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Abstract
We study the decentralized multi-step Model-
Agnostic Meta-Learning (MAML) framework
where a group of n agents seeks to find a
common point that enables “few-shot” learn-
ing (personalization) via local stochastic gradi-
ent steps on their local functions. We formu-
late the personalized optimization problem un-
der the MAML framework and propose PARS-
Push, a decentralized asynchronous algorithm ro-
bust to message failures, communication delays,
and directed message sharing. We characterize
the convergence rate of PARS-Push for smooth
and strongly convex and smooth and non-convex
functions under arbitrary multi-step personaliza-
tion. Moreover, we provide numerical experi-
ments showing its performance under heteroge-
neous data setups.

1. Introduction
Distributed and decentralized optimization problems con-
siders a set of n agents where the objective is to jointly
minimize the sum of a set of functions where each func-
tion is accessible to one agent only. Conventionally, we
consider the following stochastic optimization problem:

z∗ = argmin
z∈Rd

f(z) :=
1

n

n∑
i=1

fi(z), (1)

where fi(z) := Eξ∼pi [ℓ(z, ξ)], (2)

the function ℓ : Rd × S → R generally denotes the loss
function for a model that we seek to learn in the parameter
space Rd, and S denotes the sample space of random vari-
able ξ which represents the data. In (2), fi(z) is the popula-
tion loss of model z over samples selected uniformly with
respect to a distribution pi, i.e., agent i data distribution. In
general, the data distribution is unknown and agents have
access to empirical realizations of ξ only.

In a homogeneous data setting, all the agents have the same
data distributions. Thus, the quality of a minimizer of the
empirical loss of fi(·) on a finite data set of realizations of

ξ will improve as the number of data samples increases.
Therefore, minimizing an empirical estimator of f(·) is
guaranteed to achieve lower costs with a high probability
as it will include more realizations from the data space. On
the other hand, if pi’s are different, there is no guarantee
that a minimizer of the empirical estimator of f(·) will have
a lower cost when evaluated on each fi(·). A minimizer of
f(·) will only perform well on fi(·) on average.

Finn et al. (2017) proposed Model-Agnostic Meta-
Learning (MAML) as an optimization-based technique to
address data heterogeneity for any optimization problem
that can be solved by (stochastic) gradient descent. Fallah
et al. (2020a); Ji et al. (2022); Rajeswaran et al. (2019);
Finn et al. (2019) studied the convergence of MAML for
different function classes. Moreover, this problem has been
extensively studied for various learning setups (Finn et al.,
2019; Fallah et al., 2021b; Collins et al., 2020; Fallah et al.,
2021a; Charles & Konečnỳ, 2021; Kayaalp et al., 2022).
Most of prior works analyze MAML with one gradient de-
scent step as the personalization budget, while Fallah et al.
(2021a); Ji et al. (2022) study this problem with multi-step
fine-tuning budget. Moreover, several recent works have
studied personalization in collaborative learning as a form
of multi-task learning (Fallah et al., 2020b; Dinh et al.,
2020; Gasanov et al., 2021; Collins et al., 2021).

Most of the recent works on the personalized collabora-
tive learning problem, often assume the existence of reli-
able synchronized communications to a single server (Fal-
lah et al., 2020b; Dinh et al., 2020; Gasanov et al., 2021;
Collins et al., 2021), or synchronous local communications
over an undirected network (Kayaalp et al., 2022). These
strong communication assumptions restrict the application
of personalization for modern machine learning problems.
Xie et al. (2019); Chen et al. (2021); Nguyen et al. (2021)
propose updates with staleness to deal with asynchronous
communications with the server in distributed scenarios.
Here, we leverage recent works on unreliable communica-
tions for distributed/decentralized inference (Mojica-Nava
et al., 2021), consensus (Hadjicostis et al., 2015; 2018;
Spiridonoff et al., 2020b; Assran et al., 2019), and opti-
mization problems (Spiridonoff et al., 2020b; Assran et al.,
2019; Xie et al., 2019; Chen et al., 2021; Nguyen et al.,
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2021). The main objective of this work is to study the con-
vergence of the personalized multi-step MAML problem
under robust asynchronous communications over directed
networks. We summarize our contributions as follows:

• We study the multi-step MAML cost for smooth and
strongly convex and non-convex functions. We show that
the multi-step model preserves the function class, and we
explicitly characterize its condition number as a function
of the personalization budget.

• We propose an algorithm named PARS-Push, to mini-
mize the personalized optimization objective function on
a directed network with asynchronous communications
under message delays and losses.

• We establish convergence guarantees for PARS-Push and
provide numerical examples to show the advantages of
our method for collaborative learning with heterogeneous
data samples over the agents.

The remainder of this paper is arranged as follows. In Sec-
tion 2, we introduce the personalization setup and discuss
the communication framework between the agents. In Sec-
tion 3, we describe the PARS-Push algorithm for person-
alized decentralized optimization and present the assump-
tions and convergence results. We discuss the sketch of
proofs in Section 4, and provide numerical experiments in
Section 5. We end by concluding the remarks in Section 6.

2. Problem Setup
This section formalizes the personalized decentralized op-
timization problem under asynchronous communications
over a directed network. Moreover, we discuss the problem
setup and challenges for the personalization and communi-
cation network model.

Personalization via Multi-Step MAML: We denote the
f̃i(z,Di) as the empirical cost of agent i,

f̃i(z,Di) :=
1

|Di|
∑
ξ∈Di

ℓ(z, ξ), (3)

where Di is a data batch (|Di| = b) with sam-
ples drawn from a probability distribution pi, hence
Epi

f̃i(z,Di) = fi(z).

The goal in personalized distributed learning under the
MAML approach is to collaboratively find z that performs
well on average after applying u ≥ 1 (integer) local
stochastic gradient descent steps for each agent. Formally,
instead of solving Problem (1), we seek to solve the follow-
ing problem:

z∗(u) = argmin
z∈Rd

F (u)(z) :=
1

n

n∑
i=1

F
(u)
i (z), (4)

F
(u)
i (z) := Epi

[
fi
(
Ψi

(
. . .
(
Ψi

(
z,Dtest

i,0

)
. . .
)
,Dtest

i,u−1

))]
,

where Ψi(z,Di) := z− α∇f̃i(z,Di) with personalized
learning rate α≥0, and independent data batches Dtest

i,r se-
lected uniformly at random with respect to distribution pi,
for all i ∈ [n], and r ∈ {0}∪[u]. For simplicity of exposi-
tion, we assume that all batches have the same size of b,
i.e., |Dtest

i,r |=b. Note that u represents the available budget
for few-shot learning. For example, Problem (4) becomes
Problem (1) when u = 0, i.,e., no budget for personaliza-
tion. On the contrary, u→∞ implies there is no need for
cooperation, as each agent can find a minimizer of its local
function.

Communication Network Model: We consider a static,
directed, and strongly connected network G = {[n], E}
with no self-loops, and E ⊆ [n]× [n], where (i, j) ∈ E
if there is an edge from node i to j. For each agent
i ∈ [n], we define N−

i = {j s.t. (j, i) ∈ E} as the set of
in-neighbors to i, as well as N+

i = {j s.t. (i, j) ∈ E} as
the set of out-neighbors from i, where the communications
take place over the edges of G. We also denote d−i = |N−

i |,
d+i = |N+

i |, and m =
∑n

i=1 d
−
i . In this work, we as-

sume that the agents perform updates and communicate
asynchronously. We moreover consider the possibility of
message losses and delays. Hence, inspired by Spiridonoff
et al. (2020b), we assume the following communication
model.

Assumption 1 (Spiridonoff et al. (2020b)). The communi-
cation network has the following properties:

(a) graph G is static, directed, and strongly connected
(b) the delays on each communication link (i, j) ∈ E are

bounded by some Γd ≥ 1,
(c) each communication link (i, j) ∈ E fails at most

Γf ≥ 0 consecutive times,
(d) every agent i ∈ [n] wakes up and performs updates at

least once every Γw ≥ 1 iterations.

Assumption 1 is a rather weak model that allows robust
asynchronous communications under the possibility of idle
agents, as well as a finite number of consecutive failures
and bounded delays in the communication. Moreover,
it implies an effective maximum delay Γe := Γw+Γd−1,
where for each receives a message from its in-neighbors at
least once every Γs := Γw(Γf+1)+Γe iterations. Based
on this assumption, we will discuss an augmented commu-
nication model in Section 3.

3. PARS-Push Algorithm
We first introduce empirical cost

F̃
(u)
i (z, ϑi):=f̃i(Ψi (. . .(Ψi(z,Di,0). . .),Di,u−1) ,Di,u),

(5)
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where ϑi = {Di,r}ur=0 denotes a set of independent
data batches uniformly drawn from distribution pi, and
F

(u)
i (z) = Epi

[
F̃

(u)
i (z, ϑi)

]
. Several prior works (Finn

et al., 2017; Fallah et al., 2020b; Ji et al., 2022; Kayaalp
et al., 2021) consider surrogate cost functions with biased
gradient estimators which lead to a non-vanishing bias in
the convergence. Following Fallah et al. (2021a;b), we
minimize the cost in (4) which has an unbiased stochastic
estimators of its deterministic gradients for each i ∈ [n].

Algorithm 1 PARS-Push: Personalized, Asynchronous,
Robust Stochastic Gradient-Push

1: Initialize: yi = 1, κi = −1, ϕx
i = 0, ϕy

i = 0, ∀i ∈
[n], and κij = −1, ρx

ij = 0, ρyij = 0, ∀(j, i) ∈ E .
2: for t = 0, 1, 2, . . . , in parallel for all i ∈ [n] do
3: if node i wakes up then

4: ηi(t) :=
t∑

r=κi+1
θ(r)

5: w
(0)
i := zi

6: for r = 0, 1, 2, . . . , u− 1 do
7: Sample a batch Dt

i,r with size b from pi

8: w
(r+1)
i := w

(r)
i − α∇f̃i

(
w

(r)
i ,Dt

i,r

)
9: end for

10: Sample a batch Dt
i,u with size b from pi

11: xi := xi − ηi(t)

[
u−1∏
r=0

(
I− α∇2f̃i

(
w

(r)
i ,Dt

i,r

))]
×∇f̃i(w

(u)
i ,Dt

i,u)12: κi := t
13: xi :=

xi

d+
i +1

, yi := yi

d+
i +1

14: ϕx
i := ϕx

i + xi, ϕ
y
i := ϕy

i + yi
15: Node i sends (ϕx

i , ϕ
y
i , κi) to N+

i

16: Ri := messages received from N−
i

17: for
(
ϕx

j , ϕ
y
j , κj

)
in Ri do

18: if κj > κij then
19: ρ∗x

ij := ϕx
j , ρ∗yij := ϕy

j , κij := κj

20: end if
21: end for
22: xi := xi +

∑
j∈N−

i

(ρ∗x
ij − ρx

ij)

23: yi := yi +
∑

j∈N−
i

(ρ∗yij − ρyij)

24: ρx
ij := ρ∗x

ij , ρy
ij := ρ∗y

ij , zi := xi

yi

25: end if
26: end for

We consider vector xi(t) ∈ Rd, and slack scalar
yi(t) ∈ R+ as the parameters of node i ∈ [n], where
zi(t) ∈ Rd represents the ratio of xi(t)/yi(t). Moreover,
each agent i ∈ [n] allocates ϕx

i (t) ∈ Rd and ρx
ij(t) ∈ Rd,

for all j ∈ N−, to keep the sum of xi(t) and xj(t),
respectively over the time. Similarly, node i has the same
parameters ϕy

i (t) ∈ R+ and ρyij(t) ∈ R+ for variables
yi(t) and yj(t). For the sake of simplicity, we drop t from

the description of the algorithm.

At any round t that node i ∈ [n] is idle, its parameters
will not be updated. Once node i wakes up, it performs
three set of operations. First, agent i selects u+1 indepen-
dent data batches ϑt

i={Dt
i,r}ur=0 with respect to distribu-

tion pi, and after performing u steps of stochastic gradi-
ent descent starting from zi (Lines 5-10), agent i computes
an unbiased stochastic gradient of (4), and then updates xi

in Line 11. Second, node i updates its parameters xi, yi,
ϕx

i , and ϕy
i according to Line 13-14, and sends the run-

ning sum parameters to its out-neighbors N+
i (Line 15).

Finally, agent i processes the received messages from its
in-neighbors N−

i which leads to selecting the most recent
updates (Lines 16-21). Consequently, agent i updates xi,
yi, and zi in Lines 22-24 by combining newly received
messages. In a nutshell, PARS-Push contains two key oper-
ations, (i) robust asynchronous aggregation over a virtual,
augmented graph, and (ii) stochastic gradient descent with
respect to unbiased stochastic gradients of (4).

Dynamics of the Update Rule: Next, we introduce a linear
formulation for Algorithm 1. The variables xi(t) and yi(t)
denote node i’s parameters at round t. Next, we will discuss
the update model for vectors xi(t) only, the same discus-
sion would also hold for yi(t). According to Spiridonoff
et al. (2020b, Section 2), we can model message losses and
delays between every two nodes (j, i) ∈ E , using Γe+1 ad-
ditional virtual nodes, where one of them represents the in-
formation that has not successfully been transferred to node
i, and the other Γe nodes indicate the information that will
be delivered with a delay. We formally define variables
x̂l
ji(t) to denote the message sent from node j to i and ar-

riving with an effective delay of l, for all l ∈ [Γe]. We also
consider variable x̃ji(t) as the information that has failed to
be sent. We moreover define indicator variables τi(t) and
τ lji(t). τi(t) = 1 if node i wakes up at time t, and τi(t) = 0

otherwise. Similarly, τ lji(t) = 1 if τi(t) = 1 and the sent
message from node j to i arrives after an effective delay
of l ∈ [Γe] rounds, and τ lji(t) = 0 otherwise. We now can
write the update rule of Algorithm 1 as follows Spiridonoff
et al. (2020b):

xi(t+
1
2 ) := xi(t)− τi(t) ηi(t)∇F̃

(u)
i (zi(t), ϑ

t
i),

xi(t+1) :=

(
1−τi(t)+

τi(t)

d+i + 1

)
xi(t+

1
2 )+

∑
j∈N−

i

x1
ji(t),

x̂l
ji(t+1) := τ lji(t)

[
x̃ji(t)+

xj(t)

d+j + 1

]
+1{l<Γe}x̂

l+1
ji (t+1),

x̃l
ji(t+1) :=

(
1−

Γd∑
l=1

τ lji(t)

)[
x̃ji(t) + τi(t)

xj(t)

d+j + 1

]
,

(6)

where ϑt
i = {Dt

i,r}ur=0 is a set of u+1 independent data
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batches uniformly drawn from pi at round t. A similar up-
date rule holds for yi(t), except for the gradient descent
step of (6). Let X(t) ∈ R(n+m′)×d be the concatenation of
xi(t)

⊤, x̃ij(t)
⊤, and x̂l

ij(t)
⊤ for all i ∈ [n], (i, j) ∈ E , and

l ∈ [Γe], where m′ := (Γe+1)m. Similarly, y(t) ∈ Rn+m′

denotes the vector containing yi(t), ỹij(t), and ŷlij(t). Ad-
ditionally, for all (i, j) ∈ E and l ∈ [Γe], virtual parameters
x̃ij(0), x̂l

ij(0), ỹij(0), and ŷlij(0) are all initialized to zero.
As a consequence, one can show that the following linear
system describes Algorithm 1:

X(t+1) := M(t) (X(t)−∆(t)) ,

y(t+1) := M(t)y(t),

zi(t+1) := xi(t)/yi(t), ∀i ∈ [n] (7)

where {M(t)}t≥0 is a sequence of column stochastic
mixing matrices of size (n+m′)×(n+m′), and matrices
∆(t) ∈ R(n+m′)×d with rows as follows:

[∆(t)]i :=

{
τi(t) ηi(t)∇F̃

(u)
i (zi(t), ϑ

t
i)

⊤, i ∈ [n],

0⊤, i /∈ [n].

(8)

Note that each matrix M(t) is associated with an aug-
mented virtual graph over n+m′ nodes. According to As-
sumption 1, one can check that these augmented virtual
graphs build a sequence of time-varying Γs-strongly con-
nected graphs describing Algorithm 1. For more details on
the specific formulation of the robust asynchronous com-
munications, see Spiridonoff et al. (2020a). Next section
discusses the convergence of (7).

4. Convergence Result
This section states our main result, which shows the con-
vergence of PARS-Push under standard assumptions for the
class of smooth and strongly convex and smooth and non-
convex functions. We consider a series of standard assump-
tions on the function ℓ(., ξ), for almost all ξ ∈ S. Our as-
sumptions are commonly used in several prior works (Finn
et al., 2019; Fallah et al., 2020b; 2021a;b; Ji et al., 2022).

Assumption 2. The function ℓ(., ξ), for almost all ξ∈S,
is twice continuously differentiable and bounded from be-
low. Furthermore, the following properties hold for all
z, ẑ ∈ Rd:

(i) there exist constant G such that ∥∇ℓ(z, ξ)∥ ≤ G,
(ii) ℓ(., ξ) is L-smooth, i.e.,

∥∇ℓ(z, ξ)−∇ℓ(ẑ, ξ)∥ ≤ L ∥z− ẑ∥ ,

(iii) the Hessian of ℓ(., ξ) is H-Lipschitz, i.e.∥∥∇2ℓ(z, ξ)−∇2ℓ(ẑ, ξ)
∥∥ ≤ H ∥z− ẑ∥ ,

(iv) ℓ(., ξ) is µ-strongly convex, i.e.,

∥∇ℓ(z, ξ)−∇ℓ(ẑ, ξ)∥ ≥ µ ∥z− ẑ∥ .

Now, we are ready to discuss the convergence results.

⋄ Smooth & Strongly Convex Functions: Here, we first
present the convergence of Algorithm 1 for solving Prob-
lem (4) under Assumptions 1 and 2. Before stating the main
result, let us introduce the following lemmas.
Lemma 1. Suppose that Assumptions 2(i)-(iv) hold.

Then, for any 0 ≤ α ≤ min
{

µε1(1−ε2)
GHu ,

1−ε
−1/2u
1

L

}
,

ε1, ε2 ∈ (0, 1), F (u)
i (z) in (4) is µ̂(u)-strongly convex and

L̂(u)-smooth

µ̂(u) = µ(1− αL)2u − αuGH(1− αµ)u−1,

L̂(u) = L(1− αµ)2u + αuGH(1− αµ)u−1,

for all i ∈ [n], and z ∈ Rd.

Proofs can be found in Appendices C and D.

Lemma 1 implies strong convexity and smoothness of (4)
under appropriate α. One can check that ε1ε2µ ≤ µ̂(u) and
(1+ε1−ε1ε2)L ≥ L̂(u). Note that a larger value of α im-
plies higher personalization level. Nevertheless, one can in-
fer from Lemma 1 that the condition number (L̂(u)/µ̂(u))
of the surrogate cost F (u)

i (z) increases with larger α.
Lemma 2. Let Assumptions 2(i)-(iv) hold, and α as in
Lemma 1. Then for all i ∈ [n] and z ∈ Rd, we have:

Epi

∥∥∥∇F̃
(u)
i (z, ϑi)−∇F

(u)
i (z)

∥∥∥2 ≤ σ̂(u)2,

where σ̂(u)
2 := 4(1− αµ)2u G2 and ϑi = {Di,r}ur=0 rep-

resents a set of data batches uniformly drawn from pi.

Lemma 2 indicates a bounded variance between the deter-
ministic and stochastic gradients for each agent i ∈ [n]. It
is worth mentioning that Assumptions 2(i)-(iv) can be re-
laxed if we borrow Assumption 4 in Fallah et al. (2020b).
Proposition 1 (Smooth and Strongly Convex). Let As-
sumptions 1 and 2 hold, stepsize α be as in Lemma 1,
θ(t) = 1

µ̂(u)t , for t ≥ 1, and θ(0) = 0. Then, for all i ∈ [n],
the following property holds for the iterates of Algorithm 1:

E
[∥∥∥zi(T )− z∗(u)

∥∥∥2] = O

(
Γw σ̂(u)

2

µ̂(u)nT

)
+O

(
1

T
3
2

)
,

where µ̂(u) and σ̂(u) as defined in Lemma 1 and Lemma 2.

Proposition 1 suggests a sublinear convergence rate
O(1/T ) for Algorithm 1 to solve (4), under Assump-
tions 1-(iv), where all of the decentralization terms (γ, δ, λ)
are associated with O(1/T 3/2).
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Figure 1: Given a fixed personalization budget u at the test
time, optimizing the surrogate loss in (4) yields a lower
error compared to (1) in heterogeneous data settings.

We move the result on smooth non-convex functions to Ap-
pendix B.

5. Numerical Experiment
In this section, we study a decentralized linear regression
problem with regularization on a synthetic heterogeneous
data. We consider a random vector β∗ ∈ Rd, and a set of
vectors {β∗

i }i∈[n], where each β∗
i ∈ Rd is obtained by per-

turbing β∗ with Gaussian noise. Hence, we define the q-th
data sample on agent i as follows:

biq = a⊤iq β
∗
i + ζiq, (9)

where ξiq = (biq,aiq) represents a data sample, and
ζiq ∼ N (0, σ2I). We can formally define fi(z) as follows:

fi(z) = Eξiq∼pi

[(
biq − a⊤iq z

)2
+

1

2n
∥z∥2

]
. (10)

We consider a setting with n = 10 agents, where each agent
maintains data samples in a d = 30 dimensional space. We
also consider batches with b = 20 samples, and select 200
test data points for each agent i ∈ [n]. For the com-
munication, we select a fixed, directed, and strongly con-
nected Erdős-Rényi network with a low connection proba-
bility (p = 0.15). We simulate the asynchronous setup with
Γw = 2, Γd = 2, and Γf = 1, for 6000 iterations.

We compare the average test error of (11) under personal-
ization with that of (1) after personalization with the same
budget u in Fig. 1. In words, we consider the surrogate loss
in (4), and after obtaining z∗(u) for each u ∈ [5], we update
the personalized parameters under u consecutive stochastic
gradient descent steps. We also solve (1) under the same
communication setting, and for each u ∈ [5], we apply u
steps of stochastic gradient descent after the train phase to
have a fair comparison.

0 50 100 150 200 250 300
iterations

100

102

104

T
ra
in

E
rr
or

PARS-Push (Algorithm 1)

Stochastic Gradient-Push [21]

Figure 2: Robustness to asynchronous communications,
idle agents, message losses and delays.

Figure 2 shows the training error and validates that PARS-
Push is robust to asynchronous communications with mes-
sage losses and delays, compared to stochastic gradient-
push (Assran et al., 2019), which is state-of-the-art for de-
layed asynchronous communications.

6. Conclusions
This work studied personalized decentralized optimization
under robust asynchronous communications over directed
networks. We considered the multi-step MAML problem
under heterogeneous data setting and proposed PARS-Push
algorithm to solve this problem with arbitrary u personal-
ization budget. We showed the convergence of our method
for smooth and strongly convex, and non-convex functions.
We proposed a numerical setup to illustrate the conver-
gence and personalization of our method.
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A. Discussion on Personalization Dynamic
Some formulations of Meta-Learning consider the slightly different scenario where one has access to a set of functions
{fi} (Nichol et al., 2018). However, instead of finding the minimizer of their average as in (1), Meta-Learning seeks to
find a point that achieves a smaller function value on each fi after a small number of local steps of a selected optimization
algorithm is applied when compared with the same number of steps with random initialization. From the machine learning
perspective, one can consider each of the local functions fi(·) as an individual task to be learned based on some finite
dataset. Minimizing the empirical approximation of fi(·) will correspond to finding an approximate model that performs
well on that task. However, in some scenarios, the number of data points for a specific task might be limited. Thus, leverag-
ing the data from other tasks might improve performance even with limited data. In practice, Meta-Learning translates into
the task of finding a new objective function F (·) that depends on {fi(·)} such that when minimizing an empirical estimator
of F (·) one can achieve good performance locally on fi(·) with only a few steps of the desired optimization method, or
few-shot learning. Usually, the number of available local steps is termed the personalization budget. In (4) when u = 1,
we have:

F
(1)
i (z) := Epi

[
fi

(
z− α∇f̃i

(
z,Dtest

i,0

))]
. (11)

Compared to (1), considering (11) implies an initial point z∗(1) such that each agent i can perform one step of stochastic
gradient descent with respect to its local cost function to obtain a personalized model w∗(1)

i = z∗(1) − α∇f̃i
(
z∗(1),Dtest

i,0

)
.

Figure 3 illustrates the personalization mechanism for a case of n = 2 agents with u = 2 steps of local stochastic gradient
descent, where after two steps of personalization, the solution to (4) has a lower average cost compared (1). The choice of
cost function in (4) enables us to efficiently compute the stochastic gradient as an unbiased estimator of ∇F

(u)
i (z), which

we will discuss in Section 3.

f1(z)

f2(z)

z∗(2)

z∗

w
∗(2)
1

w
∗(2)
2

w∗
1

w∗
2

Figure 3: Personalization Impact: Two agents seek to minimize (1) (solid line) and (4) (dashed line) with u = 2. Given a
fixed budget of two stochastic gradient descent steps for personalization, Problem (4) (z∗(2)) provides a better initialization
point compared to Problem (1) (z∗). For each i = 1, 2, w∗

i and w
∗(2)
i indicate the parameters of agent i after applying 2

steps of stochastic gradient descent starting from z∗ and z∗(2), respectively.

B. Convergence Result: Non-Convex
We show first-order stationary convergence of Algorithm 1 under Assumptions 1-(iii) and Γw=1. Note that Γw=1 also
incorporates message losses and asynchronous communications. However, each node must compute a local gradient and
perform consensus every round. Before stating the non-convex results, let us state the following lemmas.

Lemma 3. Let Assumptions 2(i)-(iii) hold. Then, for α ≥ 0, F (u)
i (z) in (4) is L̂(u)-smooth as follows: for all i ∈ [n] and

z ∈ Rd, we have:

L̂(u) = (L+ αuGH)(1 + αL)2u,

Epi

∥∥∥∇F̃
(u)
i (z, ϑi)−∇F

(u)
i (z)

∥∥∥2 ≤ σ̂(u)2,

where σ̂(u)2 = 4(1 + αL)2u G2.
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Lemma 3 indicates that (4) is smooth with L̂(u) ≥ L. Lemma 3 does not require an upper bound on α. However, L̂(u)
grows exponentially with α. Moreover, this lemma shows an upper bound on the variance of stochastic gradients. Now,
we are ready to present the convergence result for smooth and non-convex functions.

Theorem 1 (Smooth and Non-Convex). Let Assumptions 1 and 2(i)-(iii) hold with Γw:=1, stepsizes α ≥ 0, θ(t) =
√
n

L̂(u)
√
T

,

and xi(0):=0, for all i ∈ [n]. Then, the following property holds for the iterates of Algorithm 1: for any T ≥ n

1

T

T−1∑
t=0

E

∥∥∥∥∥∇F (u)

(
X(t)⊤1

n

)∥∥∥∥∥
2

= O

(
2L̂(u)F (u)(0) + σ̂(u)

2

(nT )
1
2

)
+O

(
1

T

)
,

where L̂(u) and σ̂(u) as in Lemma 3.

Theorem 1 shows a sublinear convergence to a first-order stationary point with rate O(1/T 1/2) for Algorithm 1 under
Assumption 1 with Γw=1. It is worth mentioning that this assumption may be relaxed with a uniformly probabilistic wake
up once in every Γw ≥ 1 rounds, but we leave this for future studies. The terms concerning the network, i.e., λ, δ, appear
in O(1/T ).

C. Proof of Lemma 1, Lemma 2, and Proposition 1
Before proving Lemma 1, let us state the following lemma from Finn et al. (2019).

Lemma 4 (Mean Value Inequality). Let Λ : x ∈ Rd → Rm be a differentiable function. Let ∇Λ be the function Jacobian,
such that ∇Λi,j =

∂Λi

∂xj
. Let M = max

x∈Rd
∥∇Λ(x)∥. Then, we have

∥Λ(y)−Λ(x)∥ ≤ M∥y − x∥, ∀x,y ∈ Rd.

Note that F (u)
i (z) is the average of F̃

(u)
i (z, ϑi) that also implies ∇F̃

(u)
i (z, ϑi) is an unbiased stochastic estimator of

∇F
(u)
i (z). Therefore, it is enough to show that ∇F̃

(u)
i (., ϑi) is L̂(u)-smooth and µ̂(u)-strongly convex, because

µ̂(u)

2
∥y − x∥2 ≤ F̃

(u)
i (y, ϑi)− F̃

(u)
i (x, ϑi)−

〈
∇F̃

(u)
i (x, ϑi),y − x

〉
≤ L̂(u)

2
∥y − x∥2, (12)

for every x,y ∈ Rd, and any set ϑi of u+1 data batches drawn from distribution pi. This also implies that:

µ̂(u)

2
∥y − x∥2 ≤ F

(u)
i (y)− F

(u)
i (x)−

〈
∇F

(u)
i (x),y − x

〉
≤ L̂(u)

2
∥y − x∥2. (13)

By a similar argument, it can be seen that f̃i(.,Di,r) is µ-strongly convex and L-smooth, due to Assumption 2, for all i ∈
[n], and Di,r data batches drawn uniformly from pi. Before proving the smoothness and strong-convexity for F̃ (u)

i (., ϑi),
let us discuss the Mean Value Inequality for Ψi(w,Di). Note that by definition, we know that all properties in Assumption 2
hold for f̃i(.,Di), for all i ∈ [n] and data batches Di uniformly sampled from pi. Therefore we have:

µ I ≤ ∥∇2f̃i(w,Di)∥ ≤ L I, (14)

for all z ∈ Rd, and data batches Di drawn from distribution pi. This indicates that the following property holds for
∇Ψi(w,Di) = I− α∇2f̃i(w,Di) for Ψi(w,Di):

(1− αL) I ≤ ∇Ψi(w,Di) ≤ (1− αµ) I, (15)

where due to Lemma 4, the following property holds:

∥Ψi(w,Di)−Ψi(v,Di)∥ ≤ (1− αµ)∥w − v∥, (16)
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for all i ∈ [n] and uniformly sample data batches Di with respect to pi.

According to what we discussed so far, we are now ready to prove the smoothness and strong convexity of F̃ (u)
i . First note

that, for all w ∈ Rd,

F̃
(u)
i (w, ϑi) = f̃i(w

(u)
i ,Di,u), (17)

where w
(r+1)
i = w

(r)
i − α∇f̃i(w

(r)
i ,Di,r), r = 0, 1, . . . , u−1, (18)

and w
(0)
i = w, (19)

where ϑi = {Di,r}. We also know that:

∇F̃
(u)
i (w, ϑi) =

[
u−1∏
r=0

(
I− α∇2f̃i(w

(r)
i ,Di,r)

)]
∇f̃i(w

(u)
i ,Di,u). (20)

Now, consider two points w,v ∈ Rd. According to the definition in (17) as well as the property in (16), we can see that
for any two points w,v ∈ Rd: ∥∥∥w(u)

i − v
(u)
i

∥∥∥ ≤ (1− αµ)
∥∥∥w(u−1)

i − v
(u−1)
i

∥∥∥ (21)

≤ (1− αµ)2
∥∥∥w(u−2)

i − v
(u−2)
i

∥∥∥ (22)

...

≤ (1− αµ)u
∥∥∥w(0)

i − v
(0)
i

∥∥∥ (23)

= (1− αµ)u ∥w − v∥ . (24)

We first show that F̃ (u)
i (., ϑi)is L̂(u)-smooth, by providing an upper bound on the following expression:∥∥∥∇F̃

(u)
i (w, ϑi)−∇F̃

(u)
i (v, ϑi)

∥∥∥ (25)

=

∥∥∥∥∥
[
u−1∏
r=0

(
I− α∇2f̃i

(
w

(r)
i ,Di,r

))]
∇f̃i

(
w

(u)
i ,Di,u

)
−

[
u−1∏
r=0

(
I− α∇2f̃i

(
v
(r)
i ,Di,r

))]
∇f̃i

(
v
(u)
i ,Di,u

)∥∥∥∥∥ (26)

tri. ineq.
≤

∥∥∥∥∥
[
u−1∏
r=0

(
I− α∇2f̃i

(
w

(r)
i ,Di,r

))](
∇f̃i

(
w

(u)
i ,Di,u

)
−∇f̃i

(
v
(u)
i ,Di,u

))∥∥∥∥∥ (27)

+

∥∥∥∥∥

u−1∏
r=0

(
I− α∇2f̃i

(
w

(r)
i ,Di,r

))
−

u−1∏
r=0

(
I− α∇2f̃i

(
v
(r)
i ,Di,r

))
︸ ︷︷ ︸

Qi,u−1

∇f̃i

(
v
(u)
i ,Di,u

)∥∥∥∥∥ (28)

Assump. 2
≤ L

∥∥∥∥∥
[
u−1∏
r=0

(
I− α∇2f̃i

(
w

(r)
i ,Di,r

))]∥∥∥∥∥∥∥∥w(u)
i − v

(u)
i

∥∥∥+ ∥Qi,u−1∥
∥∥∥∇f̃i

(
v
(u)
i ,Di,u

)∥∥∥ (29)

(15)
≤ L(1− αµ)u

∥∥∥w(u)
i − v

(u)
i

∥∥∥+G ∥Qi,u−1∥ (30)

(21)
≤ L(1− αµ)2u ∥w − v∥+G ∥Qi,u−1∥ . (31)

To complete the proof for smoothness, we now propose a recursive upper bound on ∥Qi,u−1∥:

∥Qi,u−1∥ =

∥∥∥∥∥
u−1∏
r=0

(
I− α∇2f̃i

(
w

(r)
i ,Di,r

))
−

u−1∏
r=0

(
I− α∇2f̃i

(
v
(r)
i ,Di,r

))∥∥∥∥∥ (32)
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=

∥∥∥∥∥
u−1∏
r=0

(
I− α∇2f̃i

(
w

(r)
i ,Di,r

))
−

[
u−2∏
r=0

(
I− α∇2f̃i

(
w

(r)
i ,Di,r

))](
I− α∇2f̃i

(
v
(u−1)
i ,Di,r−1

))
(33)

+

[
u−2∏
r=0

(
I− α∇2f̃i

(
w

(r)
i ,Di,r

))](
I− α∇2f̃i

(
v
(u−1)
i ,Di,r−1

))
−

u−1∏
r=0

(
I− α∇2f̃i

(
v
(r)
i ,Di,r

))∥∥∥∥∥ (34)

tri. ineq.
≤ α

∥∥∥∥∥
u−2∏
r=0

(
I− α∇2f̃i

(
w

(r)
i ,Di,r

))∥∥∥∥∥
∥∥∥∇2f̃i

(
w

(u−1)
i ,Di,r−1

)
−∇2f̃i

(
v
(u−1)
i ,Di,r−1

)∥∥∥ (35)

+ ∥Qi,u−2∥
∥∥∥I− α∇2f̃i

(
v
(u−1)
i ,Di,r

)∥∥∥ (36)

Assump. 2
≤ αH(1− αµ)u−1 ∥wu−1 − vu−1∥+ (1− αµ) ∥Qi,u−2∥ (37)

(21)
≤ αH(1− αµ)2u−2 ∥w − v∥+ (1− αµ) ∥Qi,u−2∥ . (38)

Consequently, we can infer the following recursion:

∥Qi,r∥ ≤ αH(1− αµ)2u−2 ∥w − v∥+ (1− αµ) ∥Qi,r−1∥ , ∀r ≥ 1, (39)

and we also have:

∥Qi,0∥ =

∥∥∥∥∥(I− α∇2f̃i

(
w

(0)
i ,Di,0

))
−
(
I− α∇2f̃i

(
v
(0)
i ,Di,0

))∥∥∥∥∥ Assump. 2
≤ αH∥w − v∥. (40)

According to (39) and (40), we can see that:

∥Qi,u∥ ≤ αH(1− αµ)2u ∥w − v∥+ (1− αµ) ∥Qi,u−1∥ (41)

≤ αH
[
(1− αµ)2u + (1− αµ)2u−1

]
∥w − v∥+ (1− αµ)2 ∥Qi,u−2∥ (42)

... (43)

≤ αH

[
u−1∑
r=0

(1− αµ)2u−r

]
∥w − v∥+ (1− αµ)u ∥Qi,0∥ (44)

≤ αH(1− αµ)u(u+1)∥w − v∥. (45)

As a result of (25) and (41), we can conclude the smoothness of F̃ (u)
i (., ϑi) as follows:

∥∥∥∇F̃
(u)
i (w, ϑi)−∇F̃

(u)
i (v, ϑi)

∥∥∥ ≤

L(1− αµ)2u + αuGH(1− αµ)u−1︸ ︷︷ ︸
L̂(u)

 ∥w − v∥ . (46)

Before showing the strong convexity result, let us show a similar property to 21:∥∥∥w(u)
i − v

(u)
i

∥∥∥ =
∥∥∥w(u−1)

i − α∇f̃i(w
(u−1)
i ,Di,r)− v

(u−1)
i + α∇f̃i(v

(u−1)
i ,Di,r)

∥∥∥ (47)

tri. ineq.
≥

∥∥∥w(u−1)
i − v

(u−1)
i

∥∥∥− α
∥∥∥∇f̃i(w

(u−1)
i ,Di,r)− α∇f̃i(v

(u−1)
i ,Di,r)

∥∥∥ (48)

Assump. 2
≥

∥∥∥w(u−1)
i − v

(u−1)
i

∥∥∥− αL
∥∥∥w(u−1)

i − v
(u−1)
i

∥∥∥ (49)

≥ (1− αL)
∥∥∥w(u−1)

i − v
(u−1)
i

∥∥∥ (50)

≥ (1− αL)2
∥∥∥w(u−2)

i − v
(u−2)
i

∥∥∥ (51)

...
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≥ (1− αL)u
∥∥∥w(0)

i − v
(0)
i

∥∥∥ (52)

= (1− αL)u ∥w − v∥ . (53)

Now, we are ready to show that F̃ (u)
i (., ϑi) is µ̂(u)-strongly convex, by providing a lower bound on the following expres-

sion: ∥∥∥∇F̃
(u)
i (w, ϑi)−∇F̃

(u)
i (v, ϑi)

∥∥∥ (54)

=

∥∥∥∥∥
[
u−1∏
r=0

(
I− α∇2f̃i

(
w

(r)
i ,Di,r

))]
∇f̃i

(
w

(u)
i ,Di,u

)
−

[
u−1∏
r=0

(
I− α∇2f̃i

(
v
(r)
i ,Di,r

))]
∇f̃i

(
v
(u)
i ,Di,u

)∥∥∥∥∥ (55)

tri. ineq.
≥

∥∥∥∥∥
[
u−1∏
r=0

(
I− α∇2f̃i

(
w

(r)
i ,Di,r

))](
∇f̃i

(
w

(u)
i ,Di,u

)
−∇f̃i

(
v
(u)
i ,Di,u

))∥∥∥∥∥ (56)

−

∥∥∥∥∥

u−1∏
r=0

(
I− α∇2f̃i

(
w

(r)
i ,Di,r

))
−

u−1∏
r=0

(
I− α∇2f̃i

(
v
(r)
i ,Di,r

))
︸ ︷︷ ︸

Qi,u−1

∇f̃i

(
v
(u)
i ,Di,u

)∥∥∥∥∥ (57)

Assump. 2
≥ µ

∥∥∥∥∥
[
u−1∏
r=0

(
I− α∇2f̃i

(
w

(r)
i ,Di,r

))]∥∥∥∥∥∥∥∥w(u)
i − v

(u)
i

∥∥∥− ∥Qi,u−1∥
∥∥∥∇f̃i

(
v
(u)
i ,Di,u

)∥∥∥ (58)

(15)
≥ µ(1− αL)u

∥∥∥w(u)
i − v

(u)
i

∥∥∥−G ∥Qi,u−1∥ (59)

(47)
≥ µ(1− αL)2u ∥w − v∥ −G ∥Qi,u−1∥ , (60)

where by applying (41), we can see that:

∥∥∥∇F̃
(u)
i (w, ϑi)−∇F̃

(u)
i (v, ϑi)

∥∥∥ ≥

µ(1− αL)2u − αuGH(1− αµ)u−1︸ ︷︷ ︸
µ̂(u)

 ∥w − v∥ . (61)

Equations (46) and (61) conclude the proof of Lemma 1. The choice of personalized stepsize α, ensures that µ̂(u) is a
positive constant. Indeed, given arbitrary integer u>0, ε1, ε2 ∈ (0, 1) and personalized stepsize α as in Lemma 1, we have
µ̂(u) ≥ ε1ε2µ, and L̂(u) ≤ (1+ε1−ε1ε2)L.

Now, note that for all x,y ∈ Rd, i ∈ [n], and ϑi, we have:∥∥∥∇F̃
(u)
i (w, ϑi)

∥∥∥ =

[
u−1∏
r=0

(
I− α∇2f̃i(w

(r)
i ,Di,r)

)]
∇f̃i(w

(u)
i ,Di,u) (62)

≤

[
u−1∏
r=0

∥∥∥I− α∇2f̃i(w
(r)
i ,Di,r)

∥∥∥]∥∥∥∇f̃i(w
(u)
i ,Di,u)

∥∥∥ (63)

(15),Assump. 2
≤ (1− αµ)uG. (64)

Therefore, we have: ∥∥∥∇F̃
(u)
i (z, ϑi)−∇F

(u)
i (z)

∥∥∥ ≤
∥∥∥∇F̃

(u)
i (z, ϑi)

∥∥∥+ ∥∥∥∇F
(u)
i (z)

∥∥∥ (65)

≤
∥∥∥∇F̃

(u)
i (z, ϑi)

∥∥∥+ Epi

∥∥∥∇F̃
(u)
i (z, ϑi)

∥∥∥ (66)
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(62)
≤ 2(1− αµ)uG, (67)

where we can conclude the lemma by taking expectation from the square of (65).

Finally, Lemma 1 implies the strong convexity and smoothness parameters for the surrogate loss (4). Lemma 2 states a
bounded variance for the stochastic gradients of the surrogate cost. Therefore, the proof of Proposition 1 is an immediate
consequence of Spiridonoff et al. (2020b, Theorem 15) under these two lemmas.

D. Proof of Lemma 3 and Theorem 1
.

The proof of Lemma 3 is similar to the proof of Lemma 1 and Lemma 2. First note that, according to Assumptions 2(i)-(iii),
f̃i(.,Di,r) is L-smooth, for all i ∈ [n], and Di,r data batches drawn uniformly from pi. Therefore we have:

−L I ≤ ∇2f̃i(w,Di) ≤ L I, (68)

for all z ∈ Rd, and data batches Di drawn from distribution pi. This suggests that:

∇Ψi(w,Di) ≤ (1 + αL) I, (69)

where due to Lemma 4, the following property holds:

∥Ψi(w,Di)−Ψi(v,Di)∥ ≤ (1 + αL)∥w − v∥, (70)

for all i ∈ [n] and uniformly sample data batches Di with respect to pi. Then, for each two points w,v ∈ Rd, we have:∥∥∥w(u)
i − v

(u)
i

∥∥∥ ≤ (1 + αL)
∥∥∥w(u−1)

i − v
(u−1)
i

∥∥∥ (71)

≤ (1 + αL)2
∥∥∥w(u−2)

i − v
(u−2)
i

∥∥∥ (72)

...

≤ (1 + αL)u
∥∥∥w(0)

i − v
(0)
i

∥∥∥ (73)

= (1 + αL)u ∥w − v∥ . (74)

We now show that F̃ (u)
i (., ϑi)is L̂(u)-smooth, as follows:∥∥∥∇F̃

(u)
i (w, ϑi)−∇F̃

(u)
i (v, ϑi)

∥∥∥ (75)

=

∥∥∥∥∥
[
u−1∏
r=0

(
I− α∇2f̃i

(
w

(r)
i ,Di,r

))]
∇f̃i

(
w

(u)
i ,Di,u

)
−

[
u−1∏
r=0

(
I− α∇2f̃i

(
v
(r)
i ,Di,r

))]
∇f̃i

(
v
(u)
i ,Di,u

)∥∥∥∥∥ (76)

tri. ineq.
≤

∥∥∥∥∥
[
u−1∏
r=0

(
I− α∇2f̃i

(
w

(r)
i ,Di,r

))](
∇f̃i

(
w

(u)
i ,Di,u

)
−∇f̃i

(
v
(u)
i ,Di,u

))∥∥∥∥∥ (77)

+

∥∥∥∥∥

u−1∏
r=0

(
I− α∇2f̃i

(
w

(r)
i ,Di,r

))
−

u−1∏
r=0

(
I− α∇2f̃i

(
v
(r)
i ,Di,r

))
︸ ︷︷ ︸

Qi,u−1

∇f̃i

(
v
(u)
i ,Di,u

)∥∥∥∥∥ (78)

Assump. 2(i)−(iii)

≤ L

∥∥∥∥∥
[
u−1∏
r=0

(
I− α∇2f̃i

(
w

(r)
i ,Di,r

))]∥∥∥∥∥∥∥∥w(u)
i − v

(u)
i

∥∥∥+ ∥Qi,u−1∥
∥∥∥∇f̃i

(
v
(u)
i ,Di,u

)∥∥∥ (79)
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(69)
≤ L(1 + αL)u

∥∥∥w(u)
i − v

(u)
i

∥∥∥+G ∥Qi,u−1∥ (80)

(71)
≤ L(1 + αL)2u ∥w − v∥+G ∥Qi,u−1∥ . (81)

Moreover, we have:

∥Qi,u−1∥ =

∥∥∥∥∥
u−1∏
r=0

(
I− α∇2f̃i

(
w

(r)
i ,Di,r

))
−

u−1∏
r=0

(
I− α∇2f̃i

(
v
(r)
i ,Di,r

))∥∥∥∥∥ (82)

=

∥∥∥∥∥
u−1∏
r=0

(
I− α∇2f̃i

(
w

(r)
i ,Di,r

))
−

[
u−2∏
r=0

(
I− α∇2f̃i

(
w

(r)
i ,Di,r

))](
I− α∇2f̃i

(
v
(u−1)
i ,Di,r−1

))
(83)

+

[
u−2∏
r=0

(
I− α∇2f̃i

(
w

(r)
i ,Di,r

))](
I− α∇2f̃i

(
v
(u−1)
i ,Di,r−1

))
−

u−1∏
r=0

(
I− α∇2f̃i

(
v
(r)
i ,Di,r

))∥∥∥∥∥ (84)

tri. ineq.
≤ α

∥∥∥∥∥
u−2∏
r=0

(
I− α∇2f̃i

(
w

(r)
i ,Di,r

))∥∥∥∥∥
∥∥∥∇2f̃i

(
w

(u−1)
i ,Di,r−1

)
−∇2f̃i

(
v
(u−1)
i ,Di,r−1

)∥∥∥ (85)

+ ∥Qi,u−2∥
∥∥∥I− α∇2f̃i

(
v
(u−1)
i ,Di,r

)∥∥∥ (86)

Assump. 2(i)−(iii)

≤ αH(1 + αL)u−1 ∥wu−1 − vu−1∥+ (1 + αL) ∥Qi,u−2∥ (87)
(71)
≤ αH(1 + αL)2u−2 ∥w − v∥+ (1 + αL) ∥Qi,u−2∥ . (88)

Thus, we can infer that:

∥Qi,r∥ ≤ αH(1 + αL)2u−2 ∥w − v∥+ (1 + αL) ∥Qi,r−1∥ , ∀r ≥ 1, (89)

therefore,

∥Qi,u∥ ≤ αH(1 + αL)2u ∥w − v∥+ (1 + αL) ∥Qi,u−1∥ (90)

≤ αH
[
(1 + αL)2u + (1 + αL)2u−1

]
∥w − v∥+ (1 + αL)2 ∥Qi,u−2∥ (91)

... (92)

≤ αH

[
u−1∑
r=0

(1 + αL)2u−r

]
∥w − v∥+ (1 + αL)u ∥Qi,0∥ (93)

≤ αH(1 + αL)2u(u+1)∥w − v∥. (94)

As a result of (75) and (90), we can conclude the smoothness of F̃ (u)
i (., ϑi) as follows:∥∥∥∇F̃

(u)
i (w, ϑi)−∇F̃

(u)
i (v, ϑi)

∥∥∥ ≤
(
L(1 + αL)2u + αuGH(1 + αL)2u−2

)
∥w − v∥ (95)

≤

(L+ αuGH)(1 + αL)2u︸ ︷︷ ︸
L̂(u)

 ∥w − v∥ (96)

Moreover, note that for all x,y ∈ Rd, i ∈ [n], and ϑi, we have:

∥∥∥∇F̃
(u)
i (w, ϑi)

∥∥∥ =

[
u−1∏
r=0

(
I− α∇2f̃i(w

(r)
i ,Di,r)

)]
∇f̃i(w

(u)
i ,Di,u) (97)

≤

[
u−1∏
r=0

∥∥∥I− α∇2f̃i(w
(r)
i ,Di,r)

∥∥∥]∥∥∥∇f̃i(w
(u)
i ,Di,u)

∥∥∥ (98)
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(69),Assump. 2(i)−(iii)

≤ (1 + αL)uG. (99)

Therefore, we have: ∥∥∥∇F̃
(u)
i (z, ϑi)−∇F

(u)
i (z)

∥∥∥ ≤
∥∥∥∇F̃

(u)
i (z, ϑi)

∥∥∥+ ∥∥∥∇F
(u)
i (z)

∥∥∥ (100)

≤
∥∥∥∇F̃

(u)
i (z, ϑi)

∥∥∥+ Epi

∥∥∥∇F̃
(u)
i (z, ϑi)

∥∥∥ (101)

(62)
≤ 2(1 + αL)uG, (102)

Equations (95), and (100) conclude the proof of Lemma 3.

Now that we have shown the smoothness of F (u)
i (·) and bounded variance for the stochastic gradients, we are ready to

state the convergence result for the smooth non-convex functions.

Before stating the proof of Theorem 1, note that under Γw=1, matrices ∆(t) ∈ R(n+m′)×d in the linear system (7), turn
into:

[∆(t)]i :=

{
θ∇F̃

(u)
i (zi(t), ϑ

t
i)

⊤, i ∈ [n],

0⊤, i /∈ [n],
(103)

where θ(t) = θ is a constant stepsize.

Moreover, the following lemma helps us to provide a bound between zi(t) and X(t)⊤1
n , for all i ∈ [n], and t ≥ 0.

Lemma 5. Suppose Assumption 1 holds. Consider the sequence of zi(t), i ∈ [n], generated by (7). Then the following
property holds: for all t > 0 ∥∥∥∥zi(t)−X(t)⊤1

n

∥∥∥∥
1

≤δλt ∥X(0)∥1 +
t−1∑
k=0

δλt−k ∥∆(k)∥1 ,

where δ:= 1
1−nγ6 , λ:=(1−nγ6)1/(2nΓs), γ:=(1/n)nΓs , and ∥X∥1 denotes the sum of 1-norm of matrix X’s rows, for any

matrix X.

According to (7), and the fact that M(t) is a column stochastic matrix, we have:

1

n
1⊤X(t+1) =

1

n
1⊤X(t)− 1

n
1⊤∆(t) (104)

Due to Lemma 3, we can infer that F (u) is L̂(u)-smooth. Therefore, the following property holds:

EF (u)

(
X(t+1)⊤1

n

)
= EF (u)

(
X(t)⊤1

n
− ∆(t)⊤1

n

)
(105)

≤ EF (u)

(
X(t)⊤1

n

)
− θE

〈
∇F (u)

(
X(t)⊤1

n

)
,
1

n

n∑
i=1

∇F̃
(u)
i (zi(t), ϑ

t
i)

〉
(106)

+
θ2L̂(u)

2
E

∥∥∥∥∥ 1n
n∑

i=1

∇F̃
(u)
i (zi(t), ϑ

t
i

∥∥∥∥∥
2

, (107)

where using 2⟨a, b⟩ = ∥a∥2 + ∥b∥2 − ∥a− b∥2, and taking the expectation, we have:

E
∥∥∥∥∇F (u)

(
X(t)⊤1

n

)∥∥∥∥2 ≤
2EF (u)

(
X(t)⊤1

n

)
θ

−
2EF (u)

(
X(t+1)⊤1

n

)
θ

(108)

+
θ σ̂(u)2L̂(u)

n
+

2L̂(u)2

n
Ψx(t),

where Ψx(t) = ∥Z− 11⊤

n X(t)∥2F . Note that according to Lemma 5, we know that Ψx(t) = O(θ2). Thus, summing (108)
from t = 0 to T−1 and dividing by T leads to the proof.
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