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Abstract

Out-of-distribution (OOD) detection is essential for model trustworthiness which
aims to sensitively identify semantic OOD samples and robustly generalize for
covariate-shifted OOD samples. However, we discover that the superior OOD
detection performance of state-of-the-art methods is achieved by secretly sacrificing
the OOD generalization ability. Specifically, the classification accuracy of these
models could deteriorate dramatically when they encounter even minor noise. This
phenomenon contradicts the goal of model trustworthiness and severely restricts
their applicability in real-world scenarios. What is the hidden reason behind
such a limitation? In this work, we theoretically demystify the “sensitive-robust”
dilemma that lies in many existing OOD detection methods. Consequently, a
theory-inspired algorithm is induced to overcome such a dilemma. By decoupling
the uncertainty learning objective from a Bayesian perspective, the conflict between
OOD detection and OOD generalization is naturally harmonized and a dual-optimal
performance could be expected. Empirical studies show that our method achieves
superior performance on standard benchmarks. To our best knowledge, this work
is the first principled OOD detection method that achieves state-of-the-art OOD
detection performance without compromising OOD generalization ability. Our
code is available at https://github.com/QingyangZhang/DUL.

1 Introduction

Endowing machine learning models with out-of-distribution (OOD) detection and OOD generalization
ability are both essential for their deployment in the open world [1, 2, 3]. We borrow an example
of autonomous driving from [4] to demonstrate the motivation of these two tasks. Given a machine
learning model trained on in-distribution (ID) data (top image in Fig. 1 (a)), OOD detection aims
to sensitively perceive uncertainty arising upon outliers that do not belong to any known classes of
training data [5] (bottom right image in Fig. 1 (a)). While OOD generalization expects machine
learning models to be robust in the presence of unexpected noise or corruption, e.g., rainy or snowy
weather (bottom left image in Fig. 1 (a)). In this paper, we reveal that many previous methods pursue
OOD detection performance at a secret cost of sacrificing OOD generalization ability. To make things
worse, we observe that some SOTA OOD detection methods may result in a catastrophic collapse
in classification performance (∼15% accuracy degradation) when encountering even slight noise.
One pioneering work [4] makes a trade-off between OOD detection and OOD generalization, but
the relationship between these two tasks is still largely unexplored. The learning objectives of these
two tasks are seemingly conflicting at first glance. OOD detection encourages sensitive uncertainty
awareness (highly uncertain prediction) on unseen data, while generalization expects the prediction
to be confident and robust under unforeseeable distributional shifts. Previous work in OOD detection
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Figure 1: (a): Models trained on in-distribution (ID) data inevitably encounter distributional shifts
during their deployment. OOD generalization expects the model to correctly classify covariate-shifted
data that undergoes noise or corruption due to environmental issues. OOD detection aims to identify
samples that do not belong to any known classes for trustworthiness consideration. (b): Limitations
of current advanced OOD detection methods. We consider 8 representative OOD detection methods
including the baseline method MSP [6] (without any OOD detection regularization), Entropy [7],
EBM [8], Bayesian [9], SOTA OOD detection methods WOODS [10], POEM [11], recent advanced
SCONE [4] which aims to seek for a good trade-off and the proposed DUL. All these methods exhibit
a degraded generalization ability compared to baseline method MSP and lie in a trade-off area except
our DUL. The goal of this paper is to understand and mitigate this phenomenon.

research area [4] characterizes the relationship between OOD detection and OOD generalization as a
trade-off and thus striking for a balanced performance. However, this trade-off significantly limits
the employment of current state-of-the-art OOD detection methods. Naturally, one might require the
model to be aware of the OOD input for ensuring safety, but certainly does not expect to sacrifice the
generalization ability, not to mention that the catastrophically collapsed classification performance
under noise or corruption.

In this work, we first uncover the potential reason behind this limitation by characterizing the
generalization error lower bound of previous OOD detection methods, which is referred to sensitive-
robust dilemma. To overcome the dilemma, we devise a novel Decoupled Uncertainty Learning (DUL)
framework for dual-optimal performance. The decoupled uncertainties are separately responsible
for characterizing semantic OOD (detection) and covariate-shifted OOD (generalization). Thanks to
the decoupled uncertainty learning objective, dual-optimal OOD detection and OOD generalization
performance could be expected. Our emphasis lies on a particular category of OOD detection methods
in the classification task, including max softmax probability (MSP) based model [6], energy-based
model (EBM) [8] and Bayesian methods [9]. This selection offers two-fold advantages. First, MSP,
EBM and Bayesian detectors encompass major OOD detection advances in classification task [5].
Second, numerous OOD detection works in diverse learning tasks (classification, object detection [12],
time-series prediction and image segmentation) are all roughly related to classification [13]. The
contributions of this paper are summarized as follows:

• This paper reveals that existing SOTA OOD detection methods may suffer from catastrophic
degradation in terms of OOD generalization. That is, their superior OOD detection ability is
achieved by (secretly) sacrificing OOD generalization ability. We theoretically demystify the
sensitive-robust dilemma in learning objectives as the main reason behind such a limitation.

• In contrast to previous works that characterize OOD detection and generalization as conflic-
tive learning tasks and thus implying an inevitable trade-off, we propose a novel learning
framework termed Decoupled Uncertainty Learning (DUL) to successfully break through
the limitation beyond a simple trade-off. Our DUL substantially harmonizes the conflict
between OOD detection and OOD generalization, which achieves the best OOD detection
performance without sacrificing the OOD generalization ability.

• We conduct extensive experiments on standard benchmarks to validate our findings. Our
DUL achieves dual-optimal OOD detection and OOD generalization performance. To
our best knowledge, DUL is the first method that gains state-of-the-art OOD detection
performance without sacrificing OOD generalization ability.
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2 Related works

OOD detection aims to indicate whether the input arises from unknown classes that are not present
in training data, which is essential for model trustworthiness. In the classification task, the majority
of advanced OOD detection methods include MSP detectors which characterize samples with lower
max softmax probability as OOD [6, 14, 15, 7, 16]. EBM detectors identify high energy samples as
OOD and frequently establish better performance than MSP detectors [8, 11, 17, 4], and various other
types OOD detection methods such as distance-based detectors [18], non-parametric KNN-based
detectors [19] which also show promises. According to the training paradigm, OOD detection
methods can be split into auxiliary OOD-free and auxiliary OOD-required methods. Auxiliary
OOD-free methods directly use the model pre-trained on ID data only for OOD detection. Another
line of methods assumes that some OOD data is accessible during training and incorporates auxiliary
outlier datasets (collected from websites or other datasets) for further enhancing OOD detection
performance. By exposing the model to some semantic OOD during training, auxiliary OOD-required
methods frequently outperform auxiliary OOD-free methods on commonly-used benchmarks [20, 5].

OOD generalization expects the model to be robust under unforeseeable noise or corruption [21, 22,
23, 24, 25]. Basically, OOD generalization expects invariant and confident prediction on OOD data.
Examples include classic domain adaption (DA) methods which encourage the model’s behavior to
be invariant across different distributions [21, 26, 27]. Besides, test-time adaption (TTA) directly
encourages confident predictions on OOD data by minimizing predictive entropy [28, 29, 30].
However, as we will show later, confident prediction and invariance are seemingly conflictive to OOD
detection purpose and further imply an unavoidable trade-off. The most related work to our paper is
SCONE [4], which strikes to keep a balance between OOD detection and generalization performance.
We argue that such a trade-off is not necessary and the conflict can be elegantly eliminated.

Uncertainty estimation in Bayesian framework. In the Bayesian framework, predictive uncertainty
can be regarded as an indicator of whether the input sample is prone to be OOD. Since OOD samples
are unseen during training and thus should be of higher uncertainty than ID. The overall predictive
uncertainty of a classification model can be decomposed into three factors according to their source,
including data (aleatoric) uncertainty (AU), distributional uncertainty (DU), and model (epistemic)
uncertainty (EU) [31, 9]. AU measures the natural complexity of the data (e.g., class overlap, label
noise) and EU results from the difficulty of estimating the model parameters with finite training
data. DU arises due to the mismatch between the distributions of test and training data. A line of
classic measurement can be used to capture various types of uncertainty including entropy, mutual
information, and differential entropy [9].

3 Preliminaries

We consider K-class classification task with classifier f : X → RK parameterized by θ, where X is
the input space and Y = {1, 2, ...,K} denotes the target space. The model output fθ(x) is considered
as logits. The k-th element in logits is denoted as fk(x) indicates the confidence of predicting x to
class k. The predicted distribution F (x) is obtained by normalizing f(x) with the softmax function.
We first formalize all possible distributions that the model might encounter.

• In-distribution P ID
XY which denotes the distribution of labeled training data.

• Covariate-shifted OOD PCOV
XY which is relevant to OOD generalization. PCOV

XY is of the
same label space with ID. However, its marginal distribution PCOV

X encounters shifts due to
unexpected noise or corruption.

• Semantic OOD P SEM
XY′ is the distribution of data that do not belong to any known class. Its

label space has no overlap with the known ID label space, i.e., Y ′ ∩ Y = ∅.

In the following paper, we omit the subscript for simplicity. The goal of OOD detection is to build a
detector G : X → [IN,OUT] to decide whether an input x is semantic OOD data or not through a
thresholding function G deduced from classifier f

Gγ(x) =

{
IN gf (x) ≤ γ

OUT gf (x) > γ
, (1)
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where γ is the threshold. gf is an OOD scoring function deduced from f , which is expected to assign
a higher value to OOD than ID. For example, in MSP detectors, gf (x) = −maxk F (x) where F (x)
is the predicted softmax probability (negative max softmax probability). In EBM detectors, gf is
realized by the energy function E(x; f) := − log

∑K
i=1 e

fk(x) and the semantic input of OOD should
be of high energy [8]. Since it is difficult to foresee P SEM one will encounter, a board line of OOD
detection works [7, 8, 9, 11, 17, 12, 32, 33] regularize the model on some auxiliary OOD data P SEM

train
during training (e.g., data from the web or other datasets), and expect the model can learn useful
heuristic to handle unknown test-time OOD P SEM

test . The learning objective is shown as follows

min
θ

E(x,y)∼P ID [LCE(f(x), y)] + λEx̃∼PSEM
train

[Lregf(x̃)], (2)

where LCE is the standard cross entropy loss for the original classification task. Lreg is the OOD
detection regularization term depending on the detector used, which generally encourages a high
uncertainty on P SEM

train . For example, Lreg is set to cross entropy between F (x) and the uniform
distribution for MSP detector [7]. In EBM detectors [8], Lreg is realized as a margin ranking loss
to explicitly encourage a large energy gap between ID and semantic OOD. In this paper, we are
interested in this setting for the following reasons:

1) In contrast to labeled data in supervised learning literature, auxiliary OOD data can be
unlabeled and easy-to-collected in practice [11].

2) Most SOTA methods involve auxiliary outliers [5, 20] for superior performance.
3) Even under some strict assumptions that P SEM

train is unavailable, recent works utilize GAN [15],
diffusion model [34] or sampling strategy [12] to generate “virtual" outliers for training.

Thus we believe this setting is promising and the cost of auxiliary outliers is minor given the
importance of ensuring model trustworthiness. At test-time, the model is evaluated in terms of

• ID accuracy (ID-Acc ↑) which measures the model’s performance on P ID,
• OOD accuracy (OOD-Acc ↑) measures the OOD generalization ability on PCOV,
• False positive rate at 95% true positive rate (FPR95↓) := Ex∼PSEM

test
(I(Gγ(x) = IN)) mea-

sures the OOD detection ability, where γ is chosen when true positive rate (TPR) is 95%. I
is the indicator function. In OOD detection, ID samples are considered as negative.

It is worth noting that in the standard OOD detection setting [11, 4], the test OOD data should not
have any overlapped classes or samples with training-time auxiliary OOD data P SEM

train . Let YSEM
test and

YSEM
train be the label space of P SEM

test and P SEM
train respectively, we have YSEM

test ∩ YSEM
train = ∅. Otherwise,

OOD detection would be a trivial problem.

4 Sensitive-robust Dilemma of Out-of-distribution Detection

In this section, we detail the limitation of current OOD detection methods: their OOD detection
performance is achieved at the cost of generalization ability. This limitation implies the potential
risk of SOTA OOD detection methods and underscores the urgent need for a better solution. Firstly,
we re-examine representative OOD detection methods of six different types, including 1) baseline
model MSP that is trained without any OOD detection regularization [6], 2) entropy-regularization
(Entropy) that encourages high predictive entropy on OOD [7], which is devised for MSP detectors,
3) energy-regularization for EBM detectors that enforces the output with high energy score for OOD
input [8], 4) Bayesian uncertainty learning that encourages high overall uncertainty on OOD [9], 5)
state-of-the-art OOD detection methods WOODS [10] and POEM [11] 6) the most related SCONE [4]
that seeks for a trade-off between OOD detection and generalization performance.

Limitation of current OOD detection methods. In Fig. 1 (b), we investigate current OOD detection
methods in terms of OOD classification error and FPR95. The expected classifier should yield both
low OOD classification error and FPR95. As it is observed, despite the superior OOD detection
performance, all above methods significantly underperform the baseline MSP in terms of OOD
generalization. By contrast, our method (DUL) successfully overcomes the limitation.

Theoretical justification. Toward understanding the limitation, we provide theoretical analysis for
two types of most popular OOD detection methods, i.e., MSP and EBM detectors. Our analysis
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identifies the “sensitive-robust” dilemma as the main reason behind such a limitation. The roadmap
of our analysis is: (1) inspired by transfer learning theory, we first reveal that OOD detection
regularization applied on semantic OOD may also affect the behavior of model on covariate-shifted
OOD; (2) then we demonstrate why MSP detectors suffer from poor generalization by characterizing
its generalization error bound; (3) we further identify that EBM methods [8] suffer from a similar
drawback when incorporating with gradient-based optimization. First of all, we recap the definition
of disparity discrepancy in transfer learning theory [35, 27].

Definition 1 (Disparity with Total Variation Distance). Given two hypotheses f ′, f ∈ F and
distribution P , we define the Disparity with Total Variation Distance between them as

dispP (f
′, f) = EP [TV (Ff ||Ff ′)], (3)

where Ff ′ , Ff are the class distributions predicted by f ′, f respectively. TV (·||·) is the total variation
distance, i.e., TV (Ff ||Ff ′) = 1

2

∑K
k=1 ||Ff,k − Ff ′,k||.

Definition 2 (Disparity Discrepancy with Total Variation Distance, DD with TVD). Given a hypothe-
sis space F and two distributions P,Q, the Disparity Discrepancy with Total Variation Distance (DD
with TVD) is defined as

dF (P,Q) := sup
f ′,f∈F

(dispP (f
′, f)− dispQ(f

′, f)). (4)

Disparity discrepancy (DD) measures the "distance" between two distributions P,Q which considers
the hypothesis space. DD is one of the most fundamental conceptions in transfer learning theory
which constrains the behavior of hypothesis in F should not be dissimilar substantially on different
distributions P and Q. 3 If the DD between semantic OOD and covariate-shifted OOD is limited, one
can suppose that OOD detection regularization applied to semantic OOD samples will also influence
the model’s behavior on covariate-shifted OOD. Thus encouraging high uncertainty on semantic
OOD may also result in highly uncertain prediction on covariate-shifted OOD, which is potentially
harmful to generalization ability. We first formalize this intuition for MSP detectors.

Theorem 1 (Sensitive-robust dilemma). Let PCOV, P SEM
test be the covariate-shifted OOD and seman-

tic OOD distribution. GErrorPCOV(f) denotes standard cross entropy loss taking expectation on
PCOV, i.e., generalization error. Then we have

GErrorPCOV(f)︸ ︷︷ ︸
OOD generalization error

≥ C−
√

1

8κ2
EPSEM

test
[ Lreg(f)︸ ︷︷ ︸
OOD detection loss

− logK]
1
2 − 1

2κ
dF (PCOV,PSEM

test ),

(5)
where Lreg is the OOD detection loss devised for MSP detectors defined in [7], i.e., cross-entropy
between predicted distribution F (x) and uniform distribution. dF (PCOV, P SEM

test ) is DD with TVD
that measures the dissimilarity of covariate-shifted OOD and semantic OOD. C and κ are both some
constants depending on hypothesis space F , PCOV and P SEM

test .

The proof is deferred in Appendix A. Theorem 1 demonstrates that for MSP detectors, the OOD
detection objective conflicts with OOD generalization. The model’s generalization error lower bound
is negatively correlated with OOD detection loss that the model tries to minimize. Thus given a
limited dF , pursuing low OOD detection loss on P SEM

test will also inevitably result in highly uncertain
prediction on PCOV. It is worth noting that such an interpretative theorem is applicable for all
MSP-based OOD detectors no matter whether the model involves P SEM

train during training or not. Since
the inherent motivation of OOD detection methods lies in minimizing the OOD detection loss in
P SEM
test , regardless of the training strategies used.

Why a limited dF (P
COV, P SEM

test ) is practical? In Theorem 1, dF (PCOV, P SEM
test ) measures the

dissimilarity between PCOV and P SEM
test . It seems that this lower bound will be very small and trivial

when dF (PCOV, P SEM
test ) is large enough. However, since the semantic OOD samples can be any

samples that do not belong to ID classes, one can suppose that semantic OOD samples are extremely
diverse and some are of high similarity with ID and covariate-shifted OOD [37]. Detecting these
“ID-like” OOD samples is inherently the core challenge of OOD detection [11, 17, 38]. Thus, it is
reasonable to assume a limited dF (PCOV, P SEM

test ). We provide more discussions in the Appendix D.2.

3Encompassed by [36] as a special case, our definition is realized using TVD for theoretical convenience.
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As presented before, the key limitation of MSP detectors is that they enforce high-entropy prediction
on semantic OOD. We proceed to reveal that EBM detectors suffer from similar issues due to the
natural property of gradient-based optimization. For EBM detectors, Lreg is defined by [8] is

Lreg = Ex̃∼PSEM
train

[max(mOUT − E(x̃), 0)]2 + Ex∼P ID [max(0, E(x)−mIN)]
2, (6)

which constrains the energy score E(x; f) := −log
∑K

k=1 e
fk(x) of ID sample x to be lower than

that of OOD sample x̃. mIN,mOUT are manually selected margins. Although such regularization
does not indicate high entropy prediction at first glance, unfortunately, we demonstrate that EBM
detectors also tend to uncertain prediction when equipped with gradient-based optimization. Here we
focus on Gradient Descent (GD) as a showcase. In each training epoch t, model fθ is updated with
GD as θt+1 = θt − η∇θLreg, where η is the learning rate. For any sample x̃ drawn from PSEM, the
gradient ∇θLreg can be written as

2

K∑
k=1

∇fk(x̃) [efk(x̃)(
K∑

k=1

efk(x̃))−1]︸ ︷︷ ︸
higher for larger fk(x̃)

(mOUT − E(x̃)),
(7)

where mOUT − E(x̃) > 0 (otherwise the gradient is zero) and fk(x̃) is the predicted logits on the
k-th class. For sample x̃, when class k has larger predicted logit, it contributes more to the overall
gradient ∇θLreg and thus could obtain more optimization efforts during backpropagation. Eventually,
one can infer that when an EBM detector is about to converge, it tends to high-entropy prediction
on P SEM

train accordingly. Incorporating this into the established Theorem 1, this is likely to harm the
generalization ability of PCOV. Empirical evidence can support this supposition (see Table 14 in
Appendix C). Therefore both MSP and EBM detectors face the “sensitive-robust” dilemma.

5 Decoupled Uncertainty Learning

We demonstrate how to handle the dilemma between OOD detection and generalization by decoupled
uncertainty learning in the Bayesian framework. Unlike the most related work [4] which aims to seek
a good trade-off, our method successfully gets out of the aforementioned sensitive-robust dilemma.

Uncertainty Estimation in Bayesian Framework. We first revisit the theoretical properties of
different types of uncertainty in a Bayesian framework. Non-Bayesian classifiers consider the model’s
output f(x) as logits, which is then normalized with softmax to directly model predictive categoricals
p(ŷ|x). While in Bayesian framework [9], f(x) is considered as parameters of a Dirichlet distribution
p(µ|x) firstly, which is used to model the prior of predictive categoricals p(ŷ|x) by

p(µ|x) = Dir(µ|α) =
Γ(α0)∏K

k=1 Γ(αk)

K∏
k=1

µαk−1
k , α = f(x), (8)

where Dir(µ|α) is Dirichlet distribution and α is the concentration parameters of Dirichlet. The sum
of all αk ∈ α (noted as α0) is so called the strength of the Dirichlet distribution, i.e., αk > 0, α0 =∑

k αk. After obtaining prior p(µ|x, θ), the final predicted posterior p(ŷ|x) over class labels is given
by calculating the mean of the Dirichlet prior

p(ŷ|x, θ)︸ ︷︷ ︸
overall uncertainty

=

∫data uncertainty︷ ︸︸ ︷
p(ŷ|µ) p(µ|x, θ)︸ ︷︷ ︸

distributional uncertainty

dµ. (9)

From a Bayesian perspective, given deterministic parameters θ, the overall uncertainty of final
prediction p(ŷ|x) can be decomposed into two factors, including data (aleatoric) uncertainty (AU)
and distributional uncertainty (DU). DU lies in p(µ|x, θ) which is defined as uncertainty due to the
mismatch between the distributions of test and train data. AU is described by p(ŷ|µ) which captures
the natural complexity of the data (e.g., class-overlap) [9]. By definition, OOD detection is primarily
associated with DU which is only a part of the overall uncertainty. While generalization is related to
the overall uncertainty of p(ŷ|x) as we mentioned in related works (both AU and DU). One essential
property of DU is that it can be high even if the expected categorical p(ŷ|x, θ) expresses low overall
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uncertainty. Such a property is well suited to achieve OOD detection and generalization jointly since
high DU no longer necessarily indicates high overall uncertainty.

Decoupled Uncertainty Learning. While the aforementioned Bayesian framework enjoys theoretical
potentiality, its learning object [9] lacks consideration of OOD generalization. Similar to other OOD
detection methods, it also directly enforces high overall uncertainty on OOD

min
θ

EPIDKL(p(y|x))||p(ŷ|x)) + EPSEM
train

KL(p(µ|x̃))||Dir(µ|α = 1)), (10)

where p(y|x), p(ŷ|x) are the ground-truth distribution and predicted distribution on ID. The model’s
prediction on OOD is enforced to be close to a rather flat Dirichlet distribution. It is worth noting
that Dir(µ|α = 1) means all classes are equiprobable, and the entropy of the final prediction is
maximized. As shown in Fig. 1 (b), the vanilla Bayesian method [9] also suffers from degraded OOD
generalization performance. To this end, we propose Decoupled Uncertainty Learning (DUL), a novel
OOD detection regularization method that explicitly encourages high DU on OOD samples without
affecting the overall uncertainty. Similarly to previous OOD detection methods [8], our DUL is also
devised in a finetune manner for effectiveness. Given a classifier fθ0 well pre-trained on P ID, the
goal of DUL lies in enhancing its OOD detection performance without sacrificing any generalization
ability. Specifically, we finetune the model by encouraging higher DU but non-increased overall
uncertainty on P SEM

train . The learning objective of DUL is

min
θ

E(x,y)∼P ID [LCE(f(x), y)]︸ ︷︷ ︸
ID classification

+λEx̃∼PSEM
train

||max(0, (h0 +mOUT)− h)||τ︸ ︷︷ ︸
high distributional uncertainty (detection)

s.t. H(p(ŷ|x̃)) = H(p0(ŷ|x̃))︸ ︷︷ ︸
non−increased overall uncertainty (generalization)

∀ x̃ ∼ P SEM
train ,

(11)

where H(·) is the entropy. p(ŷ|x̃) and p0(ŷ|x̃) are the predicted distribution on semantic OOD data
x̃ after and before finetuning. The first term is the original ID classification loss. The second term is
OOD detection loss, which encourages high DU on outlier x̃. mOUT and τ > 0 are hyperparameters.
h0, h are DU on x̃ before and after finetuning. Here we measure DU with the differential entropy
(h[p(µ|x̃, θ)] = −

∫
SK−1 p(µ|x̃)ln(p(µ|x̃))dµ, S is a K-simplex). We refer interested readers to the

Appendix D.1 for mathematical details. The third term constraining onH(p(ŷ|x̃)) avoids increment of
overall uncertainty during finetuning and thus the generalization ability can be retained. Considering
the difficulty of constrained optimization, we convert Eq. 11 into an unconstrained form and get our
final minimizing objective

EP ID [LCE(f(x), y)]︸ ︷︷ ︸
ID classification

+EPSEM
train

{λ ||max(0, (h0 +mOUT)− h)||τ︸ ︷︷ ︸
high distributional uncertainty

+ γKL(p(ŷ|x̃)||p0(ŷ|x̃))︸ ︷︷ ︸
unchanged overall uncertainty

},

(12)
where γ is hyperparameter. In contrast to previous Bayesian method [9], DUL only encourages
high DU rather than overall uncertainty on OOD and explicitly discourages high entropy in the final
prediction. The implementation details are in Appendix D.1.

6 Experiment

We conduct experiments to validate our analysis and the superiority of DUL. The questions to be
verified are Q1 Motivation. To what extent does OOD detection conflict with OOD generalization in
previous methods? Q2 Effectiveness. Does DUL achieve better OOD detection and generalization
performance compared to its counterparts? Q3 Interpretability. Does the proposed method well
decouple uncertainty as expected?

6.1 Experimental Setup

Our settings follow the common practice [8, 11, 20, 5] in OOD detection. Here we present a brief
description and more details about datasets, metrics, and implementation are in Appendix B.1 and B.2.

Datasets. ◦ ID datasets P ID. We train the model on different ID datasets including CIFAR-10,
CIFAR-100 and ImageNet-200 (a subset of ImageNet-1K [39] with 200 classes). ◦ Auxiliary OOD
datasets P SEM

train . In CIFAR experiments, we use ImageNet-RC as P SEM
train . ImageNet-RC is a down-

sampled variant of the original ImageNet-1K which is widely adopted in previous OOD detection
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Table 1: OOD detection and generalization performance comparison. Substantial (≥ 0.5) improve-
ment and degradation compared to the baseline MSP [6] (training without any OOD detection
regularization) are highlighted in blue or red, respectively. The best and second-best results are in
bold or underlined. DUL is the only method that achieves SOTA OOD detection performance (mostly
the best or second best) without sacrificing generalization i.e., the value of the entire row is either
blue or black. Full results with standard deviation and diverse types of corruption are in Appendix C.

PID/PSEM
train Method Model generalization OOD detection

ID-Acc ↑ OOD-Acc ↑ FPR ↓ AUROC ↑ AUPR ↑

CIFAR-10 /
None

MSP 96.11 87.35 41.96 89.28 68.00
EBM (pretrain) 96.11 87.35 32.45 89.34 75.22

Maxlogits 96.11 87.35 32.90 89.26 74.47
Mahalanobis 96.11 87.35 32.53 93.93 74.96

CIFAR-10 /
ImageNet-RC

Entropy 96.04 72.57 6.63 98.72 94.00
EBM (finetune) 96.10 79.03 3.61 98.39 94.88

POEM 94.32 78.89 3.32 98.99 99.38
DPN 95.69 85.52 4.28 98.53 94.93

WOODS 96.01 80.14 7.12 98.45 92.46
SCONE 95.96 78.80 7.02 98.45 92.46

DUL (ours) 96.02±0.00 88.01±0.29 5.89±0.12 98.47±0.02 92.44±1.29

DUL† (ours) 96.04±0.00 87.53±0.49 5.99±0.06 98.28±0.01 98.40±0.13

CIFAR-10 /
TIN-597

Entropy 95.94 80.51 11.60 97.93 92.16
EBM (finetune) 95.38 83.67 19.36 87.51 83.63

POEM 95.44 83.17 24.34 86.83 94.25
DPN 94.39 79.23 17.27 94.92 87.67

WOODS 95.57 84.68 7.58 98.29 93.08
SCONE 95.19 84.68 8.02 98.21 93.08

DUL (ours) 96.06±0.01 87.93±0.39 6.87±0.67 98.21±0.01 91.29±1.39

DUL† (ours) 95.94±0.01 88.10±0.07 10.34±0.11 97.67±0.01 98.59±0.06

CIFAR-100 /
None

MSP 80.99 55.95 74.63 80.19 42.59
EBM (pretrain) 80.99 55.95 67.42 82.67 49.35

Maxlogits 80.99 55.95 69.32 82.30 47.60
Mahalanobis 80.99 55.95 61.51 85.97 56.10

CIFAR-100 /
ImageNet-RC

Entropy 80.21 45.48 22.29 95.33 82.34
EBM (finetune) 80.53 48.14 13.47 96.78 87.84

POEM 78.15 42.18 9.89 97.79 98.40
DPN 78.90 50.14 18.36 95.42 74.45

WOODS 80.69 54.38 38.15 92.01 71.79
SCONE 80.80 56.73 47.60 89.61 65.29

DUL (ours) 81.30±0.04 56.27±3.29 12.49±0.05 95.24±0.01 86.72±0.58

DUL† (ours) 81.23±0.05 55.41±0.54 11.12±0.62 95.46±0.36 96.49±0.13

CIFAR-100 /
TIN-597

Entropy 80.15 46.25 26.88 93.50 79.81
EBM (finetune) 79.94 50.00 26.87 91.68 80.08

POEM 78.68 52.53 32.71 91.30 94.65
DPN 78.44 47.67 24.99 93.55 81.63

WOODS 79.26 53.13 36.71 92.15 73.42
SCONE 79.53 52.70 35.60 92.47 73.58

DUL (ours) 80.85±0.06 56.19±2.33 23.32±1.22 94.48±0.12 80.82±2.63

DUL† (ours) 80.50±0.06 56.22±1.66 22.75±0.78 90.88±0.08 96.33

ImageNet-200 /
None

MSP 85.15 74.84 58.23 86.98 82.27
EBM (pretrain) 85.15 74.84 51.94 88.18 84.75

Maxlogits 85.15 74.84 51.62 88.30 84.71

ImageNet-200 /
ImageNet-800

Entropy 84.92 74.75 53.62 89.05 85.02
EBM (finetune) 84.14 73.31 59.73 87.54 82.81

DPN 84.87 74.40 63.84 87.18 80.69
WOODS 84.99 74.98 51.71 88.30 84.80
SCONE 84.93 74.91 52.52 88.19 84.50

DUL (ours) 85.65±0.07 75.59±0.12 49.14±0.13 89.27±0.03 85.62±0.03

works [8, 11, 17]. We also conduct experiments on the recent TIN-597 [20] as an alternative.
When ImageNet-200 is ID, the remaining 800 classes termed ImageNet-800 are considered as
P SEM
train . ◦ OOD detection test sets P SEM

test are a suite of diverse datasets introduced by commonly
used benchmark [5]. In CIFAR experiments, we use SVHN [40], Places365 [41], Textures [42],
LSUN-R, LSUN-C [43] and iSUN [44] as P SEM

test . When P ID is ImageNet-200, P SEM
test consists

of iNaturlist [45], Open-Image [46], NINCO [47] and SSB-Hard [48]. It is worth noting that in
standard OOD detection settings, there should be no overlapped classes between P ID, P SEM

train and
P SEM
test , otherwise OOD detection is a trivial problem. ◦ OOD generalization test sets PCOV is the

original ID test set corrupted with additive Gaussian noise of N (0, 5), following [4]. Besides, we
also conduct experiments on CIFAR10-C, CIFAR100-C and ImageNet-C which involve 15 diverse
types of different noise or corruption (e.g., snow, rain, frost, fog...) in Appendix C.
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Metrics. For OOD detection performance evaluation, we report the average FPR95, AUROC and
AUPR to be consistent with [11]. OOD generalization ability is compared in terms of classification
accuracy (OOD-Acc). Besides, we also report classification accuracy on ID test sets (ID-Acc).

Compared methods. We compare DUL with a board line of OOD detection methods, including
auxiliary OOD required and auxiliary OOD free methods. ◦ Auxiliary OOD-free methods do
not require P SEM

train during training, including MSP [6], Maxlogits [49], pretrained EBM [8] and
Mahalaobis [18]. ◦ Auxiliary OOD-required methods explicitly regularize the model on P SEM

train ,
including entropy-regularization (Entropy) [7], finetuned EBM [8], DPN of Bayesian framework [9],
POEM [11] and WOODS [10]. We also compare our DUL to recent advanced SCONE [4] which
aims to keep a balance between OOD detection and generalization.

6.2 Experimental Results

Dilemma between OOD detection and generalization (Q1). We validate the dilemma mentioned
before in Fig. 1. As shown in Tab. 1, though many advanced methods establish superior OOD
detection performance, their OOD generalization degrades a lot. For example, recent SOTA POEM
achieves nearly perfect OOD detection performance on CIFAR10 when ImageNet-RC serves as
P SEM
train with 3.32% false positive error rate (FPR95). However, its OOD-Acc drops a lot (about 10%)

compared to baseline MSP. This phenomenon is also observed in other advanced methods. To further
detail this phenomenon, we reduce the weight of OOD detection regularization terms in Entropy and
finetuned EBM and show the performance on both OOD detection and generalization. As shown in
Table 3, when the regularization strength increases, OOD detection performance improves (lower
FPR.), while the OOD generalization performance degrades (higher error rate).

OOD detection and generalization ability (Q2). As shown in Tab. 1, DUL establishes strong overall
performance in terms of both OOD detection and generalization. We highlight a few essential obser-
vations: 1) Compared to auxiliary OOD free methods, DUL establishes substantial improvement
due to additional regularization on auxiliary outliers. 2) Compared to auxiliary OOD required
methods, our method achieves superior OOD detection performance without sacrificing general-
ization ability. Meanwhile, previous OOD detection methods commonly exhibit severely degraded
classification accuracy, with many cases increasing by more than 10% error rate. 3) Comparison to
the most related work SCONE [4]. Despite recent advanced SCONE simultaneously considering
both two targets, we observe that it can be hard to find a good trade-off. In contrast, dual-optimal
OOD detection and generalization performance is achieved by our DUL. Noted that DUL is the only
method that achieves state-of-the-art detection performance (mostly the best or second best) without
degraded generalization ability (no red values in the entire row). The sensitive-robust dilemma is no
longer observed in our method. These observations justify our expectation of DUL. 4) Combining
with existing methods. Besides, to further demonstrate the effectiveness of the proposed DUL, we
also add the unchanged overall uncertainty term in Eq.12 to the original Entropy and finetuned EBM.
The results in Table 2 show that DUL regularization can also benefit EBM. However, combining
Entropy with our regularization can not improve the accuracy substantially. This is not surprising,
since the target of Entropy (high entropy prediction) and our DUL (non-increased entropy) directly
conflict according to Theorem 1. 5) Comparison to methods with an extra OOD detect branch.
Different from aforementioned methods, a line of recent OOD detectors [50, 51, 52, 17] employ extra
output branches aside from the classification logits (with a shared backbone for feature extraction).
For these OOD detectors, our theoretical analysis is not directly applicable and further analysis from
a feature learning perspective may be needed in future work. However, the proposed DUL is devised
in a finetune manner. Compared to OOD detectors with extra output branches that requires re-training
the classifier from scratch, DUL can be applied to any pre-trained model (e.g., from torchvision,
huggingface), with modest computation overhead.

Visualization of estimated uncertainty (Q3). To evaluate the uncertainty estimation, we visualize
the distribution of ID (CIFAR-10) and OOD (SVHN) samples in terms of uncertainty. As we can see
in Fig. 2 (b), our DUL establishes a distinguishable (distributional) uncertainty gap between test-time
ID and OOD data, which indicates a good sensitiveness for OOD detection. By contrast, the baseline
method MSP (Fig.2 (a)) can not effectively discriminate ID and OOD. Besides, we visualize the
predictive entropy (overall uncertainty) on covariate-shifted OOD (CIFAR-10 with Gaussian noise)
in Fig. 2 (c), our DUL yields much lower entropy compared to other methods. Besides, we visualize
the data uncertainty on semantic OOD test data (Textures) when CIFAR-10 is ID in Fig. 6.2. The
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investigated methods are 1) pretrained model training on ID dataset only, 2) finetuned model with
OOD detection regularization (ablating the last term in Eq.12), and 3) finetuned model with the full
DUL method described by Eq.12. As shown in Fig. 6.2, to keep the overall uncertainty and enlarge
the distributional uncertainty (for OOD detection), the data uncertainty must be reduced. We use
Eq.17 from [9] to calculate data uncertainty. The distributional uncertainty is shifted by subtracting
that on ID dataset. These results meet our expectation.

Figure 2: Visualization of different types of uncertainty estimated by DUL.

Figure 3: Visualization of uncertainty on semantic OOD test dataset when CIFAR-10 is ID dataset.
Without DUL (orange), all three types of uncertainty will increase altogether. In contrast, DUL
(green) increases the DU but decreases the AU, which further lead to unchanged overall uncertainty.
Table 2: Additional results when equip DUL
to existing methods i.e., Entropy and finetuned
EBM. ID dataset is CIFAR-10. P SEM

train is
ImageNet-RC. PCov

test is the original CIFAR-10
testset corrupted by Gaussian noise N (0, 5).

Model generalization OOD detection
Method ID-Acc ↑ OOD-Acc ↑ FPR ↓ AUC ↑
Entropy 96.04 72.57 6.63 98.72

EBM (finetune) 96.10 79.03 3.61 98.39
POEM 94.32 78.89 3.32 98.99

EBM w. DUL 95.19 87.45 6.17 98.28
Entropy w. DUL 96.10 87.41 29.56 95.92

DUL 96.02 88.01 5.89 98.47
DUL† 96.04 87.53 5.99 98.28

Table 3: We tune the weight of OOD detection
regularization term for EBM as well as Entropy
and report the FPR (OOD detection metric) and
error rate (Err, OOD generalization metric). The
experimental settings are the same with Table 2.

Entropy EBM
λ OOD-Err ↓ FPR ↓ λ OOD-Err ↓ FPR ↓
0 9.55 35.15 0 9.55 20.57

5× 10−4 13.58 8.36 1× 10−4 9.46 14.69
5× 10−3 15.48 6.37 1× 10−3 10.32 13.54
5× 10−2 17.97 5.71 1× 10−2 16.43 8.15
5× 10−1 18.53 5.60 1× 10−1 24.38 6.11

7 Conclusion

This paper provides both theoretical and empirical analysis towards understanding the dilemma
between OOD detection and generalization. We demonstrate that the superior OOD detection
performance of current advances are achieved at the cost of generalization ability. The theory-inspired
algorithm successfully removes the conflict between previous OOD detection and generalization
methods. For SOTA OOD detection performance, our implementation assumes that auxiliary outliers
are available during training. This limitation is noteworthy for our DUL as well as the most existing
SOTA OOD detection methods. We argue that this added cost is minor and reasonable given the
significance of ensuring model trustworthiness in open-environments. Reducing the dependency on
auxiliary OOD data can be an interesting research direction for the future exploration.
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A Proofs

First, we recap the definitions of Disparity with Total Variation Distance and Disparity Discrepancy.

Definition 3 (Disparity with Total Variation Distance). Given two hypotheses f ′, f ∈ F and
distribution P , we define the Disparity with Total Variation Distance between them as

dispP (f
′, f) = EP [TV (Ff ||Ff ′)], (13)

where Ff , Ff ′ are the class distributions predicted by f ′, f respectively. TV (·||·) is the total variation
distance (TVD), i.e., TV (Ff ||Ff ′) = 1

2

∑K
k=1 ||Ff,k − Ff ′,k||1.

Definition 4 (Disparity Discrepancy with Total Variation Distance, DD with TVD). Given a hypothe-
sis space F and two distributions P,Q, the Disparity Discrepancy with Total Variation Distance (DD
with TVD) is defined as

dF (P,Q) := sup
f ′,f∈F

(dispP (f
′, f)− dispQ(f

′, f)). (14)

Since TVD is a distance measurement of two distribution. It yields the triangle equality. That is, for
any distribution PX support on X and hypotheses f1, f2 and f3 ∈ F , we have

dispPX
(f1, f2) ≤ Ex∼PX [TV (Ff1(x)||Ff3(x))] + Ex∼PX [TV (Ff2(x)||Ff3(x))],

dispPX
(f1, f2) ≥ Ex∼PX [TV (Ff1(x)||Ff3(x))]− Ex∼PX [TV (Ff2(x)||Ff3(x))].

(15)

To prove Theorem 1, we need the following lemmas.

Lemma 1. For any f ∈ F , we have

EPCOVTV (Ff ||U) ≤ EPSEM
test

TV (Ff ||U) + dF (P
COV, P SEM

test ) + λ (16)

where λ is a constant independent of f . U is the K-classes uniform distribution. PCOV is the
covariate-shifted OOD distribution. P SEM

test is the semantic OOD distribution.
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Proof. Let f∗ be the hypothesis which jointly minimizes the total variance distance between the
predicted distribution Ff with uniform distribution U taking expectation on PCOV and P SEM

test , which
is to say

f∗ := argmin
f∈F

{Ex∼PCOV [TV (Ff (x)||U)] + Ex∼PSEM
test

[TV (Ff (x)||U)]}. (17)

Set λ = Ex∼PCOV [TV (Ff∗(x)||U)] + Ex∼PSEM
test

[TV (Ff∗(x)||U)], then by the triangle equality we
have

EPCOVTV (Ff ||U) ≤ dispPCOV(f, f∗) + EPCOVTV (Ff∗ ||U)

≤ EPSEM
test

TV (Ff ||U)− EPSEM
test

TV (Ff ||U) + dispPCOV(f, f∗) + EPCOVTV (Ff∗ ||U)

≤ EPSEM
test

TV (Ff ||U) + EPSEM
test

TV (Ff∗ ||U)

− dispPSEM
test

(f, f∗) + dispPCOV(f, f∗) + EPCOVTV (Ff∗ ||U)

≤ EPSEM
test

TV (Ff ||U) + dF (P
SEM
test , PCOV) + λ.

(18)

Intuitively speaking, Lemma 1 demonstrates that if the classifier f express high overall uncertainty
on P SEM

test (i.e., the predicted distribution Ff is close to uniform distribution), it will also tend to high
uncertain prediction on PCOV given a limited dF (P SEM

test , PCOV).

Lemma 2. [Inequality between KL and TV] For any K-class distribution P and Q on {1, · · · ,K}
and κ > 0, the following inequality holds

1

2κ
KL(P ||Q) +

κ

4
≥ TV (P ||Q). (19)

Proof. The proof can be found in [53] page 8.

Lemma 3. Denote the OOD detection loss used for MSP detectors as Lreg, then we have

EPSEM
test

TV (Ff ||U) ≤ EPSEM
test

√
1

2
(Lreg(f)− logK) (20)

where TV (·||·) is total variance distance (TVD). U denotes uniform distribution support on Y =
{1, 2 · · ·K}. Lreg is defined in [7] is the cross-entropy between predicted distribution Ff (x) and
uniform distribution U .

Lemma 2 means that minimizing the OOD detection loss will constrains the predicted distribution to
be close to uniform distribution, which is a intuitive and straightforward result.

Proof. In K-classes classification task, for any sample x̃ drawn from P SEM
X , we have

Lreg(f(x̃)) = KL(U ||Ff ) +H(U). (21)

Applying Pinsker’s Inequality, the following inequality holds

Lreg(f(x̃)) = KL(Ff ||U) +H(U) ≥ 2TV (Ff (x̃)||U)2 +H(U). (22)

Noted that H(U) = logK, we can re-write above inequality as

TV (Ff (x̃)||U) ≤
√

1

2
(Lreg(f(x̃))− logK). (23)

Then, by taking expectation on P SEM
X we can get the result.

Now we are ready to present the proof of Theorem 1.
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Proof. By the definition, the generalization error can be written as

GErrorPCOV
XY

(f) :=E(x,y)∼PCOV
XY

LCE(f(x), y)

=E(x,y)∼PCOV
XY

[KL(Ptrue||Ff (x)) +H(Ptrue)]
(24)

where Ptrue is the target distribution given input x (i.e., the true class distribution) and LCE(·)
denotes the cross-entropy loss.

Applying Lemma 2, for any x we have

KL(Ptrue||Ff ) ≥
1

2κ
(TV (Ptrue||Ff )) +

κ

4
. (25)

By the sub-additivity of TVD, we have

KL(Ptrue||Ff (x)) ≥
1

2κ
(TV (Ptrue||Ff )) +

κ

4

≥ 1

2κ
[TV (Ptrue||U)− TV (Ff (x)||U)] +

κ

4
.

(26)

Taking expectation on PCOV
XY , we have

GErrorPCOV
XY

(f) =E(x,y)∼PCOV
XY

KL(Ptrue||Ff (x)) +H(Ptrue)

≥ 1

2κ
E(x,y)∼PCOV

XY
[TV (Ptrue||U)− TV (Ff (x)||U)] +

κ

4
+ EPCOV

XY
H(Ptrue)

(27)

Applying Lemma 1 and Lemma 2,

GErrorPCOV
X

(f) =EPCOV
XY

KL[Ptrue||Ff (x)] + EPCOV
XY

H(Ptrue)

≥ 1

2κ
EPCOV

XY
[TV (Ptrue||U)− TV (Ff (x)||U)] +

κ

4
+ EPCOV

XY
H(Ptrue)

≥ 1

2κ
EPCOV

XY
TV (Ptrue||U)− 1

2κ
EPCOV

XY
TV (Ff ||U) +

κ

4
+ EPCOV

XY
H(Ptrue)

≥ 1

2κ
EPCOV

XY
TV (Ptrue||U)− 1

2κ
EPSEM

X
TV (Ff ||U)

− 1

2κ
dF (P

COV
XY , P SEM

X )− λ

2κ
+
κ

4
+ EPCOV

XY
H(Ptrue)

≥ 1

2κ
EPCOV

XY
TV (Ptrue||U)− 1

2κ
EPSEM

X

√
1

2
(Lreg(f)− logK)

− 1

2κ
dF (P

COV
X , P SEM

X )− 1

2κ
λ+

4

κ
+ EPCOV

XY
H(Ptrue).

(28)

Given the fact that PCOV
XY , Ptrue are both fixed, H(Ptrue) and TV (Ptrue||U) are constants for each

x. Finally, we get

GErrorPCOV
XY

(f) ≥ C − 1

2κ
EPSEM

X

√
1

2
(Lreg(f)− logK)− 1

2κ
dF (P

COV
X , P SEM

X ), (29)

where C = 1
2κ (EPCOV

X
TV (Ptrue||U)− λ+ 8) + EPCOV

XY
H(Ptrue) is a constant.

B Experimental Details

B.1 Datasets details

ID datasets P ID. ID datasets are chosen following common practice in OOD detection. We
use CIFAR-10, CIFAR-100 and ImageNet-200 as P ID. ImageNet-200 is a subset of the original
ImageNet-1K introduced by [20, 5].

Auxiliary OOD datasets P SEM
train . For CIFAR experiments, we use ImageNet-RC and TIN-597 as

auxiliary datasets. ImageNet-RC is a down-sampled variant of the ImageNet-1K, which consists
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of 1000 classes and 1,281,167 images. We also conduct experiments on TIN-597 as an alternative
for ImageNet-RC. TIN-597 is introduced by recent work [5]. The resolutions of ID and auxiliary
samples are both 64× 64. For ImageNet experiments, we use a subset of ImageNet-1K consisting of
200 classes as ID datasets. The remaining images belong to other 800 classes are utilized as auxiliary
datasets. The resolutions of ID and auxiliary images are both 224× 224.

OOD detection test datasets P SEM
test . In CIFAR experiments, following standard practice [8], we

use SVHN [40], Textures [42], Places365 [41], iSUN [44], LSUN-C and LSUN-R [43] to evaluate
the OOD detection performance. ◦ The SVHN test set comprises 26,032 color images of house
numbers. ◦ Textures (Describable Textures Dataset, DTD) consists of 5,640 images depicting natural
textures. ◦ Places365 dataset consists scenic images of 365 different categories. Each class consists
of 900 images. ◦ The iSUN dataset is a subset of the SUN database with 8,925 images. ◦ The
Large-scale Scene Understanding dataset (LSUN) comprises a testing set with 10,000 images of
10 different scenes. LSUN offers two datasets, LSUN-C and LSUN-R. In LSUN-C, the original
high-resolution images are randomly cropped into 32× 32. Meanwhile, in LSUN-R, the images are
resized to 32× 32. In ImageNet experiments, we follow the settings of [5], where OpenImage-O [54],
SSB-hard [55], Textures [42], iNaturalist [45] and NINCO [47] are selected as OOD detection test
datasets. ◦ OpenImage-O contains 17632 manually filtered images and is 7.8 × larger than the
ImageNet dataset. ◦ SSB-hard is selected from ImageNet-21K. It consists of 49K images and 980
categories. ◦ Textures (Describable Textures Dataset, DTD) consists of 5,640 images depicting
natural textures. ◦ iNaturalist consists of 859000 images from over 5000 different species of plants
and animals. ◦ NINCO consists with a total of 5879 samples of 64 classes which are non-overlapped
with ImageNet-1K.

OOD generalization test datasets PCOV. Following previous work [4], we corrupt the original test
data with Gaussian noise of zero mean and variance of 5 in the main paper. In appendix, we conduct
additional experiments involving CIFAR10-C, CIFAR100-C and ImageNet-C [56] with 15 diverse
types of noise.

B.2 Implementation details

B.2.1 CIFAR experiments.

We use WideResNet-40-10 [57] as the backbone network, which comprises 40 layers. The widen
factor is set to 10. We use SGD optimizer to train all methods with dropout strategy. The dropout rate
is 0.3. The momentum is set to 0.9 and weight decay is set to 0.0005.

Pretraining details. The pretrained model is obtained by training WideResNet-40-10 for 200 epochs
with an initial learning rate of 0.1. We decay the learning rate by a factor of 0.2 at the 60-th, 120-th,
and 160-th epochs. Batch size is set to 128.

Finetuning details. ◦ For Entropy and EBM, we finetune the pretrained model for 20 epochs with
an initial learning rate of 0.001, utilizing a cosine annealing strategy to adjust the learning rate.
Following the official implementation, the weight of OOD detection regularization term is set to 0.5
and 0.1 for Entropy and EBM (finetune) respectively. The hyperparameters mID and mOOD in EBM
regularization learning are set to -25 and -7 respectively. The ID batch size is 128 and the OOD
batch size is set to 256. ◦ For SCONE, we finetune the pretrained model for 10 epochs with an initial
learning rate of 0.0002, utilizing a cosine annealing strategy to adjust the learning rate. The batch size
is 32, the OOD batch size is 64. The margin of the OOD detection boundary is set to 1. To be aligned
with most previous works in OOD detection and generalization, we assume PCOV

X is unavailable
during finetuning. ◦ For WOODS, we finetune the pretrained model for 10 epochs with an initial
learning rate of 0.0002, utilizing a cosine annealing strategy to adjust the learning rate. The ID batch
size is 32, the OOD batch size is 64. Other hyperparameters settings are consistent with SCONE. ◦
For DUL, α0 is set to 12. While finetuning on CIFAR10, the mID and mOOD are set to 10 and 30
respectively. The weight λ, γ are set to 0.3 and 2. We train for 20 epochs with an initial learning
rate of 0.00005, utilizing a cosine annealing strategy to adjust the learning rate. While finetuning on
CIFAR100/TIN-597, the mID and mOOD are set to 10 and 30 respectively. The weights λ, γ are set
to 0.05 and 2 respectively. We finetune for 20 epochs with an initial learning rate of 0.00005, utilizing
a cosine annealing strategy to adjust the learning rate. While finetuning on CIFAR100/ImageNet-RC,
we set h0 = 0. The mID and mOOD are set to -430 and -370 respectively. We train for 30 epochs
with an initial learning rate of 0.0001, utilizing a cosine annealing strategy to adjust the learning rate.
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The weights λ, γ are set to 0.1 and 1 respectively. For CIFAR-100/ImageNet-RC, we set τ = 2 and
otherwise τ = 1. ◦ For DUL†, we use Thompson sampling strategy [11] for OOD informativeness
mining. The sampling hyperparameters are consistent with that of POEM.

Training from scratch details. ◦ For POEM, we train from scratch for 200 epochs with an initial
learning rate of 0.1, and decay the learning rate by a factor of 0.2 at the 60-th, 120-th, and 160-th
epochs following [57]. The ID and OOD batch size are set to 128 and 256 respectively. Following
the official implementation, the pool of outliers consists of randomly selected 400,000 samples from
auxiliary datasets, and only 50,000 samples (same size as the ID training set) are selected for training
based on the boundary score. ◦ For DPN, we train for 200 epochs with an initial learning rate of
0.1, and decay the learning rate by a factor of 0.2 at the 60-th, 120-th, and 160-th epochs. The
Dirichlet parameters α are calculated by performing ReLU plus one on the model’s outputs, i.e.,
α = ReLU(f(x))+1. α0 is set to 15 and 12 respectively when training on CIFAR10 and CIFAR100.
The auxiliary datasets are ImageNet and TIN-597. The ID and OOD batch size are set to 128 and
256 respectively. When training on CIFAR100/TIN-597, the OOD regularization weight λ is set to
0.05. In other cases, λ is set to 0.5.

B.2.2 ImageNet experiments.

We use ResNet18 [58] as the backbone network. We use SGD optimizer to train all the models. The
momentum is set to 0.9.

Pretraining details. The pretrained model is obtained by training ResNet18 for 100 epochs with an
initial learning rate of 0.1, utilizing a cosine annealing strategy to adjust the learning rate. The weight
decay is set to 0.0001. Batch size is set to 64.

Finetuning details. ◦ For Energy regularized learning, we finetune the pretrained model for 10
epochs with an initial learning rate of 0.001, utilizing a cosine annealing strategy to adjust the learning
rate. The weight decay is set to 0.0001. Following the official implementation, the weights of OOD
detection regularization term are set to 0.1. Specifically, the mID and mOOD in energy regularization
method are set to -25 and -7 respectively. The ID batch size is 64 and the OOD batch size is set
to 128. ◦ For Entropy, we finetune the pretrained model for 10 epochs with an initial learning rate
of 0.001, utilizing a cosine annealing strategy to adjust the learning rate. The weight decay is set
to 0.0001. The ID and OOD batch size are set to 64 and 128 respectively. Following the official
implementation, the weights of OOD detection regularization term are set to 0.5.◦ For SCONE, we
finetune the pretrained model for 10 epochs with an initial learning rate of 0.0002, utilizing a cosine
annealing strategy to adjust the learning rate. The weight decay is set to 0.0005. The batch size is 32,
the OOD batch size is 64. The margin of the OOD detection boundary is set to 1. To be aligned with
most previous works in OOD detection and generalization, we assume PCOV

X is unavailable during
finetuning. ◦ For WOODS, we finetune the pretrained model for 10 epochs with an initial learning
rate of 0.0002, utilizing a cosine annealing strategy to adjust the learning rate. The batch size is 32,
the OOD batch size is 64. Other hyperparameters of WOODS are consistent with SCONE. ◦ For
our DUL, the Dirichlet parameters α are calculated by performing ReLU and exp operation on the
model’s outputs, i.e., α = exp(ReLU(f(x))). For numerical stability on large scale benchmark, we
measure the distributional uncertainty by the strength of Dirichlet distribution. λ, γ are set to 0.1 and
4 respectively. We set τ = 1 in large-scale ImageNet experiments.

Training from scratch details. ◦ For DPN, we train ResNet18 for 100 epochs with an initial learning
rate of 0.1, utilizing a cosine annealing strategy to adjust the learning rate. The weight decay is
set to 0.0001. Batch size is set to 64. The Dirichlet parameters α are calculated by performing
ReLU plus one on the model’s outputs, i.e., α = ReLU(f(x)) + 1. The ID classification loss is set
to KL-divergence between predicted class distribution under Dirichlet prior and target distribution
because of the inconvenience of directly setting α0. The target distribution is obtained by label
smoothing strategy with parameter of 0.01 [9]. The weight of regularization term applied on OOD
auxiliary samples is 1.
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Algorithm 1: Pseudo Code of Decoupled Uncertainty Learning (DUL)

Input : ID data P ID, auxiliary outliers P SEM
train, classifier fθ0 pretrained on P ID.

Output : finetuned classifier fθ
1 Initialize θ = θ0;
2 for each iteration do
3 Obtain ID sample (x, y) from P ID and auxiliary outlier x̃ from P SEM

train;
4 Update model parameters θ by minimizing objective defined in Eq. 12;
5 end

C Additional Results

C.1 Uncertainty estimation.

We add Gaussian noise with zero mean and varying variance ϵ on CIFAR-10 and investigate the
estimated distributional uncertainty and overall uncertainty. Distributional uncertainty is measured
by differential entropy. It clear that with DUL regularization, the prediction yields a low overall
uncertainty and high distributional uncertainty on covariate-shifted data. We conduct experiments on
CIFAR-10/ImageNet-RC and CIFAR-10/TIN-597, tabular results are shown in Tab. 4.

Table 4: Mean value of estimated uncertainty on CIFAR-10-C with varying severity of Gaussian
noise with zero mean and variance of ϵ.

P in
X /Paux

X Uncertainty type DUL ϵ = 0.0 ϵ = 2.0 ϵ = 4.0 ϵ = 6.0 ϵ = 8.0 ϵ = 10.0

CIFAR-10
ImageNet-RC

Distributional uncertainty ✗ -21.33 -18.94 -15.62 -13.71 -12.91 -12.85
✓ -21.23 -19.42 -16.96 -15.47 -14.85 -14.58

Total uncertainty ✗ 0.04 0.47 1.31 1.93 2.20 2.28
✓ 0.03 0.17 0.48 0.77 0.98 1.14

CIFAR-10
TIN-597

Distributional uncertainty ✗ -20.94 -20.14 -18.29 -16.23 -14.71 -13.72
✓ -21.48 -20.68 -19.21 -17.70 -16.57 -15.78

Total uncertainty ✗ 0.06 0.15 0.51 1.06 1.55 1.92
✓ 0.04 0.08 0.18 0.34 0.51 0.68

C.2 Time-consuming comparison.

We compare the time-cost of proposed DUL to other training-required OOD detection methods in
Tab. 5. We run all the experiments on one single NVIDIA GeForce RTX-3090 GPU. Compared with
other OOD detection methods in a finetune manner, DUL does not introduce noticeably extra cost of
computation.

Table 5: Average execution times (s) per epoch of training required OOD detection methods. Compare
to other OOD detection methods, DUL does not introduce noticeable computational cost.

Method CIFAR-10/ImageNet-RC CIFAR-10/TIN-597 CIFAR-100/ImageNet-RC CIFAR-100/TIN-597

EBM (finetune) 354.87 229.12 355.70 112.47
Entropy 355.98 140.88 1108.43 120.85
DPN 842.05 75.62 841.69 80.98
POEM 615.51 483.04 825.87 500.01
WOODS 808.77 291.37 906.67 282.50
SCONE 911.83 183.57 1169.33 160.00
DUL 329.58 101.08 925.62 100.43
DUL* 598.68 597.82 544.26 595.25

C.3 Full results with standard deviation.

Full results with standard deviation are presented this section. In CIFAR experiments, we report the
mean and standard deviation in 5 random runs. In ImageNet experiments, we report the mean and
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standard deviation in 3 random runs to be consist with [5]. CIFAR experimental results are shown in
Tab. 6. Large-scale ImageNet results are shown in Tab. 7.

Table 6: OOD detection and generalization performance comparison with standard variance. Marginal
improvement and degradation (≥ 0.5) compare to the baseline method MSP are highlighted in blue or
red respectively. The best and second best results are in bold or underlined. DUL is the only method
achieves state-of-art OOD detection performance (mostly the best or second best) without trade-offs
on generalization i.e., the value of entire row is either blue or black.

PID/PSEM
train Method ID/OOD generalization OOD detection

ID-Acc. ↑ OOD-Acc. ↑ FPR ↓ AUROC ↑ AUPR ↑

CIFAR-10
Only

MSP 96.11±0.09 87.35±0.58 41.96±3.85 89.28±1.12 68.00±2.19

EBM (pretrain) 96.11±0.09 87.35±0.58 32.45±3.45 89.34±1.21 75.22±2.67

Maxlogits 96.11±0.09 87.35±0.58 32.90±3.51 89.26±1.21 74.47±2.55

Mahalanobis 96.11±0.09 87.35±0.58 32.53±9.61 93.93±2.68 74.96±7.47

CIFAR-10
ImageNet-RC

Entropy 96.04±0.14 72.57±3.87 6.63±0.80 98.72±0.14 94.00±1.00

EBM (pretrain) 96.10±0.23 79.03±2.53 3.61±0.71 98.39±0.39 94.88±0.91

POEM 94.32±0.14 78.89±2.25 3.32±0.41 98.99±0.17 99.38±0.12

DPN 95.69±0.17 85.52±0.51 4.28±0.60 98.53±0.17 94.93±0.60

WOODS 96.01±0.16 80.14±1.69 7.12±1.54 98.40±0.21 92.92±0.96

SCONE 95.96±0.08 78.80±1.57 7.02±1.06 98.45±0.12 92.46±0.93

DUL (ours) 96.02±0.07 88.01±0.54 5.89±0.35 98.47±0.12 92.44±1.14

DUL† (ours) 96.04±0.03 87.53±0.70 5.99±0.25 98.28±0.11 98.40±0.36

CIFAR-10
TIN-597

Entropy 95.94±0.00 80.51±0.68 11.60±0.82 97.93±0.15 92.16±0.50

EBM (pretrain) 95.38±0.13 83.67±1.41 19.36±1.92 87.51±1.53 83.63±1.73

POEM 95.44±0.18 83.17±1.39 24.34±2.48 86.83±1.13 94.25±0.53

DPN 94.39±0.38 79.23±2.95 17.27±1.07 94.92±0.65 87.67±0.88

WOODS 95.57±0.64 83.12±1.71 7.58±0.52 98.29±0.04 93.39±0.39

SCONE 95.19±0.77 84.68±1.44 8.02±0.92 98.22±0.08 93.08±0.30

DUL (ours) 96.06±0.08 87.93±0.62 6.87±0.82 98.21±0.12 91.29±1.18

DUL† (ours) 95.94±0.09 88.10±0.27 10.34±0.34 97.67±0.09 98.59±0.24

CIFAR-100
Only

MSP 80.99±0.16 55.95±1.38 74.63±2.43 80.19±1.65 42.59±2.79

EBM (pretrain) 80.99±0.16 55.95±1.38 67.42±4.35 82.67±1.82 49.35±4.00

Maxlogits 80.99±0.16 55.95±1.38 69.32±3.97 82.30±1.79 47.60±3.68

Mahalanobis 80.99±0.16 55.95±1.38 61.51±3.62 85.97±1.22 56.10±3.22

CIFAR-100
ImageNet-RC

Entropy 80.21±0.09 45.48±0.78 22.29±1.32 95.33±0.28 82.34±1.11

EBM (finetune) 80.53±0.22 48.14±0.33 13.47±0.43 96.78±0.13 87.84±0.86

POEM 78.15±0.18 42.18±2.34 9.89±0.36 97.79±0.12 98.40±0.08

DPN 78.90±0.25 50.14±0.36 18.36±0.82 95.42±0.17 74.45±18.40

WOODS 80.69±0.30 54.38±4.42 38.15±12.91 92.01±3.23 71.79±7.98

SCONE 80.80±0.30 56.73±4.66 47.60±14.73 89.61±3.75 65.29±9.66

DUL (ours) 81.30±0.19 56.27±1.82 12.49±0.22 95.24±0.09 86.72±0.76

DUL† (ours) 81.22±0.23 56.07±0.54 11.75±1.69 95.33±0.79 96.45±0.42

CIFAR-100
TIN-597

Entropy 80.15±0.17 46.25±1.42 26.88±2.06 93.50±0.36 79.81±1.31

EBM (finetune) 79.94±0.27 50.00±0.93 26.87±1.15 91.68±0.45 80.08±0.76

POEM 78.68±0.13 52.53±1.06 32.71±0.96 91.30±0.68 94.65±0.49

DPN 78.44±0.22 47.67±0.28 25.02±2.19 93.55±0.19 81.63±1.27

WOODS 79.26±2.28 53.13±2.97 36.71±7.92 92.15±2.35 73.42±4.72

SCONE 79.53±1.82 52.70±0.96 35.60±9.50 92.47±2.19 73.58±5.21

DUL (ours) 80.85±0.24 56.19±1.53 23.32±1.11 94.48±0.35 80.82±1.62

DUL† (ours) 80.50±0.25 56.22±1.29 22.75±0.88 90.88±0.28 96.33±0.09

C.4 Results of different types of corruption.

We conduct additional experiments on CIFAR10-C, CIFAR100-C and ImageNet-C with 15 dif-
ferent types of corruption. The results validate that the proposed method can improve the overall
performance under different types of corruption.

C.5 OOD detection results on individual datasets.

We provide OOD detection results of DUL on each individual OOD detection test dataset in Tab. 8
and Tab. 9, based on the checkpoint with random seed 1.
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Table 7: OOD detection and generalization performance comparison with standard variance. Substan-
tially improvement and degradation (≥ 0.5) compare to baseline method w.r.t. MSP are highlighted
in blue or red respectively. The best and second best results are in bold or underlined. Similar with
CIFAR experiments, DUL establishes strong OOD detection performance (always the best or second
best) without degraded generalization i.e., the entire row is either blue or black.

PID/PSEM
train Method ID/OOD Generalization OOD Detection

ID-Acc. ↑ OOD-Acc. ↑ FPR ↓ AUROC ↑ AUPR ↑

ImageNet-200
ImageNet-800

MSP 85.15±0.33 74.84±0.47 58.23±1.54 86.98±0.24 82.27±0.32

EBM (pretrain) 85.15±0.33 74.84±0.47 51.94±0.82 88.18±0.11 84.75±0.08

Maxlogits 85.15±0.33 74.84±0.47 51.62±0.20 88.30±0.09 84.71±0.07

Entropy 84.92±0.30 74.75±0.52 53.62±0.76 89.05±0.01 85.02±0.08

EBM (finetune) 84.14±0.11 73.31±0.57 59.73±0.83 87.54±0.03 82.81±0.16

DPN 84.87±0.30 74.40±0.90 63.84±0.70 87.18±0.18 80.69±0.35

WOODS 84.99±0.62 74.98±0.46 51.71±2.84 88.30±0.56 84.80±0.98

SCONE 84.93±0.71 74.91±0.49 52.52±3.54 88.19±0.41 84.50±1.08

DUL (ours) 85.65±0.07 75.59±0.12 49.14±0.13 89.27±0.03 85.62±0.03

Table 8: OOD detection results of DUL on each individual OOD detection test dataset.

PID/PSEM
train

LSUN-crop Places365 LSUN-resize iSUN Texture SVHN
Method FPR↓ AUROC↑ FPR↓ AUROC↑ FPR↓ AUROC↑ FPR↓ AUROC↑ FPR↓ AUROC↑ FPR↓ AUROC↑

CIFAR-10
ImageNet-RC

DUL 6.75 98.75 15.55 96.34 0.00 99.63 0.00 99.57 3.20 98.89 8.35 98.24
DUL† 12.79 98.08 14.99 96.11 0.00 99.49 0.00 99.45 1.72 98.79 4.84 98.47

CIFAR-10
TIN-597

DUL 0.90 99.47 22.40 95.21 0.10 99.52 0.30 99.45 8.00 97.94 5.90 98.52
DUL† 3.48 99.25 32.81 91.48 0.00 99.78 0.00 99.78 13.97 97.15 9.69 98.28

CIFAR-100
ImageNet-RC

DUL 44.65 83.73 21.05 79.30 0.00 99.63 0.00 99.61 3.05 98.53 5.00 98.15
DUL† 47.75 81.29 14.92 95.08 0.00 99.58 0.00 99.46 1.70 98.70 4.44 98.02

CIFAR-100
TIN-597

DUL 7.05 98.69 65.35 83.60 3.80 99.03 3.50 98.98 34.45 92.21 21.15 95.81
DUL† 6.25 98.55 78.95 64.09 0.02 99.84 0.00 99.83 39.79 85.02 5.61 98.51

Table 9: OOD detection results of DUL on each OOD detection test dataset.

PID/PSEM
train Method OpenImage-O SSB-hard Textures iNaturalist NINCO

FPR↓ AUROC↑ FPR↓ AUROC↑ FPR↓ AUROC↑ FPR↓ AUROC↑ FPR↓ AUROC↑

ImageNet-200/800 DUL 49.68 91.31 72.40 80.60 30.76 92.98 33.21 94.76 59.92 86.61

Table 10: Classification error rate comparison on CIFAR10-C. ID dataset is CIFAR10.

Noise Blur Weather Digital
Method PSEM

train Gauss. Shot Impul. Defoc. Glass Motion Zoom Snow Frost Fog Brit. Contr. Elastic Pixel JPEG Avg.

MSP

None

53.35 39.98 44.07 15.61 42.35 19.33 19.83 14.39 18.02 9.61 5.09 18.19 13.45 22.71 18.61 23.64
EBM (pretrain) 53.35 39.98 44.07 15.61 42.35 19.33 19.83 14.39 18.02 9.61 5.09 18.19 13.45 22.71 18.61 23.64

Maxlogits 53.35 39.98 44.07 15.61 42.35 19.33 19.83 14.39 18.02 9.61 5.09 18.19 13.45 22.71 18.61 23.64
Mahalanobis 53.35 39.98 44.07 15.61 42.35 19.33 19.83 14.39 18.02 9.61 5.09 18.19 13.45 22.71 18.61 23.64

Entropy

ImageNet-RC

67.20 53.99 70.93 17.09 81.99 20.00 22.17 22.41 31.78 11.43 5.82 16.99 14.28 28.92 21.37 32.42
EBM (finetune) 62.49 50.00 73.01 21.01 73.93 20.06 25.80 21.02 27.00 11.55 5.60 15.08 15.15 31.46 22.69 31.72

DPN 50.19 38.80 59.81 16.98 52.81 19.68 22.24 18.25 20.11 11.10 5.74 18.01 14.41 24.30 18.76 26.08
POEM 47.52 38.16 63.39 22.64 67.37 24.12 28.43 23.44 27.33 14.30 7.65 19.02 18.37 31.87 22.23 30.40

WOODS 62.36 49.09 60.77 15.56 74.37 19.05 20.16 18.79 25.41 9.84 5.45 16.76 14.16 24.07 20.45 29.09
SCONE 63.29 50.01 61.96 15.61 77.16 18.65 20.24 19.77 26.43 9.82 5.54 16.88 14.09 24.46 20.64 29.64

DUL (Ours) 53.46 40.11 43.71 15.62 42.77 19.49 19.89 14.27 18.07 9.82 5.06 18.49 13.56 22.65 18.69 23.71

Entropy

TIN-597

65.68 52.08 56.49 18.68 51.96 22.73 24.43 18.57 24.64 10.56 5.51 16.38 15.88 25.19 41.25 30.00
EBM (finetune) 58.95 44.89 52.91 18.30 47.25 23.99 24.33 17.70 22.18 12.23 6.07 19.78 17.11 26.85 51.31 29.59

DPN 48.07 38.05 42.56 22.54 47.39 27.29 30.41 20.46 26.17 14.53 7.22 24.54 18.33 27.40 26.23 28.08
POEM 51.06 39.56 47.20 16.08 48.97 20.23 21.40 17.36 22.15 11.29 5.94 18.08 14.87 22.08 31.74 25.87

WOODS 60.01 46.74 51.26 18.04 49.83 20.95 23.17 17.34 22.66 10.02 5.69 16.02 16.32 23.55 25.92 27.17
SCONE 58.20 44.92 50.36 17.14 48.47 20.64 22.80 17.05 21.15 9.87 6.07 17.24 16.17 24.89 25.53 26.70

DUL (Ours) 54.56 40.84 44.18 15.67 43.61 19.93 19.74 14.49 18.34 9.84 5.18 19.24 13.95 22.91 18.66 24.08
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Table 11: Classification error rate comparison on CIFAR100-C. ID dataset is CIFAR100.

Noise Blur Weather Digital
Method PSEM

train Gauss. Shot Impul. Defoc. Glass Motion Zoom Snow Frost Fog Brit. Contr. Elastic Pixel JPEG Avg.

MSP

None

76.98 67.70 74.51 36.08 78.49 40.69 41.39 40.52 46.66 31.44 22.59 40.29 35.31 42.83 44.93 48.03
EBM (pretrain) 76.98 67.70 74.51 36.08 78.49 40.69 41.39 40.52 46.66 31.44 22.59 40.29 35.31 42.83 44.93 48.03

Maxlogits 76.98 67.70 74.51 36.08 78.49 40.69 41.39 40.52 46.66 31.44 22.59 40.29 35.31 42.83 44.93 48.03
Mahalanobis 76.98 67.70 74.51 36.08 78.49 40.69 41.39 40.52 46.66 31.44 22.59 40.29 35.31 42.83 44.93 48.03

Entropy

ImageNet-RC

81.69 72.89 86.99 38.19 88.94 42.20 44.62 45.50 53.90 33.14 24.40 39.77 37.19 47.62 48.82 52.39
EBM (finetune) 82.33 73.51 90.58 39.20 90.71 41.43 44.40 47.29 54.88 34.26 24.72 39.15 37.65 51.47 49.29 53.39

DPN 77.60 68.59 83.59 39.74 86.77 43.33 44.91 47.01 53.69 36.37 26.11 43.45 37.56 47.48 44.47 52.04
POEM 83.65 76.63 88.02 44.09 90.05 44.29 46.44 52.80 60.84 39.49 28.90 43.35 42.49 56.06 54.50 56.77

WOODS 77.51 68.48 77.47 36.38 80.62 40.92 41.93 41.27 47.08 31.36 23.30 39.74 36.21 42.87 46.16 48.75
SCONE 76.43 67.30 75.32 36.23 77.00 40.92 41.59 40.22 45.53 31.35 23.09 40.10 35.87 42.42 45.42 47.92

DUL (Ours) 77.23 67.95 75.13 35.83 78.52 39.74 40.64 39.76 46.13 30.96 22.43 39.17 34.81 43.03 44.64 47.73

Entropy

TIN-597

83.34 75.44 79.77 38.02 82.74 42.22 44.17 44.52 53.36 32.80 23.67 38.00 37.85 44.55 62.91 52.22
EBM (finetune) 81.24 72.78 78.14 37.55 80.00 42.94 43.64 43.70 51.11 33.52 23.92 40.19 38.13 45.05 73.27 52.34

DPN 81.81 72.87 79.09 39.61 81.25 44.66 46.21 45.42 52.40 34.28 25.64 40.89 39.15 47.66 76.40 53.82
POEM 78.88 70.32 74.68 38.59 77.95 43.41 44.27 43.00 50.22 34.64 25.37 43.09 37.28 45.43 81.55 52.58

WOODS 81.14 72.39 76.49 38.50 79.00 43.23 44.59 42.37 49.21 33.03 24.32 40.23 39.01 41.19 47.80 50.17
SCONE 80.90 72.30 77.19 37.91 78.70 42.36 43.99 42.81 49.49 32.19 24.00 39.26 37.96 41.80 48.34 49.95

DUL (Ours) 77.01 67.67 74.16 36.16 78.35 40.79 41.32 40.17 46.33 31.42 22.87 40.79 35.34 42.74 45.05 48.01

Table 12: Classification error rate comparison on ImageNet-C. Here we test compared methods on a
subset of the original ImageNet-C consisting of 200 classes. ID dataset is ImageNet-200.

Noise Blur Weather Digital
Method PSEM

train Gauss. Shot Impul. Defoc. Glass Motion Zoom Snow Frost Fog Brit. Contr. Elastic Pixel JPEG Avg.

MSP

None

52.2 70.7 715 56.0 55.5 52.6 54.1 67.3 67.0 63.5 56.5 53.3 46.3 50.3 51.9 57.9
EBM (pretrain) 52.2 70.7 715 56.0 55.5 52.6 54.1 67.3 67.0 63.5 56.5 53.3 46.3 50.3 51.9 57.9

Maxlogits 52.2 70.7 715 56.0 55.5 52.6 54.1 67.3 67.0 63.5 56.5 53.3 46.3 50.3 51.9 57.9

Entropy

ImageNet-800

51.3 71.2 71.7 54.4 54.6 51.8 53.2 66.9 66.2 62.7 55.8 51.4 45.1 49.7 51.1 57.1
EBM (finetune) 52.9 72.2 72.8 56.0 56.2 53.5 54.1 67.8 67.4 64.0 57.0 52.2 46.5 51.4 52.9 58.5

DPN 51.9 69.2 69.6 56.5 55.0 52.0 53.1 65.5 65.3 62.3 55.5 54.5 46.0 49.7 51.4 57.2
WOODS 51.4 69.4 70.0 55.2 54.8 51.9 52.9 66.2 66.0 62.5 55.6 52.6 45.6 49.7 51.3 57.0
SCONE 51.6 69.4 70.0 55.4 55.0 52.1 53.1 66.3 66.0 62.6 55.7 53.0 45.8 49.9 51.4 57.1

DUL (Ours) 51.1 69.1 70.5 55.1 54.5 51.6 52.4 66.2 65.9 62.6 55.7 53.0 45.4 49.4 50.9 56.9

Table 13: Comprehensive comparison involving 15 different types of corruption from commonly-used
domain adaption benchmark [52]. Substantial (≥ 0.5) improvement and degradation compared to the
baseline MSP [6] are highlighted in blue or red respectively. DUL is the only method that achieves
SOTA OOD detection performance without sacrificing generalization i.e., the value of the entire row
is almost black or blue. The best or second best results are highlighted in bold or underlined. MD is
the shorthand of Mahalanobis.

OOD generalization (Error rate ↓) OOD detection
Method PID

train PSEM
train Gauss. Shot Impul. Defoc. Glass Motion Zoom Snow Frost Fog Brit. Contr. Elast. Pixel JPEG Avg. FPR↓ AUC↑

MSP

C
IF
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R

-1
0

N
on

e

77.0 67.7 74.5 36.1 78.5 40.7 41.4 40.5 46.7 31.4 22.6 40.3 35.3 42.8 44.9 48.0 42.0 89.3
EBM 77.0 67.7 74.5 36.1 78.5 40.7 41.4 40.5 46.7 31.4 22.6 40.3 35.3 42.8 44.9 48.0 32.5 89.3

Maxlogits 77.0 67.7 74.5 36.1 78.5 40.7 41.4 40.5 46.7 31.4 22.6 40.3 35.3 42.8 44.9 48.0 32.9 89.3
MD 77.0 67.7 74.5 36.1 78.5 40.7 41.4 40.5 46.7 31.4 22.6 40.3 35.3 42.8 44.9 48.0 32.5 93.9

Entropy

Im
ag

eN
et

-R
C

81.7 72.9 87.0 38.2 88.9 42.2 44.6 45.5 53.9 33.1 24.4 39.8 37.2 47.6 48.8 52.4 6.6 98.7
EBM (FT) 82.3 73.5 90.6 39.2 90.7 41.4 44.4 47.3 54.9 34.3 24.7 39.2 37.7 51.5 49.3 53.4 3.6 98.4

DPN 77.6 68.6 83.6 39.7 86.8 43.3 44.9 47.0 53.7 36.4 26.1 43.5 37.6 47.5 44.5 52.0 4.3 98.5
POEM 83.7 76.6 88.0 44.1 90.1 44.3 46.4 52.8 60.8 39.5 28.9 43.4 42.5 56.1 54.5 56.8 3.3 99.0

WOODS 77.5 68.5 77.5 36.4 80.6 40.9 41.9 41.3 47.1 31.4 23.3 39.7 36.2 42.9 46.2 48.8 7.1 98.5
SCONE 76.4 67.3 75.3 36.2 77.0 40.9 41.6 40.2 45.5 31.4 23.1 40.1 35.9 42.4 45.4 47.9 7.0 98.5

DUL (Ours) 77.2 68.0 75.1 35.8 78.5 39.7 40.6 39.8 46.1 31.0 22.4 39.2 34.8 43.0 44.6 47.7 5.9 98.5
Entropy

T
IN

-5
97

83.3 75.4 79.8 38.0 82.7 42.2 44.2 44.5 53.4 32.8 23.7 38.0 37.9 44.6 62.9 52.2 11.6 97.9
EBM (FT) 81.2 72.8 78.1 37.6 80.0 42.9 43.6 43.7 51.1 33.5 23.9 40.2 38.1 45.1 73.3 52.3 19.4 87.5

DPN 81.8 72.9 79.1 39.6 81.3 44.9 46.2 45.4 52.4 34.3 25.6 40.9 39.2 47.7 76.4 53.8 17.3 94.9
POEM 78.9 70.3 74.7 38.6 78.0 43.4 44.3 43.0 50.2 34.6 25.4 43.1 37.3 45.4 81.6 52.6 34.3 86.8

WOODS 81.1 72.4 76.5 38.6 79.0 43.2 44.6 42.4 49.2 33.0 24.3 40.2 39.0 41.2 47.8 50.2 7.6 98.3
SCONE 80.9 72.3 77.2 37.9 78.7 42.4 43.4 42.8 49.5 32.2 24.0 39.3 38.0 41.8 48.3 50.0 8.0 98.2

DUL (Ours) 77.0 67.7 74.2 36.2 78.4 40.8 41.3 40.2 46.3 31.4 22.9 40.8 35.3 42.7 45.1 48.0 6.9 98.2

MSP

Im
ag

eN
et

-2
00 N

on
e 52.2 70.7 71.5 56.0 55.5 52.6 54.1 67.3 67.0 63.5 56.5 53.3 46.3 50.3 51.9 57.9 58.2 82.3

EBM 52.2 70.7 71.5 56.0 55.5 52.6 54.1 67.3 67.0 63.5 56.5 53.3 46.3 50.3 51.9 57.9 32.5 89.3
Maxlogits 52.2 70.7 71.5 56.0 55.5 52.6 54.1 67.3 67.0 63.5 56.5 53.3 46.3 50.3 51.9 57.9 51.9 88.2
Entropy

Im
ag

eN
et

-8
00 51.3 71.2 71.7 54.4 54.6 51.8 53.2 66.9 66.2 62.7 55.8 51.4 45.1 49.7 51.1 57.1 53.6 89.1

EBM (FT) 52.9 72.2 72.8 56.0 56.2 53.5 54.1 67.8 67.4 64.0 57.0 52.2 46.5 51.4 52.9 58.5 59.7 87.5
DPN 51.9 69.2 69.6 56.5 55.6 52.4 53.1 65.5 65.0 62.2 55.5 54.5 46.0 49.7 51.4 57.2 63.8 87.2

WOODS 51.4 69.4 70.0 55.2 54.8 51.9 52.9 66.2 66.0 62.5 55.6 52.6 45.6 49.7 51.3 57.0 51.7 88.3
SCONE 51.6 69.4 70.0 55.4 55.0 52.1 53.1 66.3 66.0 62.6 55.7 53.0 45.8 49.9 51.4 57.1 52.5 88.2

DUL (Ours) 51.0 69.1 70.5 55.1 54.5 51.5 52.4 66.2 65.9 62.6 55.7 53.0 45.4 49.4 50.9 56.9 49.1 89.3
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C.6 Empirical evidence

Here we provide empirical supports to our intuition about energy-based OOD detection regular-
ization. We calculate the entropy of predicted distribution before and after finetuning with Energy
regularization [8]. The results show can support our claim in Section 4.

Table 14: Predictive entropy of predicted distribution on covariate-shifted OOD dataset before and
after finetuning with energy-based OOD detection regularization [8].

PID PSEM
train Before After

CIFAR10 ImageNet-RC 0.11 1.05
CIFAR10 TIN-597 0.11 0.14
CIFAR100 ImageNet-RC 0.92 3.39
CIFAR100 TIN-597 0.92 1.15

D Discussions

D.1 Math derivation

Differential entropy. The proposed DUL calculates differential entropy as OOD detection mea-
surement. Here we detail how to calculate the differential entropy of a Dirichlet distribution. The
following derivation of differential entropy is taken from [9]. The differential entropy of a Dirichlet
parameterized by α is calculated by

h[p(µ|x)] = −
∫
S

p(µ|x) ln(p(µ|x))dµ

=

K∑
k

ln Γ(αk)− ln Γ(α0)−
K∑
k

(αk − 1) · (ψ(αk)− ψ(α0))

(30)

where α0 is the strength of Dirichlet, i.e., α0 =
∑

K αk. αk denotes the k-th element in α. Γ is the
Gamma function and ψ is the digamma function. Here we provide a PyTorch implementation on how
to calculate distribution uncertainty measured by differential entropy.

def diff_entropy(alphas):
alpha0 = torch.sum(alphas , dim=1)
return torch.sum(

torch.lgamma(alphas)-(alphas-1)*(torch.digamma(alphas)-
torch.digamma(alpha0).
unsqueeze(1)),

dim=1) - torch.lgamma(alpha0)

logits = model(x)
alpha = torch.Relu(logits)+1
diff_entropy = diff_entropy(alpha)

We refer interested readers to [9] and Gal’s PhD Thesis [59] for more detailed math derivations.

D.2 Discussion about Disparity Discrepancy

In section 4, we claim that a limited disparity discrepancy between test-time semantic OOD and
covariate-shifted OOD is practical. Here we provide some empirical evidence and discussion to
support such a claim.

The key challenge of OOD detection lies in identifying ID-like semantic OOD. As mentioned in
recent works [38], effectively distinguishing between the most challenging OOD samples that are
much like in-distribution (ID) data is the core challenge of OOD detection. Recent works regularize
models on ID-like OOD to enhance the OOD detection performance. Since the ID-like semantic
OOD samples are more difficult to be detected and more informative. For example, NTOM [17] and
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POEM [11] utilizes greedy and Thompson sampling strategies to find semantic OOD samples which
are more closely to ID. [38] proposes to explicitly discover outliers near ID by prompt learning.

Semantic OOD and covariate OOD can be very similar in practice. As shown in Fig. 4. There
exists many similar samples from semantic OOD and covariate OOD in large-scale commonly used
benchmarks. We borrow some examples from recent works [47] to show case.

Figure 4: Semantic OOD samples can be very similar to ID.

D.3 Social Impact

AI safety and trustworthiness are closely related to our work. This paper presents work to harmonize
the conflicts between out-of-distribution detection methods and model generalization. The proposed
method puts effort to enhance machine learning models for their safely deployment on out-of-
distribution data, avoiding both undesirable behavior and degraded performance in challenging
high-stake tasks. However, due to the bias from data used by current OOD detection benchmark, e.g.,
large-scale ImageNet, the ones using the proposed method need to carefully consider the selection of
auxiliary outliers for safety-critical applications.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction accurately reflect the paper’s contributions and
scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: In conclusion and Appendix.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: The paper provide the full set of assumptions and a complete (and correct)
proof in Appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Section 6 and Appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: See Appendix and supplemental material.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The paper provides above details in Section 6 and Appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Appendix C.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: In Appendix C.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The authors have carefully reviewed the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: In Appendix.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The license and terms of use explicitly mentioned and properly respected.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
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Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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