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ABSTRACT

We focus on knowledge transfer in offline reinforcement learning (RL), which
aims to significantly improve the learning of an optimal policy in a target task
based on a pre-collected dataset without further interactions with the environment.
Data scarcity and high-dimensional feature spaces seriously pose challenges to of-
fline RL in many real-world applications, and knowledge transfer offers a promis-
ing solution. We propose a novel and comprehensive knowledge transfer frame-
work for offline RL, which carefully considers the relationship between the target
and source tasks within the linear Markov decision process (MDP) framework.
This enables efficient knowledge transfer from related source tasks to enhance
learning in the target task and effectively address data scarcity concerns in offline
RL. Our main contributions include establishing a relationship with the learning
process between the target task and source task, introducing an effective and robust
knowledge transfer technique to reduce the suboptimality of the learned policy,
and demonstrating the significant effectiveness of the knowledge transfer frame-
work through detailed theoretical analysis. Our work significantly contributes to
the advancement of offline RL by providing a practical and robust framework for
knowledge transfer facilitating more efficient and effective data utilization in var-
ious applications.

1 INTRODUCTION

The reinforcement learning (RL) has achieved remarkable success in various applications, which
largely relies on two crucial factors: (i) powerful function approximators, such as deep neural net-
works (LeCun et al., 2015; Mnih et al., 2015; Silver et al., 2016; Vinyals et al., 2017), that can
approximate policies and values with high precision, and (ii) efficient data generators, like simula-
tion environments (Bellemare et al., 2013; Todorov et al., 2012), that facilitate the collection of large
amounts of data through interactions with the environment. However, in many real-world scenarios,
such as robotics and healthcare, obtaining massive interactive data can be extremely costly, time-
consuming, and even pose risks. Therefore, we focus on offline RL, which aims to learn an optimal
policy based on a pre-collected dataset without further interactions with the environment.

In today’s rapidly evolving technological landscape, offline reinforcement learning (RL) has
emerged as a crucial area of research in data-driven decision-making. It aims to learn optimal
policies based on datasets collected a priori, without the need for further interactions with the en-
vironment. This is particularly relevant in various domains, such as marketing, healthcare, and
education, where data scarcity and high-dimensional feature spaces pose significant challenges. Un-
like online RL, offline RL is still relatively less understood from a theoretical perspective (Lange
et al., 2012; Levine et al., 2020), which poses significant challenges in developing reliable algo-
rithms for practical applications. In particular, since active interactions with the environment are not
feasible in offline RL, it becomes difficult to exploit the dataset without further exploration fully.
Due to the lack of continuous exploration, any algorithm for offline RL may suffer from the prob-
lem of insufficient dataset coverage (Wang et al., 2020). Specifically, two main challenges arise (i)
the intrinsic uncertainty, where the dataset may fail to cover the trajectory induced by the optimal
policy, which contains essential information; (ii) the spurious correlation, meaning that the dataset
may accidentally cover a trajectory that is unrelated to the optimal policy, but which can mislead the
learned policy (Fujimoto et al., 2019; Agarwal et al., 2020; Fu et al., 2020; Gulcehre et al., 2020).
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In the context of offline RL, knowledge transfer offers a promising approach to improving learning
efficiency and performance. By transferring knowledge from related source tasks to a target task,
we can exploit the relationship between target and source tasks to overcome the data scarcity issue.
However, existing literature on knowledge transfer or transfer learning for RL lacks a thorough
examination of the theoretical guarantees for value function estimation.

In this paper, we aim to answer the following question:

Can we develop a knowledge transfer framework that effectively addresses the data scarcity and
provides rigorous theoretical guarantees?

In conclusion, we propose a novel framework for knowledge transfer in offline RL (KT-RL). The
contributions of our work are concluded as follows:

1. Knowledge Transfer Framework Innovation

• Breaking Conventional Assumptions: We assume that the target data is a linear combination
of source data. This assumption provides a novel perspective and method for knowledge transfer
in offline RL, departing from the common practices in existing literature.

• Comprehensive Consideration of Task Relationships: Based on the linear Markov Decision
Process (MDP) framework, we comprehensively consider the relationships between the target
task and source tasks. This approach effectively addresses the data scarcity problem and en-
hances the learning performance of the target task.

2. Theoretical Contributions

• Establishing Theoretical Relationships: We establish a theoretical relationship between the
learning processes of the target task and source tasks. By introducing knowledge transfer tech-
niques, we can reduce the suboptimality of the learned policy.

• Providing Bounds for Algorithm Evaluation: Through theoretical analysis, we provide an up-
per bound on the suboptimality of our algorithm. Additionally, we prove the minimax optimality
of the algorithm, which offers a solid basis for evaluating the performance of the algorithm.

3. Algorithm Design Contributions

• Efficient Source Data Processing and Integration
– Separate Calculation of Source Data Statistics: For each source task, we calculate statistical

quantities separately. In each step, we define the empirical mean squared Bellman error (MSBE)
and calculate the estimated Bellman operator, confidence bound, value function, action-value
function, etc. This process fully considers the characteristics of each source task and retains its
unique information. Unlike the transfer learning methods in (Chen et al., 2024; Lei et al., 2024),
which require aggregating raw data from various sources, our approach only necessitates the
sharing of statistical quantities from the model. From this perspective, our algorithm enhances
privacy preservation by decentralized sensitive raw data.

– Integration of Source Data for Target Task: We integrate the statistical quantities obtained
from each source task to calculate the target task. This integration method takes into account
the diversity of source data and effectively transfers knowledge. It enhances the flexibility
and effectiveness of the algorithm in handling different source-target task relationships, thus
improving the accuracy and effectiveness of knowledge transfer.

• Ensuring Dataset Compliance and Trajectory Independence: In data collection process, we
assume that the dataset complies with the underlying MDP and the trajectories are independent.
This assumption simplifies the analysis process and ensures the reliability and stability of the
algorithm in practical applications.

These contributions together significantly advance the field of offline RL and offer potential for more
efficient and effective decision-making in various real-world applications.

2 RELATED WORK

In the field of offline reinforcement learning, numerous studies have been conducted to address
various challenges. Our work is closely related to the following lines of research:
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Reinforcement Learning: There is a rich body of literature on offline RL algorithms, such as
(Fujimoto et al., 2019; Agarwal et al., 2020; Fu et al., 2020; Gulcehre et al., 2020). These algorithms
aim to learn an optimal policy based on a pre-collected dataset without further interactions with the
environment. Our proposed algorithm contributes to this area by incorporating transfer learning to
enhance learning efficiency. There are several work falls within the realm of batch reinforcement
learning, where the goal is to learn an optimal policy from a fixed dataset without further interactions
with the environment (Shi et al., 2022; Yan et al., 2022; Li et al., 2024).

Knowledge Transfer in Reinforcement Learning: Numerous studies have explored transfer learn-
ing in the context of reinforcement learning. Chen et al. (2022) investigated the transfer of Q-
learning, while Agarwal et al. (2023) focused on the benefits of representational transfer in rein-
forcement learning. These works provide valuable insights into how knowledge can be transferred
between tasks in the RL domain. Transfer learning in RL aims to leverage data from related source
tasks to enhance the learning on a target task (Agarwal et al., 2023). Additionally, our work is
related to the broader topic of knowledge transfer in sequential decision-making. Previous studies
have investigated utilizing data from existing ventures to navigate high-dimensional feature spaces
and address data scarcity in new ventures (Liu, 2023; Komorowski et al., 2018; Rafferty et al., 2016).
We extend this idea to the context of offline reinforcement learning, demonstrating how knowledge
transfer can be applied to improve the learning efficiency in this domain. In contrast to the existing
literature on transfer learning (Bastani, 2021; Lei et al., 2024; Li et al., 2022; 2023; Bastani et al.,
2022; Tian & Feng, 2023), which typically assumes that source data closely resembles target data,
our approach diverges from this assumption.

Linear MDPs and High-Dimensional Feature Spaces in RL: Dealing with high-dimensional fea-
ture spaces is a crucial challenge in offline reinforcement learning. Some works (Bellemare et al.,
2013; Todorov et al., 2012) have focused on developing efficient data generators and function ap-
proximators to address this issue. Our approach builds upon these ideas by proposing a novel transfer
learning framework that specifically takes into account the high-dimensional feature spaces in the
source and target tasks. Additionally, linear MDPs have been studied in various RL papers (Yang
& Wang, 2019; Jin et al., 2020). These studies have shown that linear MDPs can provide a useful
framework for analyzing and solving RL problems. In our work, we also utilize the concept of linear
MDPs to define the task discrepancy and establish the relationship between target and source tasks
and the learning process in the target task.

3 PRELIMINARIES

In this section, we first introduce the episodic Markov decision process (MDP).

We consider an episodic MDP (S,A, H,P, r) with the state space S, action space A, horizon H ,
transition kernel P = {Ph}Hh=1, and reward function r = {rh}Hh=1. We assume the reward function
is bounded, that is, rh ∈ [0, 1] for all h ∈ [H]. For any policy π = {πh}Hh=1, we define the
value function V π

h : S → R at each step h ∈ [H] and the action-value function (Q-function)
Qπ

h : S ×A → R at each step h ∈ [H] as:

V π
h (x) = Eπ

[
H∑
i=h

ri (si, ai) | sh = x

]
, Qπ

h(x, a) = Eπ

[
H∑
i=h

ri (si, ai) | sh = x, ah = a

]
. (1)

Here the expectation Eπ in Equations (1) is taken for the randomness of the trajectory induced by π,
which is obtained by taking action ai ∼ πi (· | si) at the state si and observing the next state si+1 ∼
Pi (· | si, ai) at each step i ∈ [H]. Meanwhile, we fix sh = x ∈ Sand (sh, ah) = (x, a) ∈ S × A
in Equation (1). By the definition in Equations (1), we have the Bellman equation:

V π
h (x) = ⟨Qπ

h(x, ·), πh(· | x)⟩A , Qπ
h(x, a) = E

[
rh (sh, ah) + V π

h+1 (sh+1) | sh = x, ah = a
]
,

where ⟨·, ·⟩A is the inner product over A, while E is taken for the randomness of the immediate
reward rh (sh, ah) and next state sh+1. For any function f : S → R, we define the transition
operator at each step h ∈ [H] and the Bellman operator at each step h ∈ [H] as:

(Phf) (x, a) = E [f (sh+1) | sh = x, ah = a] , (2)
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(Bhf)(x, a)=E[rh(sh, ah)+f(sh+1) |sh=x, ah=a]=E[rh(sh, ah) |sh=x, ah=a]+(Phf)(x, a).
(3)

For the episodic MDP (S,A, H,P, r), we use π∗, Q∗
h, and V ∗

h to denote the optimal policy, op-
timal Q-function, and optimal value function, respectively. We have V ∗

H+1 = 0 and the Bellman
optimality equation as:

V ∗
h (x) = max

a∈A
Q∗

h(x, a), Q∗
h(x, a) =

(
BhV

∗
h+1

)
(x, a).

Meanwhile, the optimal policy π∗ is specified by

π∗
h(· | x) = argmax

πh

⟨Q∗
h(x, ·), πh(· | x)⟩A , V ∗

h (x) = ⟨Q∗
h(x, ·), π∗

h(· | x)⟩A ,

where the maximum is taken over all functions mapping from S to distributions over A. We aim
to learn a policy that maximizes the expected cumulative reward. Correspondingly, we define the
performance metric as:

SubOpt(π;x) = V π∗

1 (x)− V π
1 (x), (4)

which is the suboptimality of the policy π given the initial state s1 = x.

3.1 LINEAR MDP

We study the knowledge transfer for offline RL in a concrete setting: the linear MDP. We define the
linear MDP following the works Yang & Wang (2019); Jin et al. (2020), where the transition kernel
and expected reward function are linear in a feature map.
Definition 1 (Linear MDP). We say an episodic MDP(S,A, H,P, r) is a linear MDP with a known

feature map ϕ : S ×A → Rd if there exist d unknown measures µh =
(
µ
(1)
h , . . . , µ

(d)
h

)
over S and

an unknown vector θh ∈ Rd such that

Ph (x
′ | x, a) = ⟨ϕ(x, a),µh (x

′)⟩ , E [rh (sh, ah) | sh = x, ah = a] = ⟨ϕ(x, a),θh⟩ . (5)

for all (x, a, x′) ∈ S × A × S at each step h ∈ [H]. Here we assume ∥ϕ(x, a)∥ ≤ 1 for all
(x, a) ∈ S × A and max {∥µh(S)∥ , ∥θh∥} ≤

√
d at each step h ∈ [H], where with an abuse of

notation, we define ∥µh(S)∥ =
∫
S ∥µh(x)∥ dx.

In the subsequent section, we propose our algorithm (Algorithm 1), which utilizes knowledge trans-
fer to construct B̂hV̂h+1, Γh, and V̂h based on the datasetD = {(xτh, aτh, rτh)}

K,H
τ,h=1. Specifically, for

B̂hV̂h+1, we build it based onD as follows. Recall that B̂hV̂h+1 is intended to approximate BhV̂h+1,
where Bh is the Bellman operator defined in Equation (3).

4 PROBLEM FORMULATION

In the previous sections, we have introduced our research’s background and related concepts. This
section focuses on the problem formulation of knowledge transfer for offline reinforcement learning.

The Target and Source RL Data. Transferred RL aims to improve the learning on a target RL
task by leveraging data from related source RL tasks. We consider the case where we have abundant
source data from offline observational data or simulated data, while the target task only has limited
offline data. Specifically, we have a target task and L source tasks, which are characterized by
MDPsM(l) =

{
S,A, H,P(l), r(l)

}
for l ∈ {0} ∪ [L]. The target RL task of interest is referred

to as the 0-th task and denoted by a superscript ” (0),” while the source RL tasks are denoted by a
superscript ” (l),” for l ∈ [L].

Many existing knowledge transfer methods rely on leveraging information from source data that
closely resembles the target data (Chen et al., 2022; Bastani et al., 2022; Li et al., 2022; Lei et al.,
2024; Tian & Feng, 2023). However, this approach often overlooks valuable knowledge that may be
present in different yet potentially related samples. Different from existing literature which imposes
similarity constraints on target data and source data, we make the following assumption on source
data in Assumption 1: the target data is a linear combination of source data.
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Assumption 1. For l ∈ {0} ∪ [L] and all h ∈ [H], we assume that
∑L

l=1w
(l)
h θ

(l)
h = θ

(0)
h .

Unlike existing knowledge transfer, we did not assume that the source and target data are similar.
This assumption implies that the parameters of the source tasks can be combined to approximate
the parameters of the target task. It is not a restrictive assumption as it allows for flexibility in the
relationship between the source and target tasks.

We detail the target (source) MDP model. Specifically, we consider the setting with L source data
generated from the episodic linear MDP (Puterman, 2014; Sutton, 2018) with the state space S,

action space A and horizon H . We assume P(l) =
{
P(l)
h

}H

h=1
and the reward function r(l) ={

r
(l)
h

}H

h=1
are specified as follows:

P(l)
h (xh+1 | xh, ah) =

〈
ϕ (xh, ah) ,µ

(l)
h (xh+1)

〉
, (6)

E
[
r
(l)
h (xh, ah) | xh, ah

]
=
〈
ϕ (xh, ah) ,θ

(l)
h

〉
. (7)

For l ∈ [L], h ∈ [H], where xh and ah are the state and action in the time h, respectively, µ(l)
h ’s are

unknown measures over S, and ϕ is known feature map. The feature map can be thought of as the
representation of relevant time-varying covariates. These equations define the transition and reward
functions in the linear MDP, where the transition probabilities and expected rewards are linear in the
feature map ϕ. This linearity assumption simplifies the model and allows for more efficient learning
and knowledge transfer between tasks.

Given the l th MDP for l ∈ [L], a dataset D =
{(
x
τ(l)
h , a

τ(l)
h , r

τ(l)
h

)}n(l),H,L

τ,h,l=1
is collected a priori

where at each step h ∈ [H] of each trajectory τ ∈
[
n(l)
]
, the agent takes the action a

τ(l)
h ∼

π
(l)
h

(
· | xτ(l)h

)
at the state xτ(l)h , receives the reward rτ(l)h = r

(l)
h

(
x
τ(l)
h , a

τ(l)
h

)
satisfying Equation

(7) and observes the next state xτ(l)h+1 ∼ P(l)
h

(
· | xh = x

τ(l)
h , ah = a

τ(l)
h

)
satisfying Equation (6).

The transition probabilities only depend on features specified in ϕ(x, a). All trajectories in D(l) for
l ∈ [L] are assumed to be independent. We impose no constraint on the behavior policies π(l)

h ’s
and allow them to vary across the L sites. This means that the data collection process is flexible and
can capture a variety of behaviors and situations in the source tasks. The independence assumption
ensures that the data from different trajectories is not correlated, which simplifies the analysis and
allows for a more straightforward application of statistical techniques.

For any policy π = {πh}Hh=1, we define the state value function V π(l)
h : S → R and the action-value

function (Q-function) Qπ(l)
h : S ×A → R for the l th site at each step h ∈ [H] as:

V
π(l)
h (x) = E(l)

π

[
H∑
t=h

r
(l)
t (xt, at) | xh = x

]
, (8)

Q
π(l)
h (x, a) = E(l)

π

[
H∑
t=h

r
(l)
t (xt, at) | xh = x, ah = a

]
. (9)

Here the expectation E(l)
π is taken for the randomness of the trajectory induced by π, which is

obtained by taking the action ah ∼ πh (· | xh) at the state xh and observing the next state xh+1 ∼
P(l)
h (· | xh, ah) at each step h ∈ [H]. Meanwhile, we fix xh = x ∈ S in Equation (8) and (xh, ah) =

(x, a) ∈ S ×A in Equation (9). Bellman equation implies

V
π(l)
h (x) =

〈
Q

π(l)
h (x, ·), πh(· | x)

〉
A
, Q

π(l)
h (x, a) =

(
B(l)
h V

π(l)
h+1

)
(x, a),

where ⟨·, ·⟩A is the inner product over A,B(l)
h is the Bellman operator for any function f : S → R,

with E(l) taken with respect to the randomness of the reward r(l)h (xh, ah) and next state xh+1 where
xh+1 ∼ P(l)

h (xh+1 | xh, ah).
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We define the empirical mean squared Bellman error (MSBE) at each step h ∈ [H] as

Mh(w) =

K∑
τ=1

(
rτh + V̂h+1

(
xτh+1

)
−ψ (xτh, a

τ
h)

⊤
w
)2

to measure the performance of parameter w. Correspondingly, we set(
B̂hV̂h+1

)
(x, a) = ψ(x, a)⊤ŵh, where ŵh = argmin

w∈Rd

Mh(w) + λ · ∥w∥22 (10)

at each step h ∈ [H]. Here λ > 0 is the regularization parameter. Note that ŵh has the closed form

ŵh = Λ−1
h

(
K∑

τ=1

ψ (xτh, a
τ
h) ·

(
rτh + V̂h+1

(
xτh+1

)))
, (11)

where

Λh =

K∑
τ=1

ψ (xτh, a
τ
h)ψ (xτh, a

τ
h)

⊤
+ λ · I. (12)

Meanwhile, we construct Γh based on D as

Γh(x, a) = γ ·
(
ψ(x, a)⊤Λ−1

h ψ(x, a)
)1/2

. (13)

at each step h ∈ [H]. Here γ > 0 is the scaling parameter. In addition, we construct the value
function and action-value function based on D as

Q̂h(x, a) = min
{
Q̄h(x, a), H − h+ 1

}+
, where Q̄h(x, a) =

(
B̂hV̂h+1

)
(x, a)− Γh(x, a).

V̂h(x) =
〈
Q̂h(x, ·), π̂h(· | x)

〉
A
, where π̂h(· | x) = argmax

πh

〈
Q̂h(x, ·), πh(· | x)

〉
A
.

By Equation 8 and 10, for any function V , there exists w̄(l)
h ∈ Rd1 such that(

B(l)
h V

)
(x, a) =

〈
ϕ(x, a), β̄

(l)
h

〉
=
〈
ψ(x, a), w̄

(l)
h

〉
where β̄(l)

h = θ
(l)
h +

∫
x′∈S µ

(l)
h (x′)V (x′) dx′. Therefore, the coefficients β̄(l)

h can be estimated

through linear regression if the values
(
B(l)
h V

)
(x, a) are known, which inspires us to derive the

KT-RL algorithm. Without loss of generality, we assume the horizon length of all tasks is the
same, denoted as H . We also assume that the trajectories in different tasks are independent. These
definitions and equations are standard in reinforcement learning (Jin et al., 2021) and describe the
value functions and the Bellman operator. The assumption that the coefficients can be estimated
through linear regression is based on the linearity of the MDP and allows us to develop efficient
algorithms for learning and transfer.

Definition 2 (Compliance). For a dataset D = {(xτh, aτh, rτh)}
K,H
τ,h=1, let PD be the joint distribution

of the data collecting process. We say D is compliant with an underlying MDP(S,A, H,P, r) if

PD

(
rτh = r′, xτh+1 = x′ |

{(
xjh, a

j
h

)}τ

j=1
,
{(
rjh, x

j
h+1

)}τ−1

j=1

)
= P (rh (sh, ah) = r′, sh+1 = x′ | sh = xτh, ah = aτh) . (14)

for all r′ ∈ [0, 1] and x′ ∈ S at each step h ∈ [H] of each trajectory τ ∈ [K]. Here P on the
right-hand side of Equation (14) is taken with respect to the underlying MDP.

This definition ensures that the dataset is collected in a manner that is consistent with the underlying
MDP. It guarantees that the data reflects the true dynamics of the environment and can be used for
reliable learning and inference.
Assumption 2 (Data Collecting Process). The dataset D that the learner has access to is compliant
with the underlying MDP(S,A, H,P, r).

This assumption is crucial for our analysis as it allows us to make meaningful conclusions about the
performance of our algorithms based on the available data.
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5 ALGORITHM

In the previous sections, we have discussed the problem formulation and related concepts. We move
on to the algorithm in this section. Inspired by Jin et al. (2021) , we notice the key step is to construct
estimates V̂ (0)

h of V (0)
h and B̂(0)

h V̂
(0)
h+1 of B(0)

h V
(0)
h based on {D(l)}Ll=0 and the parameter estimator of{

D(l)
}L
l=1

. Pessimism plays an important role in the control of suboptimality. Define D = ∪Ll=0Dl.
We achieve pessimism by the notion of confidence bound Γh as follows.

Definition 3. We say {Γh : S ×A → R}Hh=1 is a ξ-confidence bound of V = {Vh}Hh=1 with respect
to PD if the event:

E(V ) =
{∣∣∣(B̂(0)

h Vh+1

)
(x, a)−

(
B(0)
h Vh+1

)
(x, a)

∣∣∣ ≤ Γh(x, a) for all (x, a) ∈ S ×A, h ∈ [H]
}

(15)
satisfies PD (E(V )) ≥ 1− ξ. Here the value functions V = {Vh}Hh=1 and {Γh}Hh=1 can depend on
D.

This definition is crucial for quantifying the uncertainty in our estimates. By ensuring that the event
E(V ) occurs with high probability, we can control the suboptimality of our algorithm, as will be
explained later. By definition, Γh quantifies the approximation error of B̂(0)

h Vh+1 for B(0)
h Vh+1,

which is important in eliminating the spurious correlation as discussed in Jin et al. (2021).

5.1 FOR SOURCE TASK:

We define the empirical mean squared Bellman error (MSBE) at each step h ∈ [H] as:

M
(l)
h (β) =

n(l)∑
τ=1

(
r
τ(l)
h + V̂

(l)
h+1

(
x
τ(l)
h+1

)
− ϕ

(
x
τ(l)
h , a

τ(l)
h

)⊤
β(l)

)2

.

Correspondingly, at each step h ∈ [H], we set:(
B̂(l)
h V̂

(l)
h+1

)
(x, a) = ϕ(x, a)⊤β̂

(l)
h , where β̂

(l)
h = argmin

β∈Rd

M
(l)
h (β) + λ · ∥β∥22.

Here λ > 0 is the regularization parameter. Note that β̂(l)
h has the closed form

β̂
(l)
h = Λ

(l)
h

−1

n(l)∑
τ=1

ϕ
(
x
τ(l)
h , a

τ(l)
h

)
·
(
r
τ(l)
h + V̂

(l)
h+1

(
x
τ(l)
h+1

)) ,

where Λ
(l)
h =

n(l)∑
τ=1

ϕ
(
x
τ(l)
h , a

τ(l)
h

)
ϕ
(
x
τ(l)
h , a

τ(l)
h

)⊤
+ λ · I.

Meanwhile, at each step h ∈ [H], we construct Γ(l)
h based on D as:

Γ
(l)
h (x, a) = γ ·

(
ϕ(x, a)⊤Λ

(l)
h

−1
ϕ(x, a)

)1/2
Here γ > 0 is the scaling parameter. In addition, we construct V̂ (l)

h based on D as

Q̂
(l)
h (x, a) = min

{
Q̄

(l)
h (x, a), H − h+ 1

}+

,where Q̄
(l)
h (x, a) =

(
B̂(l)
h V̂

(l)
h+1

)
(x, a)− Γ

(l)
h (x, a).

V̂
(l)
h (x) =

〈
Q̂

(l)
h (x, ·), π̂(l)

h (· | x)
〉
A
, where π̂

(l)
h (· | x) = argmax

πh

〈
Q̂

(l)
h (x, ·), π(l)

h (· | x)
〉
A
.

In the source task, we use the MSBE to measure the error in estimating the Bellman operator. The
closed form of β̂(l)

h allows us to efficiently compute the estimate. The construction of Γ(l)
h and V̂ (l)

h
is based on the estimated Bellman operator and is designed to capture the uncertainty and optimize
the policy.

7
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5.2 FOR TARGET TASK:

The process for the target task is similar to before, we define the empirical mean squared Bellman
error (MSBE) at each step h ∈ [H] as:

M
(0)
h (w) =

n(0)∑
τ=1

(
r
τ(0)
h + V̂

(0)
h+1

(
x
τ(0)
h+1

)
−ψ

(
x
τ(0)
h , a

τ(0)
h

)⊤
w

)2

.

Correspondingly, we set(
B̂hV̂

(0)
h+1

)
(x, a) = ψ(x, a)⊤ŵh, where ŵh = argmin

w∈RL

M
(0)
h (w) + λ · ∥w∥22.

Here λ > 0 is the regularization parameter. Note that ŵh has the closed form

ŵh = Λ
(0)
h

−1

n(0)∑
τ=1

ψ
(
x
τ(0)
h , a

τ(0)
h

)
·
(
r
τ(0)
h + V̂

(0)
h+1

(
x
τ(0)
h+1

)) , (16)

where Λ
(0)
h =

∑n(l)

τ=1ψ (xτh, a
τ
h)ψ (xτh, a

τ
h)

⊤
+ λ · I. Meanwhile, we construct Γ(0)

h based on D as

Γ
(0)
h (x, a) = γ ·

(
ψ(x, a)⊤Λ

(0)
h

−1
ψ(x, a)

)1/2
.

Here γ > 0 is the scaling parameter. In addition, we construct V̂ (0)
h based on D as

Q̂
(0)
h (x, a) = min

{
Q̄

(0)
h (x, a), H − h+ 1

}+

,where Q̄(0)
h (x, a) =

(
B̂(0)
h V̂

(0)
h+1

)
(x, a)− Γ

(0)
h (x, a).

V̂
(0)
h (x) =

〈
Q̂

(0)
h (x, ·), π̂(0)

h (· | x)
〉
A
, where π̂

(0)
h (· | x) = argmax

πh

〈
Q̂

(0)
h (x, ·), π(0)

h (· | x)
〉
A
.

For the target task, we define the MSBE similarly to the source task. The estimation of ŵh and
the construction of Γ(0)

h and V̂ (0)
h are also based on the corresponding data and aim to optimize the

performance in the target task.

The specific algorithm procedure is summarized in Algorithm 1.

6 THEORETICAL RESULTS

The following theorem characterizes the suboptimality of Algorithm 1, which is defined in Equation
(4).
Theorem 1 (Suboptimality). Suppose Assumption 2 holds and the underlying MDP is linear. In
Algorithm 2, we set

λ = 1, γ = c · LH
√
ζ, where ζ = log(2LHK/ξ).

Here c > 0 is an absolute constant and ξ ∈ (0, 1) is the confidence parameter. The following state-

ments hold: (i)
{
Γ
(0)
h

}H

h=1
in Algorithm 1, which is specified in Equation (13), is a ξ-uncertainty

quantifier, and hence (ii) under E defined in Equation (15), which satisfies PD(E) ≥ 1 − ξ, for any
x ∈ S, Pess (D) in Algorithm 1 satisfies

SubOpt(Pess(D);x) ≤ 2γ

H∑
h=1

Eπ∗

[(
ψ (sh, ah)

⊤
Λ
(0)−1
h ψ (sh, ah)

)1/2
| s1 = x

]
.

Here Eπ∗ is concerning the trajectory induced by π∗ in the underlying MDP given the fixed matrix
Λh.

This theorem provides an upper bound on the suboptimality of the algorithm. The term γ and the
expectation inside the summation quantify the deviation from the optimal policy. The result shows
that by carefully choosing the parameters and ensuring the uncertainty quantifier condition, we can

8
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Algorithm 1 Knowledge Transfer for Offline Reinforcement Learning (KT-RL)

1: Input: Target samples D(0) =
{(
x
τ(0)
h , a

τ(0)
h , r

τ(0)
h

)}K,H

τ,h=1
; L Source samples D(l) ={(

x
τ(l)
h , a

τ(l)
h , r

τ(l)
h

)}K,H,L

τ,h,l=1
.

Output:
{
π̂
(0)
h

}H

h=1
.

2: Transferring Step:
3: Initialization: Set V̂ (l)

H+1(·)← 0.
4: for l=1,2,. . . , L do
5: for step h = H,H − 1, . . . , 1 do
6: Set Λ(l)

h ←
∑n(l)

τ=1 ϕ (xτh, a
τ
h)ϕ (xτh, a

τ
h)

⊤
+ λ · I .

7: Set θ̂(l)h ← Λ
(l)
h

−1 (∑n(l)

τ=1 ϕ (xτh, a
τ
h) ·

(
r
τ(l)
h + V̂

(l)
h+1

(
x
τ(l)
h+1

)))
.

8: Set Γ̄(l)
h (·, ·)← η ·

(
ϕ(·, ·)⊤Λ(l)

h

−1
ϕ(·, ·)

)1/2
.

9: end for
10: end for
11: Set ψ(xτ(0)t , a

τ(0)
t ) =

∑L
l=1 ŵ

(l)
h ϕ(x

τ(0)
t , a

τ(0)
t );

12: Set Λ(0)
h ←

∑n(0)

τ=1ψ
(
x
τ(0)
h , a

τ(0)
h

)
ψ
(
x
τ(0)
h , a

τ(0)
h

)⊤
+ λ · I;

13: Calibration Step:

[ŵ(1), · · · , ŵ(L)] = Λ
(0)
h

−1

n(0)∑
τ=1

ψ (xτh, a
τ
h) ·

(
r
τ(0)
h + V̂

(0)
h+1

(
x
τ(0)
h+1

)) ;

14: Set β̂0 =
∑L

l=1 ŵ
(l)β̂(l);

15: Q̄(0)
h (·, ·)← ϕ(·, ·)⊤β̂(0)

h − Γ
(0)
h (·, ·); {Pessimism}

16: Q̂(0)
h (·, ·)← min

{
Q̄

(0)
h (·, ·), H − h+ 1

}+

; {Truncation}

17: π̂(0)
h (· | ·)← argmaxπh

〈
Q̂

(0)
h (·, ·), π(0)

h (· | ·)
〉
A
; {Optimization}

18: V̂ (0)
h (·)←

〈
Q̂

(0)
h (·, ·), π̂(0)

h (· | ·)
〉
A
. {Evaluation}

control the suboptimality of the algorithm. The result depends on the number of source tasks L
instead of the dimension d (Jin et al., 2021). When we adjust the relevant quantity from what might
be similar to d into our L, if usually L < d, then in this upper bound expression, because the value
of L is relatively smaller, in the summation and related calculations, the value of the upper bound
will be relatively smaller. This means that our estimation of the algorithm’s suboptimality is more
precise and the upper bound is tighter.

We highlight the following aspects of Theorem 1:
Corollary 1 (Suboptimality of KT-RL with Well-Explored Dataset). Suppose D consists of K tra-
jectories {(xτh, aτh, rτh)}

K,H
τ,h=1 independently and identically induced by a fixed behavior policy π̄ in

the linear MDP. Meanwhile, suppose there exists an absolute constant c > 0 such that

λmin

(
Σ

(0))
h

)
≥ c/L, where Σ

(0)
h = Eπ̄

[
ψ (sh, ah)ψ (sh, ah)

⊤
]

at each step h ∈ [H]. Here Eπ̄ is taken with respect to the trajectory induced by π̄ in the underlying
MDP. In Algorithm 1, we set

λ = 1, γ = c · LH
√
ζ, where ζ = log(4LHK/ξ).

Here c > 0 is an absolute constant and ξ ∈ (0, 1) is the confidence parameter. Suppose we have
K ≥ C ·d log(4dH/ξ), where C > 0 is a sufficiently large absolute constant that depends on c. For
Pess (D) in Algorithm 1, the event

E∗ =
{
SubOpt(Pess(D);x) ≤ c′ · L3/2H2K−1/2

√
ζ for all x ∈ S

}
9
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satisfies PD (E∗) ≥ 1− ξ. Here c′ > 0 is an absolute constant that only depends on c and c.

This corollary provides a result for the case when the dataset is well-explored. It shows that under
certain conditions on the dataset and the parameters, the suboptimality of the algorithm can be fur-
ther reduced, approaching a desired bound. Similar to the Theorem 1, L appears in the suboptimality
upper bound expression. When L < d, the value of terms like L3/2 will be smaller than when using
d. This makes the suboptimality upper bound we obtain tighter, that is, the performance estimation
of the algorithm in this case of a well-explored dataset is more accurate and the range of the upper
bound is smaller.

6.1 MINIMAX OPTIMALITY: INFORMATION-THEORETIC LOWER BOUND

We establish the minimax optimality of Theorems 1 via the following information-theoretic lower
bound.
Theorem 2 (Information-Theoretic Lower Bound). For the output Algo(D) of any algorithm, there
exist a linear MDPM = (S,A, H,P, r), an initial state x ∈ S, and a dataset D, which is compli-
ant withM, such that:

ED

 SubOpt(Algo(D);x)∑H
h=1 Eπ∗

[(
ψ (sh, ah)

⊤
Λ
(0)−1
h ψ (sh, ah)

)1/2
| s1 = x

]
 ≥ c,

where c > 0 is an absolute constant. Here Eπ∗ is taken according to the trajectory induced by π∗ in
the underlying MDP given the fixed matrix Λ

(0)
h . Meanwhile, ED is taken for PD, where Algo(D)

and Λ
(0)
h depend on D.

This theorem establishes a lower bound on the suboptimality of any algorithm. It shows that there
is a fundamental limit to the performance of algorithms, and our proposed algorithm achieves a
performance that is close to this limit, indicating its optimality in a minimax sense.

7 CONCLUSION

In conclusion, we have presented a novel knowledge transfer framework for offline reinforcement
learning. This framework addresses the crucial challenges of data scarcity and high-dimensional fea-
ture spaces. By assuming a linear relationship between target and source data and comprehensively
considering task relationships within the linear MDP framework, we have introduced innovative
approaches to knowledge transfer. Our theoretical contributions include establishing relationships
between the learning processes of target and source tasks and providing bounds for algorithm evalu-
ation, demonstrating both the suboptimality upper bound and the minimax optimality. In algorithm
design, we have focused on efficient source data processing and integration, along with ensuring
dataset compliance and trajectory independence. Overall, our work significantly contributes to the
advancement of offline reinforcement learning, offering a practical and theoretically sound solution
for more efficient learning in various applications.

10
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APPENDIX

You may include other additional sections here.

A PROOF FOR LEMMA 1

Lemma 1 (ξ-Uncertainty Quantifier for Linear MDP). Suppose that Assumption 2 holds and the
underlying MDP is a linear MDP. In Algorithm 1, we set

λ = 1, γ = c · LH
√
ζ, where ζ = log(2LHK/ξ)

Here c > 0 is an absolute constant and ξ ∈ (0, 1) is the confidence parameter. It holds that {Γh}Hh=1

specified in Equation (13) are ξ-uncertainty quantifiers, where
{
V̂h+1

}H

h=1
used in Equation (15)

are obtained by Algorithm 1.

Proof for Lemma 1. It suffices to show that under Assumption 2, the event E defined in Equation
(15) satisfies PD(E) ≥ 1 − ξ with the ξ-uncertainty quantifiers {Γh}Hh=1 defined in Equation (13).

To this end, we upper bound the difference between
(
BhV̂h+1

)
(x, a) and

(
B̂hV̂h+1

)
(x, a) for all

h ∈ [H] and all (x, a) ∈ S × A, where the Bellman operator Bh is defined in Equation (3), the
estimated Bellman operator B̂h is defined in Equation (10), and the estimated value function V̂h+1

is constructed in Line 18 of Algorithm 1.

For any function V : S → [0, H], Definition 1 ensures that PhV and BhV are linear in the feature
map ϕ for all h ∈ [H]. To see this, note that Equation (5) implies

(PhV ) (x, a) =

〈
ϕ(x, a),

∫
S
V (x′)µh (x

′) dx′
〉
, ∀(x, a) ∈ S ×A,∀h ∈ [H]. (17)

Also, Equation (5) ensures that the expected reward is linear in ϕ for all h ∈ [H], which implies

(BhV ) (x, a) = ⟨ϕ(x, a),θh⟩+
〈
ϕ(x, a),

∫
S
V (x′)µh (x

′) dx′
〉
, ∀(x, a) ∈ S ×A,∀h ∈ [H].

(18)
Hence, there exists an unknown vector βh ∈ Rd such that(

BhV̂h+1

)
(x, a) = ϕ(x, a)⊤βh = ψ(x, a)⊤wh, ∀(x, a) ∈ S ×A, ∀h ∈ [H]. (19)

Recall the definition of ŵh in Equation (11) and the construction of B̂hV̂h+1 in Equation (10). The
following lemma upper bounds the norms of wh and ŵh, respectively.
Lemma 2 (Bounded Weights of Value Functions). Let Vmax > 0 be an absolute constant. For any
function V : S → [0, Vmax] and any h ∈ [H], we have

∥βh∥ ≤ (1 + Vmax)
√
d,

∥∥∥β̂h

∥∥∥ ≤ H2KL
√
d/λ, ∥ŵh∥ ≤ H

√
KL/λ.

Proof of Lemma 2. For all h ∈ [H], Equations (18) and (19) imply

βh = θh +

∫
S
V (x′)µh (x

′) dx′.

By the triangle inequality and the fact that ∥µh(S)∥ ≤
√
d in Definition 1 with the notation

∥µh(S)∥ =
∫
S ∥µh (x

′)∥ dx′, we have

∥βh∥ ≤ ∥θh∥+
∥∥∥∥∫

S
V (x′)µh (x

′) dx′
∥∥∥∥ (20)

≤ ∥θh∥+
∫
S
∥V (x′)µh (x

′)∥ dx′

≤
√
d+ Vmax · ∥µh(S)∥

≤ (1 + Vmax)
√
d

13
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where the third inequality follows from the fact that V ∈ [0, Vmax]. Meanwhile, by the definition of
ŵh in Equation (11) and the triangle inequality, we have

∥ŵh∥ =

∥∥∥∥∥Λ−1
h

(
K∑

τ=1

ψ (xτh, a
τ
h) ·

(
rτh + V̂h+1

(
xτh+1

)))∥∥∥∥∥
≤

K∑
τ=1

∥∥∥Λ−1
h ψ (xτh, a

τ
h) ·

(
rτh + V̂h+1

(
xτh+1

))∥∥∥
Note that

∣∣∣rτh + V̂h+1

(
xτh+1

)∣∣∣ ≤ H , which follows from the fact that rτh ∈ [0, 1] and V̂h+1 ∈
[0, H − 1] by Line 18 of Algorithm 1. Also, note that Λh ⪰ λ · I , which follows from the definition
of Λh in Equation (12). Hence, we have

∥ŵh∥ ≤ H ·
K∑

τ=1

∥∥Λ−1
h ψ (xτh, a

τ
h)
∥∥ = H ·

K∑
τ=1

√
ψ (xτh, a

τ
h)

⊤
Λ
−1/2
h Λ−1

h Λ
−1/2
h ψ (xτh, a

τ
h)

≤ H√
λ
·

K∑
τ=1

√
ψ (xτh, a

τ
h)

⊤
Λ−1
h ψ (xτh, a

τ
h)

where the last inequality follows from the fact that
∥∥Λ−1

h

∥∥
op ≤ λ

−1. Here ∥ ·∥op denotes the matrix
operator norm. By the Cauchy-Schwarz inequality, we have

∥ŵh∥ ≤ H
√
K/λ ·

√√√√ K∑
τ=1

ψ (xτh, a
τ
h)

⊤
Λ−1
h ψ (xτh, a

τ
h)

= H
√
K/λ ·

√√√√Tr

(
Λ−1
h

K∑
τ=1

ψ (xτh, a
τ
h)ψ (xτh, a

τ
h)

⊤

)

= H
√
K/λ ·

√
Tr
(
Λ−1
h (Λh − λ · I)

)
≤ H

√
K/λ ·

√
Tr
(
Λ−1
h Λh

)
= H

√
KL/λ (21)

where the second equality follows from the definition of Λh in Equation (12). Similarly, we can
show that

∥∥∥β̂(l)
h

∥∥∥ ≤ H√K/λ ·
√√√√ K∑

τ=1

ϕ (xτh, a
τ
h)

⊤
Λ
(l)−1
h ϕ (xτh, a

τ
h)

= H
√
K/λ ·

√√√√Tr

(
Λ
(l)−1
h

K∑
τ=1

ϕ (xτh, a
τ
h)ϕ (xτh, a

τ
h)

⊤

)

= H
√
K/λ ·

√
Tr
(
Λ
(l)−1
h

(
Λ
(l)
h − λ · I

))
≤ H

√
K/λ ·

√
Tr
(
Λ
(l)−1
h Λ

(l)
h

)
= H

√
Kd/λ (22)

∥∥∥β̂h

∥∥∥ ≤ L∑
l=1

∥∥∥β̂(l)
h w

(l)
h

∥∥∥ ≤ ∥∥∥[β̂(1), β̂(2), . . . , β̂(L)]
∥∥∥ ∥wh∥ ≤

√
LH

√
Kd/λ·H

√
KL/λ = H2KL

√
d/λ.
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Therefore, combining Equations (20) and (21), we conclude the proof of Lemma 2. We upper bound
the difference between BhV̂h+1 and B̂hV̂h+1. For all h ∈ [H] and all (x, a) ∈ S ×A, we have(

BhV̂h+1

)
(x, a)−

(
B̂hV̂h+1

)
(x, a) = ϕ(x, a)⊤

(
βh − β̂h

)
= ϕ(x, a)⊤βh −ψ(x, a)⊤Λ−1

h

(
K∑

τ=1

ψ (xτh, a
τ
h) ·

(
rτh + V̂h+1

(
xτh+1

)))

= ϕ(x, a)⊤βh −ψ(x, a)⊤Λ−1
h

(
K∑

τ=1

ψ (xτh, a
τ
h) ·

(
BhV̂h+1

)
(xτh, a

τ
h)

)
︸ ︷︷ ︸

(i)

−ψ(x, a)⊤Λ−1
h

(
K∑

τ=1

ψ (xτh, a
τ
h) ·

(
rτh + V̂h+1

(
xτh+1

)
−
(
BhV̂h+1

)
(xτh, a

τ
h)
))

︸ ︷︷ ︸
(ii)

. (23)

Here the first equality follows from the definition of the Bellman operator Bh in Equation (3), the
decomposition of Bh in Equation (19), and the definition of the estimated Bellman operator B̂h

in Equation (10), while the second equality follows from the definition of ŵh. By the triangle
inequality, we have ∣∣∣(BhV̂h+1

)
(x, a)−

(
B̂hV̂h+1

)
(x, a)

∣∣∣ ≤ |(i)|+ |(ii)|.
In the sequel, we upper bound terms (i) and (ii) respectively. By the construction of the estimated
value function V̂h+1 in Line 18 of Algorithm 1, we have V̂h+1 ∈ [0, H − 1]. By Lemma 2, we have
∥βh∥ ≤ H

√
d. Hence, term (i) is upper bounded by

|(i)| =

∣∣∣∣∣ϕ(x, a)⊤βh −ψ(x, a)⊤Λ−1
h

(
K∑

τ=1

ψ (xτh, a
τ
h)ψ (xτh, a

τ
h)

⊤
wh

)∣∣∣∣∣
=
∣∣ψ(x, a)⊤wh −ψ(x, a)⊤Λ−1

h (Λh − λ · I)wh

∣∣ = λ ·
∣∣ψ(x, a)⊤Λ−1

h wh

∣∣
≤ λ · ∥wh∥Λ−1

h
· ∥ψ(x, a)∥Λ−1

h
≤ λ · C

√
1/λ ·

√
ψ(x, a)⊤Λ−1

h ψ(x, a). (24)

Here, we assume ∥wh∥Λ−1
h

< C. Here the second equality follows from the definition of Λh in
Equation (12). Also, the first inequality follows from the Cauchy-Schwarz inequality, while the last
inequality follows from the fact that

∥wh∥Λ−1
h

=
√
w⊤

h Λ
−1
h wh ≤

∥∥Λ−1
h

∥∥1/2
op · ∥wh∥ ≤ C

√
1/λ.

Here ∥ · ∥op denotes the matrix operator norm and we use the fact that
∥∥Λ−1

h

∥∥
op
≤ λ−1. It remains

to upper bound term (ii). For notational simplicity, for any h ∈ [H], any τ ∈ [K], and any function
V : S → [0, H], we define the random variable

ϵτh(V ) = rτh + V
(
xτh+1

)
− (BhV ) (xτh, a

τ
h) .

By the Cauchy-Schwarz inequality, term (ii) is upper bounded by

|(ii)| =

∣∣∣∣∣ψ(x, a)⊤Λ−1
h

(
K∑

τ=1

ψ (xτh, a
τ
h) · ϵτh

(
V̂h+1

))∣∣∣∣∣
≤

∥∥∥∥∥
K∑

τ=1

ψ (xτh, a
τ
h) · ϵτh

(
V̂h+1

)∥∥∥∥∥
Λ−1

h

· ∥ψ(x, a)∥Λ−1
h

=

∥∥∥∥∥
K∑

τ=1

ψ (xτh, a
τ
h) · ϵτh

(
V̂h+1

)∥∥∥∥∥
Λ−1

h︸ ︷︷ ︸
(iii)

·
√
ψ(x, a)⊤Λ−1

h ψ(x, a). (25)
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In the sequel, we upper bound term (iii) via concentration inequalities. An obstacle is that V̂h+1

depends on {(xτh, aτh)}
K
τ=1 via {(xτh′ , aτh′)}τ∈[K],h′>h, as it is constructed based on the dataset D.

To this end, we resort to uniform concentration inequalities to upper bound

sup
V ∈Vh+1(R,B,λ)

∥∥∥∥∥
K∑

τ=1

ψ (xτh, a
τ
h) · ϵτh(V )

∥∥∥∥∥
for each h ∈ [H], where it holds that V̂h+1 ∈ Vh+1(R,B, λ). Here for all h ∈ [H], we define the
function class

Vh(R,B, λ) = {Vh(x;θ, γ,Σ) : S → [0, H] with ∥θ∥ ≤ R, γ ∈ [0, B],Σ ⪰ λ · I}

where Vh(x;θ, γ,Σ) = maxa∈A

{
min

{
ϕ(x, a)⊤θ − γ ·

√
ψ(x, a)⊤Σ−1ψ(x, a), H − h+ 1

}+
}

.

For all ε > 0 and all h ∈ [H], let Nh(ε;R,B, λ) be the minimal ε-cover of Vh(R,B, λ) with
respect to the supremum norm. In other words, for any function V ∈ Vh(R,B, λ), there exists a
function V † ∈ Nh(ε;R,B, λ) such that

sup
x∈S

∣∣V (x)− V †(x)
∣∣ ≤ ε.

Meanwhile, among all ε-covers of Vh(R,B, λ) defined by such a property, we choose
Nh(ε;R,B, λ) as the one with the minimal cardinality. By Lemma 2, we have

∥∥∥β̂h

∥∥∥ ≤
H2KL

√
d/λ. Hence, for all h ∈ [H], we have

V̂h+1 ∈ Vh+1 (R0, B0, λ) , where R0 = H2KL
√
d/λ,B0 = 2γ.

Here λ > 0 is the regularization parameter and γ > 0 is the scaling parameter, which are specified
in Algorithm 1. For notational simplicity, we use Vh+1 and Nh+1(ε) to denote Vh+1 (R0, B0, λ)

and Nh+1 (ε;R0, B0, λ), respectively. As it holds that V̂h+1 ∈ Vh+1 and Nh+1(ε) is an ε-cover of
Vh+1, there exists a function V †

h+1 ∈ Nh+1(ε) such that

sup
x∈S

∣∣∣V̂h+1(x)− V †
h+1(x)

∣∣∣ ≤ ε. (26)

Hence, given V †
h+1 and V̂h+1, the monotonicity of conditional expectations implies∣∣∣(PhV

†
h+1

)
(x, a)−

(
PhV̂h+1

)
(x, a)

∣∣∣ (27)

=
∣∣∣E [V †

h+1 (sh+1) | sh = x, ah = a
]
− E

[
V̂h+1 (sh+1) | sh = x, ah = a

]∣∣∣
≤ E

[∣∣∣V †
h+1 (sh+1)− V̂h+1 (sh+1)

∣∣∣ | sh = x, ah = a
]
≤ ε, ∀(x, a) ∈ S ×A,∀h ∈ [H].

Here the conditional expectation is induced by the transition kernel Ph(· | x, a). Combining Equa-
tion (27) and the definition of the Bellman operator Bh in Equation (3), we have∣∣∣(BhV

†
h+1

)
(x, a)−

(
BhV̂h+1

)
(x, a)

∣∣∣ ≤ ε, ∀(x, a) ∈ S ×A,∀h ∈ [H] (28)

By the triangle inequality, Equations (26) and (28) imply∣∣∣(rh(x, a) + V̂h+1 (x
′)−

(
BhV̂h+1

)
(x, a)

)
−
(
rh(x, a) + V †

h+1 (x
′)−

(
BhV

†
h+1

)
(x, a)

)∣∣∣ ≤ 2ε

(29)

for all h ∈ [H] and all (x, a, x′) ∈ S ×A×S. Setting (x, a, x′) =
(
xτh, a

τ
h, x

τ
h+1

)
in Equation (29),

we have ∣∣∣ϵτh (V̂h+1

)
− ϵτh

(
V †
h+1

)∣∣∣ ≤ 2ε, ∀τ ∈ [K],∀h ∈ [H] (30)

Also, recall the definition of term (iii). By the Cauchy-Schwarz inequality, for any two vectors
a, b ∈ Rd and any positive definite matrix Λ ∈ Rd×d

+ , it holds that ∥a+ b∥2Λ ≤ 2 · ∥a∥2Λ + 2 · ∥b∥2Λ.
Hence, for all h ∈ [H], we have

|(iii)|2 ≤ 2·

∥∥∥∥∥
K∑

τ=1

ψ (xτh, a
τ
h) · ϵτh

(
V †
h+1

)∥∥∥∥∥
2

Λ−1
h

+2·

∥∥∥∥∥
K∑

τ=1

ψ (xτh, a
τ
h) ·

(
ϵτh

(
V̂h+1

)
− ϵτh

(
V †
h+1

))∥∥∥∥∥
2

Λ−1
h

(31)
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The second term on the right-hand side is upper bounded by

2 · ∥
K∑

τ=1

ψ (xτh, a
τ
h) ·

(
ϵτh

(
V̂h+1

)
− ϵτh

(
V †
h+1

))
∥2
Λ−1

h

= 2 ·
K∑

τ,τ ′=1

ψ (xτh, a
τ
h)

⊤
Λ−1
h ψ

(
xτ

′

h , a
τ ′

h

)
·
(
ϵτh

(
V̂h+1

)
− ϵτh

(
V †
h+1

))
·
(
ϵτ

′

h

(
V̂h+1

)
− ϵτ

′

h

(
V †
h+1

))

≤ 8ε2 ·
K∑

τ,τ ′=1

∣∣∣ψ (xτh, a
τ
h)

⊤
Λ−1
h ψ

(
xτ

′

h , a
τ ′

h

)∣∣∣ ≤ 8ε2 ·
K∑

τ,τ ′=1

∥ψ (xτh, a
τ
h)∥ ·

∥∥∥ψ (xτ ′

h , a
τ ′

h

)∥∥∥ · ∥∥Λ−1
h

∥∥
op

where the first inequality follows from Equation (30). As it holds that Λh ⪰ λ · I by the definition
of Λh in Equation (12) and ∥ψ(x, a)∥ ≤ ∥β̂h∥∥ϕ(x, a)∥ ≤ H2KL

√
d/λ for all (x, a) ∈ S ×A by

Definition 1 , for all h ∈ [H], we have

2 ·

∥∥∥∥∥
K∑

τ=1

ψ (xτh, a
τ
h) ·

(
ϵτh

(
V̂h+1

)
− ϵτh

(
V †
h+1

))∥∥∥∥∥
2

Λ−1
h

≤ 8ε2H4K3L2d/λ3. (32)

Combining Equations (31) and (32), for all h ∈ [H], we have

| ( iii )|2 ≤ 2 · sup
V ∈Nh+1(ε)

∥∥∥∥∥
K∑

τ=1

ϕ (xτh, a
τ
h) · ϵτh(V )

∥∥∥∥∥
2

Λ−1
h

+ 8ε2H4K3L2d/λ3. (33)

Note that the right-hand side of Equation (33) does not involve the estimated value functions Q̂h

and V̂h+1, which are constructed based on the datasetD. Hence, it allows us to upper bound the first
term via uniform concentration inequalities. We utilize the following lemma to characterize the first
term for any fixed function V ∈ Nh+1(ε). Recall the definition of ϵτh(V ). Also recall that PD is the
joint distribution of the data collecting process.
Lemma 3 (Concentration of Self-Normalized Processes). Let V : S → [0, H − 1] be any fixed
function. Under Assumption 2.2, for any fixed h ∈ [H] and any δ ∈ (0, 1), we have

PD

∥∥∥∥∥
K∑

τ=1

ϕ (xτh, a
τ
h) · ϵτh(V )

∥∥∥∥∥
2

Λ−1
h

> H2 · (2 · log(1/δ) + d · log(1 +K/λ))

 ≤ δ.
Proof of Lemma 3. For the fixed h ∈ [H] and all τ ∈ {0, . . . ,K}, we define the σ-algebra

Fh,τ = σ

({(
xjh, a

j
h

)}(τ+1)∧K

j=1
∪
{(
rjh, x

j
h+1

)}τ

j=1

)
where σ(·) denotes the σ-algebra generated by a set of random variables and (τ + 1) ∧K denotes
min{τ + 1,K}. For all τ ∈ [K], we have ϕ (xτh, a

τ
h) ∈ Fh,τ−1, as (xτh, a

τ
h) is Fh,τ−1-measurable.

Also, for the fixed function V : S → [0, H − 1] and all τ ∈ [K], we have

ϵτh(V ) = rτh + V
(
xτh+1

)
− (BhV ) (xτh, a

τ
h) ∈ Fh,τ

as
(
rτh, x

τ
h+1

)
is Fh,τ -measurable. Hence, {ϵτh(V )}Kτ=1 is a stochastic process adapted to the filtra-

tion {Fh,τ}Kτ=0. We have

ED [ϵτh(V ) | Fh,τ−1] = ED

[
rτh + V

(
xτh+1

)
|
{(
xjh, a

j
h

)}τ

j=1
,
{(
rjh, x

j
h+1

)}τ−1

j=1

]
− (BhV ) (xτh, a

τ
h)

= E [rh (sh, ah) + V (sh+1) | sh = xτh, ah = aτh]− (BhV ) (xτh, a
τ
h) = 0

where the second equality follows from Equation (14) and the last equality follows from the defini-
tion of the Bellman operator Bh. Here ED is taken with respect to PD, while E is taken with respect
to the immediate reward and next state in the underlying MDP. Moreover, as it holds that rτh ∈ [0, 1]
and V ∈ [0, H−1], we have rτh+V

(
xτh+1

)
∈ [0, H]. Meanwhile, we have (BhV ) (xτh, a

τ
h) ∈ [0, H],
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which implies |ϵτh(V )| ≤ H . Hence, for the fixed h ∈ [H] and all τ ∈ [K], the random variable
ϵτh(V ) is mean-zero and H-sub-Gaussian conditioning on Fh,τ−1.

We invoke Lemma E. 2 with M0 = λ · I and Mk = λ · I +
∑k

τ=1ψ (xτh, a
τ
h)ψ (xτh, a

τ
h)

⊤ for all
k ∈ [K]. For the fixed function V : S → [0, H − 1] and fixed h ∈ [H], we have

PD

∥∥∥∥∥
K∑

τ=1

ψ (xτh, a
τ
h) · ϵτh(V )

∥∥∥∥∥
2

Λ−1
h

> 2H2 · log

(
det (Λh)

1/2

δ · det(λ · I)1/2

) ≤ δ
for all δ ∈ (0, 1). Here we use the fact that MK = Λh. Note that ∥ϕ(x, a)∥ ≤ 1 and ∥ψ(x, a)∥ ≤
∥β̂h∥∥ϕ(x, a)∥ ≤ H2KL

√
d/λ for all (x, a) ∈ S ×A by Definition 1. We have

∥Λh∥op =

∥∥∥∥∥λ · I +
K∑

τ=1

ψ (xτh, a
τ
h)ψ (xτh, a

τ
h)

⊤

∥∥∥∥∥
op

≤ λ+

K∑
τ=1

∥∥∥ψ (xτh, a
τ
h)ψ (xτh, a

τ
h)

⊤
∥∥∥
op
≤ λ+H4K3L2d/λ2

where ∥ · ∥op denotes the matrix operator norm. Hence, it holds that det (Λh) ≤ (λ +
H4K3L2d/λ2)L and det(λ · I) = λL, which implies

PD

∥∥∥∥∥
K∑

τ=1

ψ (xτh, a
τ
h) · ϵτh(V )

∥∥∥∥∥
2

Λ−1
h

> H2 · (2 · log(1/δ) + L · log(1 +H4K3L2d/λ3))


≤ PD

∥∥∥∥∥
K∑

τ=1

ψ (xτh, a
τ
h) · ϵτh(V )

∥∥∥∥∥
2

Λ−1
h

> 2H2 · log

(
det (Λh)

1/2

δ · det(λ · I)1/2

) ≤ δ.
Therefore, we conclude the proof of Lemma 3. Applying Lemma 3 and the union bound, for any
fixed h ∈ [H], we have

PD

 sup
V ∈Nh+1(ε)

∥∥∥∥∥
K∑

τ=1

ϕ (xτh, a
τ
h) · ϵτh(V )

∥∥∥∥∥
2

Λ−1
h

> H2 · (2 · log(1/δ) + L · log(1 +H4K3L2d/λ3))


≤ δ · |Nh+1(ε)| .

For all ξ ∈ (0, 1) and all ε > 0, we set δ = ξ/ (H · |Nh+1(ε)|). Hence, for any fixed h ∈ [H], it
holds that

sup
V ∈Nh+1(ε)

∥∥∥∥∥
K∑

τ=1

ϕ (xτh, a
τ
h) · ϵτh(V )

∥∥∥∥∥
2

Λ−1
h

≤ H2 · (2 · log (H · |Nh+1(ε)| /ξ) c) (34)

with probability at least 1 − ξ/H , which is taken with respect to PD. Define M = 2H2 · 2 ·
log (H · |Nh+1(ε)| /ξ)+2H2L log(1+H4K3L2d/λ3)+8ε2H4K3L2d/λ3. Combining Equations
(33) and (34), we have

PD

 ⋂
h∈[H]

{

∥∥∥∥∥
K∑

τ=1

ψ (xτh, a
τ
h) · ϵτh

(
V̂h+1

)∥∥∥∥∥
2

Λ−1
h

≤M}

 ≥ 1− ξ (35)

which follows from the union bound. It remains to choose a proper ε > 0 and upper bound the
ε-covering number |Nh+1(ε)|. In the sequel, we set ε = dH/K and λ = 1. By Equation (35), for
all h ∈ [H], it holds that∥∥∥∥∥

K∑
τ=1

ψ (xτh, a
τ
h) · ϵτh

(
V̂h+1

)∥∥∥∥∥
2

Λ−1
h

≤ 2H2·2·log (H · |Nh+1(ε)| /ξ)+2H2L·log(1+H4K3L2d)+8H6KL2d3

(36)
with probability at least 1 − ξ, which is taken with respect to PD. To upper bound |Nh+1(ε)|, we
utilize the following lemma. Recall the definition of the function class Vh(R,B, λ). Also, recall
that Nh(ε;R,B, λ) is the minimal ε-cover of Vh(R,B, λ) with respect to the supremum norm.
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Lemma 4 (ε-Covering Number (Jin et al., 2020)). For all h ∈ [H] and all ε > 0, we have

log |Nh(ε;R,B, λ)| ≤ L · log(1 + 4R/ε) + L2 · log
(
1 + 8L1/2B2/

(
ε2λ
))
.

Recall that

V̂h+1 ∈ Vh+1 (R0, B0, λ) , where R0 = H2KL
√
d/λ,B0 = 2γ, λ = 1, γ = c · LH

√
ζ

Here c > 0 is an absolute constant, ξ ∈ (0, 1) is the confidence parameter, and ζ = log(2LHK/ξ)
is specified in Algorithm 1. Recall that Nh+1(ε) = Nh+1 (ε;R0, B0, λ) is the minimal ε-cover
of Vh+1 = Vh+1 (R0, B0, λ) with respect to the supremum norm. Applying Lemma 4 with ε =
dH/K, we have

log |Nh+1(ε)| ≤ L · log
(
1 + 4L−1/2K3/2

)
+ L2 · log

(
1 + 32c2 · L1/2K2ζ

)
(37)

≤ L · log
(
1 + 4L1/2K2

)
+ L2 · log

(
1 + 32c2 · L1/2K2ζ

)
As it holds that ζ > 1, we set c ≥ 1 to ensure that the second term on the right-hand side of Equation
(37) is the dominating term, where 32c2 · L1/2K2ζ ≥ 1. Hence, we have

log |Nh+1(ε)| ≤ 2L2 · log
(
1 + 32c2 · L1/2K2ζ

)
≤ 2L2 · log

(
64c2 · L1/2K2ζ

)
(38)

By Equations (36) and (38), for all h ∈ [H], it holds that∥∥∥∥∥
K∑

τ=1

ψ (xτh, a
τ
h) · ϵτh

(
V̂h+1

)∥∥∥∥∥
2

Λ−1
h

(39)

≤ 2H2 ·
(
2 · log(H/ξ) + 4L2 · log

(
64c2 · L1/2K2ζ

)
+ log(1 +H4K3L2d) + 4H4KL2d3

)
with probability at least 1−ξ, which is taken with respect to PD. Note that log(1+K) ≤ log(2K) ≤
ζ and log ζ ≤ ζ. Hence, we have

2 · log(H/ξ) + 4L2 · log
(
L1/2K2ζ

)
+ log(1 +H4K3L2d) + 4H4KL2d3

≤ 2L2 · log
(
LHK4/ξ

)
+H4K3L2d+ 4L2ζ + 4H4KL2d3 ≤ 18H4K3L2d3ζ.

As it holds that ζ > 1 and log ζ ≤ ζ, Equation (39) implies∥∥∥∥∥
K∑

τ=1

ψ (xτh, a
τ
h) · ϵτh

(
V̂h+1

)∥∥∥∥∥
2

Λ−1
h

≤ L2H2ζ ·
(
36H2K3L2d3 + 8 · log

(
64c2

))
(40)

We set c ≥ 1 to be sufficiently large, which ensures that 36H2K3L2d3 + 8 · log
(
64c2

)
≤ c2/4 on

the right-hand side of Equation (40). By Equations (25) and (40), for all h ∈ [H], it holds that

|(ii)| ≤ c/2 · LH
√
ζ ·
√
ψ(x, a)⊤Λ−1

h ψ(x, a) = γ/2 ·
√
ψ(x, a)⊤Λ−1

h ψ(x, a) (41)

with probability at least 1− ξ, which is taken with respect to PD. By Equations (13), (23), (24), and
(41), for all h ∈ [H] and all (x, a) ∈ S ×A, it holds that∣∣∣(BhV̂h+1

)
(x, a)−

(
B̂hV̂h+1

)
(x, a)

∣∣∣ ≤ (H
√
d+ γ/2) ·

√
ψ(x, a)⊤Λ−1

h ψ(x, a) ≤ Γh(x, a)

with probability at least 1 − ξ, which is taken with respect to PD. In other words, {Γh}Hh=1 are
ξ-uncertainty quantifiers. Therefore, we conclude the proof of Lemma 1.
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B PROOF FOR THEOREM 1

It suffices to show that {Γh}Hh=1 are ξ-uncertainty quantifiers, which are defined in Definition 3.
In the following lemma 1, we prove that such a statement holds when the regularization parameter
λ > 0 and scaling parameter β > 0 in Algorithm 1 are properly chosen.

As Lemma 1 proves that {Γh}Hh=1 are ξ-uncertainty quantifiers, E satisfies PD(E) ≥ 1 − ξ. Recall
that PD is the joint distribution of the data collecting process. By specializing Theorem 1 to the
linear MDP, we have

SubOpt(Pess(D);x) ≤ 2

H∑
h=1

Eπ∗ [Γh (sh, ah) | s1 = x]

= 2γ

H∑
h=1

Eπ∗

[(
ψ (sh, ah)

⊤
Λ−1
h ψ (sh, ah)

)1/2
| s1 = x

]
for all x ∈ S under E . Here the last equality follows from Equation (13). Therefore, we conclude
the proof of Theorem 1.

C PROOF FOR COLLORARY 1

Proof of Corollary 1. For all h ∈ [H] and all τ ∈ [K], we define the random matrices

Zh =

K∑
τ=1

Aτ
h, Aτ

h = ψ (xτh, a
τ
h)ψ (xτh, a

τ
h)

⊤ − Σh

where Σh = Eπ̄

[
ψ (sh, ah)ψ (sh, ah)

⊤
]

For all h ∈ [H] and all τ ∈ [K], we have Eπ̄ [A
τ
h] = 0. Here Eπ̄ is taken with respect to the trajectory

induced by the fixed behavior policy π̄ in the underlying MDP. As the K trajectories in the dataset
D are i.i.d., for all h ∈ [H], {(xτh, aτh, rτh)}

K
τ=1 are also i.i.d.. Hence, for all h ∈ [H], {Aτ

h}
K
τ=1 are

i.i.d. and centered.

We assume ∥ϕ(x, a)∥ ≤ 1 and ∥ψ(x, a)∥ ≤ C for all (x, a) ∈ S × A. By Jensen’s inequality, we
have

∥Σh∥op ≤ Eπ̄

[∥∥∥ψ (sh, ah)ψ (sh, ah)
⊤
∥∥∥
op

]
≤ C2.

For any vector v ∈ Rd with ∥v∥ = 1, the triangle inequality implies

∥Aτ
hv∥ ≤

∥∥∥ψ (xτh, a
τ
h)ψ (xτh, a

τ
h)

⊤
v
∥∥∥+ ∥Σhv∥ ≤ ∥v∥+ ∥Σh∥op · ∥v∥ ≤ 2C2

Hence, for all h ∈ [H] and all τ ∈ [K], we have

∥Aτ
h∥op ≤ 2C2,

∥∥∥Aτ
h (A

τ
h)

⊤
∥∥∥
op
≤ ∥Aτ

h∥op ·
∥∥∥(Aτ

h)
⊤
∥∥∥
op
≤ 4C4

As {Aτ
h}

K
τ=1 are i.i.d. and centered, for all h ∈ [H], we have

∥∥Eπ̄

[
ZhZ

⊤
h

]∥∥
op

=

∥∥∥∥∥
K∑

τ=1

Eπ̄

[
Aτ

h (A
τ
h)

⊤
]∥∥∥∥∥

op

= K ·
∥∥∥Eπ̄

[
A1

h

(
A1

h

)⊤]∥∥∥
op
≤ K · Eπ̄

[∥∥∥A1
h

(
A1

h

)⊤∥∥∥
op

]
≤ 4KC4
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where the first inequality follows from Jensen’s inequality. Similarly, for all h ∈ [H] and all τ ∈ [K],
as it holds that ∥∥∥(Aτ

h)
⊤
Aτ

h

∥∥∥
op
≤
∥∥∥(Aτ

h)
⊤
∥∥∥
op
· ∥Aτ

h∥op ≤ 4C4

we have

∥∥Eπ̄

[
Z⊤
h Zh

]∥∥
op
≤ 4KC4

For any fixed h ∈ [H] and any t ≥ 0, we have

PD

(
∥Zh∥op > t

)
= PD

∥∥∥∥∥
K∑

τ=1

Aτ
h

∥∥∥∥∥
op

> t

 ≤ 2L · exp
(
− t2/2

4KC4 + 2t/3

)

For all ξ ∈ (0, 1), we set t =
√
10KC4 · log(4LH/ξ). When K is sufficiently large so that

K ≥ 5·log(4LH/ξ)
C4 , we have 2t/(3C4) ≤ K. Hence, for the fixed h ∈ [H], we have

PD

(
∥Zh∥op ≤ t

)
≥ 1− 2L · exp

(
−t2/(8KC4 + 4t/3)

)
≥ 1− 2L · exp

(
−t2/(10KC4)

)
= 1− ξ/(2H)

By the union bound, for all h ∈ [H], it holds that

∥Zh/K∥op =

∥∥∥∥∥ 1

K

K∑
τ=1

ψ (xτh, a
τ
h)ψ (xτh, a

τ
h)

⊤ − Σh

∥∥∥∥∥
op

≤
√

10/K · log(4LH/ξ)

with probability at least 1 − ξ/2, which is taken with respect to PD. By the definition of Zh, we
have

Zh =

K∑
τ=1

ψ (xτh, a
τ
h)ψ (xτh, a

τ
h)

⊤ −K · Σh = (Λh − λ · I)−K · Σh

Recall that there exists an absolute constant c > 0 such that λmin (Σh) ≥ c/L, which implies∥∥Σ−1
h

∥∥
op
≤ L/c. When K is sufficiently large so that K ≥ 40L/c · log(4LH/ξ), for all h ∈ [H],

it holds that

λmin (Λh/K) = λmin (Σh + λ/K · I + Zh/K)

≥ λmin (Σh)− ∥Zh/K∥op ≥ c/L−
√
10/K · log(4LH/ξ) ≥ c/(2L)

Hence, for all h ∈ [H], it holds that∥∥Λ−1
h

∥∥
op
≤ (K · λmin (Λh/K))

−1 ≤ 2L/(K · c)

with probability at least 1− ξ/2 with respect to PD, which implies√
ψ(x, a)⊤Λ−1

h ψ(x, a) ≤ ∥ψ(x, a)∥ ·
∥∥Λ−1

h

∥∥1/2
op
≤ c′′

√
L/K, ∀(x, a) ∈ S ×A,∀h ∈ [H]

Here we define the absolute constant c′′ =
√
2C2/c and use the fact that ∥ψ(x, a)∥ ≤ C for all

(x, a) ∈ S ×A.

We define the event

E∗1 =

{√
ϕ(x, a)⊤Λ−1

h ϕ(x, a) ≤ c′′
√
d/K for all (x, a) ∈ S ×A and all h ∈ [H]

}
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We have PD (E∗1 ) ≥ 1− ξ/2 for K ≥ 40L/c · log(4LH/ξ). Also, we define the event

E∗2 =

{
SubOpt(π̂;x) ≤ 2γ ·

H∑
h=1

Eπ∗

[√
ψ (sh, ah)

⊤
Λ−1
h ψ (sh, ah) | s1 = x

]
for all x ∈ S

}

Here we set γ = c · LH
√

log(4LHK/ξ). We have PD (E∗2 ) ≥ 1 − ξ/2. Hence, when K is
sufficiently large so that K ≥ 40/c · log(4LH/ξ), on the event E∗ = E∗1 ∩ E∗2 , we have

SubOpt (π̂;x) ≤ 2γ ·H · c′′
√
L/K = c′ · L3/2H2

√
log(4LHK/ξ)/K, ∀x ∈ S

By the union bound, we have PD (E∗) ≥ 1 − ξ with c′ = 2c · c′′, where c′′ =
√

2C2/c Therefore,
we conclude the proof of Corollary 1.
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