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ABSTRACT

We study the classic problem of prediction with expert advice under the constraint
of local differential privacy (LDP). In this context, we first show that a classical
algorithm naturally satisfies LDP and then design two new algorithms that improve
it: RW-AdaBatch and RW-Meta. For RW-AdaBatch, we exploit the limited-
switching behavior induced by LDP to provide a novel form of privacy amplification
that grows stronger on easier data, analogous to the shuffle model in offline learning.
Drawing on the theory of random walks, we prove that this improvement carries
essentially no utility cost. For RW-Meta, we develop a general method for privately
selecting between experts that are themselves non-trivial learning algorithms, and
we show that in the context of LDP this carries no extra privacy cost. In contrast,
prior work has only considered data-independent experts. We also derive formal
regret bounds that scale inversely with the degree of independence between experts.
Our analysis is supplemented by evaluation on real-world data reported by hospitals
during the COVID-19 pandemic; RW-Meta outperforms both the classical baseline
and a state-of-the-art central DP algorithm by 1.5-3× on the task of predicting
which hospital will report the highest density of COVID patients each week.

1 INTRODUCTION

Many practical algorithmic and organizational problems, from routing data to allocating scarce
resources, involve repeated predictions about the future state of a system. Prediction from Expert
Advice (Cesa-Bianchi & Lugosi, 2006) is a flexible framework developed in the online learning
literature that can be used to model these problems as an iterative game between a player and the
environment: at each time step t = 1, . . . , T , the player receives suggestions from each of n ‘experts’
(which might correspond to literal human advisors, complex algorithms, or static actions like “always
do X"), and must decide whose advice to follow. Nature then reveals the gain of each expert at
that time step, and the player receives a reward based on their actual choice. The player’s goal is to
maximize their reward over the course of the entire game. 1

Our interest lies in contexts where predictions are either implicitly or explicitly about human behavior.
Optimizing purely for accuracy in this context is risky because the algorithm might inadvertently leak
sensitive data through its outputs, similar to batch learning (Shokri et al., 2017; Carlini et al., 2023).
As a result, there has been a great deal of interest in the development of differentially-private (DP)
algorithms that can match the performance of their non-private counterparts while provably leaking
minimal information their data (Jain et al., 2012; Thakurta & Smith, 2013; Agarwal & Singh, 2017;
Kairouz et al., 2021; Asi et al., 2023). Here, ‘data’ refers to a sequence of vectors representing the
gain of each expert at a single time step, which are sensitive because they correspond to whether
predictions about human behavior turned out to be accurate.

The works cited above all fall within the central model of differential privacy (DP) (Dwork et al.,
2014), wherein users share their data freely with a trusted central curator. In contrast, we are
concerned with the relatively under-studied (non-interactive (Smith et al., 2017)) local model (Yang
et al., 2023), where each user individually perturbs their data before sharing it, reducing the need
for trust. We are interested in this problem because the stronger guarantees of local DP (LDP)

1It is more common to describe the problem in terms of minimizing loss. Using gain instead will be
notationally convenient later on, and guarantees about one can be converted to the other by flipping signs.
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are arguably a better match for the privacy requirements of highly sensitive domains where online
learning could be applied, such as health, human mobility, or residential energy usage.

Our starting point is the simple LDP algorithm, probably folklore, which sums the noisy data seen
so far and chooses the expert that appears to have done the best historically. Interestingly, this turns
out to be exactly identical to a relatively well-known algorithm from the non-private literature by
Devroye et al. (2013). This algorithm, which we refer to as RW-FTPL (short for Random-Walk
Follow-the-Perturbed-Leader), was designed to switch its prediction only a small number of times in
expectation. This concept of limited switching motivated our first contribution:

Contribution 1: Stability under LDP. We prove Theorem 1, which provides a tight and easily
computable characterization of the switching behavior of RW-FTPL. This allows us to answer
questions like “What is the largest integer B such that, with probability at least 1−α, RW-FTPL will
not change its prediction in the next B steps?". Using this tool, we propose a new algorithm, RW-
AdaBatch, which modifies RW-FTPL to adaptively batch data together whenever we can guarantee
with high probability this our predictions won’t change as a result. The resulting algorithm is fully
invariant to permutations within certain (random, data-dependent) subsequences of its input, and we
develop novel proof techniques to show that this translates to amplified central-DP guarantees for its
outputs, a la the celebrated shuffle model in batch learning Erlingsson et al. (2019). The only cost
we pay for this privacy amplification a small multiplicative increase in worst-case regret bounds that
can be controlled as a hyperparameter. The analytic lower bounds that we prove for the degree of
amplification have no simple closed form, but they can be computed numerically. We visualize them
in Figure 1 alongside empirical Monte Carlo simulations that validate their tightness.

Contribution 2: Private Learning in Dynamic Environments. Existing private learning algorithms
generally expend their full privacy budget on estimating sums over all data seen so far. LDP forces us
to instead estimate every data point in isolation. We show that this can in fact be a blessing in disguise,
because it makes it substantially easier to reuse the same estimates between multiple algorithms.
Building on this insight, we design RW-Meta, which employs a highly-efficient noise-sharing scheme
to both instantiate and dynamically choose between multiple data-dependent experts. By design,
this carries no additional privacy cost beyond that of RW-FTPL, but in section 4 we show that it can
lead to dramatic improvements in practice, outperforming even central-DP baselines by more than
1.5× on a prediction task involving data reported by hospitals during the COVID-19 pandemic. In
Theorem 3, we prove formal regret bounds for RW-Meta with respect to the best-data-dependent
expert. These bounds scale with the leading eigenvalue of a certain matrix related to the empirical
covariance of the experts, which can be thought of as representing the difficulty of the learning task.

2 BACKGROUND AND RELATED WORK

2.1 RELATED WORK

The study of online learning with DP was initiated in 2010 by the papers of Dwork et al. (2010)
and Chan et al. (2011), which examined the problem of privately updating a single counter. Later
work has gone on to apply their framework to a wide range of tasks, including more complicated
statistics (Perrier et al., 2018; Bolot et al., 2013; Wang et al., 2021), online convex optimization (Jain
et al., 2012; Kairouz et al., 2021; Choquette-Choo et al., 2023; 2024), and the partial information
(or ‘bandit’) setting (Thakurta & Smith, 2013; Hannun et al., 2019; Azize & Basu, 2024). The only
existing example of an experts algorithm satisfying LDP that we are aware of comes from the recent
work of Gao et al. (2024). While their work shares motivation with ours, the federated context and
stochastic adversaries they consider lead to substantial technical differences in our results.

Within the central model, the works most similar to ours are Asi et al. (2023; 2024) and Agarwal &
Singh (2017). Like us, Asi et al. (2023) exploit the limited-switching behavior of a classical online
learning algorithm2 to develop private experts algorithms. Their focus is on the high-dimensional
regime, where the gap between local and central DP is most pronounced (Edmonds et al., 2019; Duchi
et al., 2013). Their work has gone on to inspire a flurry of work establishing connections between

2Shrinking Dartboard, by Geulen et al. (2010). It so happens that this paper also motivated the work of
Devroye et al. (2013) that we build on.
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Table 1: Regret and privacy guarantees for our algorithms and prior work with T time steps and n
experts. CDP, GCDP, and GLDP stand for central DP, Gaussian central DP and Gaussian local DP.

Algorithm Privacy Guarantee Asymptotic Regret Regret Definition

Agarwal & Singh (2017) ε, δ-CDP
√
T logn+

√
n logn log1.5 T

ε
Best static action

in hindsight
RW-FTPL (Devroye et al., 2013) µ-GLDP

√
Tn logn

µ
Best static action

in hindsight
RW-AdaBatch with

parameter α > 0
µ-GLDP;

Amplified GCDP
(1 + α)

√
Tn logn

µ
Best static action

in hindsight
RW-Meta with
m learners

µ-GLDP
√
Tnm logm

µ
Best learner
in hindsight

privacy and limited switching for both the experts problem and online convex optimization (Asi et al.,
2024; Agarwal et al., 2023a;b), which our RW-AdaBatch algorithm contributes to.

In a contemporaneous work, Saha et al. (2025) extend Asi et al. (2023) to propose new algorithms
for expert advice in dynamic environments, motivated by the same concerns that led us to design
RW-Meta. The algorithm for oblivious adversaries in Saha et al. (2025) works by constructing an
exponentially large set of candidate experts to pass to the high-dimensional central-DP algorithm of
Asi et al. (2023). In contrast, the performance guarantees of our local-DP RW-Meta algorithm are
defined with respect to a smaller set of carefully chosen candidate experts, leading to a qualitatively
different notion of regret and a linear (rather than exponential) runtime dependence on T . Because of
these computational issues, we do not include their algorithm in our empirical evaluation.

Finally, the algorithms in Agarwal & Singh (2017) represent the state-of-the-art in the low-
dimensional regime that we target, and we therefore take them as our primary (central DP) baseline
when we evaluate our algorithms on real-world data.

2.2 PRELIMINARIES

Given a vector v ∈ Rn, we denote its kth element with the subscript vk, and its kth smallest element
using parentheses as in v(k). We use the term ‘leader’ to refer to the index of v(n), and the term
‘gap’ to refer to the quantity v(n) − v(n−1). For two random variables X and Y , we say that X is
stochastically larger than Y , denoted X ≥st Y , if for all x we have P[X > x] ≥ P[Y > x]. We use
Φ and φ to denote the standard Gaussian CDF and PDF respectively.

We treat prediction with expert advice as a special case of online linear optimization (Abernethy et al.,
2014). At each time step t ∈ [T ], we choose an action xt from the action set X , which in our case is
the n-dimensional probability simplex. We then observe the gain vector gt ∈ G ⊆ [0, 1]n and receive
reward ⟨xt, gt⟩. Static regret is defined as the difference between the total reward we ultimately
receive and the reward of the best single action in hindsight, i.e. maxx∈X

∑T
t=1⟨x, gt⟩−

∑T
t=1⟨xt, gt⟩.

Our utility analysis uses the oblivious adversary model, which means that gain vectors can take on
arbitrary fixed values but can’t depend on the realized values of the noise we add for privacy (but
note that our LDP guarantees still hold even against adaptive adversaries (Denisov et al., 2022)).

To define privacy, we say that two sequences of gain vectors g1, g2, . . . , gT and g′1, g
′
2, . . . , g

′
T are

adjacent if there is at most one index i such that gi ̸= g′i. A randomized mechanismM is said to
satisfy central DP (CDP) (Dwork et al., 2014) if for for all adjacent sequence g, g′, the distributions of
M(g1, . . . , gT ) andM(g′1, . . . , g

′
T ) satisfy a formal notion of indistinguishability which we define

shortly. In the non-interactive (Smith et al., 2017) local (Yang et al., 2023) setting that we study,
we instead imagine that M is applied separately to each data point as a preprocessing step, and
our algorithm only gets access to the sequenceM(g1), . . . ,M(gT ). Satisfying LDP then requires
indistinguishability between the distributions ofM(gt) andM(g′t).

To define indistinguishability, we make use of f -DP (Dong et al., 2019), a modern DP variant based on
hypothesis testing. Given two distributions P,Q, we define the tradeoff function T (P,Q) : [0, 1]→
[0, 1] so that T (P,Q)(α) is the minimum false negative rate achievable at false positive rate α when

3
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Algorithm 1 RW-FTPL(Devroye et al., 2013)

Require: Noise scale η, dimension n
Sample G̃ ∼ N (0, η2In)
for t = 1, . . . , T do

Play xt = argmaxx∈X ⟨x, G̃⟩
Get g̃t ∼ N (gt, η

2In)
(Unobserved) receive reward ⟨xt, gt⟩
Update G̃← G̃+ g̃t

Algorithm 2 RW-AdaBatch

Require: Scale η, dimension n, tolerance α
Sample G̃ ∼ N (0, η2In)
Initialize empty buffer, set delay to 0
for t = 1, . . . , T do

Play xt = argmaxx∈X ⟨x, G̃⟩
Get g̃t ∼ N (gt, η

2In) and add to buffer
(Unobserved) receive reward ⟨xt, gt⟩
if delay is 0 then

Move data from buffer to G̃
Set new delay using Theorem 1

distinguishing P from Q. A mechanismM operating on individual data points is then said to satisfy
f -DP if T (M(g),M(g′)) ≥ f for all g, g′ ∈ G. As a special case, we define the Gaussian tradeoff
functions Gµ := T (N (0, 1), N (µ, 1)) and say that a mechanism satisfies µ-Gaussian DP (µ-GDP)
if it satisfies Gµ-DP. This definition can be naturally satisfied by locally injecting Gaussian noise with
scale calibrated to the sensitivity of our gain vectors, defined as ∆ = maxg,g′∈G∥g − g′∥2 ≤

√
n .

We also make occasional use of the traditional definition of approximate DP: a mechanism operating
on individual data points is said to satisfy (ε, δ)-DP if, for all g, g′ ∈ G and all measureable events S,
we have that P[M(g) ∈ S] ≤ eεP[M(g′) ∈ S] + δ.

3 PREDICTION WITH EXPERT ADVICE UNDER LDP

The classical algorithm that inspired our approach was introduced by Devroye et al. (2013) under the
name ‘Prediction by random-walk perturbations.’ We will refer to it as RW-FTPL for brevity. Given
a symmetric distribution D, the algorithm begins by sampling z0, . . . , zT

iid∼ N (0, η2In). At each
time step, it chooses xt = argmaxi∈[n](Gt−1 + St−1)i, where St :=

∑t
s=0 zt and Gt =

∑t
s=0 gs.

Here, St is an element of a symmetric random walk, giving the algorithm its name.

When analyzing the privacy guarantees of the algorithm, it is helpful to view the decision rule from
a different perspective. Define g̃t := gt + zt, with g0 = 0. RW-FTPL can be reformulated as a
post-processing of these noisy gain vectors, which by our assumptions satisfy (local) GDP with
privacy parameter µ = ∆/η. Using tools from convex analysis(Lee, 2018), it can also be shown that
its expected static regret is at most

(
η + 2

η

)√
2T logn. In the absence of additional structure on G,

such as sparsity, this regret bound is weaker than the non-private baseline by a factor of
√
n
µ , which

corresponds to known lower bounds for mean estimation under LDP Duchi et al. (2013).

3.1 STABILITY UNDER LDP: RW-ADABATCH

The RW-FTPL algorithm was not originally designed with privacy in mind: the authors’ goal was to
create a low-regret algorithm which changes its prediction only a small number of times in expectation.
Intuitively, this limited-switching means that RW-FTPL is almost invariant to permutations of nearby
data points. RW-AdaBatch modifies RW-FTPL to be truly permutation-invariant over many data-
dependent invervals, amplifying privacy a la the shuffle model (Erlingsson et al., 2019) while still
producing the same outputs with high probability. The amplification naturally grows stronger when
data is ‘easy’ in the sense that Gt has non-zero gap. Omitted proofs are in the appendix.

3.1.1 UTILITY ANALYSIS.

We show that the expected regret of RW-AdaBatch is at most (1 + α/2) times greater than the
expected regret of RW-FTPL, where α is a small constant given to the algorithm as a parameter.
Our main tool for proving this result is the following theorem on Gaussian random walks, which
establishes conditions under which RW-FTPL’s prediction will remain stable with high probability:

4
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Theorem 1. Let x0, x1, . . . , xB ∈ Rn be a Gaussian random walk with x0 = v and xt+1 − xt ∼
N (0, η2In). If v has gap k, then the probability that the leader changes at any point during the
random walk is at most 2Φ(−

√
2β) + 2

√
πφ(−β)

[
Φ(β) − Φ(−β)

]
, where β = k/(η

√
2B) −√

log(2n− 2). The same is true if v has gap k + κ and we wish to bound the probability that the
gap ever dips below κ.

Corollary 1. The ComputeDelay subroutine presented in subsection A.6 selects the largest batch
size Bt such that the probability of RW-FTPL changing its prediction in the next t time-steps can be
bounded above by α

√
logn/(t+Bt) using Theorem 1.

Corollary 2. For any α > 0, if RW-AdaBatch chooses batch sizes using the ComputeDelay
subroutine with parameter α, then its expected regret is at most (1 + α

2 )(η + 2
η )
√
2T log n

Corollary 1 follows because ComputeDelay directly solves the relevant optimization problem
with a root-finding subroutine. Corollary 2 follows because the expected regret of RW-AdaBatch
can be decomposed into the regret of RW-FTPL plus the additional regret incurred when batching
leads the algorithms to make different predictions. Different predictions only occur when the leader
changes within a batch, and so Corollary 1 lets us upper bound the regret from a particular batch over
the interval [t, t + Bt) by Btα

√
log n/(t+Bt). For each time step τ ∈ [t, t + Bt), this gives us

amortized regret of α
√
log n/(t+Bt) ≤ α

√
log n/τ . Summing over all time steps in all batches

shows that the extra expected regret over the entire input is at most
√
2α
√
2T logn, and adding the

base regret of RW-FTPL along with the fact that (η + 2
η ) ≥ 2

√
2 for η > 0 yields the corollary.

3.1.2 PRIVACY ANALYSIS.

RW-AdaBatch offers the same local privacy guarantee as RW-FTPL, i.e. µ = ∆/η. Ex-post, a point
that falls in a batch of size B enjoys a stronger central-DP guarantee of µ/

√
B. To compute the

ex-ante privacy amplification of RW-AdaBatch, we would like to exactly characterize the distribution
of containing batch sizes any given point. This turns out to be intractable, and so we instead construct
a proxy distribution and prove that it is stochastically smaller than the true containing batch size for a
given point, independent of the data. The final privacy guarantees we derive have no closed form, but
they can be efficiently computed; we visualize them in Figure 1.

The key reduction behind our argument is as follows: for any t and B, there exists some threshold κ
such that RW-AdaBatch will always choose a batch of size greater than B + 1 if it observes a gap
greater than κ before time t. Let’s say that a gap is ‘small’ if it is less than κ and ‘large’ otherwise.
We observe that whenever gt falls inside a batch of size B + 1 or less, the gap must have been small
during at least one of the last B time steps. By contrapositive, the gap being large at all of those
time steps is a sufficient condition for gt to fall in a batch of size greater than B + 1. Crucially, this
condition depends only on the distribution of the gaps, which makes it much easier to analyze than
the full joint distribution over batch sizes. We lower bound the probability of this condition being
satisfied by proving the following theorem, which is stated formally in the appendix:

Theorem 2 (Informal). Let K be the random variable representing the size of the gap at time t in the
execution of RW-AdaBatch. Then K is stochastically smallest when Gt−1 = 0.

The proof of Theorem 2 involves studying integrals over level sets of the ‘gap’ function with respect to
the Gaussian measure. When n = 2, these sets are convex and the proof is straightforward. For n > 2
the proof is highly non-trivial and so we defer it to the appendix. For our purposes, the important
thing is that we can write down a formula for the CDF of the gap in this worst case scenario:

Fk(ε) = 1− n

∫ ∞

−∞
φ(x)Φ(x− ε)n−1 dx (1)

This allows us to compute a lower bound the probability that the gap at time t−B will be at least
k + κ. We then return to Theorem 1 to upper bound the probability that the gap will drop below κ
within B time steps given that it was initially k+κ. Integration over all possible values of k then gives
us a lower bound on the probability that the gap is at least κ for all B steps, from which we can derive
a probability distribution which is provably stochastically smaller than the true containing batch size
of gt. From here, Lemma 1 lets us translate a stochastically smaller distribution on batch sizes into a

5
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Algorithm 3 RW-Meta

Require: Noise scale η, learners f1, . . . , fm
Sample G̃(m) ∼ N (0, η2In); Initialize Σ← η2Im
for t = 1, . . . , T do

Set Σ∗ ← Σ− 1
m2 (⃗1

TΣ1⃗)⃗1⃗1T # Decorrelate our base estimate of learner gains
Set σ2 ← max(2t, λmax(Σ

∗))
Sample yt ∼ N (0, σ2I − Σ∗)

Choose jt ← argmaxj(G̃
(m) + yt)j # Choose learner using the decorrelated estimate

for i ∈ [m] do
xi,t ← fi(g̃0, . . . , g̃t−1) ∈ Rn

Get g̃t ∼ N (gt, η
2In)

(Unobserved) receive reward ⟨xjt,t, gt⟩
Set Xt ← [x1,t, . . . , xm,t]

T ∈ Rm×n

Update G̃(m) ← G̃(m) +Xtg̃t # Update our base estimate
Update Σ← Σ+ η2XtX

T
t # Record its new covariance matrix

lower bound on tradeoff functions, which is stated in terms of Gaussian mixture distributions. This
tradeoff function lacks a simple closed form, but Lemma 2 allows us to evaluate it numerically.
Lemma 1. Let s1 ∼ P and s2 ∼ Q for some distributions P ≥st Q over the non-negative real
numbers. Then T

(
(s1,N (0, s21), (s1,N (1, s21)

)
≥ T

(
(s2,N (0, s22), (s2,N (1, s22)

)
.

Lemma 2 (Joint Concavity of Tradeoff Functions (Wang et al., 2024)). Let Pw, Qw be two mix-
ture distributions, each with m components and shared weights w. Then: T (Pw, Qw)(α(t, c)) ≥∑m

b=1 wbT (Pb, Qb)(αb(t, c)) =: β(t, c) , where αb(t, c) = PX∼Pb

[
qb
pb
(X) > t

]
+cPX∼Pb

[
qb
pb

= t
]

is the type 1 error of the log likelihood ratio test between Pb and Qb with parameters t and c, and
α(t, c) =

∑m
b=1 wbαb(t, c).

In our case, all of the components correspond to continuous distributions and so we can ignore the c
parameter. This characterization is sufficient to compute Figure 1, which visualizes the amplified
tradeoff curves using the bounds proved above. In the appendix, we show how this can be losslessly
converted into a curve of (ε, δ) guarantees using Proposition 2.13 from Dong et al. (2019).

3.2 PRIVATE LEARNING IN DYNAMIC ENVIRONMENTS: RW-META

Recall that static regret is defined with respect to the single best action in hindsight. The best action
may vary systematically over time, however, in which case a tight bound on static regret doesn’t
necessarily imply good performance in practice. Many works in the non-private online learning
community have developed stronger notions of regret (Zinkevich, 2003; Hazan & Seshadhri, 2009;
Herbster & Warmuth, 1998) and more nimble algorithms (Herbster & Warmuth, 1998) to address this
issue. An analogous push beyond static regret in the DP literature remains in its infancy, however,
with only a single contemporaneous work that we are aware of (Saha et al., 2025).

Our primary contribution in this section is a general privacy-preserving technique for choosing
between experts that are themselves non-trivial learning algorithms, which allows us to derive regret
bounds that are qualitatively stronger than static regret. This involves two main challenges. First,
the predictions of each expert can now potentially leak sensitive information. Second, the gain of
each expert becomes a non-trivial function of both data and predictions so far. Prior work (including
the oblivious algorithm of Saha et al. (2025)) sidesteps these challenges by only considering simple
experts whose predictions are data-independent so consume no privacy budget. RW-Meta tackles
these challenges directly, achieving sublinear regret with respect to the best data-dependent expert
solely through post-processing of the same noisy gain-vectors used by RW-FTPL, which also ensures
that it satisfies µ-GLDP by the post-processing invariance of DP Dwork et al. (2014).

3.2.1 UTILITY ANALYSIS

We refer to data-dependent experts as ‘learners’ and the algorithm selecting between them as the
‘meta-learner.’ We model learners as functions f1, . . . , fm : Rn,∞ → X . At time step t, each learner
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makes a prediction xt,i = fi(g̃1, . . . , g̃t−1), and the meta-learner chooses jt ∈ [m] (by restricting
learners to all rely on the same noisy gain vectors g̃, we avoid the issue of learners leaking sensitive
information). The meta-learner then receives the same gain as the chosen learner, i.e. ⟨xt,jt , gt⟩. Our
goal is to minimize the regret of the meta-learner with respect to the best single learner in hindsight.

The starting observation for our method is that the value ⟨xt,i, g̃t⟩ is an unbiased estimate for the gain
of expert i at time t. Specifically, let Xt ∈ Rm×n be the matrix whose ith row is xt,i. Then we have
that

∑t
s=1 Xtg̃t ∼ N (G

(m)
t ,Σt), where G

(m)
t =

∑t
s=1 Xtgt and Σt = η2

∑t
s=1 XtX

T
t . So, like

in RW-FTPL, our algorithm is able to maintain a Gaussian vector centered on the true gain of each
learner, but with the inconvenient wrinkle that the covariance matrix is now data-dependent.

To dissolve this issue, we introduce a decorrelation step to the algorithm by defining a new matrix
Σ∗

t = Σt − 1
m2 (⃗1

TΣt1⃗)⃗1⃗1
T . At each time step, we then sample a new Gaussian vector yt with mean

zero and covariance matrix max(2t, λmax(Σ
∗
t−1))I − Σ∗

t−1 and choose jt = argmaxj(G̃
(m)
t−1 + yt)j .

Since our algorithm is invariant to additive noise with covariance 1⃗⃗1T , this lets us reduce to the scaled
identity matrix covariance case, from which we derive the following theorem:
Theorem 3. The expected regret of RW-Meta with respect to the best learner is at most

[
max

(√
2, ηλmax

( Σ∗
T

η2T

)1/2)
+
√
2
]√

2T logm = O
(√Tnm logm

µ

)
The best case scenario here is when all learners suggest different actions at each time step, in which
case λmax(Σ

∗
T /(η

2T )) = 1 and we obtain a tighter bound of O( 1µ
√
Tn logm). The worst case

occurs when the learners are divided into cliques of size m/2. In both cases the regret bound is with
respect to the best learner, which may be much better than the best action. Comparing the best-case
bound to the regret of RW-FTPL illustrates that RW-FTPL can be seen as a special case of RW-Meta
where m = n, all learners make different predictions, and learner predictions never change over time.

4 EMPIRICAL EVALUATION

RW-AdaBatch. On the basis of Theorem 2, we expect that the worst case for privacy occurs when
all means are equal. To evaluate the privacy loss in this case, we simulate 1000 runs of RW-AdaBatch
on a stream of all-zero data with T = 10, 000. We then use the empirical PMF of containing batch
sizes for each point to estimate its true tradeoff function. Our results are visualized in Figure 1.

Our results indicate that the analytic bounds are reasonably but not perfectly tight. The looseness
primarily arises in the moderate FPR regime. This is because in bounding the probability that the
leader changes, we assume that the deterministic part of the gap will shrink at the fastest possible
rate, but this is overly conservative in the oblivious adversary model. As a result, we underestimate
the probability of selecting very large batch sizes. Meanwhile, the low FPR behavior of the algorithm
is largely driven by the probability of seeing small batch sizes, where our bound is much tighter.

RW-Meta. We evaluate the performance of RW-Meta with real-world data from the COVID-19
pandemic. Specifically, we use data from the United States Department of Health and Human
Services (DHHS, 2024) containing weekly reports from thousands of hospitals from mid-2020
through 2023. For each state, our task is to predict which hospitals will report the highest density
of COVID patients in each week. Because we are interested in preserving the privacy of individual
patients and not the hospitals themselves, we modify the basic adjacency definition in subsection 2.2
to define two sequences as adjacent if they differ only in a single individual’s participation at a single
time step. For example, if every hospital in a state had at least 10 beds, then we would compute
sensitivity for that week as

√
2/10, reflecting the possibility that someone might have not have gotten

sick, or they might have chosen to go to a different hospital. In our dataset, the minimum number of
beds ranges between 4.3 and 14.6, with the result that sensitivity is kept manageably low throughout.

Following Altieri et al. (2021), we consider models that first forecast the exact proportion of COVID
cases in each hospital and then make a final prediction by taking the argmax of their forecast. The
gain of a learner is the true proportion of COVID patients in the hospital they select. Our evaluation
uses 13 learners consisting of rolling Gaussian regression algorithms with window sizes of 8/16/32/64

7
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Figure 1: Equivalent representations of worst-case privacy amplification for RW-AdaBatch with
parameters µ = 1, n = 25, ∆ =

√
n, α = 0.01. The baseline corresponds to the Gµ tradeoff curve,

solid lines correspond to the Analytic upper bound, and dash-dotted lines correspond to Empirical
Monte Carlo simulations. The analytic bound is fairly tight, particularly for small δ/low FPR.
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Figure 2: Results of empirical evaluation on COVID-19 hospitalization data, averaged over 100
iterations. The shaded orange regions enclose the maximum and minimum gain of the 12 rolling
regression learners, and the dotted black lines represent the maximum cumulative COVID density
of any single hospital in the given state. Static regret can be interpreted as the distance between a
learner’s total gain and the dotted line, while the regret of RW-Meta corresponds to its distance from
the top of the orange envelope. Note that all plots share the same x and y axis.

and weak/medium/strong regularization, as well as the basic RW-FTPL algorithm. We use Gaussian
regression models because they are popular for medical forecasting and their theoretical assumptions
match the additive Gaussian noise we use to protect privacy. The range of hyperparameters we
consider was chosen manually through exploratory analysis with a disjoint slice of the dataset, guided
by the goal of maximizing variety across learners. We evaluate our algorithm on data from three
states (New Mexico, Pennsylvania, and California), which were chosen to cover a diverse range of
population sizes while being geographically large enough to decorrelate different hospitals.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 2: Average gain of learners

Agarwal
(Min Noise)

Agarwal
(Min Regret)Privacy Level RW-Meta Best Linear Model

New Mexico

µ = ∞ 40.14 ±0.30 26.48 13.38 ±0.38 43.91
µ = 1 36.87 ±0.36 22.83 ±0.37 13.41 ±0.39 40.69 ±0.26
µ = 0.5 31.19 ±0.55 19.56 ±0.42 13.25 ±0.40 34.14 ±0.49
µ = 0.25 22.46 ±1.04 15.58 ±0.43 13.38 ±0.43 25.85 ±1.26

Pennsylvania

µ = ∞ 43.70 ±0.41 27.42 15.51 ±0.37 48.61
µ = 1 40.32 ±0.50 23.55 ±0.44 15.38 ±0.37 44.30 ±0.39
µ = 0.5 34.71 ±0.68 20.03 ±0.44 15.64 ±0.40 38.06 ±0.57
µ = 0.25 25.44 ±0.87 16.09 ±0.42 15.35 ±0.38 28.73 ±0.82

California

µ = ∞ 59.36 ±0.47 31.12 16.68 ±0.36 66.23
µ = 1 55.62 ± 0.47 25.09 ± 0.51 16.91 ± 0.34 61.16 ±0.29
µ = 0.5 47.43 ± 0.81 22.14 ± 0.48 16.82 ± 0.41 54.21 ±0.56
µ = 0.25 33.34 ± 1.30 17.93 ± 0.41 16.84 ± 0.35 38.43 ±1.30

We remove any hospitals that did not appear to participate in the DHHS’s data sharing program,
defined as reporting fewer than 100 suspected cases over the 3 year period. This left us with data
from 24, 146, and 293 hospitals in each state respectively, covering the 148 weeks between August
9th, 2020, and June 4th, 2023. We evaluate our algorithm under four different privacy levels: no
privacy (µ =∞), low privacy (µ = 1), medium privacy (µ = 0.5) and high privacy (µ = 0.25).

Because we are not aware of any existing LDP experts algorithms for oblivious adversaries, we
compare RW-Meta against the state-of-the-art private experts algorithm of Agarwal & Singh (2017).
This comparison must be caveated because their algorithm satisfies central-DP and was not designed
for dynamic environments; our goal is not to prove that one algorithm is superior, but rather to
contextualize the costs of satisfying local vs. central DP and the potential benefits of moving beyond
the paradigm of data-independent experts. We consider two choices of parameters for their algorithm:
choosing the minimum noise scale required to still satisfy (central) µ-GDP (Min Noise), and choosing
the noise scale to optimize worst-case bounds on regret subject to privacy constraints (Min Regret).

Results. We repeat our evaluation 100 times and report average results, which are visualized in
Figure 2 and summarized numerically in Table 2. Averages are reported alongside 95% confidence
intervals based on the central limit theorem with Bonferroni correction. Across all settings, we find
that RW-Meta consistently outperforms all other algorithms, followed by Min Noise. This is because
RW-Meta is able to consistently achieve negative static regret at low and moderate privacy levels,
which is essentially impossible to match using data-independent experts, regardless of noise scale.

Separately, we find that RW-Meta performs around 90% as well as the best linear model in each
setting on average. Which exact linear model performs best varies considerably, however. For
instance, the learner with window size 8 and strong regularization is the best performing learner in
the high privacy setting for the Pennsylvania dataset, but only middle of the pack for New Mexico
(where the best learner instead has a window size of 64). Across different privacy levels, the variation
is even larger. This heterogeneity highlights the appeal of using meta-learning, as it eliminates the
need to commit to a single set of parameters in advance.

Conclusion. We have presented two algorithms for the fundamental problem of prediction with
expert advice, both of which satisfy LDP. In static environments, our RW-AdaBatch algorithm is a
costless upgrade over the classical algorithm we build off of, improving the privacy of its outputs with
provably insignificant impact on utility. In dynamic environments, our RW-Meta algorithm uses a
novel, privacy-preserving technique to dynamically adapt to shifts in the input data, and we show that
the resulting improvements in performance can be won at no additional privacy cost. Our theoretical
results are supplemented by an empirical evaluation showing that our algorithms can achieve high
performance in a real-world, privacy-critical prediction task.
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4.1 REPRODUCIBILITY STATEMENT

Full proofs of all of our theoretical contributions are provided in the appendix, including clear
statements of all necessary assumptions. For our empirical evaluation, we provide a reference to the
dataset we use (DHHS, 2024), which is hosted on archive.org, and describe all data pre-processing
steps in section 4. In subsection A.3, we describe the hardware and software used to carry out our
experiments as well as specific implementation choices that improve the efficiency of our algorithms,
and subsection A.6 provides explicit pseudo-code for the main subroutine of RW-AdaBatch. After the
double-blind period is over, we will release our implementation and datasets as open source software,
including scripts for reproducing our figures and tables.
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A APPENDIX

A.1 COMPLEXITY ANALYSIS

In the worst case, RW-AdaBatch requires us to find the root of a smooth monotonic function at each
time step. Crucially, however, the size of the problem is constant and does not depend on n or T , and
so the asymptotic complexity of RW-AdaBatch is only O(nT ). We describe some of our practical
techniques for improving the efficiency of this step in the following section.

RW-Meta algorithm requires O(m2 +mn) memory to store the predictions of the learners at each
round as well as the Σ matrix. Similarly, we require O(m2 + mn) operations per iteration to
compute Σ∗ and Xtg̃t. It is also necessary to choose a specific technique to compute λmax(Σ

∗): in
our implementation, we use the LOBPCG algorithm, which enjoys linear convergence and requires
solving a 3× 3 eigenproblem at each iteration (Knyazev, 2001). We can control the total number of
iterations by warm-starting with the leading eigenvector of the previous iteration, which is guaranteed
to be within O(m) of the new maximum eigenvalue.

A.2 PARAMETER CHOICE

All three of the algorithms we study require choosing a noise scale η. This can be done by computing
the minimum noise scale required to guarantee privacy, i.e. η = ∆/µ, which typically works well on
realistic data. To optimize worst-case performance for RW-FTPL or RW-AdaBatch, one can instead
choose η = max(

√
2,∆/µ).

In our early design process, we investigated several different choices of α for RW-AdaBatch and
found that it seemed to have little practical impact on the behavior of RW-AdaBatch. This is not
necessarily surprising — the random variables we are trying to control all have sub-Gaussian tails,
resulting in failure probabilities that are exponentially tiny for most batch sizes. We take α = 0.01
for simplicity in our experiments.

A.3 IMPLEMENTATION DETAILS

All experiments are carried out on a laptop running Ubuntu 22.04 with an intel i5-1135G7 CPU and
16GB of RAM. We implement our algorithms using Python 3.10, numpy 2.0.0 (Harris et al., 2020),
scipy 1.14.0 (Virtanen et al., 2020), and mpmath 1.3.0 (mpmath development team, 2023).

Although RW-FTPL is computationally straightforward, Both RW-Meta and RW-AdaBatch include
non-trivial computations as subroutines which must be implemented efficiently. We briefly describe
our implementation choices here.

In the case of RW-Meta, we use the LOBPCG algorithm as implemented in scipy to find the leading
eigenvalue of Σ∗

t at each iteration, with the leading eigenvector from the previous round as an initial
guess. We find that at the problem sizes we consider, this step is not a significant bottleneck (taking
about 2ms per iteration), and we therefore do not pursue any further optimizations.

In the case of RW-AdaBatch, we take advantage of the fact that the bound from Theorem 1 is a
monotonic function of β by pre-computing many input/output pairs. To avoid issues with floating
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point precision when computing extreme values of the Gaussian PDF/CDF, we use the mpmath
library for this task, which supports arbitrary precision arithmetic and numerical integration. We then
interpolate the result with a monotonic cubic spline, which can be used to closely approximate the
required value of β necessary to achieve a given failure probability δ. In practice, the discrete nature
of the choice of batch size means that the small differences between the true inverse function and the
interpolated approximation are insignificant, while the corresponding speed-up is dramatic.

Finally, prior work has shown that straightforward DP implementations are often vulnerable to attacks
that take advantage of the idiosyncrasies of floating point numbers, leading to catastrophic privacy
failures (Mironov, 2012). We therefore employ the secure random sampling method of Holohan &
Braghin (2021) which renders these attacks computationally prohibitive.

A.4 LIMITATIONS AND FUTURE WORK

A.4.1 APPLICABILITY OF LOCAL DP

The primary limitation of our work is that satisfying local DP sometimes requires adding unreasonably
large amounts of noise, particularly when gain vectors are high-dimensional. To guarantee low regret,
our approach requires gain vectors with sensitivity smaller than their literal dimension, or else a
silo-like setting where several sensitive values can be averaged locally before being sent to the
algorithm, but this may not always be achievable in practice.

A.4.2 EXTENSION TO MORE COMPLEX LEARNING PROBLEMS

While the experts problem is flexible enough to represent many real world tasks, it is also interesting
from a theoretical perspective because it is one of the most fundamental problems in online learning.
This naturally raises the question of whether the methods developed in this work can be extended to
more complicated learning problems.

With respect to metalearning, RW-Meta fundamentally requires a linear gain function to compute
unbiased estimates for the gain of each learner. So, while it can be extended to online linear
optimization problems beyond prediction with expert advice, it is not clear that the same method
could be generalized to the larger class of online convex optimization.

Meanwhile, RW-AdaBatch relies on the property that the maximum of a linear function over a
polyhedral set is always attained at one of those points. It would therefore be difficult to extend it to
settings like online linear optimization over the sphere where the action set lacks this structure. On
the other hand, the same property holds for maximums of convex functions over polyhedral sets, and
so it is possible that the ideas behind RW-AdaBatch could be extended to some instances of online
convex optimization.

A.5 PROOF OF THEOREM 1

The formal statement of Theorem 1 is as follows:

Let x0, x1, . . . , xB ∈ Rn be a Gaussian random walk with x0 = v and xt+1 − xt ∼ N (0, η2In). If
v has gap k, then the probability that the leader changes at any point during the random walk is
at most 2Φ(−

√
2β) + 2

√
πφ(−β)

[
Φ(β)− Φ(−β)

]
, where β = k/(η

√
2B)−

√
log(2n− 2). The

same is true if v has gap k + κ and we wish to bound the probability that the gap ever dips below κ.

The proof of the theorem requires the following fundamental results about the extrema of Gaussian
processes:

Lemma 3. Let z1, . . . , zB ∼ N (0, η2), and let St =
∑t

i=1 zi. Then:

max
t

St ≤st |SB | (2)

Proof. Instead of considering the discrete random walk, we consider the continuous analogue in
one-dimensional Brownian motion over [0, B] with scale η. The maximum value attained by the
discrete random walk is at most as large as the maximum value attained by the Brownian motion. The
latter is known to follow a half-normal distribution with scale η

√
B (see e.g. Section 3 of Majumdar

et al. (2020)), which is also the distribution of |SB |.

14
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We additionally need the well-known Borell-TIS inequality, which states that the maximum of
Gaussians concentrates closely around its expected value (Adler & Taylor, 2007):

Lemma 4 (Borell-TIS). Let {ft} be a centered Gaussian process on T . Denote ∥f∥ = supt∈T ft
and σT = supt∈T σt. Then for any u ≥ 0,

P(∥f∥ > E[∥f∥] + u) ≤ exp
(−u2

2σ2
T

)
(3)

Finally, we have the following standard upper-bound on the expected maximum of Gaussians based
on moment-generating functions:

Lemma 5. Let z1, . . . , zn be (not-necessarily independent) random variables such that zi ∼
N (0, σ2

i ). Let Z = maxi zi. Then:

E[Z] ≤ max
i

σi

√
2 logn (4)

Proof. We have that:

exp(tE[Z]) ≤ E[etZ ]

≤
∑
i∈[n]

E[etzi ]

=
∑
i∈[n]

exp(σ2
i t

2/2)

≤ n exp(max
i

σ2
i t

2/2)

Taking log of both sides and choosing t to minimize the upper bound gives the desired result.

Now: suppose that at a given time step, the gap of G̃ is k. Our goal is to bound the probability that
our algorithm’s output will change in the next B time steps. Because the algorithm is maximizing a
linear objective function, it will always output one of the vertices of the probability simplex. Without
loss of generality, assume that the current time step is 0 and that the current leader has index 1, and
write St,i =

∑t
s=1(g̃t)i. Then the following is a necessary condition for our algorithm’s prediction

to change:
max
j>1

max
t∈[B]

St,j > k + min
t∈[B]

St,1 (5)

Lemma 3 tells us that each maximum over t is stochastically smaller than a half-normal distribution
with scale η

√
B, and by symmetry the minimum on the right hand side is stochastically larger than a

negative half-normal. We can write a half-normal random variable as the maximum of a Gaussian
random variable and its negation, and so Lemma 5 lets us bound the expectation of the left-hand
side with η

√
2B log(2n− 2). Denote this quantity as E. Then, assuming that k > E, we can use

Lemma 4 along with the independence of each coordinate to upper bound the probability of our event
with: ∫ 0

−∞
p(min

t
St,1 = z)P(max

t,j>1
St,j > k + z) dz

= 2Φ
(E − k

η
√
B

)
+ 2

∫ k−E

0

1

η
√
B
φ
(E − k + u

η
√
B

)
exp

( −u2

2Bη2

)
du

Here, the first term represents the probability that the current leader dips below the expected maximum
value of the n− 1 remaining actions, and the second term represents the probability that one of those
n− 1 actions manages to overtake the current leader regardless. Using the definition of the Gaussian

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

PDF, we can rewrite the second term as:

exp
(−(E − k)2

4Bη2

)∫ k−E

0

1

η
√
B
φ
(2u+ (E − k)

η
√
2B

)
du

=
1√
2
exp

(−(E − k)2

4Bη2

)∫ (k−E)/(η
√
2B)

(E−k)/(η
√
2B)

φ(y) dy

=
1√
2
exp

(−(E − k)2

4Bη2

)[
Φ
( k − E

η
√
2B

)
− Φ

(E − k

η
√
2B

)]

Write β = (k − E)/(η
√
2B). Then the entire upper bound can be simplified as:

2Φ(−
√
2β) + 2

√
πφ(−β)

[
Φ(β)− Φ(−β)

]
(6)

which proves the theorem.

A.6 COMPUTEDELAY SUBROUTINE

This appendix contains the explicit computation used by RW-AdaBatch to compute the size of the
next batch:

Algorithm 4 Subroutine to compute delays

Require: Noise scale η, gap k, dimension n, tolerance α

E ←
√
log(2n− 2)

U1(B) := 2Φ
(

B−k
η
√
B
+
√
2E
)

U2(B) := 2
√
πφ
(

k−B
η
√
2B
− E

)
U3(B) := Φ

(
k−B
η
√
2B
− E

)
− Φ

(
B−k
η
√
2B

+ E
)

δt(B) := α
√

logn
t+B

B ← FindRoot
(
U1(B) + U2(B)U3(B)− δt(B)

)
return max(0,Floor(B))

A.7 PROOF OF THEOREM 2

The formal statement of Theorem 2 is as follows:

Let Sε = {v ∈ Rn : v(n)− v(n−1) ≤ ε} and let γ denote the standard Gaussian measure on R. Then
for any vector µ ∈ Rn, γn(Sε) ≥ γn(Sε − µ).

The set Sε is invariant under permutations and shifts in the 1⃗ direction, and so we can assume without
loss of generality that µ1 ≥ µ2 ≥ . . . ≥ µn = 0. It is easiest to begin by finding the measure of the
complement of our set, which is a union of disjoint sets where one element is the leader and the gap
is greater than ε. This measure is given by:

f(µ) = γn((Sε − µ)C)

=

n∑
i=1

∫ ∞

−∞
φ(x− µi)

∏
j ̸=i

Φ(x− ε− µj) dx

Our strategy is to show that the partial derivative of f with respect to µ1 is non-negative. To do so,
we can use the fact that each of our disjoint sets is invariant under shifts in the 1⃗ direction, and so the
gradient of each summand with respect to µ must be orthogonal to 1⃗. So, we can write our partial
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derivative as:
n∑

i=2

∫ ∞

−∞
φ(x− µ1)φ(x− ε− µi) ·

∏
j ̸=1,i

Φ(x− ε− µj)dx

−
n∑

i=2

∫ ∞

−∞
φ(x− ε− µ1)φ(x− µi) ·

∏
j ̸=1,i

Φ(x− ε− µj)dx

Combining like terms, this gives us:
n∑

i=2

∫ ∞

−∞
φ(x− µ1)φ(x− µi) exp

(
εx− 1

2
ε2
)

· [exp(−εµi)− exp(−εµ1)]
∏
j ̸=1,i

Φ(x− ε− µj) dx

Then, since µ1 ≥ µi and ε > 0, the term inside the brackets is non-negative. Therefore, as a sum of
integrals of products of non-negative values, the whole expression is non-negative.

From here, the fact that Sε is closed under permutations means that, if µ1 = µi for some i, then they
have the same partial derivative. So, we can explicitly construct a path from any arbitrary µ to the
origin along which f(µ) is non-increasing: first reduce µ1 until it equals µ2, then reduce both until
they equal µ3, and so on. This construction shows that the function is globally optimized at µ = 0, as
desired.
Remark 1. In the special case where n = 2, Sε is a convex set and the statement can be proved
directly using Anderson’s theorem (Anderson, 1955) or its extension by Marshall and Olkin for
Schur-concave sets (Marshall & Olkin, 1974). When n > 2, however, the set is neither convex nor
Schur-concave, necessitating the more explicit analysis here.
Remark 2. The informal statement of the theorem in the main text follows from this result together
with the assumption of an oblivious adversary. The fact that the adversary is oblivious corresponds
to the order of quantifiers in the formal theorem statement: first we choose an arbitrary vector µ, and
only afterwards do we observe the size of the gap. This is the only context in which the adversarial
model is relevant for privacy — all of our LDP guarantees hold in both models (Denisov et al., 2022).

A.8 PROOF OF LEMMA 1

The proof follows from a theorem by Blackwell (1951), reproduced as Theorem 2.10 in Dong et al.
(2019), which states that T (P,Q) ≤ T (P ′, Q′) iff there exists a randomized algorithm proc such
that proc(P ) = P ′ and proc(Q) = Q′. We will construct such an algorithm.

Suppose we receive the random input (s2, x) ∼ Q × N (b, s22) for some a priori unknown b. We
first choose s1 = F−1

P (FQ(s2)). Since s2 ∼ Q, we have that FQ(s2) ∼ Unif(0, 1) and therefore
s1 ∼ P . Then, since P ≥st Q, we have that F−1

P ≥ F−1
Q and therefore s1 ≥ s2. So, we can sample

z ∼ N (0, s21− s22) and release the tuple (s1, x+ z) ∼ P ×N (b, s21), which completes the proof.

A.9 CONVERSION TO ε, δ-DP

We prove the following corollary to the privacy analysis in subsection 3.1:
Corollary 3. For all ε > 0, RW-AdaBatch satisfies (ε, 1− eεα(ε)− β(ε))-DP, with α and β defined
as in Lemma 2.

The proof relies on the Proposition 2.13 from Dong et al. (2019), which we reproduce here:
Lemma 6 (Primal to Dual). Let f be a symmetric trade-off function. A mechanism is f -DP if and
only if it is (ε, δ(ε))-DP for all ε ≥ 0 with δ(ε) = 1 + f∗(−eε), where:

f∗(y) = sup
−∞<x<∞

yx− f(x) (7)

is the convex conjugate of f .
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In our case, f is only defined on [0, 1], so we let f(x) = ∞ for x ̸∈ [0, 1] and the supremum is
effectively taken over 0 ≤ x ≤ 1.

To find the convex conjugate, we need to find the specific value α(t) that optimizes yα(t)−β(t) for a
given y. To that end, define hy(α) = yα−T (A(D),A(D′))(α). Then we have that f∗(y) = hy(α

∗),
where α∗ = inf{α ∈ [0, 1] : 0 ∈ ∂hy(α)}.
We have that α(t) is differentiable with respect to t, so we can compute that:

d

dt
hy(α(t)) =

d

dt

(
yα(t)−

m∑
b=1

wbβb(t)
)

= y

m∑
b=1

wb
d

dt
αb(t)−

m∑
b=1

wb
d

dt
βb(t)

= y

m∑
b=1

wb

(−1√b
µ

φ
( t√b

µ
+

µ

2
√
b

))
−

m∑
b=1

wb

√
b

µ
φ
( t√b

µ
− µ

2
√
b

)

Define:

zb =
t
√
b

µ
− µ

2
√
b

Then the expression simplifies to:

−1
µ

( m∑
b=1

√
bwbyφ(zb + µ/

√
b) +

m∑
b=1

φ(zb)
)

=
−1
µ

m∑
b=1

√
bwbφ(zb)

[
1 + y exp

(−µ√
b
zb −

µ2

2b

)]
=
−1
µ

m∑
b=1

√
bwbφ(zb)

(
1 + y exp(−t)

)
Setting this equal to 0 and using the fact that φ,w, b > 0, we obtain that:

y exp(−t) + 1 = 0

t = ln(−y)

Denote this last quantity as ty. From this it follows that f∗(y) = hy(α(ty)), and therefore that our
mechanism satisfies ε, δ(ε)-DP for all ε > 0 and:

δ(ε) = 1− eεα(t−eε)− β(t−eε) = 1− eεα(ε)− β(ε)

as desired.

A.10 PROOF OF THEOREM 3

We formally analyze the regret of RW-Meta using the convex analysis framework of Lee (2018). Let
M(G) = maxx∈X ⟨x,G⟩ be the baseline potential function, and for any set of distributions {Dt},
define the smoothed potential function M̃t(G) = Ez∼DtM(G + z). Finding the expected regret
of any randomized FTPL-style algorithm can be reduced to finding the regret of the deterministic
algorithm which plays Ez∼Dt [argmaxx∈X M(G+z)] = ∇M̃t at each time step t, which by Lemma
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3.4 in Lee (2018) satisfies the following equality:

Regret =
T∑

t=1

( (
M̃t(Gt−1)− M̃t−1(Gt−1)

)︸ ︷︷ ︸
overestimation penalty

+DM̃t
(Gt, Gt−1)︸ ︷︷ ︸

divergence penalty

)
+M(GT )− M̃T (GT )︸ ︷︷ ︸

underestimation penalty

Where Df (y, x) = f(y)− f(x)− ⟨∇f(x), y − x⟩ is the Bregman divergence, which is a measure
of how quickly the gradient of f changes. Intuitively, the overestimation penalty represents the error
that results when we fool ourselves into believing an action is better than it really is by adding too
much noise, and the divergence penalty represents the error that comes from always playing one step
behind the real objective function. Because we add zero-mean noise, the underestimation penalty is
always negative by Jensen’s inequality, and so to prove low regret it suffices to upper bound the first
two terms.

For the overestimation penalty, we can use the convexity of M to bound:

M̃t(Gt−1)− M̃t−1(Gt−1)

= Ez∼N (0,1)[M(Gt−1 +Σ
1/2
t z)−M(Gt−1 +Σ

1/2
t−1z)]

≤ Ez∼N (0,1)[M((Σ
1/2
t − Σ

1/2
t−1)z)]

From which it follows by telescoping that the entire sum is upper bounded by:

Ez∼N (0,1)[Σ
1/2
T z]

≤
√
2 log(m)max(η2T, λmax(Σ∗

T ))

Where the last step follows from Lemma 5. For the divergence penalty, we use Lemma 3.14 in Lee
(2018) to bound:

DM̃t
(Gt, Gt−1) ≤

√
2 logm

ηt

From which it follows that the sum can be upper bounded by
√
2 logm ·

∑T
t=1

1√
2t
≤ 2
√
T logm,

giving us our final regret bound of:

[
max

(
√
2, η · λmax

( Σ∗
T

η2T

)1/2)
+
√
2

]√
2T logm (8)

A.11 HEURISTIC PRIVACY ANALYSIS OF RW-ADABATCH

The mixture-distribution method of privacy analysis developed in Wang et al. (2024) and used in
the analysis of RW-AdaBatch leads to very tight bounds, but this comes at the cost of being highly
complex and difficult to interpret. To help build some intuition, this appendix derives a heuristic
estimate for the asymptotic level of privacy amplification provided by RW-AdaBatch. We make the
following simplifying assumptions:

1. The variance of the noisy cumulative gain vector is very large, i.e. tη2 ≫ 1, and so the
deterministic component of the gap is insignificant compared to the stochastic component.
This allows us to simplify our equations by dividing everything through by η, and so we
will also assume WLOG that η = 1.

2. Potential batch sizes are relatively small, i.e. Bt ≪ t, and so we can simplify the target
failure probability δt = α

√
log n/(t+Bt) ∼ α

√
log n/t.
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3. We approximate the distribution of containing batch sizes for time t with the distribution
of batch sizes induced by the gap at time t. We believe this is a reasonable heuristic for
sufficiently large t (intuitively, if the gap is large at time t and Assumptions 1 and 2 hold,
then we expect the gap at the preceding few time steps to be essentially the same size), and it
allows us to sidestep much of the complexity in the derivation of our rigorous lower bounds
on privacy amplification presented in subsection 3.1.

4. Initially, we will assume that n = 2, and therefore that the gap itself follows a half-normal
distribution. After establishing bounds in this setting, we’ll return to consider the case of
general n.

Under these assumptions, consider the event that t falls in a batch of size less than B + 1. Under
Assumption 3, this is equivalent to the gap at time t being smaller than the threshold computed
by RW-AdaBatch when it selects batch sizes. We will compute that threshold. In the notation of
subsection A.5, we have E =

√
2B log(2n− 2), and by Assumption 2 we have δt = α

√
log n/t.

Plugging these quantities into Lemma 4 and letting k represent the size of the gap at time t, we get:

exp
(−(k − E)2

2B

)
> α

√
log n/t (9)

(k − E)2 < 2B(log(1/α) +
1

2
log(t/ log n)) (10)

k < E +
√
B ·
√

2 log(1/α) + log(t/ log n) (11)

Next, under Assumptions 1 and 4, we have that k = |z|, where z ∼ N (0, 2t). So, we can upper-
bound the probability that our event occurs with the small-ball inequality P[|z/

√
2t| ≤ a] ≤ 2a√

2π
,

giving us:

P[batch size < B + 1] = P
[
|z/
√
2t| <

√
B

2t

(√
2 log(2n− 2) +

√
2 log(1/α) + log(t/ log n)

)]
(12)

≤
√

B

πt

(√
2 log(2n− 2) +

√
2 log(1/α) + log(t/ log n)

)
(13)

Finally, if a point falls in a batch of size B + 1, then its post-hoc privacy level is µ′ := µ/
√
B + 1 <

µ/
√
B. This means that the expression above can also be interpreted as an upper-bound on the

probability that the amplification ratio r := µ/µ′ for point t is less than
√
B. Rearranging, we can

derive the following bound for the amplification ratio that holds with probability at least 1− γ:

r =
γ2πt(√

2 log(2n− 2) +
√

2 log(1/α) + log(t/ log n)
)2 (14)

= O
( γ2t

log(1/α) + log(t)

)
(15)

And so in the special case where n = 2, we see that the quantiles of the privacy amplification provided
by RW-AdaBatch grow like t/ log(t). Importantly, however, this bound is only pointwise and not
uniform over all quantiles simultaneously.

The case of general n > 2 is more complicated because the gap no longer follows a nice, analytically-
tractable distribution. However, we can use the fact that Φ(x) ≤ 1 to derive a very loose upper-bound
on Equation 1 by:

Fk(ε;n) = 1− n

∫ ∞

−∞
φ(x)Φ(x− ε)n−1 dx (16)

≥ 1− n

∫ ∞

−∞
φ(x)Φ(x− ε) dx (17)

= 1− n

2
(1− Fk(ε; 2)) (18)

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

This allows us to convert a 1− γ bound on any monotonic function of the gap when n = 2 into a
1− nγ/2 bound when n > 2. Plugging this into the bound on the amplification ratio above, we get:

r = O
( γ2t

n2(logn+ log(1/α) + log t)

)
(19)

Showing that the degree of amplification remains almost linear in t, but potentially with a slower rate
that depends on the number of experts.

A.11.1 LIMITATIONS OF HEURISTIC ANALYSIS

Although we believe this analysis is helpful for building intuition, we caution against using it as a
replacement for the more rigorous bounds derived in subsection 3.1.

Firstly, this is because Assumptions 1-3 discard several factors which are asymptotically irrelevant but
potentially meaningful at realistic problem sizes. Assumption 3 in particular is difficult to rigorously
justify, although it seems to hold reasonably well in practice.

Secondly, the bounds derived above are only meaningful if γ = ω(1/
√
T ). This is an issue because

there will still often be a meaningful risk of selecting a very small batch size even when t is fairly
large — in particular, this is almost certain to happen every time the leader changes. So while it might
be possible to make heuristic statements like “With probability about 0.9, your post-hoc privacy level
will be at least as good as µ = 0.1", the risk that we’ll get unlucky and observe µ = 1 instead makes
this sort of guarantee meaningfully weaker than actually offering a privacy guarantee of µ = 0.1
from the beginning.

In the language of f -DP, our heuristic should convey a fairly good idea for what the moderate-FPR
region of the tradeoff curve looks like while giving an inflated impression of the privacy guarantee in
the low-FPR regime. This can be contrasted with the true lower bounds we compute analytically,
which are over-pessimistic in the moderate-FPR regime but quite accurate in the (often-more-critical)
regime when α is small.
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