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Abstract. Session-based recommender systems (SBRSs) aim at pre-
dicting the next item by modelling the complex dependencies within
and across sessions. Most of the existing SBRSs make recommendations
only based on local dependencies (i.e., the dependencies between items
within a session), while ignoring global dependencies (i.e., the depen-
dencies across multiple sessions), leading to information loss and thus
reducing the recommendation accuracy. Moreover, they are usually not
able to recommend cold-start items effectively due to their limited ses-
sion information. To alleviate these shortcomings of SBRSs, we propose
a novel heterogeneous mized graph learning (HMGL) framework to ef-
fectively learn both local and global dependencies for next-item recom-
mendations. The HMGL framework mainly contains an heterogeneous
mized graph (HMG) construction module and an HMG learning mod-
ule. The HMG construction module map both the session information
and the item attribute information into a unified graph to connect items
within and across sessions. The HMG learning module learns a unified
representation for each item by simultancously modelling the local and
global dependencies over the HMG. The learned representation is then
used for next-item recommendations. Results of extensive experiments
on real-world datasets show the superiority of HMGL framework over
the start-of-the-art methods in terms of recommendation accuracy.

Keywords: session-based recommendations, heterogeneous mixed graph
learning, next-item recommendation, graph neural network.

1 Introduction

Recommender systems (RSs) have been playing an ever-increasingly important
role in our daily lives to help users effectively and efficiently find items, ser-
vices or contents that may be of their interests from a large amount of choices.
Conventional RSs, including content-based RSs and collaborative filtering RSs,
usually make recommendations based on users’ long-term and static preference
while ignoring their short-term and dynamic preference, which usually leads
to the duplicated recommendations of similar items that can not match users’
changing preferences well [20]. To this end, session-based recommender systems
(SBRSs) were proposed to suggest the next item for a user given the purchased
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items in the current session [17]. Here a session refers to a shopping basket
consisting of multiple purchased items in one transaction event.

In general, an SBRS recommends the next item by modelling the complex
dependencies within and across sessions. Markov chain based SBRSs and recur-
rent neural networks (RNN) based SBRSs are two typical types of SBRSs. In
particular, a Markov chain based SBRS [16] predicts the next item by modelling
the transitions between any two adjacent items in a session. Therefore, it only
captures the first-order dependencies (i.e., the dependency between any two ad-
jacent items within a session) while ignoring the high-order dependencies (i.e.,
the cascaded dependencies across multiple items within a session) within a ses-
sion and hence the recommendation accuracy may suffer. To model high-order
dependencies within sessions, RNN-based SBRSs have been proposed. Partic-
ularly, Forsati et al. [12] took gated recurrent units (GRU) as the basic cells
of an RNN to model the sequential dependencies among items with rigid order
assumption within each session to predict the next item. However, these models
only capture the single-way transitions from the starting item to the last one
within a session, while neglecting complex transitions among distant items. To
capture complex transitions among items within sessions, graph neural networks
(GNN) have been employed in SBRSs to predict the next item and they have
achieved superior performance [15]. However, three critical gaps still remain un-
resolved in existing GNN-based SBRSs:

Gapl: Existing GNN-based SBRSs model each session separately in a sub-
graph and thus can only capture the local dependencies (i.e., the dependencies
between items within a session), failing to explicitly capture the global dependen-
cies (i.e., the dependencies across multiple sessions). This leads to information
loss and thus is harmful to the subsequent recommendations.

Gap2: Existing GNN-based SBRSs usually fail to recommend cold-start
items (i.e., newly appearing items with few or even no session information like
transaction records) as they are based on the session information only. Recom-
mending cold-start items is necessary in real-world cases since new items are
always coming successively for sale.

Gap3: Existing GNN-based SBRSs may casily be locally optimized to fit
those minor frequent items and sessions, and thus cause the overfitting problem,
which reduces the recommendation accuracy.

This study addresses the above three gaps by proposing an heterogeneous
mized graph learning (HMGL) framework to learn the complex local and global
dependencies for next-item recommendations. To be specific, to address Gapl,
we construct an heterogeneous mized graph (HMG) to connect the items from
all sessions by integrating the item-itern graph built on session information (e.g.,
which items are purchased together in one session), and the item-attribute graph
built on item attribute information (e.g., the brand and category of items) into
a unified graph. In such a case, items from different sessions are easily connected
by taking their shared attribute values as bridges. Here, a mized graph means
that there are both directed edges between sequential items within sessions and
indirected edges between items and their attribute values in the graph (see Fig.
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Fig. 1. An example of HMG constructed on both session information and item attribute
information. The arrowed lines indicate the sequential relations between items from
each session, while the dotted lines mean the item-attribute relations.

1). Then, we propose an HMG learning module to learn a unified and informative
representation for each item over HMG by modelling both the local and global
dependencies in preparation for the subsequent next-item recommendations. To
address Gap2, we incorporate item attributes into the HMG to effectively en-
hance the connections between clod-start and warm-start items through the
shared attribute values. Therefore, it is much easier to identify and recommend
those cold-start items that may be preferred by users. To address Gap3, we
introduce a regularization term in the loss function by taking the overall graph
structure as an additional constraint, which can prevent the local optimizations
and over-fittings. The main contributions are summarized as follows:

— We construct a heterogeneous mixed graph (HMG) to encode both the ses-
sion information and the item attribute information into one unified graph
to connect all the items together. This enriches both local and global depen-
dencies among items, especially for those clod-start ones.

— We propose an end-to-end HMG learning model to learn an informative
representation for each item over the HMG by modelling both local and
global dependencies to better prepare for the next-item recommendations.

— A new loss function with an additional regularization term is proposed for
global optimization to improve the recommendation accuracy.

Extensive experiments have been conducted on two real-world transaction
datasets to evaluate our proposed framework HMGL. The results show the su-
periority of HMGL over the state-of-the-art methods.

2 Related Work

In this section, we briefly review the representative SBRSs, which can be clas-
sified into: (1) conventional SBRSs, including Markov chain based SBRSs and
factorization machine based SBRSs, and (2) deep learning based SBRSs, includ-
ing RNN-based SBRSs and GNN-based SBRSs.
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Conventional session-based recommender systems. Markov chain models
and factorization machines are two conventional approaches for SBRSs. Given
the prior items in a session, Markov chain based SBRSs adopt Markov chain
models to model the transitions over these items in a sequence, for the predic-
tion of the next item. However, due to the widely employed Markov property,
Markov chain based SBRSs usually can only capture the first-order dependencies
between two adjacent items while ignoring the high-order dependencies across
multiple items. Factorization machines are adopted to factorize the observed
transition from the current item to the next one into the latent representations
of items, which are then used to estimate the unobserved transitions between
items for predicting the next item [7]. As a combination of Markov chain mod-
els and factorization machines, Factorizing Personalized Markov Chain (FPMC)
was built for SBRSs to take the advantages of both the models for better recom-
mendations [16]. However, similar to Markov chain based SBRSs, factorization
machine based SBRSs capture first-order dependencies only, in addition, they
casily suffer from the data sparsity issue.

Deep learning based session-based recommender systems. With the
capability of handling sequential data, recurrent neural network (RNN) is an in-
tuitive choice to capture the sequential dependencies in SBRSs. The first RNN-
based SBRSs is GRU4Rec [1], which employes gated recurrent unit (GRU) to
capture the long-term dependencies within sessions. Later, Balazs, et al. [2] im-
proved GRU4Rec by introducing a ranking loss function. To emphasize those
items that are more relevant to the next-item, a self-attention model was com-
bined with RNN for next-item recommendation. However, due to the employed
rigid order assumption that any adjacent items within a session are highly se-
quentially dependent, RNN-based SBRSs may generate false dependencies [20].

In recent years, benefiting from the power of capturing the complex transi-
tions among items, graph neural network (GNN) [22] has been employed to built
more powerful SBRSs. The first GNN-based SBRS is SR-GNN [15], which first
maps each session into a sub directed graph and then applies GNN on the graph
to capture dependencies between items within each session. Later, Xu, et al. [3]
proposed a graph contextualized self-attention model (GC-SAN) to incorporate
an attention mechanism into GNN to learn the long-range dependencies within
sessions for next-item recommendations. Qiu et al. [13] proposed a weighted at-
tention graph layer and a readout function to learn embeddings of items while
relaxing the order assumption over items for the next item recommendation. Yu
et al. [5] proposed a novel target attentive graph neural network (TAGNN) to
adaptively activate a user’s different interest w.r.t. varied next-item for more
accurate next-item recommendations. However, most of the existing GNN-based
SBRSs process each session separately, i.e., the GNN is employed on each sub-
graph successively to learn item representations for recommendations. In this
way, they fail to explicitly capture the global dependencies based on multi-session
and attribute information, which leads to information loss and thus is harmful to
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the subsequent recommendations. Moreover, these methods poor to recommend
cold-start items due to their quite limited session information.

Only a few models have been proposed to capture the inter-session depen-
dencies, like hierarchical RNN [10] and hierarchical attention [6] based SBRSs.
However, they only capture the single-way sequential dependencies between ses-
sions from the same user, totally different from the global dependencies in this
paper. In practice, the dependencies across sessions are much more complex
than the aforementioned sequential dependencies, since different sessions can be
also widely connected via the shared items or shared item attribute values. This
essentially motivates us to develop HMGL to learn the complex global depen-
dencies across sessions to further improve the recommendation performance.

3 Problem Statement

We formulate the research problem in this section. Let S = {31,32,...,5|S|}
denote the session set consisting of all the sessions in a dataset, where |S| is the
number of sessions in 8. V! = {v1,v2,...,v)p1|} denotes the item set consisting
of all the unique items from all sessions. s; = {v;1,vi2,...,Vi|s,|} 15 & session
consisting of sequentially interacted (e.g., purchased by an anonymous user)
items. F' = {f1, f2, ..., fi p|} is the set of attributes for all items and each attribute
(e.g., category) fn = {an1,an2,...,an g, } consists of multiple attribute values
(e.g., food, beverage), denoted as ap (1 < b < |fy]). All the attribute values
constitute the attribute value set VA = {an. 1, an.a; .-, an, a1} (h€{1,2,....|F[}).
Usually, there are both categorical and numerical attributes for items. In this
paper, we consider categorical attributes only since numerical attributes need
to be handled different from the categorical ones. For each item v; € VI, all its
attribute values form a set A,, = {a1,...,an, ..., ap| }. For a target item v; from
a session s, all the items that occurred prior to v; in s form the session context of
vy, denoted as C’,fl = {v1,v2,...,v;—1}, while all the attribute values of the items
in Cj, form the corresponding attribute context Cy, = { Ay, Ay, oy Ay, }-
Given a context C' = [C®,C?] with (I — 1) precedent items associated with
their attribute values, the task of our work is to recommend the I*" item. Ac-
cordingly, our proposed HMGL learns the conditional probability distributions
P(v|C) for each candidate item v(v € V) given the context C. Consequently,
once all the model parameters have been learned, the next item to be recom-
mended can be selected from the candidate items by maximizing P(v|C).

4 Heterogeneous Mixed Graph Learning Framework

In this section, we present our proposed heterogeneous mixed graph learning
(HMGL) framework. In particularly, the HMGL framework first constructs an
HMG by mapping the session information and item attribute information into
a unified graph and then jointly learns both local and global dependencies over
the HMG for next-item recommendations. Accordingly, as shown in Fig. 2, the
HMGL framework consists three components: the HMG construction module,
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Fig. 2. The workflow of our proposed an HMGL framework. We integrate both session
information and attribute information into an HMG. Then, the HMG learning module
is devised to learn both local and global dependencies over HMG and export an infor-
mative representation for each item. Finally, we predict the conditional probability of
each candidate item and recommend the item with maximum probability.

the HMG learning module, the next-item prediction module. Specifically, the
HMG learning model includes both the local dependency learning and the global
dependency learning modules. In the following subsections, we first introduce
some preliminaries and then introduce each component of the HMGL framework.

4.1 Preliminary

We define two types of graphs, i.e., heterogeneous mixed graph and underlying
graph, which will be used in the following subsections.

Definition 1 Heterogeneous Mized Graph. A heterogeneous mized graph
(HMG) G = {V,E,D} is composed of a node set V, an edge set £, and a direction
set D. In addition, the numbers of both node types and edge types are larger than
one, while there are both directed and undirected edges in the graph.

Definition 2 Underlying Graph. The underlying graph G = {V,E} of a given
HMG G = {V,E&,D} is an undirected graph extracted from the HMG by changing
the directed edges into undirected ones. Hence, an underlying graph consists of
the node set V and the edge set £.

4.2 Heterogeneous Mixed Graph Construction

We incorporate the item attribute information into SBRSs to enrich the connec-
tions between items for better next-item recommendations. In order to construct
a unified HMG (G = {V, &, D}), firstly, we model the items and their attribute
values as two types of nodes in a graph, let ¥V = V2 U V4 be the node set on
the graph, where VT and VA are the node sets corresponding to items and item
attribute values respectively, as defined in Section 3.

Secondly, we model the item-item relations within each session and the item-

attribute value relations as two types of edges in HMG, namely, £ = £F U A
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constitute the edge set in HMG, where a directed edge el{j € &7 means item
v; occurs after item v; in a given session, an undirected edge efl € £A means
that item v; has the attribute value a;. As a result, an HMG connecting all
items based on session information and attribute information is built. In this
way, the shared attribute values of different items serve as bridges to connect
items indirectly, since there is an edge between the shared attribute values and
each of the items sharing these attribute values on the HMG. As a result, such
an HMG not only enriches the connections between items, especially those items

from different sessions, but also connects cold-start items and warm-start items.

4.3 Heterogeneous Mixed Graph Learning

As shown in Fig.2, the HMG learning module contains two parts: local depen-
dency learning and global dependency learning. First, a gated graph neural net-
work (GGNN) is utilized for the local dependency learning by taking the initial-
ized item representations as the input and output the local item representations
which encode the local dependencies within sessions. Then, the local represen-
tations are imported into a path-based matrix factorization model to obtain the
final item representations while further incorporating the global dependencies
between items across sessions. Finally, the learned final representations encoding
both local and global dependencies are fed into the prediction layer for next-item
prediction. Next, we introduce the two parts one by one in detail.

Local Dependency Learning. In order to learn the local dependencies, we
firstly extract a directed subgraph G, = {VZ,,EZ,} based on a given session
s from the HMG. Then, for the i** node Vs, in Gs, we learn a latent repre-
sentation v ; via gated graph neural networks (GGNN) [8]. GGNN updates the
representation of each node through absorbing the information from other nodes
in the same subgraph. Subsequently, the local dependencies embedded in each
subgraph (session) are encoded into the representation of each node (item).

Firstly, we map each node v € V! into an unified low-dimension latent space
to obtain the initial representation v € R'*?, where d denotes the dimension of
the representation. Then for each node vs ; € G, we employ GGNN to iteratively
update its representation v, ; by absorbing the information from other nodes
in G, to learn the local dependencies. In specific, in the ¢** iteration, we first
extract the contextual information a} ; from the neighborhoods of v, ; under the
constraint matrix A® based on G,:

a;i = Af7:[VZT11, V’;_Ql, - V:sl|]TH + b, (1)
where H € R4¥4 is the weight matrix, b is the bias vector, [v’;fll, V;}l, . Vi_|sl|] is
the list of hidden states (i.e., representations) of nodes in G, at (¢t — 1)*" iteration.
The constraint matrix A® = [A%! A%O] € RIs/*25| is the concatenation of two
adjacency matrices A%! and A%, while A7 . denotes the it" row of A% and it
corresponds to v;. A% and A% represent weighted connections of incoming
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and outgoing edges in G respectively, which are calculated as occurrence times
of the corresponding edge divided by the outdegree (the number of tail ends
adjacent to a node) of the edge’s starting node. In this way, the communications
between nodes and different importance scales indicated by their frequencies of
edges in the subgraph are captured.

Once the contextual information is extracted, we take a’; and the hidden
state vi' of v; in the (£ — 1) iteration as the input to calculate the candidate
hidden state v ; of v, ; for the tth iteration as presented by Eq (4), where the
reset gate vector r’; and the update gate vector z} ; are calculated using Eqs

(2) and (3) respectively:

z;i = O’(WZ(I;i + Uzvzl), (2)
vl =o(Weal, +Uvih, (3)
Vf” = tanh(Woa;i + Uo(rz_,i ® vé’i))7 (4)

where W,, W,, W, € R2¥*4 and U,,U,, U, € R*? are learnable weight ma-
trices, o(-) is the activation function and is specified as sigmoid function, ®
denotes the element-wise multiplication operation.

Subsequently, the hidden state v’ ; of v ; in the current t*" iteration can be

determined by the update gate z! ,, the hidden state vi;l of v ; in the (¢ — 1)

5,19

iteration and the candidate hidden state V7 ;:

Vz,i =(1- Zz,i) © Vte_zl + Ziz © VL (5)
In this way, the local dependencies between item v,; € s and other items in
session s are encoded into the latent representation of v, ;. Further, we can
learn the representations of other items vy ; € s(j # i) in the same way. After
all the sessions in the dataset are processed in the same way, the local repre-
sentations encoding local dependencies of all items are subsequently learned as

local ,local local
[Vl » Vg y oo VIVI| ]

Global Dependency Learning. In order to learn global dependencies, we
firstly extract an underlying graph G = {V,£} from the whole HMG. Then
two types of paths over G are defined to reveal two kinds of global inter-item
dependencies. One type of path contain two adjacent item nodes on G to real
their co-occurrence relations in the same sessions, denoted as “v; —v;”; the other
type of path contains two item nodes plus their shared attribute value nodes,
to reveal the indirect dependencies between items sharing the same attribute
value, denoted as “v; — aj, — v;”, where v;,v; € VI and ay, € VA, Accordingly,
the following two path matrices are built among all the item nodes: N’ with the
entry n{ ; to denote the number of the first type of paths between v; and v;, and
N4 with the entry nfj to denote the number of the second type of paths between
v; and v;. Inspired by [24] and [23], the number of paths between two nodes in
a graph reflects the strength of dependency between them and can be estimated
by the latent factors of them. Therefore, we factorize the path matrices into the
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latent factors of items to fine-tune the item representations to incorporate the
global dependencies by taking the local representations of items as the input to
initialize the latent vectors of items.

Hence, the two path matrices N7 and N4 are factorized jointly by estimating
the values of entries in them respectively using the latent vectors of items below:

d
ﬁz‘l,j = f(plv Vi, Vi) = Z pé(vi,q)TVqu (6)
q=1
d
~A A A
nt,J = f(p ,VZ‘,Vj) = qu (Vi,q)TVj,Q7 (7)
q=1

where p!, p4 € R? are the latent vectors representing the types of paths, and d is
the dimension of the latent space. v; 4 is the ¢"" bit of the latent vector v; of v;.
After the conduction of the factorization, the item representations are updated
accordingly to incorporate the global dependencies. As a result, the informative
final representation, e.g., v;, of each item, e.g., v;(v; € V), is achieved, which
encodes both local and global dependencies for better next-item prediction.

4.4 Prediction and Optimization

Next-item Prediction. Once the final representations vi,va, ..., vjyr) of all
items are learned by HMGL framework, the prediction can be made by taking
them as the input. Specifically, given a context C' = {v¢ 1,2, ..., Ve ||}, the
representation C of C' is obtained by integrating the representations of all items
in it via a fully connected layer:

C=[ve1,vee ... vo ol We (8)

where W is the weight matrix to be learned. Then, we feed the context repre-
sentation C together with the latent representation of candidate item v; into the
output layer for the target item prediction. Specifically, a score that quantifies
the relevance between the context and candidate item is computed as the inner
product of the context representation C and the candidate item representation
v;. Finally, we apply a softmax function to predict the conditional probability
yj; for each candidate v; € V!:

i = softmaz((v;)TC).

Optimization. To learn the parameters of the proposed model, we utilize an
end-to-end training scheme, the total objective is to minimize the following loss:

LOSSTotal _ Losslocal —l—’y(L()SSGlObal). (9)
where ~y is the coefficient to control the importance of the Loss®'°%%. The
Loss®tbal also acts as regularization term for better optimization and prevent

the over-fittings or local optimizations.
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The local loss function Loss'®“® is defined as the cross-entropy between the
prediction ¢ and the ground truth y, which can be written as:

Loss'*t = = " yilog(g:) + (1 — yi)log(1 — 4i) (10)
i=1

where y is the label of each candidate item, its value is 1 when the candidate
item is the true target item, and 0 otherwise.

The global loss function Loss'* is defined as the root-mean-square error
(RMSE), which is an estimator with respect to the true path matrices N/, N4
and predicted matrix NI , N A which is defined as the square root of the mean
square error:

Loss@ob = [oss! + Loss?

1 = PN 11
= o 2 V@ = al ) i) )

i,jeVI

Finally, we use a mini-batch gradient descent to train the proposed HMGL
model. Note that in session-based recommendation scenarios, most sessions are
of relatively short lengths, SBRSs are easy to suffer from the over-fitting during
the optimization. Loss@*® is also acted as the penalty term in the total loss
function, which can effectively prevent the local optimization and over-fitting.

5 Experiments

In this section, we introduce the datasets, evaluation metrics, comparison meth-
ods and parameter settings, and we evaluate the recommendation performance
of our proposed HMGL framework by comparing it with the baseline methods.

5.1 Preparation

Data Preparation The following two commonly used real-world transaction
datasets are used for experiments:

— Tmall: released by IJCAI-15 competition, which records the pruchased items
as well as their attribute information (i.e., category and brand) in each trans-
action on Tmall.com (Chinese version of Amazon.com).

— Dunnhumby: provides the household transactions of 2,500 households over
2 years (collected by the data science company Dunnhumby). In addition,
the category information of each item is provided.

Firstly, a set of sessions is extracted from the original transaction data by putting
all the items in one transaction together to form a session. Following a common
practice [20], those sessions containing less than three items are removed since at
least two items should be used to build an informative context and the addition
one as the target item. The item information table contains the attribute values
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of each item occurred in the sessions. Secondly, the set of sessions is splitted
into training set, test set and validation set respectively. We randomly select
70% as the training set, 20% as the test set, and the rest 10% for validation.
Finally, to test the performance of our proposed model under different cold-start
levels, part of the sessions in training set are removed to form the training sets
with various cold-start levels. To be specific, we construct 3 different training
sets with a drop rate of 0%, 40%, and 80%, respectively. Taking the one with
the drop rate of 80% as an example, for each target item to be predicted in the
testing set, 80% of all the sessions containing it in the training set are dropped.
The statistic of the datasets are shown in Table 1.

Table 1. Statistics of experimental datasets.

Statistics Tmall Dunnhumby
#Sessions 125,111 173,913
#ltems 26,251 24,897
#Item category 763 583
#Item brand 3,641 n.a
Avg. session length 5.21 8.09

Evaluation Metrics We use the following widely used accuracy metrics to
evaluate all the comparison approaches.

— Rec@k (Recall) is a metric to measure prediction accuracy. It represents the
proportion of the correctly recommended items amongst the recommended
top-k items. Here we choose k € {10,20}.

— Mrr@k (Mean Reciprocal Rank) is the average of reciprocal ranks of the true
target items over all recommendation instances. Here we choose k € {10,20}.

Comparison Methods To demonstrate the efficacy of our proposed HMGL
framework, which extracts both global and local dependencies for next-item rec-
ommendations, we implemented two versions of our model: (1) full version of
HMGL proposed in this work; and (2) HMGL — L, which only utilizes local
dependencies. We take the representative methods for performance comparisons,
which are built on representative frameworks including matrix factorization,
Markov chains, recurrent neural networks (RNN), memory networks, convolu-
tional neural networks (CNN) and graph neural networks (GNN).

— POP recommends the top-k frequent items in the training set and in the
current session respectively.

— BPR-MF is the state-of-the-art method for non-sequential recommenda-
tions, which uses a pairwise ranking loss [16].

— FPMC is a classic model combining matrix factorization and first-order
Markov Chain for next-basket recommendations [11]. Here it is utilized to
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factorize the transition matrix between any two items in the session data
and thus predict the next-item based on the last item in the session.

— iGRU4Rec-BPR is the improved version of typical RNN-based SRBS,
namely GRU4Rec, which uses GRU to model the sequences of purchased
items in sessions for next-item recommendations. It takes Bayesian Person-
alized Ranking (BPR) as the loss function [2].

— STAMP is a novel short-term memory priority model to capture both the
user’s long-term preference from previous clicks and the current preference
from the last click in a session for the next-item recommendations [9].

— NextItNet uses a convolutional generative network to model long range
dependencies in sequences of items for next-item recommendations [4].

— SR-GNN is an SBRS model using gated graph neural networks to first
generate latent representations of items in sessions and then use these rep-
resentations for next-item recommendations [15].

Parameter Settings We initialize all the baseline models with the parameter
settings reported in their papers and then tune them on our datasets for best
performance for fair comparison. For our model, all parameters are initialized
using a Gaussian distribution with a mean of 0 and a standard deviation of 0.1.
The sizes of item representations and hidden states in HMGL are set to 128. The
mini-batch Adam optimizer is utilized to learn the model parameters, where the
initial learning rate is set to 0.001, and the coefficient v is set to 0.1 via cross
validation on the specific datasets, the batch size is set to 100. We run 30 epoches
to train our HMGL model for best performance.

5.2 Recommendation Accuracy Evaluation
Extensive experiments are conducted to answer the following questions:

— Q1: How does our approach perform compared with the state-of-the-art
SBRSs in terms of recommendation accuracy in the warm-start situation?

— Q2: How does our approach perform compared with the state-of-the-art
SBRSs in terms of recommendation accuracy in the cold-start situation?

— Q3: How does our full model HMGL which models both global and local
dependencies perform compared with its simplified version HMGL-L which
models local dependencies only?

Result 1 (for Q1): Comparison with Baselines under Warm-start Sit-
uation. We compare the recommendation accuracy of our HMGL model with
those of eight representative baselines in the warm-start situation. The results
are shown in Table 2 (the drop 0% scenario). The performance of the first two
methods PoP and Item-KNN is poor, since they make recommendations only
based on the popularity or similarity of items, failing to effectively capture the
dependencies between items in sessions. The performance of BPR-MF is a lit-
tle better, but still poor. The main reason is that both datasets are extremely
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Table 2. Results of effectiveness experiments on two datasets.

Tmall Dunnhumby
Scenario[Model [ Rec@lO[Rec@ZO[Mrr@lO[Mrr@20[ Rec@lO[Rec@20[Mrr@10[Mrr@20
POP 0.0170 | 0.0310 | 0.0050 | 0.0060 || 0.0441 | 0.0666 | 0.0215 | 0.0229
Ttem-KNN 0.1280 | 0.1490 | 0.0680 | 0.0720 || 0.0412 | 0.0596 | 0.0186 | 0.0200
BPR-MF 0.1760 | 0.2150 | 0.0960 | 0.0968 || 0.0196 | 0.0337 | 0.0074 | 0.0081
FPMC 0.2850 | 0.3070 | 0.2200 | 0.2500 || 0.0445 | 0.0749 | 0.0183 | 0.0223
drop 0% iGRU4Rec 0.3170 | 0.3410 | 0.2300 | 0.2360 || 0.0507 | 0.0731 | 0.0205 | 0.0220
STAMP 0.3000 | 0.3090 | 0.2370 | 0.2490 || 0.0734 | 0.1124 | 0.0313 | 0.0354
NextItNet 0.2490 | 0.2700 | 0.1710 | 0.1720 || 0.1204 | 0.1591 | 0.0604 | 0.0629
SR-GNN 0.3680 | 0.4100 | 0.2460 | 0.2490 || 0.1931 | 0.2527 | 0.0951 | 0.0992
HMGL-L 0.3681 | 0.4103 | 0.2462 | 0.2492 || 0.1935 | 0.2527 | 0.0952 | 0.0995
HMGL 0.3783 | 0.4185 | 0.2549 | 0.2577 || 0.2006 | 0.2627 | 0.0992 | 0.1035
Improvement(%)*|| 2.07 2.54 3.61 3.49 3.88 3.95 4.31 4.33
POP 0.0150 | 0.0270 | 0.0050 | 0.0060 0.0419 | 0.0641 | 0.0208 | 0.0224
Ttem-KNN 0.0820 | 0.1210 | 0.0350 | 0.0380 || 0.0075 | 0.0108 | 0.0033 | 0.0034
BPR-MF 0.1150 | 0.1380 | 0.0780 | 0.0810 || 0.0022 | 0.0339 | 0.0100 | 0.0112
FPMC 0.1176 | 0.1205 | 0.0612 | 0.0661 0.0441 | 0.0666 | 0.0215 | 0.0229
drop 40% iGRU4Rec 0.1508 | 0.1533 | 0.0731 | 0.0852 0.0077 | 0.0128 | 0.0031 | 0.0034
STAMP 0.1698 | 0.1770 | 0.0424 | 0.0555 0.0193 | 0.0238 | 0.0059 | 0.0076
NextItNet 0.1418 | 0.1444 | 0.0752 | 0.0766 || 0.0859 | 0.1092 | 0.0468 | 0.0490
SR-GNN 0.1750 | 0.2120 | 0.0890 | 0.0923 0.1600 | 0.2140 | 0.0753 | 0.0790
HMGL-L 0.1751 | 0.2122 | 0.0893 | 0.0925 || 0.1603 | 0.2141 | 0.0754 | 0.0791
HMGL 0.1799 | 0.2174 |0.09232| 0.0953 || 0.1724 | 0.2284 | 0.0788 | 0.0825
lmprovement(%) 2.80 2.54 3.73 3.25 7.75 6.72 4.46 4.43
POP 0.0080 | 0.0215 | 0.0050 | 0.0060 || 0.0291 | 0.0499 | 0.0172 | 0.0187
Ttem-KNN 0.0510 | 0.0720 | 0.0300 | 0.0300 || 0.0052 | 0.0081 | 0.0022 | 0.0024
BPR-MF 0.0300 | 0.0340 | 0.0350 | 0.0390 || 0.0215 | 0.0295 | 0.0080 | 0.0087
FPMC 0.0333 | 0.0507 | 0.0328 | 0.0336 || 0.0065 | 0.0072 | 0.0027 | 0.0032
drop 80% iGRU4Rec 0.0408 | 0.0425 0.0420 0.0471 0.0075 | 0.0124 0.0236 0.0338
STAMP 0.0951 | 0.1564 | 0.0689 | 0.0694 || 0.0087 | 0.0666 | 0.0041 | 0.0229
NextItNet 0.0859 | 0.0938 | 0.0351 | 0.0413 || 0.0119 | 0.0145 | 0.0215 | 0.0313
SR-GNN 0.1337 | 0.1652 | 0.0659 | 0.0681 0.0652 | 0.0850 | 0.0342 | 0.0356
HMGL-L 0.1338 | 0.1653 | 0.0659 | 0.0683 0.0653 | 0.0851 | 0.0343 | 0.0357
HMGL 0.1395 |0.1698 | 0.0694 | 0.0702 || 0.0702 | 0.0919 | 0.0359 | 0.0366
Improvement (%) 4.33 2.78 5.31 3.08 7.66 8.11 4.97 2.80

Mmprovement achieved by HMGL over the best-performing compared methods.

sparse and MF models easily suffer from sparse data. FPMC takes the advan-
tages of both Markov Chain and factorization machines, and thus performs a
slightly better than BPR-MF. But FPMC is a fist-order Markov Chain model,
which can only learn the transitions over adjacent items while ignoring high-order
dependencies. Benefiting from the capability of capturing complex relations of
deep neural networks, iGRU4Rec, STAMP and NextItNet achieved better per-
formance than the aforementioned models. For example, iGRU4Rec employs
RNN built on gated recurrent unit (GRU) to model the sequential dependencies
within sessions. STAMP and NextItNet employs attention mechanism and CNN
respectively to model intra-session dependencies for next-item recommendations.
By capturing the complex transitions among items, the performance of SR-GNN
is better. However, it fails to explicitly capture the global dependencies, leading
to information loss and thus is harmful to the subsequent recommendations.

By explicitly capturing both the local dependencies and the global depen-
dencies, our HMGL framework achieves the best performance on both datasets.
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It outperforms the best-performing method SR-GNN with an average of 3.52%,
ranging from 2.07% to 4.33%, in terms of Rec@10, Rec@20, Mrr@10 and Mrr@20.

Result 2 (for Q2): Comparison with Baselines under Cold-start Situ-
ations. In order to model the cold-start and warm-start scenario, we construct
three different training sets with a drop rate of 0%, 40%, and 80%. It is clear
that HMGL achieves higher accuracy than any of the eight baseline methods in
these two cold-start scenarios, shown by the scenarios demoted as “drop 40% ”
and “drop 80% ” in Table 2. Specifically, when dropping 40%, the average im-
provement percentage achieved by HMGL over the best-performing methods is
4.46%, range from 2.8% to 7.75%. When dropping 80%, the average improvement
percentage is 4.88%, range from 2.8% to 8.11%. This verifies the effectiveness of
of our proposed HMGL framework in handling the cold-start items.

Result 3 (for Q3): Global and Local Dependencies vs. Local Dependen-
cies Only. To demonstrate the efficacy of the modeling of global dependencies,
we compare the performance of HMGL with that of HMGL-L. As shown in Ta-
ble 2, it is clear that HMGL achieves higher accuracy under all scenarios on
both datasets than HMGL-L does. This justifies the necessity to explicitly and
comprehensively model the global dependencies over the whole dataset for more
accurate next-item recommendations.

6 Conclusions

In this paper, we propose an Heterogeneous Mixed Graph Learning (HMGL)
framework for session-based recommendations. Firstly, we have constructed a
heterogeneous mixed graph based on both session information and attribute in-
formation. Then we have designed an HMG learning model to learn a unified
representation for each item by modelling both local and global dependencies.
The learned representations are further used for next-item recommendations.
Extensive experiments on two real-world datasets demonstrated the effective-
ness of HMGL. As for future work, we plan to further utilize item attributes by
combining them together with item IDs to build more informative item repre-
sentations for better addressing the cold-start recommendation issue.
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