during the earliest rounds of IMP, its removal
at this initial stage would increase the non-Gaussanity of the preactivations. We do not find that
parameter sign or magnitude is strongly connected to cavity score (Fig. S4).

2The re-analysis allows us to do this, as we have already run the experiment, and therefore we know the
“fate” of each weight.
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We then consider whether this same trend holds for the subsequent rounds of IMP. Given that
the preactviation distribution for each hidden unit changes after pruning (as some weights get re-
moved), we recompute the cavity score for all the remaining weights after the first round of IMP (at
the start of IMP round n = 2). As before, the preactivations are measured from the rewind point
(now determined by f [θ(trewind)⊙m(1);X ]). We again group the remaining weights by the round
of IMP they get removed during, and plot the mean. This process is repeated for all subsequent
rounds of IMP. Because the number of weights remaining after each round of IMP decreases, the re-
moval of any given surviving weight leads to an increasingly large impact on the preactivations. To
avoid seeing trivial differences in scaling, we reportNW (n) ·cavity(Wij), whereNW (n) = N(1−s)n

is the number of weights remaining after n rounds of IMP. This acts as a form of normalization to
enable more clear visualization, but it does not affect our primary conclusion, which rests on the
sign of the cavity score.
We find a systematic pattern, where the weights that get removed in IMP round n have a positive
mean cavity score after n−1 rounds of pruning, and all weights that get removed in later rounds of
IMP have a negative mean cavity score (Fig. 5C). A striking example is found for the weights that
get removed at IMP round 8 (Fig. 5C, vertical gray dashed line). Their mean cavity score remains
well below zero (cavity(Wij) < −0.1), when evaluated after IMP round n = 0, 1, ..., 6 (red to purple
lines that intersect the gray dashed line – Fig. 5C). However, after seven rounds of IMP (n = 7),
their cavity score suddenly becomes positive (blue line that intersects the gray dashed line – Fig.
5C). This indicates that, for the first time, their removal is expected to lead to an increase in the
non-Gaussian statistics. Remarkably, this is precisely when they are removed.
That we see this trend for all rounds of IMP strongly supports the idea that it is the order, in addi-
tion to the identity, of the weights that IMP removes, that leads to an increase in the non-Gaussian
preactivation statistics. Furthermore, the order maximizes the amount of non-Gaussanity of the
FCN representation, as IMP does not, on average, remove weights when their pruning would in-
crease the Gaussian statistics of the preactivations. This provides strong support for our central
hypothesis, H∗.

4. Discussion
Motivated by the finding that iterative magnitude pruning discovers local receptive fields in fully
connected neural networks [17], we sought to investigate the cause of this phenomenon. By con-
necting this observation of Pellegrini and Biroli [17] with recent work by Ingrosso and Goldt [26],
who demonstrated that local RFs can emerge in FCNs trained on inputs with sufficiently strong
non-Gaussian statistics, we hypothesized that IMP iteratively maximizes the the amount of non-
Gaussian statistics present in the FCN preactivation, at each round of pruning (Hypothesis H∗).
While such a greedy algorithm may not, in general, be optimal, by creating a feedback loop (where
increased non-Gaussianity leads to greater localization, which leads to greater non-Gaussianity),
such a strategy could lead to strong localization.
To support this hypothesis, we made three observations. First, we showed that non-Gaussian statis-
tics are indeed necessary for local RFs to emerge via IMP, as training FCNs on datasets that match
ImageNet32 in the first two cumulants, and have zero higher-order cumulants, leads to IMP finding
masks with no localization (Fig. 3). Second, we found that IMP amplifies the amount of non-
Gaussanity present in the FCN representation with each round of pruning, making the distribution
of preactivations significantly more non-Gaussian than oneshot pruning (Fig. 4). Third and finally,
we develop a method to measure the impact of removing individual weights, inspired by the “cav-
ity method” of statistical physics, to provide evidence that the order in which IMP removes FCN
weights is alignedwithwhen their removalwould increase the non-Gaussanity of the preactivations
(Fig. 5). Collectively, these results provide strong evidence for H∗.
Limitations. This work is focused on shallow FCNs, trained on a down-sampled version of Ima-
geNet (ImageNet32 [53]). While this setting is removed from many modern implementations of
machine learning (ML), we believe this is justified by the fact that it is the only setting in which the
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inductive bias discovered by IMP is well characterized [17]. To fully prove our central hypothesis
(H∗), it is necessary to show that the weights IMP removes are optimal in increasing the preactiva-
tion kurtosis, over all possible choices of pruning. This is infeasible. However, our cavity method
(Sec. 3.3) is able to provide evidence of a first order approximation of optimality of IMP (Fig. 5).
We believe this, along with the rest of our results, provide evidence for the validity of H∗.

Future directions. Recent work examining the training dynamics that drive local RF emergence in
a simplified batch gradient setting, with synthetic data and a single hidden layer FCN, argued that
training on inputs with kurtosis< 3 (negative excess kurtosis) is essential for localization [27]. This
is in contrast to our results on FCNs trained on ImageNet32, wherewe found localization in pruning
masks (Fig. 1), despite the preactivation kurtosis being > 3 (Fig. 4B). This difference may point
to implicit properties of stochastic gradient descent and its interaction with large-scale computer
vision datasets, which future work can explore. That the order in cavity score is well aligned to the
order of whenweights are removed via IMP, before any pruning occurs (Fig. 5C – IMP round 0 line),
suggests that it could be used to more efficiently find localized RFs. Future work can explore how
to best use this metric as a cost function to develop new pruning algorithms.

Implications for sparse ML. In addition to IMP, other approaches have been developed to identify
sparse subnetworks. These approaches include methods that oneshot prune dense models based
on gradients and Hessians of the loss [56–58], and dynamic sparsity methods that optimize over
masks [59, 60], thereby never training on the dense model. Our results suggest that the ability of
IMP to identify local RFs in FCNs comes both from its iterative nature and its leveraging of the dense
model’s training dynamics. This may explain why Pellegrini and Biroli [17] found that SNIP [57]
and SynFlow [58] were unable to find as localized RFs as IMP. Additionally, this calls into question
whether dynamic sparsity training approaches are capable of identifying local RFs. More generally,
our results have implications on the ability of these other sparsity algorithms to extract andmaintain
strong inductive biases.

Beyond FCNs. While FCNs offer a tractable framework with which to study the impact of IMP
on internal representations, the success of IMP on modern architectures, such as CNNs [3, 6, 12],
suggests that IMP may similarly be increasing the non-Gaussian statistics of the preactivations and
driving the emergence of even stronger local RFs. Future work can explore the effect of IMP on the
non-Gaussian statistics in CNNs. IMP has also been successfully applied in settings beyond com-
puter vision classification tasks, including natural language processing [11, 38] and reinforcement
learning [38, 42]. In such settings, useful inductive biases and their interaction with the statistical
properties of the inputs are less clear. An exciting avenue of future work would be to leverage the
cavity method developed in this work to explore the impact of individual weights and the order
with which IMP removes them. Work in this direction may shed additional light on why IMP can
struggle to sparsify large language models [61, 62].
Finally, our results also provide a possible explanation for the ability of IMP derived subnetworks
(“winning tickets”) to transfer across computer vision tasks [6–13] and CNN architectures [14].
In particular, if IMP increases the preactivation kurtosis in CNNs, then winning tickets will have
amplified non-Gaussian statistics, which are broadly useful in computer vision tasks.
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A. Measuring localization
A method for quantifying the localization of the RFs that emerges from IMP and oneshot prun-
ing has not been developed. As a simple approximation, we choose to fit the correlation function,
Si(d, n) (Eq. 1), with a two-dimensional Gaussian. This was motivated by the fact that Pellegrini
and Biroli [17] found that the correlation function, averaged across all the most connected IMP
masks, had Gaussian-like structure. As illustrated in Fig. S1A, the correlation function associated
with individual IMP masks can also be well approximated by two-dimensional Gaussians. This
is true even when the underlying mask does not appear to be well described by a Gaussian, thus
emphasizing the rationale for fitting using Si(d, n). In addition, the mean-squared error (MSE) as-
sociated with the Gaussian fit of the IMP masks was significantly smaller than the MSE associated
with the Gaussian fit of random pruning masks (Fig. S1B). We note that, while we believe this is
evidence for the appropriateness of our method to quantify localization (via the standard devia-
tion of the fit Gaussian), our larger point of IMP selectively increasing preactivation kurtosis is not
dependent on these results.

B. PCA and ICA Experiments
We perform principal component analysis (PCA) and independent component analysis (ICA) [52]
using sklearn.decomposition.PCA and sklearn.decomposition.FastICA, setting the number of
components to n = 64. PCA and ICA were applied to all 50, 000 test images in the ImageNet32
dataset. The results are shown in Fig. 2.
Given that the IMP masks and ICA components are localized, we investigate whether they overlap
in the features they extract. To do this, we compute the cosine similarity between every ICA com-
ponent and each IMP mask. We denote the largest cosine similarity, across all 64 ICA components,
as the “cosine similarity” between the IMPmask and the ICA components. Example matches (with
the mean cosine similarity scores) are shown in Fig. S2A. We note that this approach is limited.
For instance, there may be transformations (e.g., rotations) that could make the IMP masks more
aligned to the ICA components. However, we believe this is still a valuable approximation of the
similarity between the ICA and IMP. Overall, the distribution of cosine similarity is skewed towards
small values (Fig. S2B), indicating that ICA and IMP extract largely distinct features.

C. ImageNet32 Experiments

C.1. ImageNet32-GP
To construct the Gaussian clone of ImageNet32 [53], we utilize the same approach previously used
to create clones of CIFAR-10 [28]. Namely, we sampled from two-dimensional Gaussian distribu-
tions that were fit to 100,000 images from the ImageNet32 dataset. Each color channel and image
class had its own fit. This led to an average of 100 images per class used for the fit. While not a
small number, we recognize that this is a limitation. With the two-dimensional Gaussian fits, we
sampled the same number of images as the original ImageNet32: 1,281,167 train images and 50,000
test images. Because only ≈ 8% of the images were used to generate the model, the distribution
of number images per class is not guaranteed to match the true distribution. Because we use the
Gaussian clone to assess the emergence of local RFs, and not the performance capability of the FCN
models on ImageNet32-GP, we do not believe this difference affects our primary conclusion.

C.2. FCN model
For our FCN experiments, we follow the approach of Pellegrini and Biroli [17]. We use the official
implementation publicly available3, with three minor modifications to reduce computational costs.
First, we scale the FCN down to have two hidden layers, instead of three. Given that Pellegrini

3https://github.com/phiandark/SiftingFeatures
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Figure S1: Measuring localization of RFs with two-dimensional Gaussians. (A) Three example IMPmasks
(after 10 rounds of IMP) (left column), with their associated correlation function Si(d, n) (middle column).
The Gaussian fits (right column) demonstrate strong qualitative agreement with the true Si(d, n). (B) Distri-
bution of mean-squared error (MSE) associated with the Gaussian fits of IMP and random pruning masks.
The random pruning masks serve as a baseline, as we expect them to not have much Gaussian structure in
their correlation functions.
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Figure S2: IMP and ICA find different local features. (A) Example IMP masks (top row) and the ICA com-
ponent they have the highest cosine similarity with (bottom row). Masks are from three independent seeds,
each chosen as having the mean cosine similarity across the population of masks considered. (B) Distribution
of cosine similarity between IMP and ICA across three independent seeds.

and Biroli [17] found similar localization of IMP masks when using FCNs of greater widths, we
reasoned that the width of the FCN does not play a major role in the emergence of local RFs. Our
results (Fig. 1) demonstrate that IMP finds local RFs, even in this shallower FCN architecture.
Second, we decrease the batch size from 1000 to 40. Given that a larger learning rate to batch size
ratio has been found to lead SGD to converge to more generalizable solutions [63], we reasoned
that – if anything – this choice would lead to greater localization (as local RFs are a generalizable
computation). Lastly, we decreased the total number of training iterations from 100, 000 to 40, 000.
Given that Pellegrini and Biroli [17] found similar (but slightly weaker) results when training for
10, 000 training steps, we reasoned that 40, 000 training steps would be a good intermediary. For
details on all other architecture and training hyper-parameters, see Table S1.

Table S1: FCN parameters for ImageNet32 experiments.

Parameters

Architecture 3072:1024:1024:1000
Activation function ReLU

Batch size 40
Learning rate 0.1
Optimizer SGD

Training iterations 40,000
Rewind iteration (trewind) 1,000

D. Second layer preactivation kurtosis
To test whether IMP increases the non-Gaussianity of later FCN layers, we compute the preactiva-
tion kurtosis of the second hidden layer, as a function of IMP round (as noted in Appendix C.2,
our FCN architecture only contains two hidden layers). Note that in this case, the preactivation
equation (Eq. 3) is given by

λi(X) =

N∑
j=1

Wij ãj(X) + bi, (7)

where ãj(X) is the activation of the jth hidden unit in the first hidden layer (Eq. 2), with batch
normalization. That is, ãj(X) = γjaj(X) + βj , where γj and βj are the learned parameters for the
second layer.
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Figure S3: Preactivation kurtosis increaseswith IMP. Same as Fig. 4B, butwhen computing the preactivation
kurtosis of the FCN’s second layer.

Figure S4: Cavity score is not strongly connected to parameter value (A)–(B) Parameter value, as a function
of cavity score, for IMP round 0 and 9. Each dot corresponds to one non-pruned weight.

As with the preactivations of the first hidden layer, we find that kurtosis increases with rounds of
IMP (Fig. S3), plateauing earlier than the preactivation kurtosis of the first layer (Fig. 4B). The
preactivation kurtosis slightly decreases at higher rounds of IMP (Fig. S3). This difference may be
due to the fact that the second layer units are getting inputs from the hidden units in the first layer,
as opposed to inputs from the images. Future work can explore the localization in later layers, and
how it compares to localization in the first hidden layer, in more detail.
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