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Figure 1: Ultra-resolution results generated by the linearized FLUX.1-dev model with our approach
CLEAR. Resolution is marked on the top-right corner of each result in the format of widthxheight.
Corresponding prompts can be found in the appendix.

Abstract

Diffusion Transformers (DiT) have become a leading architecture in image gen-
eration. However, the quadratic complexity of attention mechanisms, which are
responsible for modeling token-wise relationships, results in significant latency
when generating high-resolution images. To address this issue, we aim for a linear
attention mechanism in this paper that reduces the complexity of pre-trained DiTs
to linear. We begin our exploration with a comprehensive summary of existing
efficient attention mechanisms and identify four key factors crucial for the success-
ful linearization of pre-trained DiTs: locality, formulation consistency, high-rank
attention maps, and feature integrity. Based on these insights, we introduce a
convolution-like local attention strategy termed CLEAR, which limits feature in-
teractions to a local window around each query token, and thus achieves linear
complexity. Our experiments indicate that by fine-tuning the attention layer on
merely 10K self-generated samples for 10K iterations, we can effectively transfer
knowledge from a pre-trained DiT to a student model with linear complexity, yield-
ing results comparable to those of the teacher model. Simultaneously, it reduces
attention computations by 99.5% and accelerates generation by 6.3 times for gener-
ating 8K-resolution images. Furthermore, we investigate favorable properties in the
distilled attention layers, such as zero-shot generalization across various models
and plugins, as well as improved support for multi-GPU parallel inference. Models
and codes are available here.
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1 Introduction

Diffusion models [42} [14, 150, 26] have gained widespread attention in text-to-image generation,
proving to be highly effective for producing high-quality and diverse images from textual prompts [[10}
64]. Traditionally, architectures based on UNet [51} 50] have dominated this field due to their robust
generative capabilities. In recent years, Diffusion Transformers (DiTs) [44, (1} 16, [17} 136} [18} 5]
have emerged as a promising alternative, achieving leading performance in this field. Unlike the
UNet-based architectures, DiTs leverage the attention mechanism [56] to model intricate token-wise
relationships with remarkable flexibility, enabling them to capture nuanced dependencies across all
tokens in images and texts, and thus produce visually rich and coherent outputs.

Despite their impressive performance, the attention layers—which model intricate pairwise token
relationships with quadratic complexity—can introduce substantial latency in high-resolution image
generation. As shown in Fig.[2] FLUX.1-dev [34]], a state-of-the-art text-to-image DiT, requires over
30 minutes to generate 8K-resolution images with 20 denoising steps, even with hardware-aware
optimizations like FlashAttention [12}[11]].

Focusing on these drawbacks, we are curious about one question: Is it possible to convert a pre-trained
DiT to achieve linear complexity? The answer is not straightforward, in fact, as it remains unclear
whether existing efficient attention mechanisms—despite their recent widespread exploration [[13} 31}
651 1491 158,152, 13} 168, 18}, 167, [71} 128l 21]—can be effectively applied to pre-trained DiTs.

To answer this question, we initiate our explo-
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four elements crucial for for linearizing pre- supplemented in the appendix.

trained DiTs, including locality, formulation

consistency, high-rank attention maps, and feature integrity. Satisfying all these criteria, we present a
convolution-like linearization strategy termed CLEAR, where each query interacts only with tokens
within a predefined distance 7. Since the number of key-value tokens interacting with each query is
fixed, the resulting DiT achieves linear complexity with respect to image resolution.

To our surprise, such a concise design yields results comparable to original FLUX.1-dev after a
knowledge distillation process [25] with merely 10K fine-tuning iterations on 10K self-generated
samples. As shown in Fig.[[] CLEAR exhibits satisfactory cross-resolution generalizability, a property
also reflected in UNet-based diffusion models [2, [15} 23} 29]]. For ultra-high-resolution generation
like 8K, it reduces attention computations by 99.5% and accelerates the original DiT by 6.3 times,
as shown in Fig.[2| The distilled local attention layers are also compatible with different variants
of the teacher model, e.g., FLUX.1-dev and FLUX.1-schnell, and various pre-trained plugins like
ControlNet [69] without requiring any adaptation.

As the token interactions are performed locally, it is convenient for CLEAR to support multi-GPU
parallel inference. We further develop a patch-parallel paradigm that minimizes communication
overhead. Our contribution can be summarized as follows:

* We provide a taxonomic overview of recent efficient attention mechanisms and identify four
elements essential for linearizing pre-trained DiTs.



* Based on them, we propose a convolution-like local attention mechanism termed CLEAR
as an alternative to default attention, which is the first linearization strategy tailored for
pre-trained DiT to the best of our knowledge.

* We delve into multiple satisfactory properties of CLEAR through experiments, including
its comparable performance with the original DiT, linear complexity, cross-resolution
generalizability, cross-model/plugin generalizability, support for parallel inference, efc.

2 Efficient Attention: A Taxonomic Overview

The attention mechanism [56]] is known for its flexibility in modeling token-wise relationships. It
takes a query matrix ) € R™*¢ akey matrix K € R™*¢, and a value matrix V' € R™*¢ as input
and produces an output matrix O € R"*¢ via:

KT

O = softmax (Q\[ )V, (1)
&

where n and m are the numbers of query and key-values tokens respectively, and ¢ and ¢’ are the

feature dimensions for query-key and value tokens. In line with standard design conventions, we

assume ¢ = ¢’ throughout this paper, and in the case of self-attention, @, K, and V' come from the

same feature maps with m = n.

As shown in Eq. [T} self-attention involves constructing n x n attention maps to model pair-wise
token-to-token relationships, which results in both time and memory complexity. To address this issue,
numerous studies focus on developing efficient attention mechanisms. In this section, we summarize
recent work in this area and assess its applicability to DiT linearization. Specifically, we categorize
existing approaches into three main categories: formulation variation, key-value compression, and
key-value sampling.

2.1 Formulation Variation

Revisiting Eq. |1} if the softmax operation is omitted, we can first compute K 'V, yielding a ¢ x ¢
matrix with linear time in relation to n. In this way, a series of linear attention mechanisms apply
kernel functions f(-) and ¢(-) to @ and K respectively to mimic the effect of softmax:

0= f(Qg(K)'V, @)

such as Mamba?2 [[13], Gated Linear Attention [65]], and Generalized Linear Attention [39]]. An-
other mainstream of methods try to replace the softmax operation with efficient alternatives, like
sigmoid [49], relu? [28 67, and Nystrom-based approximation [63]].

2.2 Key-Value Compression

In the default setting of self-attention, the numbers of query and key-value tokens are consistent, i.e.,
m = n, and the shape of the attention map would be n x n. It is thus promising to compress key-value
tokens so that m can be smaller than n to reduce the complexity. Following this routine, PixArt-
Sigma [5] compress KV tokens locally with a downsampling Conv2d operator. Agent Attention [21]]
first conducts attention with downsampled () and full-sized K and V to select agent KV tokens
for compression. Then, original () would interact with these compressed tokens. Similarly, Slot
Attention [71] adopts learnable slots to obtain agent KV. Linformer [S8] introduces learnable maps to
obtain compressed tokens from the original ones.

2.3 Key-Value Sampling

Efficient attention based on key-value sampling is based on the assumption that not all key-value
tokens are important for a query and the attention matrix is highly sparse. Comparing with key-value
compression, it prunes key-value tokens for each query instead of producing new tokens. For instance,
Strided Attention [7] samples one key-value token at a regular interval. Routing Attention [52]
samples key-value tokens based on grouping. Swin Transformer [40] divides feature maps into non-
overlapping local windows and performs attention independently for each window. Neighborhood
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Figure 3: Preliminary results of various efficient attention methods on FLUX-1.dev. The prompt is “A

small blue plane sitting on top of a field".

. Perturb Remote Features Perturb Local Features
. Query :

max(|dy) =32 max(ldy)=16  ma(az)=8  min(a;) =2

AN NG
HEEE SEEE , |
Figure 5: We try perturbing remote and local fea-

HEEE BN - e -
EEEE EEEE/ st i for oy pomtios cbetding,

Full Attention Maps Attention Maps w.r.t. Query Original Image Pertlll'bing remOte features haS no ObVIOllS lmpaCt
Figure 4: Visualization of attention maps by vari- on image quality, whereas altering local ones re-

ous heads. Attention in pre-trained DiTs is largely sults in significant distortion. The text prompt and
conducted in a local fashion. the original result are consistent with Fig. El

Attention [22]] selects key-value tokens within a local window around each query. BigBird [68] uses
a selection strategy combining neighborhood attention and random attention, and LongFormer [3]]
combines neighborhood attention with some global tokens that are visible to all tokens.

3 Methods

3.1 What are Crucial for Linearizing DiTs?

Building on the overview of recent efficient attention mechanisms in Sec. 2] we explore a key question
here: What specific features are essential for successfully linearizing pre-trained DiTs? We thus try
substituting all the attention layers in FLUX.1-dev with various efficient alternatives and fine-tuning
parameters in these layers. The preliminary text-to-image results are shown in Fig.[3] through which
we figure out four key elements: locality, formulation consistency, high-rank attention maps, and
feature integrity. According to these perspectives, we summarize some previous efficient attention
methods in Tab. Il

Locality indicates that key-value Vethod Locarit, Formulation  HighRank  Feature
tokens fallen in the nelghbor_ Y Consistency ~ Attention Maps Integrity
hood Of a query are included Linealt Attgnlion @ Yes No No Yes
. . Sigmoid Attention Yes No Yes Yes
for attention. From Flg El PixArt-Sigma [5] Yes Yes Yes No
we observe that many meth- Agent Atlentiqn[lﬂ] Maybe Yes Yes No
. . . Strided Attention [[7] No Yes Yes Yes
ods equipped with this feature Swin Transformer [40] Yes Yes No Yes
yleld at least plausible results, Neighborhood Attention [22] Yes Yes Yes Yes

like PixArt-Sigma, Swin Trans- Table 1: Summary of existing efficient attention mechanisms
former, and Neighborhood Atten- based on the four factors crucial for linearizing DiTs.

tion. Particularly, comparing the results of Neighborhood Attention and Strided Attention, we find
that incorporating local key-value tokens diminishes a lot of distorted patterns.

The reason for these phenomena is that pre-trained DiTs, such as FLUX, rely heavily on local features
to manage token relationships. To validate this, we visualize attention maps in Fig.[dand observe that
the most significant attention scores fall in the local area around each query.

In Fig.[5] we provide further evidence to illustrate the importance of local features, that perturbing
remote features would not damage the quality of FLUX.1-dev much. Specifically, FLUX.1-dev
relies on rotary position embedding [535]] to perceive spatial relationships and is sensitive to the

relative distance (dg;”), d%’)) on the two axes of a 2D feature map, where indices 7 and j denote
query and key token indices respectively. We perturb remote features by clipping the relative

distances for rotary position embedding to a maximum value r» when they exceed this threshold,



ie., d( Y d( ) chp( r,7). As shown in Fig. left), the results are reasonable for a 64 x 64
feature map when 7 is as small as 8. Conversely, if we perturb local features by setting their
minimum absolute distances to r, even with r as small as 2, the result still collapses as shown in
Fig. B|right)—emphasizing the importance of locality.

Formulation Consistency denotes that the efficient attention still applies the sof tmax-based formu-
lation of the scaled dot-product attention. LinFusion [39] has shown that linear attention approaches
like linear attention achieve promising results in attention-based UNets. However, we find that it is
not the case for pre-trained DiTs, as shown in Fig.[3] We speculate that it is due to attention layers
being the only modules for token interactions in DiTs, unlike the case in U-Nets. Substituting all of
them would have a substantial impact on the final outputs. Other formulations like Sigmoid Attention
fail to converge within a limited number of iterations, unable to mitigate the divergence between the
original and modified formulations. It is thus beneficial to maintain consistency with the original
attention function.

High-Rank Attention Maps means that attention maps calculated by efficient attention alternatives
should be sufficient to capture the intricate token-wise relationships. As visualized in Fig.[d] extensive
attention scores are concentrated along the diagonal, indicating that the attention maps do not exhibit
the low-rank property assumed by many prior works. That is why methods like linear attention and
Swin Transformer largely produce blocky patterns.

Feature Integrity implies that raw query, key, and value features are more favorable than the
compressed ones. Although PixArt-Sigma has demonstrated that applying KV compression on deep
layers would not hurt the performance much, this approach is not suitable for completely linearizing
pre-trained DiTs. As shown in Fig. 3] methods based on KV compression, such as PixArt-Sigma and
Agent Attention, tend to produce distorted textures compared to the results from Swin Transformer
and Neighborhood Attention, which highlights the necessity to preserve the integrity of the raw query,
key, and value tokens.

3.2 Conv-Like Linearization
Text Key-Value —

Given the above analysis of the
crucial factors for linearizing
DiTs, Neighborhood Attention is
the only scheme satisfying all 4
constraints. Motivated by this,
we propose CLEAR, a conv-like
linearization strategy tailored for
pre-trained DiTs. Specifically,
given that state-of-the-art text-
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text tokens and local key-value tion module, text queries aggregate 1nf0rmat10n.fr0m all text and
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hood around it. Since the number rom tokens within a local circular window.

of text tokens and the local neighborhood size remains constant as resolution increases, the overall
complexity scales linearly with the number of image tokens.

& Trainable
Module

Unlike Neighborhood Attention and standard 2D convolution, which use a square sliding window,

CLEAR employs circular windows, selecting key-value tokens within a predefined Euclidean radius r

for each query. Compared with corresponding square windows, the computation overhead introduced

by this designis ~ 7 times. Formally, the attention mask M is constructed as follows:

1, ifi < Ngegt OF j < Nyegt OF d(w +d;; W)2 .2,

Mj; = 3)
0, otherwise,



Against Original Against Real

Method/Setting H FID () LPIPS(}) CLIPI() DINO(}) | FID(}) LPIPS () | CLIE-T(M IS GFLOPS ()
Original FLUX-1.dev || | 3493 081 | 3106 3825 2609
Sigmoid Attention 4780 091 4134 025 | 45769 084 17535 LIS 2609
Linear Attention [[3J39)63J31] | 32454 085 51.37 217 | 32558 087 1916 291 174.0
PixArt-Simga [3] 3064 056 86.43 7145 || 3338 088 312 3214 677
Agent Attention [21] 6985 065 78.18 5600 || 5431 0.87 3038 2103 80.5
Strided Attention [7) 2488 0.6l 85.50 7072 || 3527 089 3062 32.05 677
Swin Transformer [40] 1890 065 85.72 7343 || 3220 087 3064 3468 617
CLEAR (r = 8) 1553 0.64 86.47 7436 | 3206 083 3060 3447 635
disHlL 1307 062 88.56 7766 || 3306 082 3082 3592 635
CLEAR (r = 16) 1427 060 88.51 7835 || 3236 0.89 3090 37.13 80.6
w. distill 1372 058 88.53 7730 || 3363 088 3065 37.84 80.6
CLEAR (r = 32) 107 052 89.92 8120 || 3347 082 3096 3780 1541
w. distill 8.85 0.46 92.18 8544 || 3488 081 3100 3902 1541

Table 2: Quantitative results of the original FLUX-1.dev, previous efficient attention methods, and
CLEAR proposed in this paper with various r on 5,000 images from the COC0O2014 validation
dataset at a resolution of 1024 x 1024.

where niq,; denotes the number of text tokens. Fig. illustrates this paradigm.

3.3 Training and Optimization

Although each query only has access to tokens within a local window, stacking multiple Transformer
blocks enables each token to gradually capture holistic information—similar to the way convolutional
neural networks operate. To promote functional consistency between models before and after fine-
tuning, we employ a knowledge distillation objective during the fine-tuning process. Specifically, the
conventional flow matching loss [17, [38] is included:

Lim = ||(e = 20) — eo(z1: t,9)[3, )

where zj is denotes the feature of an image x encoded with a pre-trained VAE encoder £(-) while
24 1s its noisy version at the ¢-th timestep, y is the text condition, and €4(+) is the DiT backbone for
denoising with parameters 6. Beyond that, we encourage consistency between the linearized student
model and the original teacher model, in terms of predictions and attention outputs:

£pred = ||€9(Zt7tay) - 690rg (Zt?t’y)H%’

L
1 1 1
Lawn =7 I leg (21, t.y) = cf)) (st 9) 3,
=1

&)

where 0,,, denotes parameters of the original teacher DiT, L is the number of attention layers
applying the loss term, and the superscript (V) indicates the layer index. The training objectives can
be written as:

Hgn Ez~£(a;),y,e~./\/(0,1)7t[£fm + aﬁpred + BLattnL (6)

where « and 3 are hyper-parameters controlling the weights of the corresponding loss terms. Only
parameters in the attention layers are trainable.

For the training data, we find that training on samples generated by the original DiT model yields
significantly better results than training on a real image dataset, even when the real dataset contains
much more higher-quality data. Please refer to Sec. [#.3|for more discussions.
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3.4 Multi-GPU Parallel Inference ‘
Since attention is confined to a local window
around each query, CLEAR offers greater ef-
ficiency for multi-GPU patch-wise parallel in- | | !
ference compared to the full attention in the N-1 N2 N=4 N=8
original DiTs, which is particularly valuable for Figure 7: To enhance multi-GPU parallel inference,
generating ultra-high-resolution images. Specif- each text query aggregates only the key-value to-
ically, each GPU is responsible for processing kens from the patch managed by its assigned GPU,
an image patch, and the GPU communication then averages the attention results across all GPUs,
is only required in the boundary areas. In other which also generates high-quality images.




Setting  PSNR (1) SSIM (1) FID (|) LPIPS (}) CLIP-I () DINO (1) CLIP-T (1) IS (1) GFLOPS (})

-1024 x 1024 — 2048 x 2048-
FLUX-1.dev - - - - - - 31.11 24.53 3507.9

CLEAR (r =8) 27.57 0.91 13.55 0.12 98.97 98.37 31.09  25.05 246.2
CLEAR (r = 16) 27.60 0.92 13.43 0.12 98.97 98.34 31.08  25.46 352.6
CLEAR (r = 32) 28.95 0.94 10.87 0.10 99.23 98.82 31.09 2548 724.3

—2048 x 2048 — 4096 x 4096—
FLUX-1.dev - - - - - - 3129 2436  53604.4

CLEAR (r =8) 26.19 0.87 20.87 0.22 98.02 96.56 31.16 25.87 979.3

CLEAR (r = 16) 2698 088 1620  0.19 98.48 97.64 3125 2513 14332

CLEAR (r = 32) 27.70 090 1356  0.17 98.72 98.21 3120 2481 31417
Table 3: Quantitative results of the original FLUX-1.dev and our CLEAR with various 7 on 1,000
images from the COCO2014 validation dataset at resolutions of 2048 x 2048 and 4096 x 4096.

words, if we divide a H x W feature map into NV patches along the vertical dimension, with each
GPU handling a % x W patch, the communication cost for image tokens between each adjacent
GPUs is O(r x W) in CLEAR comparing with O(H x W) in the original DiT.

Nevertheless, since each text token requires information from all image tokens, the exact attention
computation in CLEAR still necessitates synchronization of all key-value tokens specially for text
tokens, which compromises its potential in this regard. Fortunately, as shown in Fig.|/| we empirically
find that without any training or adaptation, the original attention computation for text tokens can be
effectively approximated by a patch-wise average while not hurting the performance too much, i.e.,

N T

exr K

Otext = % ) " softmax (Qt\}p> v, )
p=1 ¢

where p is the patch/GPU index. Consequently, we only need to aggregate attention outputs for text
tokens, resulting in a constant communication cost and eliminating the need to transmit all tokens.

Moreover, our pipeline is orthogonal to existing strategies for patch parallelism such as Distrifu-
sion [35], which applies asynchronous computation and communication by using staled feature maps.
Building CLEAR on top of these optimizations would lead to even greater acceleration.

4 Experiments

4.1 Settings and Implementation Details

In this paper, we primarily conduct experiments with the FLUX model series due to its state-of-the-art
performance in text-to-image generation. Studies on more DiTs can be found in the appendix. We
replace all the attention layers in FLUX-1.dev with the proposed CLEAR and experiment with three
various window sizes with r = 8, r = 16, and » = 32. Leveraging FlexAttention in PyTorch [43]],
CLEAR, as a sparse attention mechanism, can be efficiently implemented on GPUs with low-level
optimizations. We fine-tune parameters in attention layers on 10K samples with 1024 x 1024
resolution generated by FLUX-1.dev itself for 10K iterations under a total batch size 32 using the
loss function defined in Eq.[6] L, is applied on single_transformer_blocks of FLUX, whose
layer indices are 20 ~ 57. Following previous works on architectural distillation for diffusion
models [32] [39]], both hyper-parameters « and 5 are set as 0.5. Other hyper-parameters, including
schedulers, optimizers, etc, follow the default settings provided by Diffusers [57]. The training is
conducted on 4 H100 GPUs supported by DeepSpeed ZeRO-2 [48]], which takes ~ 1 day to finish.
Unless otherwise specified, all inference is conducted on a single H100 GPU.

Following previous works [35}[39], we quantitatively study the proposed method on the validation set
of COCO2014 [37] and randomly sample 5,000 images along with their prompts for evaluation. Since
CLEAR aims to linearize a pre-trained DiT, we also benchmark our method against the results by
the original DiT using consistent random seeds. Following conventions [53 133} 160 66], we consider
FID [24], LPIPS [70], CLIP image similarity [47], and DINO image similarity [4] in this setting as
metrics. For settings requiring pixel-wise alignment like image upsampling and ControlNet [69], we
additionally incorporate PSNR [27]] and multi-scale SSIM [59] for reference. While comparing with
real images in COCO, we only include FID and LPIPS for distributional distances. Furthermore,
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Figure 8: Qualitative results by the linearized FLUX-1.dev with CLEAR and the original model.

bustling city street portrait of elderly man
market, colorful with weathered face,
stalls, people strong character,
shopping, lively natural lighting, black
atmosphere and white

steampunk airship over colorful coral reef

city, gears and cogs, underwater, exotic

Victorian architecture, fish, clear blue water,
smokey atmosphere vibrant marine life

golden hour beach with

crashing waves, warm

sunlight, peaceful and
idyllic setting

CLIP text similarity [47], Inception Score (IS) [54], and the number of floating point operations
(FLOPS) are adopted to reflect textual alignment, general image quality, and computational burden,
respectively. Text prompts for qualitative examples are generated by GPT-4o.

4.2 Main Comparisons

We aim to linearize a pre-trained DiT in this paper, and the linearized model is expected to perform
comparably to the original one. As illustrated in Sec. [3.1] most efficient attention algorithms result
in suboptimal performance for the target problem, as quantitatively supported by the evaluation in
Tab. 2] In contrast, the proposed convolution-like linearization strategy achieves comparable or even
superior performance to the original FLUX-1.dev while requiring less computation, underscoring its
potential for effectively linearizing pre-trained DiTs. Please refer to the appendix for an analysis of
training dynamics and convergence.

With the knowledge distillation loss terms defined in Eq. 5] the differences between the outputs of the
linearized models and the original model are further minimized. More evaluations with the GenEval
benchmark [19] and GPT scores can be found in the appendix. Qualitatively, as shown in Fig. [8] the
linearized models produced by CLEAR yield comparable results.

For efficiency, CLEAR significantly reduces FLOPS compared to the original FLUX. However, due
to the complexity of kernel implementation, as shown in Fig. 2] its practical speedup does not fully
match the theoretical gains. Nevertheless, at 1K resolution, CLEAR with » = 8 and r = 16 still
outperforms the original FLUX, with acceleration gains increasing as the resolution scales up.

4.3 Empirical Studies

In this part, we examine several noteworthy properties of CLEAR, including resolution extrapolation,
zero-shot generalization across different models and plugins, multi-GPU parallel inference, and the
effects of various training data.

Resolution Extrapolation. One of the key advantages of a linearized diffusion model is its ability to
efficiently generate ultra-high-resolution images [39]]. However, many previous studies have revealed
that it is challenging for diffusion models to generate images beyond their native resolution during
training. [[15} [16]. They thus apply a practical solution for generating high-resolution
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Figure 9: Qualitative examples of using CLEAR with SDEdit [41] for high-resolution generation
(left), FLUX-1.schnell in a zero-shot manner (middle), and ControlNet [69] (right). G.T. and Cond.
denote ground-truth and condition images, separately.

. . Against Original Against GT
Condition  Setting HPSNR (1) SSIM (1) FID (|) LPIPS (}) CLIP-I (1) DINO (1)||FID (|) LPIPS (})[| CLTP-T () IS (1) RMSE (1)

FLUX-1.dev ; ; - ; ; 4025 032 3016 2222 0.039
Gy CLEARGr =) 2505 093 2614 019 9339 9424 || 438 03I 2000 2129 0036
Y CLEAR (= 16)|| 2824 095 1686 0.3 9600 9673 | 4045 031 3019 2234 0040
CLEAR (r—32)|| 3059 097 1157 009 9733 9812 | 4021 031 3021 2194  0.042
e FLUX-Idev ; ; ; ; ; - 3820 031 3016 2154 0019
CLEAR (r = 16)|| 30.12 097 91 013 9925 9904 || 3973 034 3011 2177 0021
e FLUX-Ldev ; ; ; ; ; - 3872 031 3020 2142 0028
CLEAR (= 16)|| 2892 096 1056 013 9902 9867 | 39.66 033 3014 2167 0033

Table 4: Quantitative zero-shot generalization results of the proposed CLEAR to a pre-trained
ControlNet with gray, tiled, and blur image conditions on 1,000 images from the COCO2014
validation dataset. RMSE here denotes the Root Mean Squared Error between the extracted conditions
and the input conditions.

. Against Original Against Real
Setting FID (|) LPIPS (|) CLIP-I () DINO (1) FID (}) LPIPS () CHP-T (1) IS (1) GFLOPS ()
CLEAR (r = 16) 1372  0.58 88.53 7730 3363  0.88 3065 37.84 806
Square Neighborhood 13.77  0.58 88.47 76.53 3316  0.88 3069 3796  92.1
Convolution 2102 073 57.86 2120 190.04  0.89 2326  6.63 78.9

Table 5: Comparisons of circular neighborhood, square neighborhood, and standard attention.

images in a coarse-to-fine manner and devise adaptive strategies for components such as position
embeddings and attention scales. The proposed CLEAR, on the other hand, makes architectural
modifications to a pre-trained diffusion backbone, making it seamlessly applicable to them.

In this paper, we adopt SDEdit [41], a simple yet effective baseline adapting an image to a larger
scale, for generating high-resolution images. In addition, we also enlarge the NTK factor of rotary
position embeddings from 1 to 10 following [435]], balance the entropy shift of attention using a log-
scale attention factor [30]], and disable the resolution-aware dynamic shifting [[17] in the denoising
scheduler. By adjusting the editing strength in SDEdit, as shown in Fig. [9left), we can effectively
control the trade-off between fine details and content preservation. In the appendix, we also try
building CLEAR on top of various methods for resolution extrapolation.

Quantitatively, we measure the dependency between results by CLEAR with those by the original
FLUX-1.dev. As shown in Tab. 3] we achieve MS-SSIM scores as high as 0.9, showcasing the
effectiveness of the linearized model with CLEAR as an efficient alternative to the original FLUX.

Circular Neighborhood vs Square Neighborhood vs Standard Convolution. Compared with
Neighborhood Attention [22], a noticeable difference in CLEAR is its circular neighborhood instead
of a square. Computationally, the FLOPS of a circular neighborhood with radius r is ~ 7 X that of a
square neighborhood with a side length 2r — 1. We empirically find that they achieve comparable
performance, as shown in Tab.[5] We also experiment with the standard convolution and find that it
fails to generate visually plausible images, which highlights the importance of formulation consistency

mentioned in Sec.[3.1]

Compatibility with DiT Plugins. It is favorable that substituting the original attention layers with
linearized ones would not impact the functionality of plugins trained for the original DiT. As shown
in Fig. [right), CLEAR exhibits this property by supporting the pre-trained ControlNet [69] using
grayscale images as a condition for FLUX-1.dev. Quantitative results can be found in Tab.[4] including
grayscale images, tiled images, and blur images as conditions, respectively.

Multi-GPU Parallel Inference. A linear complexity DiT can inherently support patch-wise multi-
GPU parallel inference. In practice, for text-image joint attention used in modern DiT architec-
tures [17, 34]], we have to figure out a communication-efficient solution to handle text tokens, which
requires gathering information from all key-value tokens. In Eq.[7, we propose an approximation



Against Original Against Real

Setting HFID (1) LPIPS (}) CLIP-I (1) DINO (1)||FID (}) LPIPS ()| CLIP-T (1) IS ()
CLEAR (r = 16)|| - - - - || 3363 088 | 3065 37.84
N=2 1155 051 90.46 80.89 || 33.74 081 3121 39.26
N=4 1278 054 89.74 79.99 || 33.07  0.81 3127 40.01
N=8 1421 057 88.92 78.65 || 3226  0.80 3122 39.34

Table 6: Results of patch-wise multi-GPU parallel inference with various numbers of patches using
the approximation in Eq.

# of GPUs Synchronous Asynchronous
FLUX-1.dev CLEAR (r =16) CLEAR (r =398) H FLUX-1.dev CLEAR (r =16) CLEAR (r =38)

-1024 x 1024

1 H 11.13 11.40 11.00 H - - -

2 7.98x139 8.52x134 7.85x1.40 7.64 <146 8.10x1.41 7.50x1.47

4 5.93 138 6.01x1.90 5.38x204 5.64 5197 5.67x2.01 5.11x215

8 4.84 230 NA 4.37 %25 4.49 x2.48 NA 3.90 <282
—2048 x 2048-

1 H 52.25 42.98 39.18 H - - -

2 30.96x1.60 26.26x1.64 23.96x1.64 30.17 %173 25.41 %160 23.01x170

4 18.94 276 15.64 275 13.86x2.3 18.58 <251 15.125284 13.4x29

8 12.97 x4.03 9.72x442 8.40x4.66 12.57 <416 9.30x4.62 8.04 <487
-4096 x 4096—

1 H 372.43 207.83 173.53 H - - -

2 200.16x 136 115.02x151 96.65 %150 OOM 112.34 185 91.84 180

4 105.59 %353 59.65 %348 49.70x3.49 OOM 574236 48.57 <357

8 59.18x629 32.33x643 26.88 x6.46 OOM 31.23 %665 26.26x6.61

Table 7: Efficiency of multi-GPU parallel inference measured by sec./50 denoising steps on a
HGX H100 8-GPU server. We adapt Distrifusion [35] to FLUX-1.dev here for asynchronous
communication. The ratios of acceleration are highlighted with red. Results of CLEAR with r = 16
at the 1024 x 1024 resolution are not available (NA) because the patch size processed by each GPU
is smaller than the boundary size. OOM denotes encountering out-of-memory error.

based on patch-wise averaging and validate its effectiveness quantitatively in Tab. [6] Results indicate
a high correlation in semantics before and after this approximation, demonstrating its practical
effectiveness.

For CLEAR, since there are only token interactions in the boundary areas of the patch handled by
each GPU and the approximation of feature aggregation for text tokens defined in Eq. |/} we achieve
satisfactory efficiency on multi-GPU parallel inference. Furthermore, we can apply the asynchronous
communication strategy in Distrifusion [35] to achieve even more significant acceleration. As shown
in Tab. [7] the acceleration becomes more significant with the increase of image resolution, while the
original DiT encounters an out-of-memory (OOM) error due to the necessity of caching all key-value
tokens.

5 Conclusions

In this paper, we present CLEAR, a convolution-like local attention strategy that effectively lin-
earizes the attention mechanism in pre-trained Diffusion Transformers (DiTs), making them sig-
nificantly more efficient for high-resolution image generation. Specifically, we identified four key
elements—Ilocality, formulation consistency, high-rank attention maps, and feature integrity—that are
essential for successful linearization in the context of pre-trained DiTs. CLEAR leverages these prin-
ciples by restricting attention to a circular local field around each query, achieving linear complexity
while retaining high-quality results comparable to the original model. Our experiments demonstrate
that fine-tuning on merely 10K self-generated samples allows for efficient knowledge transfer to a
student model, leading to a 99.5% reduction in attention computations and a 6.3 x acceleration in
8K-resolution image generation. Moreover, CLEAR, once trained, supports zero-shot generalization
across different models and plugins and improves multi-GPU parallel inference capabilities, offering
broader applicability and scalability.
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A Details of Efficient Attention Alternatives

The vanilla scaled dot-product attention, although effective and flexible, introduces quadratic com-
putational complexity. Many works have focused on its efficient alternatives. In Sec. 2] we provide
a taxonomic overview of recent works and will supplement more details regarding the specific
formulations and implementations here.

Linear Attention avoids the sof tmax operation in the vanilla attention, supporting computing K 'V
first with the associative property of matrix-wise multiplication, and thus achieves linear complexity.
Before that, non-negative kernel functions f(-) and g(-) are applied on @) and K respectively such
that the similarity between each query-key pair is non-negative. Furthermore, the similarity score
between each query-key pair is normalized by the sum of similarity scores of between this query
and all key tokens separately, to mimic the functionalities of softmax. Following [31} 20, 39]], we
implement f(-) and g(-) by the elu function [9]]. Formally, the operation for the i-th query can be

rens (eln(Q0) + (eln(K) + 1)T
elul(/; elu
O = (@) + Do (e(Ky) + DT ®

Sigmoid Attention replaces the softmax with the formulation of sigmoid, which removes the need
to compute the softmax normalization, and thus achieves acceleration:

T

0= sigmoid(Qﬁ
where b is a hyper-parameter. In this paper, we follow the official implementation of FlashSigmoid
with hardware-aware optimizatio when applying Sigmoid Attention to DiTs.

+0)V, &)

PixArt-Sigma achieves acceleration by spatially down-sampling the key-value token maps [5].
Following the official implementatiorﬂ we use learnable group-wise Conv4 x 4 kernels with stride =
4 and initialize the weights to %6 so that it is equivalent to an average pooling operation at the
beginning. Formally, it can be written as:

QConv(K)T
Ve

Although it has been demonstrated that such a strategy can work well at relatively deep layers of
DiTs, the results are still unsatisfactory for a completely linearized DiT.

O = softmax( )Conv, (V). (10)

Agent Attention performs efficient attention operations via agent tokens A from a down-sampled
query token map [21]]:
Down(Q)K T

Ve

The derived agent tokens A are then used as value tokens:

QDown(Q) "
Ve

Such operations can be viewed as an adaptive token down-sampling strategy.

A = softmax(

W. (11)

O = softmax( )A. (12)

Slot Attention implemented in this paper is adapted from [71}46]], which contain s key-value memory
slots derived by adaptively aggregating key-value tokens:

~ PXT ~ PXT
K = softmax(——=—)K, V = softmax(——
Ve Ve
where P € R®*¢ is learnable and introduced for modeling the writing intensity of each input token to
each memory slot. These slots are then used as alternatives to original key-value tokens for attention
computation:

W, 13)

QK
\/E

O = softmax( W. (14)

2https://github.com/LeapLabTHU/MLLA
3https://github.com/apple/ml-sigmoid-attention
*https://github.com/Pix Art-alpha/Pix Art-sigma
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Setti Running Time (Sec. / 20 Steps) TFLOPS / Layer
etiing 1024 x 1024 2048 x 2048 4096 x 4096 8192 x 8192 || 1024 x 1024 2048 x 2048 4096 x 4096 8192 x 8192
FLUX-l.dev || 4.81 20.90 148.97 184248 || 0.26 3.51 53.60 847.73
CLEAR (r = 8) 4.38 15.67 69.41 293.50 0.06 0.25 0.98 3.92
CLEAR (r = 16) 4.56 17.19 83.13 360.83 0.09 0.35 1.43 5.79
CLEAR (r = 32) 5.45 19.95 109.57 496.22 0.15 0.72 3.14 13.09

Table 8: Raw data for Fig.[2|on efficiency comparisons.

This strategy presents a different fashion for adaptive key-value compression.

Strided Attention samples tokens at a regular interval [7]]. As a sparse attention strategy, the attention
mask of the [-th layer with a down-sampling ratio of 7 X r can be constructed in the following way:

1, if ¢ < Ntext Orj < Niegt OF
MO = (dl(.f)%r =1, and dl(-;-’)%r =7y); (15)

ij
0, otherwise,

where r, = [%r and r, = [//r ensure that each token has a chance to be sampled as key-value
tokens.

Swin Transformer adopts a sliding window partition strategy [40]], where attention interactions are
independently conducted for each window. Formally, the attention map can be constructed via:

]-7 le S Nteat OI'j S Nteat OT
M;; = tokens ¢ and j in the same window; (16)
0, otherwise.

We set the window size to 16 and apply a shift of 8 for windows in layers with odd indices, following
the approach described in the original manuscript. The rank of the image-to-image attention mask
corresponds to the number of windows, which poses challenges in achieving the high-rank requirement
introduced in the main manuscript needed for linearizing DiTs. In other words, all tokens within the
same window share the same set of key and value tokens. This results in many duplicate rows in M,
significantly reducing its rank.

Neighborhood Attention performs like convolution: for each query, it only samples key-value tokens
within a neighborhood sliding window:

]-7 if 4 S Niext OI'j S Niext
M;; = or (dgf) < rand dg) <r); (17)
0, otherwise.

Comparing with Swin Transformer, each query token in neighborhood attention has a distinct key and
value token set, and each row in M is linearly independent of each other, which ensures the high-rank
property. The formulation used in CLEAR is developed based on such Neighborhood Attention. The
difference is in the functions of checking whether a key-value token is in the neighborhood of a given
query token, as shown in Eq.[3]

For CLEAR, we provide a further illustration of the » = 4 case in Fig. |10 for better clarity.

B Training Dynamics

We supplement the curves of training losses of various efficient attention alternatives in Fig. [IT]
The conclusion is consistent with the main manuscript, that strategies fulfilling the requirements
of locality, formulation consistency, high-rank attention map, and feature integrity yield the most
satisfactory training convergence.

C Raw Data for Efficiency Comparisons

We supplement raw data for Fig. [2|on efficiency comparisons in Tab. [8|for better clarity.
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Figure 10: The neighborhood region for an exemplar query in CLEAR when r = 4.
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Figure 11: Training dynamics of various efficient attention alternatives on FLUX-1.dev.

. Against Original Against Real
Setting H FID()) LPIPS(}) CLIPI(t) DINO() || FID()) LPIPS()) || CLIPTM IS
FLUX-l.dev || [| 2919 083 || 3153 36.41
CLEAR (r = 8) 13.62 0.62 88.91 78.36 3351 081 3135 38.42
CLEAR (r = 16) || 1251 0.58 90.43 8132 3443 0.82 3138 39.66
CLEAR (r = 32) || 1243 0.57 90.70 82,61 3357 0.83 3148 39.68

Table 9: Quantitative zero-shot generalization results to FLUX-1.schnell using CLEAR layers trained
on FLUX-1.dev.

D Circular Neighborhood or Square Neighborhood

In fact, circular or square windows do not fundamentally affect the performance and the linearization
properties. Our main conclusion of the manuscript is the four key factors for successful linearization
of pre-trained DiTs. The standard neighborhood attention, which follows these four principles,
is definitely effective, and so is the introduced method based on circular windows. They yield
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Settin Aesthetic Prompt Alignment Overall Win Rate vs Other
& 1K 2K 4K 1K 2K 4K 1K 2K 4K 1K 2K 4K
FLUX-1.dev 89.92 8770 89.88 | 91.88 9090 91.52 | 88.53 8746 8838 | 057 054  0.60
CLEAR (r = 16) 89.62  90.22  90.09 | 92.13 9194 92.29 | 8852 8871 8881 - -
SANA 8242 86.86 87.63 | 84.68 90.68 90.57 | 8432 8696 8671 | 0.83 0.57 0.62

Table 10: GPT scores compared with the original FLUX-1.dev model and SANA, a recent linear-
complexity DiT trained from scratch.

1024x1024 4096x4096 4096x4096
by FLUX-1.dev w. SDEdit w. I-Max

Figure 12: The linearized DiTs by CLEAR are compatible with various pipelines dedicated to
high-resolution inference. The prompt is shown in Fig.[T7}

. One Two Color Img Text
Setting Ob. Obj. Count Color  Pos. At Ace. Acc.

FLUX-1.dev 98.44 81.82 7250 7793 2175 41.75 64.10 79.57 0.657
CLEAR (r =16) 99.06 83.84 69.69 79.79 2325 4875 66.00 81.19 0.674

CLEAR (r=28) 99.38 78.03 4875 76.60 16.50 41.00 5852 76.13 0.600
+ Coarse Tokens  98.75 84.85 67.81 79.52 21.00 52.00 66.00 81.74 0.673

Table 12: Studies on the GenEval benchmark.

Overall

comparable performance as mentioned in Tab.[5} Given that the FLOPS can be reduced largely while
preserving the performance, which is a free-lunch benefit, we apply the latter form. As shown in
Tab. [TT] it is indeed more efficient in terms of wall-clock time, especially at higher resolutions.

E Results on More DiTs

We additionally deploy our
method on DiT models other
than FLUX used in the main

Time (s) /20 Steps 1K x 1K 2K x2K 4K x4K 8K x8K

manuscript to demonstrate the Square (r = 8) 4.63 16.40 72.70 310.50
universality of the proposed Circular (r = 8) 438 15.67 69.41 293.50
CLEAR. Here, we consider Square (r = 16) 4.84 18.77 87.09 382.07
StableDiffusionS.S-Largeﬂ Circular (r = 16) 4.56 17.19 83.13 360.83

(SD3.5-L), another state-of-the-  ap16 11: Comparisons on the running time required by circular

art text-to-image generation DiT. ;4 square attention windows at various resolution scales.
We use the default setting of » =

16, which yields the best trade-off between quality and efficiency according to our experiments.
Results on the COCO2014 validation dataset are shown in Tab.

We also supplement more qualitative comparisons with results by the original FLUX-1.dev and
SD3.5-L in Fig.[T5 Results indicate an overall comparable performance. Due to the absence of
explicit long-distance token interactions, our method may underperform in capturing overall structural
properties, such as potential symmetry. Additionally involving more or less global tokens, such
as down-sampled tokens as employed in PixArt-Sigma [J3]], could potentially mitigate this issue.
However, as the primary objective of this paper is to highlight the significance of locality as a simple
yet effective baseline, we leave detailed design explorations to future work.

>https://huggingface.co/stabilityai/stable-diffusion-3.5-large
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| 2Kx2K | 4K x4K

Method \ Aesthetic Prompt Align. Overall Win Rate \ Aesthetic Prompt Align. Overall Win Rate
w/o SDEdit 86.32 89.08 85.37 0.87 84.15 87.22 82.36 0.92
w/o NTK 87.73 91.32 87.10 0.75 86.54 91.35 85.93 0.78
w Dynamic Shifting 88.44 91.68 86.59 0.70 84.02 91.40 84.29 0.73
Ours | 90.22 91.94 88.71 - | 90.09 92.29 88.81 -

Table 13: Quantitative comparison at 2K and 4K resolutions.

F GPT Evaluation

Following prior work [5}[16]], we use GPT as a human-like evaluator to assess the quality of generated
images across three aspects: aesthetics, prompt alignment, and overall quality. Here, we consider three
candidates: the original FLUX-1.deyv, its linearized version with CLEAR (r = 16), and SANA [62], a
linear-complexity text-to-image DiT trained from scratch. We further instruct GPT-40 to compare
CLEAR separately against the original FLUX-1.dev and SANA, reporting the win rates. Results
across various resolutions are presented in Tab. [I0] further demonstrating the effectiveness and
superior performance of the proposed convolution-like linearization approach.

G More High-Resolution Results

In the main manuscript, we build our CLEAR on top of SDEdit [41], a simple yet effective strategy
for image generation given a conditional image, for coarse-to-fine high-resolution generation. We
demonstrate here that our method is also compatible with a variety of pipelines dedicated to resolution
extrapolation. As shown in Fig. we deploy CLEAR on I-Max [16], a concurrent work for
training-free high-resolution generation with pre-trained DiTs, and observe that it may yield a more
optimal balance between preserving low-resolution content and capturing high-resolution details. For
instance, as shown in Fig.[T2] I-Max preserves the textures of the dresses from the low-resolution
result with minimal variation while effectively enhancing clear high-resolution details.

In fact, it requires two steps to achieve efficient high-resolution generation. The first is to adapt the
original DiT to make it effective at higher scales. The second is to make it more efficient. CLEAR
mainly addresses the second step. For the first step, the techniques are mainly adapted from previous
works, e.g., SDEdit and NTK rotary embedding. That is why we do not include so many details about
them.

Nevertheless, we fully agree with the reviewer that it would be helpful to supplement the related
details. We include some key information here and will further elaborate on it in the revision.

» SDEdit is a simple yet effective training-free method for image editing based solely on a
pre-trained text-to-image diffusion model, which can be used for high-resolution generation
in a coarse-to-fine manner. Specifically, we first generate an image at the native resolution
scale of the diffusion model. Then, we resize it to a larger size and add a certain noise to it.
A noise scale of 0.7 is adopted empirically in our experiments. Starting from this point, the
model conducts the remaining denoising steps. In this way, the original image structures are
preserved and low-level details are refined.

* NTK rotary embedding applies a scaling factor s to the rotary base b used for rotary
Leur

native

positional embedding, i.e., b’ = bs, where s = and L., is the current sequence

length while L, 44y is the native length seen in the training time.

* Resolution-aware dynamic shifting applies a factor s to the projection function of the current

denoising time step ¢ for the flow matching scheduler: ¢ = ﬁ’:l)t, where s is positively
related to the image resolution. When this is enabled, at a high resolution, the projection
function would appear too “skew”, i.e., the number of denoising steps allocated to the stage

of high noise level is insufficient.

Regarding the three factors, we conduct the GPT evaluation following the same protocol in Tab. [T0}
and the results are shown in Tab. highlighting their effectiveness.
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a photo of a bench a photo of a horse and a train

y
‘ “ H
= |

+ Coarse 4.706s CLEAR + Coarse 4.76s

CLEAR
(r=8) 4.38s Tokens (+0.38s) (r=8) 4.38s Tokens (+0.38s)

Figure 13: Potential issues of small . Adding down-sampled coarse key-value tokens can effectively
address the problems.

FID (Against Original) / CLIP-T | a=0 a=0.05 a=20.5 a=D5
8=0 14.27/30.90 13.98/30.77 13.78/30.66 13.70/30.56
8 =0.05 13.90/30.81 13.88/30.81 13.81/30.72 13.68/30.64
8=05 13.83/30.68 13.82/30.68 13.72/30.65 13.47/30.59
B=5 13.77/30.65 13.69/30.66 13.45/30.62 13.44/30.58

Table 14: Grid search on « and 3 for FID and CLIP-T metrics.

H Cross-DiT Generalization

We empirically find that the trained CLEAR layers for one DiT are also applicable for others within
the same series without any further adaptation efforts. For example, as shown in Fig.[9(middle), the
CLEAR layers trained on FLUX-1.dev can be directly applied to inference on FLUX-1.schnell, a
timestep-distilled DiT supporting 4-step inference, yielding results similar to those of the original
FLUX-1.schnell. Such zero-shot generalization is quantitatively evaluated in Tab. 9]

I Hybrid Attention Extension

In practice, we observe that a small 7, e.g., r = 8, tends to produce results with inconsistent
layouts and multi-objects, as shown in Fig.[T3] As an extension, we propose a hybrid structure that
incorporates coarse tokens as additional key-value tokens to enhance holistic interactions. Similar
to [3l], we conduct 8x downsampling to the key-value maps to derive these global tokens. As
shown in Fig. T3] and Tab. 2] we find that these issues can be effectively resolved with minimal
additional computational overhead, underscoring the practical benefits. However, as this paper
primarily emphasizes the importance of local tokens, we do not adopt this strategy by default.

J Studies on Loss Weights

In this part, we study the individual contributions of the two additional loss terms in Eq. [f]by varying
the weights « and /3. In general, both loss terms contribute to the consistency between the distilled
and original models. Nevertheless, we find that they are complementary:

* « controls the weight of L,,,..q, regulating the consistency between the final output results,
which, according to our experiments shown in the grid search in Tab. [T4] appears to be
relatively more effective than L,;,,. For example, the cases of a > 0, 8 = 0 generally yield
better FiD scores than those of « = 0, 5 > 0.

* (3 controls the weight of L+, regulating the consistency between the intermediate attention
results, which, according to our experiments, serves as an auxiliary measure to facilitate the
training convergence. To verify this, we present the values of the flow matching loss L.,
after moving average at various steps in the training progress in Fig.[I4] Results indicate
that L1, can facilitate training by offering informative intermediate supervision signals
beyond the relatively late supervision provided by £,,.q at the final outputs.
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Figure 14: Effectiveness of L, on accelerating the training convergence.

| Aesthetic Prompt Alignment Overall

Trainr = 8,Evalr =8 89.19 88.38 87.96
Trainr = 8, Eval r = 16 89.49 88.83 88.31
Train r = 16, Eval r = 16 89.62 92.13 88.52
Trainr = 16, Eval r = 8 86.88 79.08 82.95

Table 15: Evaluation under different train and evaluation window radius (7).

Against Original Against Real

Method/Setting H FID () LPIPS()) CLIP-I(t) DINO (1) || FID(}) LPIPS () ||

CLIP-T (1) IS(1) GFLOPS (})

SD3.5-L - - - - 34.10 0.83 31.40 36.06 206.5
w. CLEAR (r = 16) 11.21 0.57 90.9 81.47 36.98 0.83 31.23 36.28 63.8

Table 16: Quantitative results of the original SD3-Large and its linearized version by CLEAR
proposed in this paper on 5,000 images from the COCO2014 validation dataset at a resolution of
1024 x 1024.

Overall, applying both terms achieves the best performance, and the performance is insensitive to
the specific values of the hyper-parameters according to the grid search. There can be some subtle
tradeoffs between the FID and CLIP-T metrics, where the default values achieve a good balance.

K Generalizability across Different r

Qualitatively, we find that the model trained with a smaller window radius r can be used for a larger
one. However, the opposite case does not work. We speculate that it is because the information
provided for the model is complete for inference with additional clues when r is larger, while the
information would be insufficient if » becomes smaller. We supplement the quantitative results of
GPT evaluation in Tab.

L. Limitation

One limitation of our approach is that the practical acceleration achieved by CLEAR does not fully
meet the theoretical expectations indicated by FLOPS. It becomes less significant at relatively low
resolutions and can even be slower than the original DiT when the resolution is below 1024 x 1024.
This drawback arises partially because hardware optimization for sparse attention is inherently
more challenging than the optimizations achieved by FlashAttention for full attention computation.
Addressing this limitation may require developing fused CUDA operators specifically optimized for
the specific sparse pattern of CLEAR, which is a valuable direction for future works.
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Figure 15: Qualitative comparisons on FLUX-1.dev (top) and SD3.5-Large (bottom). The left
subplots are results by the original models while the right ones are by the CLEAR linearized models.
Prompts are listed in Fig.[T9]
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Figure 16: More 4K examples by the CLEAR linearized FLUX-1.dev. Prompts are listed in Fig.
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// Fig. 1, according to the top-left corner, from top to bottom, from left to right

// 1, also used in Fig. 4 and Fig. 6
"A high fantasy scene where a fierce battle is taking place in the sky between dragons and powerful
wizards. One side of the scene shows wizards casting spells, their staffs glowing with magical
energy, while on the other, dragons with scales of fire and lightning breathe torrents of flame.
The sky is torn with storms of magic, and below, a medieval kingdom watches in awe as the skies
blaze with the fury of battle.",
/] 2
"futuristic cityscape, towering skyscrapers, neon lights, speeding cars, holographic advertisements
, cyberpunk, ultra-realistic, high resolution, cinematic lighting, highly detailed, ultra HD, 8K,
nighttime, rain-soaked streets, reflections on glass, vibrant colors, misty atmosphere",
// 3
"A tiger is kissing a rabbit",
// 4
"classic fountain pen with detailed engravings, glass ink bottle with reflections, subtle ink
stains, warm lighting, rich wood desk, soft shadows, high detail on pen and bottle, ultra-
realistic textures, vintage and refined, calm and artistic feel, close-up, high resolution, deep
blue and golden accents",
// 5
"beautiful Chinese woman in hanfu, surrounded by blooming peonies, flowing silk robes, elegant and
ethereal, soft lighting, pastel colors, highly detailed fabric textures, delicate hair ornaments,
peony petals in the air, graceful pose, traditional hairpin",
// 6
"charming countryside cottage, early morning sunlight, mist in the air, lush garden, rustic and
cozy, ivy-covered walls, wooden fence, high detail, ultra-realistic, peaceful atmosphere, blooming
flowers, warm light, quiet and serene",
/77
"futuristic racing car, sleek design, neon underglow, high-speed action, dust trail, dynamic motion
blur, cinematic lighting, high resolution, ultra-realistic, ultra HD, 8K, dark background, neon
lights, sparks flying, intense colors, reflections on car surface",
// 8
"majestic Chinese dragon, swirling clouds, water and ink effect, powerful presence, dynamic and
dramatic, monochromatic ink wash, swirling motion, high detail on dragon scales, whirlwind of
clouds, dragon's fierce eyes, ink splashes, ancient mystical aura",
// 9
"traditional Chinese night market, red lanterns, crowded stalls, vibrant atmosphere, warm and
lively, golden lighting, realistic and bustling, intricate market details, traditional snacks,
merchants in robes, lanterns casting glow, animated crowd in background",
// 10, also used in Fig. 2 (Appendix)
"enchanted forest, glowing plants, towering ancient trees, a mystical girl, magical aura, fantasy
style, vibrant colors, ethereal lighting, bokeh effect, ultra-detailed, painterly, ultra HD, 8K,
soft glowing lights, mist and fog, otherworldly ambiance, glowing mushrooms, sparkling particles",

Figure 17: GPT-generated prompts used in the main manuscript.
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// 11

"portrait of an elderly female artist with silver hair, gentle smile, wearing glasses and colorful
scarf, soft studio lighting, high detail wrinkles, ultra-realistic, warm lighting, creative and
thoughtful, calm and wise, subtle background, rich textures, peaceful and inviting, close-up",

// 12

"futuristic soldier, robotic armor, high-tech weapon, visor with digital HUD, dark sci-fi, highly
detailed, cinematic lighting, dynamic pose, ultra-realistic, ultra HD, 8K, neon accents, dark
background, glowing HUD, intense expression, battle scars on armor",

// 13

"A watercolor-style sign reading 'Hello CLEAR' with soft gradients of blue, green, and purple,
textured lettering, and subtle paint splashes",

// 14

"hidden paradise with peach blossoms, flowing river, distant mountains, quaint cottages, dreamlike
and serene, vibrant colors, soft and warm lighting, idyllic landscape, blossoming peach trees,
mist over river, villagers in traditional attire, sunlight filtering through petals",

// 15

"Parisian street at night, iconic street lights, cobblestone path, view of Eiffel Tower, vibrant
city atmosphere, warm tones, rain reflections on street, historic architecture, romantic ambiance,
ultra-realistic details, cinematic lighting, urban scene, high resolution",

// 16

"astronaut meeting alien creatures, cosmic background, colorful nebula, stars in background, high
detail spacesuit, atmospheric lighting, sci-fi setting, calm and peaceful, otherworldly creatures,
ultra-realistic, adventure in space, detailed environment",

// 17

"rustic wooden cabin interior, cozy and warm, fireplace glowing, wooden beams, vintage furniture,
soft light from a window, warm and earthy tones, ultra-realistic details, rich textures, cozy
blankets and cushions, peaceful ambiance, high resolution, natural wood grain visible",

// 18

"Chinese ink landscape painting, misty mountains, winding rivers, ancient pine trees, traditional
ink wash painting, soft brushstrokes, monochromatic, ethereal and timeless, light mist among
mountains, small thatched pavilion, subtle gradation of ink, natural flow",

// 19

"phoenix rising from flames, vibrant feathers, traditional Chinese mythological style, vivid and
majestic, dynamic colors, dramatic lighting, intricate feather details, golden flames, radiant
plumage, traditional patterns on wings, sense of rebirth",

// 20

"city street on a rainy day, wet pavement with reflections, people under umbrellas, soft city
lights reflecting in water puddles, detailed raindrops, warm and cozy tones, misty atmosphere,
ultra-realistic details, vibrant and deep colors, high contrast, peaceful rain ambiance, soft
shadows, street lights glowing",

// 21

"ancient Chinese academy, surrounded by bamboo forest, stone paths, wooden study desks, calm and
serene, warm lighting, natural greens, intricate woodwork, rustic textures, bamboo shadows on
ground, calligraphy brushes, traditional scrolls, scholars in robes",

// 22

"1950s American diner, red leather booths, checkerboard floor, neon signs, nostalgic atmosphere,
warm lighting, retro decor, vintage menu, chrome accents, classic style, cozy and inviting, high
detail, ultra-realistic",

// 23

"ancient library, high shelves filled with old books, detailed wood carvings, dusty and dim
lighting, massive wooden tables, vintage globes, warm light filtering through tall windows, ultra-
realistic, intricate details on book spines, nostalgic atmosphere, high resolution, serene and
historical feel",

// Fig. 7
"A cat holding a sign that says hello world"

Figure 18: GPT-generated prompts used in the main manuscript. (Cont.)
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// Fig. 15, from top to bottom, from left to right

// 1
"a polar bear sitting on a floating iceberg, holding an umbrella while it rains colorful paint, the
surrounding ocean reflecting the vibrant colors, ultra-detailed, photorealistic, ultra HD, 8K,
surreal and artistic composition, bold contrasts, intricate reflections",
/72
"lush green valley surrounded by towering cliffs, a winding river reflecting the blue sky, fluffy
white clouds casting shadows, grazing deer in the distance, ultra-detailed, photorealistic, ultra
HD, 8K, natural vibrancy, peaceful wilderness atmosphere, intricate water and vegetation textures"
B
/73
"peaceful Chinese lake scene, a traditional pagoda on a small island, still water reflecting the
structure, distant misty mountains, pink lotus flowers floating, warm morning light, ultra-
detailed, photorealistic, ultra HD, 8K, serene atmosphere, traditional aesthetics, vibrant yet
soft colors",
// 4
"owl in a dense forest at night, glowing yellow eyes, dark and mysterious atmosphere",
// 5
"a library where the books are glowing jellyfish floating mid-air, a young girl reaching out to
touch one, shelves filled with ancient tomes, soft ambient lighting, ultra-detailed,
photorealistic, ultra HD, 8K, whimsical and magical atmosphere, intricate textures",
// 6
"cyberpunk cityscape, glowing neon lights, futuristic skyscrapers, bustling streets, flying cars,
nighttime setting, holographic advertisements, rain-soaked roads, ultra-detailed, cinematic
lighting, ultra HD, 8K, vivid colors, dramatic atmosphere, intricate reflections, dystopian vibe",
/77
"a futuristic robot tending a garden of glowing bioluminescent flowers, its metallic hands
delicately handling the plants, a waterfall of stars in the background, ultra-detailed,
photorealistic, ultra HD, 8K, ethereal lighting, blending nature and technology",
// 8
"alien desert landscape, multiple moons in the sky, strange rock formations, glowing plants,
mysterious alien figures, science fiction style, ultra-detailed, cinematic lighting, ultra HD, 8K,
vibrant colors, surreal ambiance, dramatic shadows, expansive vistas",
// 9
"autumn forest in golden hour, trees with vibrant red, orange, and yellow leaves, a narrow path
covered in fallen foliage, sunlight casting warm hues, distant hills, ultra-detailed,
photorealistic, ultra HD, 8K, rich colors, peaceful atmosphere, intricate details of leaves and
bark",
// 10
"endless lavender fields at sunset, soft purple hues blending with golden sky, a small rustic
farmhouse in the distance, rolling hills on the horizon, ultra-detailed, photorealistic, ultra HD,
8K, delicate lavender flowers, serene ambiance, atmospheric depth",
// 11
"cozy rural kitchen, wooden cabinets, fresh bread on the counter, sunlight streaming through lace
curtains, ceramic jars and fresh herbs, rustic charm, warm tones, ultra-detailed, photorealistic,
ultra HD, 8K, soft ambient light, intricate wood grain textures, peaceful atmosphere",
// 12
"portrait of a young girl with freckles, natural outdoor setting, sunlight filtering through leaves
, soft focus background, vibrant hair and vivid eye color, ultra-detailed, photorealistic, ultra
HD, 8K, delicate facial textures, bright and innocent atmosphere, warm golden tones"

Figure 19: GPT-generated prompts used in the appendix.
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// Fig. 16, according to the top-left corner, from top to bottom, from left to right

/71

"sunlit vineyard in late summer, rows of grapevines heavy with ripe fruit, rustic farmhouse in the
distance, soft hills and clear sky, warm golden light, ultra-detailed, photorealistic, ultra HD, 8
K, intricate grape and leaf textures, serene countryside atmosphere",

// 2

"ancient Chinese temple on a hill, red walls and golden roofs, surrounded by lush green bamboo
forest, stone lanterns lining the path, soft golden hour light, ultra-detailed, photorealistic,
ultra HD, 8K, traditional Chinese architecture, peaceful ambiance, intricate carvings and ornate
designs",

// 3

"bustling fish market at sunrise, vibrant colors of fresh seafood, fishermen unloading crates,
intricate details of fish scales and ice, ambient light, bustling atmosphere, ultra-detailed,
photorealistic, ultra HD, 8K, atmospheric realism, sharp textures, lively dynamics",

// 4

"majestic dragon flying over a medieval castle, fiery sunset, rolling hills, dramatic clouds,
fantasy style, ultra-detailed, painterly aesthetic, ultra HD, 8K, warm hues, glowing embers,
intricate textures, golden hour lighting",

// 5

"futuristic laboratory interior, glowing screens, robotic arms, holographic displays, sleek design,

science fiction style, ultra-detailed, ultra HD, 8K, cold lighting, metallic textures, high-tech

ambiance, detailed equipment",

// 6

"a serene Chinese garden, a curved stone bridge over a lotus-filled pond, elegant pavilions with
ornate designs, weeping willow trees, koi fish swimming, gentle sunlight, ultra-detailed,
photorealistic, ultra HD, 8K, traditional landscape design, tranquil atmosphere, vibrant yet
harmonious colors",

/17

"ancient Greek temple on a hilltop, surrounded by lush gardens, golden hour, marble columns,
intricate carvings, mythological figures, painterly style, ultra-detailed, ultra HD, 8K, warm
lighting, serene atmosphere, historical accuracy",

// 8

"a chessboard floating in a cosmic void, pieces made of planets and stars, a human hand reaching
out to make a move, ultra-detailed, photorealistic, ultra HD, 8K, cosmic and abstract design,
vivid lighting, surreal and thought-provoking atmosphere",

/79

"a vintage gramophone in the middle of a lush rainforest, vines wrapping around the horn, music
notes visibly floating in the air, animals like parrots and monkeys curiously gathered, ultra-
detailed, photorealistic, ultra HD, 8K, vibrant colors, magical and whimsical atmosphere, rich
textures",

// 10

"a giant clock embedded in a mountain cliff, waterfalls flowing through the clock's gears, lush
greenery surrounding the scene, ultra-detailed, photorealistic, ultra HD, 8K, timeless and surreal
atmosphere, intricate mechanical details, dramatic lighting",

// 11

"sunset over a rocky coastline, waves crashing against jagged cliffs, vivid orange and purple hues
in the sky, seabirds flying above, tide pools with reflections, ultra-detailed, photorealistic,
ultra HD, 8K, dynamic motion, tranquil yet dramatic atmosphere, intricate rock and water textures"

B

// 12

"a gigantic hourglass buried in a desert, golden sand slowly flowing between the chambers, a group
of explorers climbing the hourglass, a storm brewing in the background, ultra-detailed,
photorealistic, ultra HD, 8K, dramatic lighting, surreal and adventurous ambiance",

// 13

"portrait of a wise old man with a long white beard, wearing traditional robes, holding a wooden
staff, mountain landscape in the background, soft diffused light, ultra-detailed, photorealistic,
ultra HD, 8K, deep wrinkles, serene expression, mystical and timeless atmosphere"

Figure 20: GPT-generated prompts used in the appendix. (Cont.)

28




	Introduction
	Efficient Attention: A Taxonomic Overview
	Formulation Variation
	Key-Value Compression
	Key-Value Sampling

	Methods
	What are Crucial for Linearizing DiTs?
	Conv-Like Linearization
	Training and Optimization
	Multi-GPU Parallel Inference

	Experiments
	Settings and Implementation Details
	Main Comparisons
	Empirical Studies

	Conclusions
	Details of Efficient Attention Alternatives
	Training Dynamics
	Raw Data for Efficiency Comparisons
	Circular Neighborhood or Square Neighborhood
	Results on More DiTs
	GPT Evaluation
	More High-Resolution Results
	Cross-DiT Generalization
	Hybrid Attention Extension
	Studies on Loss Weights
	Generalizability across Different r
	Limitation

