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ABSTRACT

As a fundamental building block for visual analysis across aerial images, scene
text etc., rotated object detection has established itself an emerging area, which
is more general than classic horizontal object detection. Differing from the hori-
zontal detection case whereby the alignment between final detection performance
and regression loss is well kept thanks to the differentiable IoU loss, rotation de-
tection involves the so-called SkewIoU that is undifferentiable. In this paper, we
design a novel approximate SkewIoU loss based on Kalman filter, namely KFIoU
loss. To avoid the standing and well-known boundary discontinuity and square-
like problems, we convert the rotating bounding box into a Gaussian distribution,
in line with recent Gaussian-based rotation detection works. Then we use the
center loss to narrow the distance between the center of the two Gaussian distri-
butions, followed by calculating the overlap area under the new position through
Kalman filter. We qualitatively show the value consistency between KFIoU loss
and the SkewIoU loss for rotation detection in different cases. We further ex-
tend our technique to the 3-D case which also suffers from the same issues as
2-D object detection. Extensive experimental results on various public datasets
(2-D/3-D, aerial/text images) with different base detectors show the effectiveness
of our approach. The source code will be made public available.

1 INTRODUCTION

Figure 1: Inconsistency between metric and re-
gression loss in rotated object detection.

Rotated object detection is challenging due to
the difficulties of locating the arbitrary-oriented
objects and separating them effectively from
the background, such aerial images (Yang et al.,
2018a; Ding et al., 2019; Yang et al., 2018b;
2019; 2020a; Ming et al., 2021b), scene text
(Jiang et al., 2017; Zhou et al., 2017; Ma et al.,
2018; Liao et al., 2018b). Though considerable
progress has been made, for practical settings,
there still exist challenges for rotating objects
with large aspect ratio, dense distribution.

As sketched in Fig. 1, the Skew Intersection
over Union (SkewIoU) score between large as-
pect ratio objects is sensitive to the deviations
of the object positions. This causes the nega-
tive impact of the inconsistency between metric
(dominated by SkewIoU) and regression loss (e.g. ln-norms), which is common in horizontal de-
tection, to be further amplified in rotation detection. The red and orange arrows in Fig. 1 show the
inconsistency between SkewIoU and Smooth L1 Loss. Specifically, when the angle deviation is
fixed (red arrow), SkewIoU will decrease sharply as the aspect ratio increases, while the Smooth L1
loss is unchanged (mainly from the angle difference). Similarly, when SkewIoU does not change (or-
ange arrow), Smooth L1 loss increases as the angle deviation increases. Solution for inconsistency
between the metric and regression loss has been extensively discussed in horizontal detection by
using IoU loss and related variants, such as GIoU (Rezatofighi et al., 2019) and DIoU (Zheng et al.,
2020b). However, these solutions cannot be directly migrated to rotated object detection due to the
undifferentiable of the SkewIoU. Therefore, developing a differentiable SkewIoU loss approximate
calculation method is an effective alternative.
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In this paper, we design a novel approximate SkewIoU loss based on Kalman filter, named KFIoU
loss. Specifically, we use Gaussian modeling to convert the rotating bounding box into a Gaussian
distribution, which can avoid the standing and well-known boundary discontinuity and square-like
problems (Yang et al., 2019; Yang & Yan, 2020; Song et al., 2020; Qian et al., 2021; Ming et al.,
2021c; Yang et al., 2021c) in rotation detection. Then we use a center loss to narrow the distance
between the center of the two Gaussian distributions, fellow by calculating the overlap area under
the new position through Kalman filter. The highlights of this paper are as follows:

1) We elaborate on the inconsistency between the final detection performance and regression loss in
rotated object detection, especially for objects with large aspect ratios.

2) We propose a novel KFIoU loss for rotation detection, based on Gaussian modeling and Kalman
filter, leading to direct approximate computing of the SkewIoU. Compared to the recent Gaussian
based technique (Yang et al., 2021c;d) that approximate SkewIoU by learning ad-hoc nonlinear
transformations, our model is simple and can be more physically coherent.

3) We also extend the Gaussian modeling and KFIoU loss from 2-D (aerial images, scene texts) to
3-D (KITTI) object detection, with notable improvement obtained. To our best knowledge, this is
the first 3-D rotation detector based on Gaussian modeling in contrast to the peer works (Yang et al.,
2021c;d) only focusing on 2-D rotated object detection.

4) Results on public datasets show the effectiveness of our approach. In particular, our method
outperforms the recent GWD-based loss (Yang et al., 2021c) which relies on non-linear transforms
to approximate the IoU loss while our method provides a more direct computational model which is
scale-invariant, leading to better performance on small objects as verified in our experiments.

2 RELATED WORK

Rotated Object Detection. Rotated object detection is an emerging direction, which attempts to
extend classical horizontal detectors (Girshick, 2015; Ren et al., 2015; Lin et al., 2017a;b) to the
rotation case by adopting the rotated bounding boxes. Aerial images and scene text are popular
application scenarios of rotation detector. For aerial images, objects are often arbitrary-oriented and
dense-distributed with large aspect ratios. To this end, ICN (Azimi et al., 2018), ROI-Transformer
(Ding et al., 2019), SCRDet (Yang et al., 2019), Mask OBB (Wang et al., 2019), Gliding Vertex (Xu
et al., 2020), ReDet (Han et al., 2021b) are two-stage mainstreamed approaches whose pipeline is
inherited from Faster RCNN (Ren et al., 2015), while DRN (Pan et al., 2020), DAL (Ming et al.,
2021d), R3Det (Yang et al., 2021b), RSDet (Qian et al., 2021) and S2A-Net (Han et al., 2021a) are
based on single-stage methods for faster detection speed. For scene text detection, RRPN (Ma et al.,
2018) employs rotated RPN to generate rotated proposals and further perform rotated bounding box
regression. TextBoxes++ (Liao et al., 2018a) adopts vertex regression on SSD (Liu et al., 2016).
RRD (Liao et al., 2018b) further improves TextBoxes++ by decoupling classification and bounding
box regression on rotation-invariant and rotation sensitive features, respectively. The regression loss
of the above algorithms are all bounding box or point based or mask-based representation, and they
are rarely SkewIoU loss due to its undifferentiability.

Variants of IoU-based Loss. The inconsistency between metric and regression loss is a common
problem for both horizontal detection and rotation detection. Solution for this inconsistency has
been extensively discussed in horizontal detection by using IoU loss and related variants. For in-
stance, Unitbox (Yu et al., 2016) proposes an IoU loss which regresses the four bounds of a predicted
box as a whole unit. More works (Rezatofighi et al., 2019; Zheng et al., 2020b) extend the idea of
Unitbox by introducing GIoU loss anf DIoU loss for bounding box regression. However, due to the
undifferentiable of the SkewIoU, none of the above methods can be directly applied to rotation de-
tection. Recently, some approximate methods for SkewIoU loss have been proposed. Box/Polygon
based: SCRDet (Yang et al., 2019) propose IoU-Smooth L1, which partly circumvents the need for
differentiable SkewIoU loss by combining IoU and Smooth L1 loss. To tackle the uncertainty of
convex caused by rotation, Zheng et al. (Zheng et al., 2020a) proposes a projection operation to esti-
mate the intersection area for both 2-D/3-D object detection. PolarMask (Xie et al., 2020) proposes
Polar IoU loss that can largely ease the optimization and considerably improve the accuracy. Pixel
based: PIoU (Chen et al., 2020) calculates the SkewIoU directly by accumulating the contribution
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Figure 2: SkewIoU approximation process in two-dimensional space based on Kalman filter.

of interior overlapping pixels. Gaussian based: GWD (Yang et al., 2021c) and KLD (Yang et al.,
2021d) simulate SkewIoU through Gaussian distance measurement and nonlinear transformation.

In this paper, we propose a novel regression loss based on Gaussian distribution representation,
which also completes the approximation of the SkewIoU loss through Kalman filtering.

3 BACKGROUND ON GAUSSIAN DISTRIBUTION MODELING

In this section, we present the preliminary according to (Yang et al., 2021c), for how to convert an
arbitrary-oriented 2-D/3-D bounding box to a Gaussian distribution G(µ,Σ).

Σ =RΛR>, µ = (x, y, (z))> (1)

where R represents the rotation matrix, and Λ represents the diagonal matrix of eigenvalues.

For 2-D object B2d(x, y, h, w, θ),

R =

(
cos θ − sin θ
sin θ cos θ

)
, Λ =

(
w2

4 0

0 h2

4

)
(2)

and for 3-D object B3d(x, y, z, h, w, l, θ),

R =

(
cos θ − sin θ 0
sin θ cos θ 0

0 0 1

)
, Λ =

 w2

4 0 0

0 h2

4 0

0 0 l2

4

 (3)

and l, w, h represent the length, width, and height of the 3-D bounding box, respectively.

It is worth noting that the recent work GWD (Yang et al., 2021c) also belongs to the design of
regression loss based on Gaussian modeling. Compared with our work, their difference is that GWD
directly uses the distance metric between distributions as the final loss. Since GWD does not have
scale invariance (the first term of Gaussian Wasserstein Distance is the Euclidean distance between
the center points), it needs to be normalized with nonlinear transformation to ensure the normal
convergence of model training. However, such an operation cannot truly achieve the consistency
of metric and regression losses. In this paper, we will take another perspective to approximate the
SkewIoU loss to better train the detector, which can be more physically coherent.

4 PROPOSED METHOD

In this section, we present our main approach. Fig. 2 shows the approximate process of SkewIoU
loss in two-dimensional space based on Kalman filtering. Briefly, we first convert the bounding box
to a Gaussian distribution as discussed in Sec. 3, and move the center points of the two Gaussian dis-
tributions to make them coincide. Then, the distribution function of the overlapping area is obtained
by Kalman filtering. Finally, the obtained distribution function is inverted into a rotating bounding
box to calculate the overlapping area and the IoU.
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(a) Angle difference case (b) Aspect ratio case

Figure 3: Behavior comparison of different loss in different cases. Zoom in for better view.

4.1 SKEWIOU COMPUTING BASED ON KALMAN FILTERING

First of all, we can easily calculate the volume of the corresponding rotating box based on its co-
variance, when we obtain a new Gaussian distribution, where n denotes the number of dimensions.

VB(Σ) = 2n
√∏

eig(Σ) = 2n · |Σ 1
2 | = 2n · |Σ| 12 (4)

To obtain the final SkewIoU, calculating the area of overlap is critical. For two Gaussian distribu-
tions, we can use Kalman filter to get the distribution function of the overlapping area. Specifically:

αGkf (µ,Σ) = G1(µ1,Σ1)G2(µ2,Σ2) (5)
Note here α is written by:

α =Gα(µ2,Σ1 + Σ2) =
1√

det(2π(Σ1 + Σ2))
e−

1
2 (µ1−µ2)

>(Σ1+Σ2)
−1(µ1−µ2) (6)

where µ = µ1 +K(µ2 − µ1), Σ = Σ1 −KΣ1,K = Σ1(Σ1 + Σ2)−1.

We observe that Σ is only related to the covariance (Σ1 and Σ2) of the given two Gaussian dis-
tributions, which means that no matter how the two Gaussian distributions move, as long as the
covariance is fixed, the area calculated by Eq. 14 will not change. This is obviously not in line
with intuitive feeling: the overlapping area should be reduced when the two Gaussian distributions
are far away. The main reason is αGkf (µ,Σ) is not a standard Gaussian distribution (the sum of
probability is not 1), we cannot directly use Σ to calculate the area of the current overlap by Eq. 14
without considering α. It can be found from Eq. 6 that α is related to the distance between the center
points (µ1 − µ2) of the two Gaussian distributions. Based on the above findings, we can first use a
center loss Lc(µ1,µ2) to narrow the distance between the center of the two Gaussian distributions,
and then calculate the overlap area under the new position by Eq. 14. According to Fig. 2, we can
easily calculate the KFIoU loss Lkf (Σ1,Σ2) when we get the overlap area.

KFIoU =
VB3

(Σ)

VB1
(Σ1) + VB2

(Σ2)− VB3
(Σ)

(7)

In the appendix, we prove that the upper bounds of KFIoU in n-dimensional space is 1

2
n
2 −1

. For

2-D/3-D detection, the upper bounds are 1
3 and 1√

32−1 respectively when n = 2 and n = 3. We can
easily stretch the range of KFIoU to [0, 1] by linear transformation according to the upper bound,
and then compare it with IoU for consistency. It should be noted that this linear transformation is
not necessary and will improve the final performance, because we pay more attention to whether the
changing trends of KFIoU and IoU are consistent rather than specific values.

Fig. 3 shows the curves of three loss functions for two bounding boxes with the same center in differ-
ent cases. It should be noted that we have expanded KFIoU by 3 times so that its value range is [0, 1]
like SkewIoU. Case 1 (left) depicts the relation between angle difference and loss functions. Though
they all bear monotonicity, only smooth L1 curve is convex while the others are not. Case 2 (right)
shows the changes of the three loss functions under different aspect ratio conditions. It can be seen
that the smooth L1 loss of the two bounding boxes are constant (mainly from the angle difference),
but the IoU loss and KFIoU loss will change drastically as the aspect ratio varies. Regardless of the
case, KFIoU loss can maintain a similar trend to IoU loss.
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4.2 THE PROPOSED KFIOU LOSS

We take 2-D object detection as the main example for notation brevity. We use the one-stage detec-
tor RetinaNet (Lin et al., 2017b) as the baseline. Rotated rectangle is represented by five parameters
(x, y, w, h, θ). First, we need to clarify that the network has not changed the output of the original re-
gression branch, that is, it is not directly predicting the parameters of the Gaussian distribution. The
whole training process of detector is as follows: i) predict offset (t∗x, t

∗
y, t
∗
w, t
∗
h, t
∗
θ); ii) decode predic-

tion box; iii) convert prediction box and target ground-truth into Gaussian distribution; iv) calculate
Lc and Lkf of two Gaussian distributions. Therefore, the inference time remains unchanged.

The regression equation of (x, y, w, h) is as follows:

tx = (x− xa)/wa, ty = (y − ya)/ha

tw = log(w/wa), th = log(h/ha)

t∗x = (x∗ − xa)/wa, t
∗
y = (y∗ − ya)/ha

t∗w = log(w∗/wa), t∗h = log(h∗/ha)

(8)

where x, y, w, h denote the box’s center coordinates, width, height and angle, respectively. Variables
x, xa, x

∗ are for the ground-truth box, anchor box, and predicted box (likewise for y, w, h).

As for the regression equation of θ, we use two forms as the baseline to be compared:

i) Direct regression, marked as Reg. (∆θ). The model directly predicts the angle offset t∗θ:

tθ =(θ − θa) · π/180

t∗θ =(θ∗ − θa) · π/180
(9)

ii) Indirect regression, marked as Reg.∗ (sin θ, cos θ). The model predicts two vectors (t∗sin θ and
t∗cos θ) to match the two targets from the ground truth (tsin θ and tcos θ):

tsin θ = sin (θ · π/180), tcos θ = cos (θ · π/180)

t∗sin θ = sin (θ∗ · π/180), t∗cos θ = cos (θ∗ · π/180)
(10)

To ensure that t∗2sin θ+t∗2cos θ = 1 is satisfied, we will perform the following normalization processing:

t∗sin θ =
t∗sin θ√

t∗2sin θ + t∗2cos θ
, t∗cos θ =

t∗cos θ√
t∗2sin θ + t∗2cos θ

(11)

Indirect regression is a simpler way to avoid boundary discontinuity problem (Yang et al., 2019;
Yang & Yan, 2020; Song et al., 2020; Ming et al., 2021c; Yang et al., 2021c). The multi-task loss is:

Ltotal = λ1

Npos∑
n=1

Lreg(bn, gtn) +
λ2
N

N∑
n=1

Lcls(pn, tn) (12)

where N and Npos indicates the number of all anchors and the number of positive anchors. bn
denotes the n-th predicted bounding box, gtn is the n-th target ground-truth. tn represents the
label of n-th object, pn is the n-th probability distribution of various classes calculated by sigmoid
function. λ1, λ2 control the trade-off and are set to {0.01, 1} by default. The classification loss Lcls
is set as the focal loss (Lin et al., 2017b). The regression loss Lreg = Lc + Lkf , where

Lc(µ1,µ2) =
∑

i∈(x,y)

ln(ti, t
′

i), Lkf (Σ1,Σ2) = f(KFIoU) (13)

and f(·) represents the loss concerning KFIoU, such as− ln (KFIoU + ε), 1−KFIoU, e1−KFIoU−1.

5 EXPERIMENTS

5.1 2-D DATASETS AND IMPLEMENTATION DETAILS

Aerial image dataset: DOTA (Xia et al., 2018) is one of the largest dataset for oriented object
detection in aerial images with three released versions: DOTA-v1.0, DOTA-v1.5 and DOTA-v2.0.
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Table 1: Ablation study of different KFIoU loss forms with different detectors on DOTA-v1.0.
Method Smooth L1 − ln(KFIoU + ε) 1−KFIoU e1−KFIoU − 1 e1−3KFIoU − 1 − ln(3KFIoU + ε)

RetinaNet 65.73 69.80 (+4.07) 70.19 (+4.46) 70.64 (+4.91) 69.64 (+3.91) –
R3Det 70.66 72.28 (+1.62) 71.09 (+0.43) 71.58 (+0.92) – 71.77 (+1.11)

Table 2: Ablation experiments on five datasets and two detectors.
Method Reg. Loss MLT UCAS-AOD DOTA-v1.0 DOTA-v1.5 DOTA-v2.0

RetinaNet
Smooth L1 48.42 94.56 65.73 58.87 44.16

GWD 54.58 (+6.16) 95.44 (+0.88) 68.93 (+3.20) 60.03 (+1.16) 46.65 (+2.49)
KFIoU 55.96 (+7.54) 96.13 (+1.57) 70.64 (+4.91) 62.71 (+3.84) 48.04 (+3.88)

R3Det
Smooth L1 – – 70.66 62.91 48.43

GWD – – 71.56 (+0.90) 63.22 (+0.31) 49.25 (+0.82)
KFIoU – – 72.28 (+1.62) 64.69 (+1.78) 50.41 (+1.98)

DOTA-v1.0 contains 15 common categories, 2,806 images and 188,282 instances. The proportions
of the training set, validation set, and testing set in DOTA-v1.0 are 1/2, 1/6, and 1/3, respectively. In
contrast, DOTA-v1.5 uses the same images as DOTA-v1.0, but extremely small instances (less than
10 pixels) are also annotated. Moreover, a new category (CC-container crane), containing 402,089
instances in total is added in this version. While DOTA-v2.0 contains 18 common categories (two
new categories: AP-airport and HP-helipad), 11,268 images and 1,793,658 instances. Compared to
DOTA-v1.5, it further includes the new categories. The 11,268 images in DOTA-v2.0 are split into
training, validation, test-dev, and test-challenge sets. We divide the images into 600×600 subimages
with an overlap of 150 pixels and scale it to 800×800, in line with the cropping protocol in literature.
UCAS-AOD (Zhu et al., 2015) contains 1,510 aerial images of approximately 659 × 1, 280 pixels,
with two categories of 14,596 instances in total. In line with (Azimi et al., 2018; Xia et al., 2018),
we randomly select 1,110 for training and 400 for testing. HRSC2016 (Liu et al., 2017) contains
images from two scenarios including ships on sea and ships close inshore. The training, validation
and test set include 436, 181 and 444 images.

Scene text dataset: ICDAR2015 (Karatzas et al., 2015), MLT (Nayef et al., 2017) and MSRA-
TD500 (Yao et al., 2012) are commonly used for oriented scene text detection and spotting. IC-
DAR2015 includes 1,000 training images and 500 testing images. ICDAR2017 MLT is a multi-
lingual text dataset, which includes 7,200 training images, 1,800 validation images and 9,000 testing
images. MSRA-TD500 consists of 300 training images and 200 testing images.

We use Tensorflow (Abadi et al., 2016) for implementation, and all experiments are performed on
a server with GeForce RTX 3090 Ti and 24G memory. Experiments are initialized by ResNet50
(He et al., 2016) by default unless otherwise specified. We perform experiments on three aerial
benchmarks and two scene text benchmarks to verify the generality of our techniques. Weight decay
and momentum are set 0.0001 and 0.9, respectively. We employ MomentumOptimizer over 4 GPUs
with a total of 4 images per mini-batch (1 image per GPU). All the used datasets are trained by 20
epochs in total, and learning rate is reduced tenfold at 12 epochs and 16 epochs, respectively. The
initial learning rates for RetinaNet is 1e-3. The number of image iterations per epoch for DOTA-
v1.0, DOTA-v1.5, DOTA-v1.0, UCAS-AOD, HRSC2016, ICDAR2015, MLT and MSRA-TD500
are 54k, 64k, 80k, 5k, 10k, 10k, 10k, 10k and 5k respectively, and increase exponentially if data
augmentation (i.e. random graying, flipping and rotation) and multi-scale training are enabled.

5.2 3-D DATASETS AND IMPLEMENTATION DETAILS

KITTI (Geiger et al., 2012) contains 7,481 training and 7,518 testing samples for 3-D object detec-
tion. The training samples are generally divided into the train split (3,712 samples) and the val split
(3,769 samples). The evaluation is classified into Easy, Moderate or Hard according to the object
size, occlusion and truncation. All results are evaluated by the mean average precision with a rotated
IoU threshold 0.7 for cars and 0.5 for pedestrian and cyclists. To evaluate the model’s performance
on KITTI val split, we train our model on the train set and report the results on the val set.

We use third-party tools, MMDetection3D (Chen et al., 2019), for experiments and use PointPillar
(Lang et al., 2019) as the baseline, and the training schedule inherited from SECOND (Yan et al.,
2018): ADAM optimizer with a cosine-shaped cyclic learning rate scheduler that spans 160 epochs.
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Table 3: Results on the KITTI val split 3D detection. † indicates our own implementation.

Method mAP Car - 3D Detection Ped. - 3D Detection Cyc. - 3D Detection
Mod. Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard

PointPillars 59.50 85.90 73.88 67.98 50.17 45.11 41.09 78.66 59.51 56.02
PointPillars† 61.34 85.66 75.48 68.39 55.46 48.69 43.71 79.37 59.84 55.92

+ KFIoU 64.98 86.45 76.49 74.41 58.11 54.22 49.53 82.68 64.23 60.07

Table 4: Results on the KITTI val BEV Detection. † indicates our own implementation.

Method mAP Car - BEV Detection Ped. - BEV Detection Cyc. - BEV Detection
Mod. Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard

PointPillars 66.97 90.14 85.27 79.81 57.80 52.53 47.50 79.96 63.10 59.35
PointPillars† 68.16 89.89 86.97 79.64 61.04 54.94 49.26 81.76 62.56 60.54

+ KFIoU 70.91 89.59 86.81 83.21 63.34 58.43 54.80 84.61 67.50 64.52

Table 5: High-precision detection experiment under different regression loss. ‘R’, ‘F’ and ‘G’ in-
dicate random rotation, flipping, and graying, respectively. The resolution of HRSC2016, MSRA-
TD500 and ICDAR2015 are 500× 500, 800× 1, 000 and 800× 1, 000.

Method Dataset Data Aug. Reg. Loss Hmean/AP50 Hmean/AP60 Hmean/AP75 Hmean/AP85 Hmean/AP50:95

RetinaNet

HRSC2016 R+F+G Smooth L1 84.28 74.74 48.42 12.56 47.76
KFIoU 84.41 (+0.13) 82.23 (+7.49) 58.32 (+9.90) 18.34 (+5.78) 51.29 (+3.53)

MSRA-TD500 R+F Smooth L1 70.98 62.42 36.73 12.56 37.89
KFIoU 76.30 (+5.32) 69.84 (+7.42) 47.58 (+10.85) 19.21 (+6.65) 44.96 (+7.07)

ICDAR2015 F Smooth L1 69.78 64.15 36.97 8.71 37.73
KFIoU 75.90 (+6.12) 69.28 (+5.13) 40.03 (+3.06) 9.18 (+0.47) 41.17 (+3.44)

The learning rate starts from 1e-4 and reaches its peak value 1e-3 at the 60 epochs, and then goes
down gradually to 1e-7 in the end. In the development phase, the experiments are conducted with a
single model for 3-class joint detection.

5.3 ABLATION STUDY AND FURTHER COMPARISON

Ablation study of three forms of KFIoU loss on two detectors. We use two different detectors
and three different KFIoU based loss functions to verify its effectiveness, as shown in Table 1.
RetinaNet-based detector will have a large number of low-SkewIoU prediction bounding box in
the early stage of training, and will produce very large loss after the log function, which weakens
the improvement of the model. Compared with the linear function, the derivative of the exp-based
function will pay more attention to the training of difficult samples, so it has a higher performance, at
70.64%. In contrast, R3Det-based detector can generate high-quality prediction box at the beginning
of training by adding refinement stages, so it will not suffer the same troubles as RetinaNet. Due to
the same mechanism of focusing on difficult samples, log and exp-based functions are both better
than linear functions, and the best performance is achieved on the log-based function, about 72.28%.
We also expanded KFIoU by 3 times to make its range truly consistent with the IoU loss, at [0, 1].
However, this consistency do not bring any additional gains, so the following experiments are all
use the KFIoU before non-expansion.

Ablation study of KFIoU loss on five datasets and two detectors. Table 2 shows the performance
comparison of three different regression losses on five datasets. Smooth L1 is a regression loss
commonly used by detectors based on bounding box representation. In contrast, both GWD and
KFIoU loss are regression losses based on Gaussian modeling, but the core of the former is the
Gaussian distribution distance metric, and the latter is a SkewIoU approximation based on Kalman
filtering. The Gaussian representation based regression loss is significantly better than the bounding
box representation based. This is mainly due to the inherent advantages of the Gaussian distribution
representation described in (Yang et al., 2021c), including immunity to boundary discontinuity, and
square-like detection problem. The disadvantage of GWD is that it is not scale invariant, being not
conducive to small object detection. By contrast, our KFIoU loss is scale-invariant and shows better
performance on datasets containing a large number of small objects e.g. DOTA-v1.5/v2.0.

Ablation study of KFIoU loss on 3-D object detection. We generalize the KFIoU loss from 2-D
to 3-D object detection, with results in Table 3 and Table 4. It shows the performance comparison
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Table 6: Accuracy (%) comparison on DOTA. † and ‡ represents the large aspect ratio object and the
square-like object, respectively. The bold red and blue indicate the top two performances. Doc and
Dle denotes OpenCV Definition (θ ∈ [−90◦, 0◦)) and Long Edge Definition (θ ∈ [−90◦, 90◦)) of
RBox. ‘H’ and ‘R’ denotes the horizontal and rotating anchors, respectively.

Method Box Def. v1.0 tranval/test v1.5 v2.0
BR† SV† LV† SH† HA† ST‡ RA‡ 7-AP50 AP50 AP50 AP50

RetinaNet-H (Reg.) (2017b) Doc 42.17 65.93 51.11 72.61 53.24 78.38 62.00 60.78 65.73 58.87 44.16
RetinaNet-H (Reg.) (2017b) Dle 38.31 60.48 49.77 68.29 51.28 78.60 60.02 58.11 64.17 56.10 43.06
RetinaNet-H (Reg.∗) (2017b) Dle 41.52 63.94 44.95 71.18 53.22 78.11 60.54 59.07 65.78 57.17 43.92
RetinaNet-R (Reg.) (2017b) Doc 34.86 73.58 73.33 82.95 51.03 79.08 59.57 64.91 67.25 56.50 42.04

IoU-Smooth L1 (2019) Doc 44.32 63.03 51.25 72.78 56.21 77.98 63.22 61.26 66.99 59.16 46.31
Modulated Loss (2021) Doc 42.92 67.92 52.91 72.67 53.64 80.22 58.21 61.21 66.05 57.75 45.17
Modulated Loss (2021) Quad. 43.21 70.78 54.70 72.68 60.99 79.72 62.08 63.45 67.20 61.42 46.71

RIL (2021c) Quad. 40.81 67.63 55.45 72.42 55.49 78.09 64.75 62.09 66.06 58.91 45.35
CSL (2020) Dle 42.25 68.28 54.51 72.85 53.10 75.59 58.99 60.80 67.38 58.55 43.34

DCL (BCL) (2021a) Dle 41.40 65.82 56.27 73.80 54.30 79.02 60.25 61.55 67.39 59.38 45.46
GWD (2021c) Doc 44.07 71.92 62.56 77.94 60.25 79.64 63.52 65.70 68.93 60.03 46.65
KFIoU (Ours) Doc 46.30 72.56 65.61 78.16 63.68 78.15 66.34 67.26 70.64 62.71 48.04

Table 7: AP of different objects on DOTA-v1.0. R-101 denotes ResNet-101 (likewise for R-50, R-
152). RX-101 and H-104 denotes ResNeXt101 (Xie et al., 2017) and Hourglass-104 (Newell et al.,
2016). MS indicates using multi-scale training/testing. Red and blue: top two performances.

Method Backbone MS PL BD BR GTF SV LV SH TC BC ST SBF RA HA SP HC AP50

Si
ng

le
-s

ta
ge

PIoU (2020) DLA-34 80.90 69.70 24.10 60.20 38.30 64.40 64.80 90.90 77.20 70.40 46.50 37.10 57.10 61.90 64.00 60.50
O2-DNet (2020) H-104 X 89.31 82.14 47.33 61.21 71.32 74.03 78.62 90.76 82.23 81.36 60.93 60.17 58.21 66.98 61.03 71.04
DAL (2021d) R-101 X 88.61 79.69 46.27 70.37 65.89 76.10 78.53 90.84 79.98 78.41 58.71 62.02 69.23 71.32 60.65 71.78
P-RSDet (2020) R-101 X 88.58 77.83 50.44 69.29 71.10 75.79 78.66 90.88 80.10 81.71 57.92 63.03 66.30 69.77 63.13 72.30
BBAVectors (2020) R-101 X 88.35 79.96 50.69 62.18 78.43 78.98 87.94 90.85 83.58 84.35 54.13 60.24 65.22 64.28 55.70 72.32
DRN (2020) H-104 X 89.71 82.34 47.22 64.10 76.22 74.43 85.84 90.57 86.18 84.89 57.65 61.93 69.30 69.63 58.48 73.23
DCL (2021a) R-152 X 89.10 84.13 50.15 73.57 71.48 58.13 78.00 90.89 86.64 86.78 67.97 67.25 65.63 74.06 67.05 74.06
PolarDet (2021) R-101 X 89.65 87.07 48.14 70.97 78.53 80.34 87.45 90.76 85.63 86.87 61.64 70.32 71.92 73.09 67.15 76.64
GWD (2021c) R-152 X 86.96 83.88 54.36 77.53 74.41 68.48 80.34 86.62 83.41 85.55 73.47 67.77 72.57 75.76 73.40 76.30

KFIoU (Ours) R-152 89.33 85.03 52.91 70.92 77.22 70.00 82.22 90.84 87.74 84.77 62.88 63.39 75.07 70.98 70.14 75.56
X 89.46 85.72 54.94 80.37 77.16 69.23 80.90 90.79 87.79 86.13 73.32 68.11 75.23 71.61 69.49 77.35

Tw
o/

R
efi

ne
-s
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ge

ICN (2018) R-101 X 81.40 74.30 47.70 70.30 64.90 67.80 70.00 90.80 79.10 78.20 53.60 62.90 67.00 64.20 50.20 68.20
RoI-Trans. (2019) R-101 X 88.64 78.52 43.44 75.92 68.81 73.68 83.59 90.74 77.27 81.46 58.39 53.54 62.83 58.93 47.67 69.56
SCRDet (2019) R-101 X 89.98 80.65 52.09 68.36 68.36 60.32 72.41 90.85 87.94 86.86 65.02 66.68 66.25 68.24 65.21 72.61
CFC-Net (2021a) R-101 X 89.08 80.41 52.41 70.02 76.28 78.11 87.21 90.89 84.47 85.64 60.51 61.52 67.82 68.02 50.09 73.50
S2A-Net (2021a) R-50 89.11 82.84 48.37 71.11 78.11 78.39 87.25 90.83 84.90 85.64 60.36 62.60 65.26 69.13 57.94 74.12
Gliding Vertex (2020) R-101 89.64 85.00 52.26 77.34 73.01 73.14 86.82 90.74 79.02 86.81 59.55 70.91 72.94 70.86 57.32 75.02
Mask OBB (2019) RX-101 X 89.56 85.95 54.21 72.90 76.52 74.16 85.63 89.85 83.81 86.48 54.89 69.64 73.94 69.06 63.32 75.33
CenterMap (2020) R-101 X 89.83 84.41 54.60 70.25 77.66 78.32 87.19 90.66 84.89 85.27 56.46 69.23 74.13 71.56 66.06 76.03
FPN-CSL (2020) R-152 X 90.25 85.53 54.64 75.31 70.44 73.51 77.62 90.84 86.15 86.69 69.60 68.04 73.83 71.10 68.93 76.17
ReDet (2021b) ReR-50 88.79 82.64 53.97 74.00 78.13 84.06 88.04 90.89 87.78 85.75 61.76 60.39 75.96 68.07 63.59 76.25
RSDet-II (2021) R-152 X 89.93 84.45 53.77 74.35 71.52 78.31 78.12 91.14 87.35 86.93 65.64 65.17 75.35 79.74 63.31 76.34
R3Det (2021b) R-152 X 89.80 83.77 48.11 66.77 78.76 83.27 87.84 90.82 85.38 85.51 65.67 62.68 67.53 78.56 72.62 76.47
SCRDet++ (2020b) R-101 X 90.05 84.39 55.44 73.99 77.54 71.11 86.05 90.67 87.32 87.08 69.62 68.90 73.74 71.29 65.08 76.81
DAL (2021d) R-50 X 89.69 83.11 55.03 71.00 78.30 81.90 88.46 90.89 84.97 87.46 64.41 65.65 76.86 72.09 64.35 76.95
DCL (2021a) R-152 X 89.26 83.60 53.54 72.76 79.04 82.56 87.31 90.67 86.59 86.98 67.49 66.88 73.29 70.56 69.99 77.37
GWD (2021c) R-50 X 88.89 83.58 55.54 80.46 76.86 83.07 86.85 89.09 83.09 86.17 71.38 64.93 76.21 73.23 64.39 77.58
RIDet (2021c) R-50 X 89.31 80.77 54.07 76.38 79.81 81.99 89.13 90.72 83.58 87.22 64.42 67.56 78.08 79.17 62.07 77.62

R3Det-KFIoU (Ours)
R-50 89.04 84.04 52.98 73.00 78.69 83.60 87.61 90.79 85.97 85.47 64.77 63.29 69.18 76.38 65.63 76.70
R-50 X 89.60 84.76 55.31 82.39 79.40 84.29 88.13 90.86 87.61 87.03 71.28 64.74 77.48 79.11 66.52 79.23

in 3-D detection and BEV detection on KITTI val split, and significant performance improvements
are also achieved. On the moderate level of 3-D detection, KFIoU loss improves PointPillars† by
3.64%. On the moderate level of BEV detection, KFIoU loss achieves gains of 2.75%, at 70.91%.
Fig. 4 visualizes the detection results of Smooth L1 loss-based and KFIoU loss-based detectors.

High-precision detection experiment. We compare the performance of Smooth L1 loss and KFIoU
loss in high-precision detection indicators, as shown in Table 5. For HRSC2016 containing a large
number of ship with large aspect ratios, KFIoU loss has a 9.90% improvement over Smooth L1 on
AP75. For the scene text datasets MSRA-TD500 and ICDAR2015, KFIoU loss achieves 7.07% and
3.44% improvements on Hmean50:95, reaching 44.96% and 41.17% respectively.

Comparison with peer methods. Methods in Table 6 are all based on the same baseline RetinaNet,
and initialized by ResNet50 (He et al., 2016) without using data augmentation and multi-scale train-
ing/testing. They are trained/tested under the same environment and hyperparameters. We detail
the accuracy of the seven categories, with large aspect ratio (BR, SV, LV, SH, HA) and square-like
object (ST, RD), to better reflect the real-world challenges and the effectiveness of our method.

First, we conduct ablation experiments on anchor form (horizontal and rotating anchors), rotating
bounding box definition form (OpenCV definition and Long Edge definition), and angle regression
form (direct regression and indirect regression) based on RetinaNet. Rotating anchors provides
accurate prior, which makes the model show strong performance in large aspect ratio objects (e.g.
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Figure 4: Comparison of the detection results between Smooth L1 loss-based (left), GWD-based
(middle) and the KFIoU loss-based (right) detectors on DOTA (2-D) and KITTI (3-D). For 3-D
object detection, red and blue box denotes ground-truth and predict bounding box, respectively.

SV, LV, SH). However, the large number of anchors makes it time-consuming. Therefore, we use
horizontal anchors by default to balance accuracy and speed. OpenCV definition (Doc) (Yang et al.,
2019; Qian et al., 2021; Yang et al., 2021b) and Long Edge definition (Dle) (Yang & Yan, 2020;
Yang et al., 2021a) are two popular methods for defining bounding boxes with different angles.
Experiments show thatDoc is slightly better thanDle on the three versions of DOTA=v1.0/v1.5/v2.0.
Angle direct regression (Reg.) always suffers from the standing boundary discontinuity problem as
widely stuied recently (Yang et al., 2019; Yang & Yan, 2020; Song et al., 2020; Qian et al., 2021;
Ming et al., 2021c; Yang et al., 2021c). In contrast, angle indirect regression (Reg∗.) is a simpler
way to avoid above problems and has an advantage in most indicators according to Table 6.

IoU-Smooth L1 partly circumvents the need for differentiable SkewIoU loss by combining IoU and
Smooth L1 loss. Although IoU-Smooth L1 has achieved an improvement of 1.26%/0.29%/2.15%
from 65.73%/58.87%/44.16% to 66.99%/59.16%/46.31% on DOTA-v1.0/v1.5/v2.0, the gradi-
ent is still dominated by Smooth L1. Modulated Loss and RIL implement ordered and disordered
quadrilateral detection respectively, and the more accurate representation makes them both have a
considerable performance improvement. In particular, Modulated Loss achieves the second high-
est performance on DOTA-v1.5 and DOTA-v2.0. CSL and DCL convert the angle prediction from
regression to classification, cleverly eliminating the boundary discontinuity problem caused by the
angle periodicity. GWD and KFIoU loss are two different regression losses based on Gaussian distri-
bution. In contrast, KFIoU loss has a more obvious performance increase due to its scale invariance
and a more consistent calculation process with SkewIoU loss. Finally, KFIoU loss ranks among the
top two of all methods in Table 6 on most indicators.

5.4 COMPARISON WITH THE STATE-OF-THE-ART

Table 7 compares state-of-the-art detectors on DOTA-v1.0, as categorized by single-stage, two-
stage, and refine-stage based methods. Data augmentation and multi-scale training/testing are used.
For single-stage method, our single scale model RetinaNet-KFIoU achieves 75.56% and outper-
forms most multi-scale models. For multi-scale testing, it achieves state-of-the-art accuracy 77.35%.
For two/refine-stage methods, R3Det-KFIoU achieves the best AP50: 79.23%.

6 CONCLUSION

This paper first elaborates on the inconsistency between the final detection performance and regres-
sion loss in rotated object detection. To address this issue, we propose a novel approximate SkewIoU
loss for rotation detection, called KFIoU loss, specifically based on the techniques of Gaussian mod-
eling and Kalman filter. The loss is essentially scale-invariant and more physically coherent while
the Gaussian distribution based loss (Yang et al., 2021c) is not. We extend our approach from 2-D to
the 3-D case, leading to the first Gaussian distribution based 3-D detector. Extensive experimental
results on multiple public datasets (2-D/3-D, aerial/text images) with different base detectors show
the effectiveness of our approach.
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A PROOF OF KFIOU UPPER BOUND

For an n-dimensional Gaussian distribution, its volume is:

V = 2n · |Σ 1
2 | = 2n · |Σ| 12 (14)

For Σkf , we have

|Σkf | = |Σ1 −Σ1(Σ1 +Σ2)
−1Σ1| = |Σ1(Σ1 +Σ2)

−1Σ2| =
|Σ1| · |Σ1|
|Σ1 +Σ2|

(15)

According to Minkowski’s inequality:

|Σ1 + Σ2|
1
n ≥ |Σ1|

1
n + |Σ2|

1
n (16)

Simultaneous mean inequalities:

|Σ1 +Σ2|
1
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1
n |+ |Σ2|

1
n ≥ 2 · |Σ1|

1
2n · |Σ2|

1
2n (17)

Thus:
|Σ1|

1
2n · |Σ2|

1
2n

|Σ1 + Σ2|
1
n

≤ 1

2

|Σ1|
1
2 · |Σ2|

1
2

|Σ1 + Σ2|
≤ 1

2n

(18)

and

|Σkf | =
|Σ1| · |Σ1|
|Σ1 + Σ2|

≤ |Σ1|
1
2 · |Σ2|

1
2

2n

|Σkf |
1
2 ≤|Σ1|

1
4 · |Σ2|

1
4

2
n
2

(19)

Combine the mean inequalities again:

|Σkf |
1
2 ≤ |Σ1|

1
4 · |Σ2|

1
4

2
n
2

≤ |Σ1|
1
2 + |Σ2|

1
2

2
n
2 +1

(20)

According to Eq. 14, we have

Vkf ≤
V1 + V2
2

n
2 +1

(21)

Therefore, the upper bound of KFIoU is

KFIoU =
Vkf

V1 + V2 − Vkf
≤ 1

2
n
2 +1 − 1

(22)

When n = 2 and n = 3, the upper bounds are 1
3 and 1√

32−1 respectively.
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