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ABSTRACT

We focus on knowledge transfer in offline reinforcement learning (RL), which
aims to significantly improve the learning of an optimal policy in a target task
based on a pre-collected dataset without further interactions with the environment.
Data scarcity and high-dimensional feature spaces seriously pose challenges to of-
fline RL in many real-world applications, and knowledge transfer offers a promis-
ing solution. We propose a novel and comprehensive knowledge transfer frame-
work for offline RL, which carefully considers the relationship between the target
and source tasks within the linear Markov decision process (MDP) framework.
This enables efficient knowledge transfer from related source tasks to enhance
learning in the target task and effectively address data scarcity concerns in offline
RL. Our main contributions include establishing a relationship with the learning
process between the target task and source task, introducing an effective and robust
knowledge transfer technique to reduce the suboptimality of the learned policy,
and demonstrating the significant effectiveness of the knowledge transfer frame-
work through detailed theoretical analysis. Our work significantly contributes to
the advancement of offline RL by providing a practical and robust framework for
knowledge transfer facilitating more efficient and effective data utilization in var-
ious applications.

1 INTRODUCTION

The reinforcement learning (RL) has achieved remarkable success in various applications, which
largely relies on two crucial factors: (i) powerful function approximators, such as deep neural net-
works (LeCun et al., [2015; Mnih et al.l 2015} [Silver et al., 2016} [Vinyals et al., 2017), that can
approximate policies and values with high precision, and (ii) efficient data generators, like simula-
tion environments (Bellemare et al.,|2013;|Todorov et al.,2012), that facilitate the collection of large
amounts of data through interactions with the environment. However, in many real-world scenarios,
such as robotics and healthcare, obtaining massive interactive data can be extremely costly, time-
consuming, and even pose risks. Therefore, we focus on offline RL, which aims to learn an optimal
policy based on a pre-collected dataset without further interactions with the environment.

In today’s rapidly evolving technological landscape, offline reinforcement learning (RL) has
emerged as a crucial area of research in data-driven decision-making. It aims to learn optimal
policies based on datasets collected a priori, without the need for further interactions with the en-
vironment. This is particularly relevant in various domains, such as marketing, healthcare, and
education, where data scarcity and high-dimensional feature spaces pose significant challenges. Un-
like online RL, offline RL is still relatively less understood from a theoretical perspective (Lange
et al.l 2012} [Levine et al., 2020), which poses significant challenges in developing reliable algo-
rithms for practical applications. In particular, since active interactions with the environment are not
feasible in offline RL, it becomes difficult to exploit the dataset without further exploration fully.
Due to the lack of continuous exploration, any algorithm for offline RL may suffer from the prob-
lem of insufficient dataset coverage (Wang et al., [2020). Specifically, two main challenges arise (i)
the intrinsic uncertainty, where the dataset may fail to cover the trajectory induced by the optimal
policy, which contains essential information; (ii) the spurious correlation, meaning that the dataset
may accidentally cover a trajectory that is unrelated to the optimal policy, but which can mislead the
learned policy (Fujimoto et al., 2019; |Agarwal et al.,|2020; |Fu et al.,2020; \Gulcehre et al., [2020)).
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In the context of offline RL, knowledge transfer offers a promising approach to improving learning
efficiency and performance. By transferring knowledge from related source tasks to a target task,
we can exploit the relationship between target and source tasks to overcome the data scarcity issue.
However, existing literature on knowledge transfer or transfer learning for RL lacks a thorough
examination of the theoretical guarantees for value function estimation.

In this paper, we aim to answer the following question:

Can we develop a knowledge transfer framework that effectively addresses the data scarcity and
provides rigorous theoretical guarantees?

In conclusion, we propose a novel framework for knowledge transfer in offline RL (KT-RL). The
contributions of our work are concluded as follows:

1. Knowledge Transfer Framework Innovation

* Breaking Conventional Assumptions: We assume that the target data is a linear combination
of source data. This assumption provides a novel perspective and method for knowledge transfer
in offline RL, departing from the common practices in existing literature.

* Comprehensive Consideration of Task Relationships: Based on the linear Markov Decision
Process (MDP) framework, we comprehensively consider the relationships between the target
task and source tasks. This approach effectively addresses the data scarcity problem and en-
hances the learning performance of the target task.

2. Theoretical Contributions

 Establishing Theoretical Relationships: We establish a theoretical relationship between the
learning processes of the target task and source tasks. By introducing knowledge transfer tech-
niques, we can reduce the suboptimality of the learned policy.

* Providing Bounds for Algorithm Evaluation: Through theoretical analysis, we provide an up-
per bound on the suboptimality of our algorithm. Additionally, we prove the minimax optimality
of the algorithm, which offers a solid basis for evaluating the performance of the algorithm.

3. Algorithm Design Contributions

» Efficient Source Data Processing and Integration

— Separate Calculation of Source Data Statistics: For each source task, we calculate statistical
quantities separately. In each step, we define the empirical mean squared Bellman error (MSBE)
and calculate the estimated Bellman operator, confidence bound, value function, action-value
function, etc. This process fully considers the characteristics of each source task and retains its
unique information. Unlike the transfer learning methods in (Chen et al.,[2024; Lei et al.,[2024),
which require aggregating raw data from various sources, our approach only necessitates the
sharing of statistical quantities from the model. From this perspective, our algorithm enhances
privacy preservation by decentralized sensitive raw data.

— Integration of Source Data for Target Task: We integrate the statistical quantities obtained
from each source task to calculate the target task. This integration method takes into account
the diversity of source data and effectively transfers knowledge. It enhances the flexibility
and effectiveness of the algorithm in handling different source-target task relationships, thus
improving the accuracy and effectiveness of knowledge transfer.

* Ensuring Dataset Compliance and Trajectory Independence: In data collection process, we
assume that the dataset complies with the underlying MDP and the trajectories are independent.
This assumption simplifies the analysis process and ensures the reliability and stability of the
algorithm in practical applications.

These contributions together significantly advance the field of offline RL and offer potential for more
efficient and effective decision-making in various real-world applications.

2 RELATED WORK

In the field of offline reinforcement learning, numerous studies have been conducted to address
various challenges. Our work is closely related to the following lines of research:
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Reinforcement Learning: There is a rich body of literature on offline RL algorithms, such as
(Fujimoto et al., 2019;[Agarwal et al.,2020; [Fu et al., 2020; (Gulcehre et al.,2020). These algorithms
aim to learn an optimal policy based on a pre-collected dataset without further interactions with the
environment. Our proposed algorithm contributes to this area by incorporating transfer learning to
enhance learning efficiency. There are several work falls within the realm of batch reinforcement
learning, where the goal is to learn an optimal policy from a fixed dataset without further interactions
with the environment (Shi et al.| 2022; Yan et al.,[2022; |[Li et al.| [2024).

Knowledge Transfer in Reinforcement Learning: Numerous studies have explored transfer learn-
ing in the context of reinforcement learning. |Chen et al.| (2022)) investigated the transfer of Q-
learning, while |Agarwal et al.| (2023) focused on the benefits of representational transfer in rein-
forcement learning. These works provide valuable insights into how knowledge can be transferred
between tasks in the RL domain. Transfer learning in RL aims to leverage data from related source
tasks to enhance the learning on a target task (Agarwal et all [2023). Additionally, our work is
related to the broader topic of knowledge transfer in sequential decision-making. Previous studies
have investigated utilizing data from existing ventures to navigate high-dimensional feature spaces
and address data scarcity in new ventures (Liu,|2023;|Komorowski et al., 2018} Rafferty et al.,[2016).
We extend this idea to the context of offline reinforcement learning, demonstrating how knowledge
transfer can be applied to improve the learning efficiency in this domain. In contrast to the existing
literature on transfer learning (Bastanil, 2021} [Lei et al.| |2024; |L1 et al., 2022} 2023} |Bastani et al.,
2022; Tian & Feng, [2023), which typically assumes that source data closely resembles target data,
our approach diverges from this assumption.

Linear MDPs and High-Dimensional Feature Spaces in RL: Dealing with high-dimensional fea-
ture spaces is a crucial challenge in offline reinforcement learning. Some works (Bellemare et al.,
2013} [Todorov et al. |2012) have focused on developing efficient data generators and function ap-
proximators to address this issue. Our approach builds upon these ideas by proposing a novel transfer
learning framework that specifically takes into account the high-dimensional feature spaces in the
source and target tasks. Additionally, linear MDPs have been studied in various RL papers (Yang
& Wangl [2019; Jin et al., |2020). These studies have shown that linear MDPs can provide a useful
framework for analyzing and solving RL problems. In our work, we also utilize the concept of linear
MDPs to define the task discrepancy and establish the relationship between target and source tasks
and the learning process in the target task.

3 PRELIMINARIES

In this section, we first introduce the episodic Markov decision process (MDP).

We consider an episodic MDP (S, A, H, P, r) with the state space S, action space .A, horizon H,
transition kernel P = {P},}"_, and reward function r = {r;,}/__,. We assume the reward function

is bounded, that is, 7, € [0,1] for all A € [H]. For any policy # = {wh}thl, we define the
value function V;7 : & — R at each step h € [H] and the action-value function (Q-function)
Q7 : S x A— Rateachstep h € [H] as:

H H
Vii(x) =E, Zri (84, a5) |sh:x] ,Qh(z,a) =Eq erl (siyai) | sp =x,ap =a|. (1)
i=h i=h

Here the expectation E. in Equations (1) is taken for the randomness of the trajectory induced by m,
which is obtained by taking action a; ~ 7; (- | s;) at the state s; and observing the next state s; 1 ~
Pi (- | s;,a;) at each step i € [H]. Meanwhile, we fix s, = z € Sand (s, ap) = (z,a) € S x A
in Equation (IJ). By the definition in Equations (I]), we have the Bellman equation:

Vhﬂ-('r) = <QZ($’ ')’ﬂ-h(' ‘ x)>_,47 QZ('%"G) =E [Th (Sh’ah) + V}Zr—i-l (Sh-i-l) | Sh =T, ap = a] )

where (-, -) 4 is the inner product over A, while E is taken for the randomness of the immediate
reward 7, (sp,ap) and next state sp11. For any function f : & — R, we define the transition
operator at each step h € [H] and the Bellman operator at each step h € [H] as:

(Prf) (z,a) =E[f (sht1) | sn = z,an = a], (2)
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Bnf)(x,a)=E[rn(sn,an)+ f(snt1) |sn=2,an=a]=E[rp(sn, an) | sn ==, ahza]Jr(IF’hf)(%(;l))

For the episodic MDP (S, A, H, P, r), we use 7", Q;,, and V} to denote the optimal policy, op-
timal Q-function, and optimal value function, respectively. We have Vi, = 0 and the Bellman
optimality equation as:

Vi (2) = max Qi (z,0),  Qj(z.0) = (BuViiys) (z,a).
Meanwhile, the optimal policy 7* is specified by
m (- | #) = argmax (@} (z, ), (- [ ) 4, Vi(2) = (@), m (- [ 2)) 45

Th

where the maximum is taken over all functions mapping from S to distributions over .4. We aim
to learn a policy that maximizes the expected cumulative reward. Correspondingly, we define the
performance metric as:

SubOpt(m;z) = Vi (x) — Vi (), 4)
which is the suboptimality of the policy 7 given the initial state s; = x.

3.1 LINEAR MDP

We study the knowledge transfer for offline RL in a concrete setting: the linear MDP. We define the
linear MDP following the works|Yang & Wang (2019); Jin et al.|(2020), where the transition kernel
and expected reward function are linear in a feature map.

Definition 1 (Linear MDP). We say an episodic MDP(S, A, H, P,r) is a linear MDP with a known
feature map ¢ : S x A — RY if there exist d unknown measures puy, = (,ug), e ,,ug )) over S and

an unknown vector 0y, € R such that

Pr (2" | ,a) = (p(z,a), pn (z)), E[rn(sn,an) | sn = z,an = a] = ($(z,a),0,).  (5)
forall (z,a,2") € § x A x S at each step h € [H|. Here we assume ||¢(z,a)|| < 1 for all

(z,a) € S x Aand max{||uh S, H0h||} < \/aat each step h € [H|, where with an abuse of
notation, we define |[un(S)| = J |1in ()| dz

In the subsequent section, we propose our algorithm (Algorithm|T)), which utilizes knowledge trans-

fer to construct B, V.1, ', and Vj, based on the dataset D = {(z},a}, r;)}T i —1- Specifically, for

I@h ‘7h+1, we build it based on D as follows. Recall that I/B\%h ‘7h+1 is intended to approximate ]B%thH,
where By, is the Bellman operator defined in Equation (3)).

4 PROBLEM FORMULATION

In the previous sections, we have introduced our research’s background and related concepts. This
section focuses on the problem formulation of knowledge transfer for offline reinforcement learning.

The Target and Source RL Data. Transferred RL aims to improve the learning on a target RL
task by leveraging data from related source RL tasks. We consider the case where we have abundant
source data from offline observational data or simulated data, while the target task only has limited
offline data. Specifically, we have a target task and L source tasks, which are characterized by
MDPs MW = {S, A, H, PO, r®} for I € {0} U [L]. The target RL task of interest is referred
to as the 0-th task and denoted by a superscript ” (0),” while the source RL tasks are denoted by a
superscript ” (1),” for [ € [L].

Many existing knowledge transfer methods rely on leveraging information from source data that
closely resembles the target data (Chen et al., [2022; Bastani et al.| |2022; [Li et al.| 2022} Lei et al.,
2024; Tian & Feng| 2023). However, this approach often overlooks valuable knowledge that may be
present in different yet potentially related samples. Different from existing literature which imposes
similarity constraints on target data and source data, we make the following assumption on source
data in Assumption I} the target data is a linear combination of source data.
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Assumption 1. For! € {0} U [L] and all h € [H], we assume that Zszl w,(j)a,g” = 9,(10).

Unlike existing knowledge transfer, we did not assume that the source and target data are similar.
This assumption implies that the parameters of the source tasks can be combined to approximate
the parameters of the target task. It is not a restrictive assumption as it allows for flexibility in the
relationship between the source and target tasks.

We detail the target (source) MDP model. Specifically, we consider the setting with L source data
generated from the episodic linear MDP (Puterman) 2014} |Sutton, [2018) with the state space S,

o
action space A and horizon H. We assume P = {P}(f) }} and the reward function 7(!) =

{r}(L ) }h are specified as follows:
=1

P (whir | 2y an) = <¢($h,ah) ne (Ih+1)>7 (6)
E |:r}(f) (zh,an) | xh,ah} = <¢ (zh,an) ’0}(Ll)> ) 7

Forl € [L], h € [H], where x}, and ay, are the state and action in the time h, respectively, ug) s are

unknown measures over S, and ¢ is known feature map. The feature map can be thought of as the
representation of relevant time-varying covariates. These equations define the transition and reward
functions in the linear MDP, where the transition probabilities and expected rewards are linear in the
feature map ¢. This linearity assumption simplifies the model and allows for more efficient learning
and knowledge transfer between tasks.

! ! L

Given the [ th MDP for [ € [L], a dataset D = {(x;( ) ar® )>} ., s collected a priori
T,h,l=1

where at each step h € [H] of each trajectory 7 € [n()], the agent takes the action a;(l) ~

() _ (l)( T(l) T(l)
"h

wﬁbl) ( \ mT(l)) at the state x;(l) receives the reward r), xy, ) satisfying Equation

and observes the next state x,:gi)l ~ P ( |z =2}V ap = o] )) satisfying Equation

The transition probabilities only depend on features specified in ¢ (x, ). All trajectories in D) for

I € [L] are assumed to be independent. We impose no constraint on the behavior p011c1es 7r,( )

and allow them to vary across the L sites. This means that the data collection process is flexible and
can capture a variety of behaviors and situations in the source tasks. The independence assumption
ensures that the data from different trajectories is not correlated, which simplifies the analysis and
allows for a more straightforward application of statistical techniques.

For any policy 7 = {7rh} h—1> we define the state value function V : § — R and the action-value
function (Q-function) Q”(l : 8 x A — R for the [ th site at each step h € [H] as
H
V@) =ED |3 (ae,ar) | an = x} : )
t=h
th)xa (l) lZT (g, a) | zp = x, ah—a]. 9)

Here the expectation Egr) is taken for the randomness of the trajectory induced by m, which is
obtained by taking the action ay, ~ 7, (- | xp) at the state x;, and observing the next state 1 ~

]P’ (- | p,ar) ateach step h € [H|. Meanwhile, we fix z;, = x € Sin Equationand (xh,an) =
(z,a) € S x Ain Equation (9). Bellman equation implies

(1 (1 m(l Dy m(l
Vi@ = (@@ ) m12) o Q¥ ) = (BPVEY) (@.a),

where (-, ) 4 is the inner product over A, Bg) is the Bellman operator for any function f : S — R,

with E® taken with respect to the randomness of the reward r,(f) (zp, ap,) and next state x5, 11 where

!
Thel ~ Pé) (Thg1 | zh,an).
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We define the empirical mean squared Bellman error (MSBE) at each step h € [H] as
K 2
T % T T T\
Ma(w) = > (rf + Vi (740) = ¥ (o a7) " w)
T=1

to measure the performance of parameter w. Correspondingly, we set

(@hml) (z,a) = ¥(z,a) @y, where @), = argmin My (w) + - [w]2  (10)
weERd

at each step h € [H]. Here A > 0 is the regularization parameter. Note that wy, has the closed form

K
Wy, = Ay <Z¢($Z’a2) : (TZ + Vot (mﬁﬂ))) ; an
T=1
where
K
Ap =Y (], ap) (. af) " + A L. (12)
T=1

Meanwhile, we construct I';, based on D as

Th(z,a) =7 (Y(z,a) Ay p(x,a)) (13)

at each step h € [H]. Here v > 0 is the scaling parameter. In addition, we construct the value
function and action-value function based on D as

@h(m,a) = min {Qh(x,a),H —h+ 1}+ ,  where Qp(z,a) = (@h‘/}h+1) (z,a) — Tx(z,a).

Vh(x):<@h(x,-),%h(-|m)>A, where %h(-|x):argmax<@h(x,-),wh(.\x)>

Th -A’

1/2

By Equationand for any function V, there exists w,‘f) € R% such that
l A _(

(BYV) (@.0) = ((x,0), B0 ) = (w(z,0), @)
where B,(ll ) = O,Sl) + [yes ug) (2')V (2") da’. Therefore, the coefficients E,(ll) can be estimated
through linear regression if the values (IBSEPV) (z,a) are known, which inspires us to derive the
KT-RL algorithm. Without loss of generality, we assume the horizon length of all tasks is the
same, denoted as H. We also assume that the trajectories in different tasks are independent. These
definitions and equations are standard in reinforcement learning (Jin et al., |2021) and describe the
value functions and the Bellman operator. The assumption that the coefficients can be estimated
through linear regression is based on the linearity of the MDP and allows us to develop efficient

algorithms for learning and transfer.

Definition 2 (Compliance). For a dataset D = {(z],,a},, r;)}fhlil let Pp be the joint distribution

of the data collecting process. We say D is compliant with an underlying MDP(S, A, H, P, r) if

. . T . . T—1
T _ ../ T _ ! J J J J
o <rh =7 Ty = T {(mh,a )}j—l ’ {(rh’xh+1)}j—1>

=P (ry (sn,an) =1, 801 =2 | sp = 2}, an, = a},) . (14)

forall v € [0,1] and &' € S at each step h € [H] of each trajectory 7 € [K|. Here PP on the
right-hand side of Equation (I4) is taken with respect to the underlying MDP.

This definition ensures that the dataset is collected in a manner that is consistent with the underlying
MDP. It guarantees that the data reflects the true dynamics of the environment and can be used for
reliable learning and inference.

Assumption 2 (Data Collecting Process). The dataset D that the learner has access to is compliant
with the underlying MDP(S, A, H, P, r).

This assumption is crucial for our analysis as it allows us to make meaningful conclusions about the
performance of our algorithms based on the available data.
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5 ALGORITHM

In the previous sections, we have discussed the problem formulation and related concepts. We move
on to the algorithm in this section. Inspired by /Jin et al.|(2021) , we notice the key step is to construct

estimates ‘7(0) of V(O) and @(0)9,50)1 of IBB(O)V(O) based on {D(l)}l, and the parameter estimator of

{D l)} _ .- Pessimism plays an important role in the control of suboptimality. Define D = UE D
We achleve pessimism by the notion of confidence bound I';, as follows.

Definition 3. We say {T', : S x A — R} is a {-confidence bound of V = {Vh}hH:1 with respect
to Pp if the event:

E(V) = {‘ (@20)Vh+1) (z,a) — (IB%EIO)V;H_l) (z,a)’ < Tp(z,a)forall (x,a) €S x A h € [H]}
(15)

satisfies Pp (E(V')) > 1 — £. Here the value functions V = {Vh}thl and {Fh},{f:l can depend on
D.

This definition is crucial for quantifying the uncertainty in our estimates. By ensuring that the event
E(V') occurs with high probability, we can control the suboptimality of our algorithm, as will be

explained later. By definition, I';, quantifies the approximation error of I[ABELO )Vh+1 for IB%EIO)V;ZH,
which is important in eliminating the spurious correlation as discussed inJin et al.|(2021).

5.1 FOR SOURCE TASK:

We define the empirical mean squared Bellman error (MSBE) at each step h € [H] as

n®

. 2
l (1 (1 (1 (1 7(l
MO8 =3 (Th()+Vh(421 (%91) *¢<Ih(),ah()) ﬁ(z)>

T=1
Correspondingly, at each step h € [H|, we set:

HESAU 2 U . 1
(BT (w.0) = dlo.) B0, where B = arg mindg}"(9) + A 1813
€
Here A > 0 is the regularization parameter. Note that E,(ll) has the closed form

n®
U l l l (1 i (1
B0 = (S (s10.ai®) (54 70 (1))

n®

.
where A(l) Z ¢ ( . T(l)) ¢ (I;(l), a;(l)) +A-1.

)

Meanwhile, at each step h € [H], we construct ng based on D as:

0.0 =7+ (6.0 A0 d(ea)

1)

Here v > 0 is the scaling parameter. In addition, we construct ‘A/h( based on D as

~ _ + _
Ell)(ama) = min{ g)(ama), H—-h+ 1} , where g)( a) = (BU)V}EQl) (z,a) — I‘gll)(:r, a).

7@ 20 ~0) ~(0) ( O]
VV(x) =(Q; (z,),m, (- |z ,  where 7'(|x)=argmax(Q;’ (z,-),m (-|x .
o () <h( )h(‘)>A CIED o <h( )h(|)>A

In the source task, we use the MSBE to measure the error in estimating the Bellman operator. The

closed form of ,@,(ll ) allows us to efficiently compute the estimate. The construction of I‘Ell) and ‘//\'h(l)
is based on the estimated Bellman operator and is designed to capture the uncertainty and optimize
the policy.
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5.2 FOR TARGET TASK:

The process for the target task is similar to before, we define the empirical mean squared Bellman
error (MSBE) at each step h € [H] as:

n(® 2
T
0 7(0 (0 7(0 7(0 7(0
0 w) = 5 (79 92, (1) - (59.) )
T=1

Correspondingly, we set
(@hf/,f%) (z,a) = (x,a) W), where W), = argminM,(lo)(w) + A [lw]3.
weRE
Here A > 0 is the regularization parameter. Note that wy, has the closed form

n(©®

o= (S () (0T (). o

where Aéo) = Z:(:l)l Y (z7,a],) ¥ (27, CL,TL)T -+ A - 1. Meanwhile, we construct Féo) based on D as
-1 1/2
00 (,0) = (o) AL (e, a)

)

Here v > 0 is the scaling parameter. In addition, we construct ‘7h(o based on D as

~ _ + _ ~(0)
gbo)(z,a) = min{ gbo)(:c,a),H —h+ 1} , where QELO)(.%,CL) = (IB%ELO)V(O) ) (z,a) — FELO)(:c,a).

h+1
U0(@) = (@ (@), 7 @) where 7 (| @) = argmax (@4 (2. ), M (- [ @) .
Th

For the target task, we define the MSBE similarly to the source task. The estimation of wy and

the construction of Fgo) and ‘A/,fo) are also based on the corresponding data and aim to optimize the
performance in the target task.

The specific algorithm procedure is summarized in Algorithm [T}

6 THEORETICAL RESULTS

The following theorem characterizes the suboptimality of Algorithm[I} which is defined in Equation
(4.

Theorem 1 (Suboptimality). Suppose Assumption [2| holds and the underlying MDP is linear. In
Algorithm[2] we set

A=1, y=c-LH\/{, where(=1log(2LHKJ).
Here ¢ > 0 is an absolute constant and £ € (0, 1) is the confidence parameter. The following state-
H
ments hold: (i) {F;LO)} in Algorithm I} which is specified in Equation , is a E-uncertainty
h=1

quantifier, and hence (ii )_under & defined in Equation , which satisfies Pp(E) > 1 — &, for any
x € S, Pess (D) in Algorithm|[I] satisfies

Ll 1/2
SubOpt(Pess(D); x) < 27 Z]Eﬂ* {(1/) (snyan) " A;O)_lw (sh,ah)) | s1 = x} .
h=1

Here E - is concerning the trajectory induced by 7* in the underlying MDP given the fixed matrix
Ap.

This theorem provides an upper bound on the suboptimality of the algorithm. The term ~ and the
expectation inside the summation quantify the deviation from the optimal policy. The result shows
that by carefully choosing the parameters and ensuring the uncertainty quantifier condition, we can



Under review as a conference paper at ICLR 2025

Algorithm 1 Knowledge Transfer for Offline Reinforcement Learning (KT-RL)

I Input: T © — [(y7© O @\ W —
: Input: Target samples D = Ty a T, ; L Source samples D\") =

T,h=1
K,H,L
{(x;( ) a;(l) r;(l))} .

T,h,l=1
H
Output: { (0)} .
h=1

Transferring Step
%20)

Initialization: Set Vy;, () < 0.
for1=1,2,...,Ldo
forsteph=H,H—1,...,1do

n®
Set AV ZT% o (o], ah) o («7.a7) +A- I
(1 nH— T(1 T(l
set8l) AP (22 oty (170 + 00, (50))).

B _ 1/2
8 SetT() e n (6(.)TAY 6(0)
9:  end for

10: end for

7(0) L (1 7(0) T 0
11 Se“/’(xt t( )= W )¢( ©a ( ))’
12: Set Agbo) — ZZ:i Pp (x;(o), a;(o)) p (x;(o) a;(o)) + A1
13: Calibration Step:

N LR

n(0)

[®, ... ] = U) ' Zw Th,ap) (T(O) Vh(?r)l( ;fi)) ;

14: Set B0 = 21w B0,
15: _ELO)(-, N o, -)TB,SO) - Fglo)(-, -); {Pessimism}
16: A(O)(- )+ min{ 7(0)(- ), H—h+ 1}+' {Truncation}
. h ) h s )y 5
17: %(O)(- | ) « argmax,, <A§10)(~7 '),W}(LO)(' | -)>A; {Optimization}

18: VO() « <Q<°( 9,70 |-)>A. {Evaluation}

control the suboptimality of the algorithm. The result depends on the number of source tasks L
instead of the dimension d (Jin et al.} 2021). When we adjust the relevant quantity from what might
be similar to d into our L, if usually L < d, then in this upper bound expression, because the value
of L is relatively smaller, in the summation and related calculations, the value of the upper bound
will be relatively smaller. This means that our estimation of the algorithm’s suboptimality is more
precise and the upper bound is tighter.

We highlight the following aspects of Theorem [T}

Corollary 1 (Suboptimality of KT-RL with Well-Explored Dataset). Suppose D consists of K tra-
Jjectories {(x}, a},, r,:)}fhlil independently and identically induced by a fixed behavior policy T in
the linear MDP. Meanwhile, suppose there exists an absolute constant ¢ > 0 such that

Auin (S47) = ¢/L, where S = Ex [9 (s, a)  (sn,0n) "

at each step h € [H]. Here Ex is taken with respect to the trajectory induced by T in the underlying
MDP. In Algorithm[l] we set

A=1, y=c-LH\/C, where(=1log(4LHK/S).
Here ¢ > 0 is an absolute constant and £ € (0,1) is the confidence parameter. Suppose we have

K > C-dlog(4dH/£), where C > 0 is a sufficiently large absolute constant that depends on c. For
Pess (D) in Algorithm|[] the event

& = {SubOpt(Pess(D);x) < L3PH2KY2/C forall w € 5}
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satisfies Pp (E€*) > 1 — & Here ¢ > 0 is an absolute constant that only depends on ¢ and c.

This corollary provides a result for the case when the dataset is well-explored. It shows that under
certain conditions on the dataset and the parameters, the suboptimality of the algorithm can be fur-
ther reduced, approaching a desired bound. Similar to the Theorem (I} L appears in the suboptimality
upper bound expression. When L < d, the value of terms like L?/2 will be smaller than when using
d. This makes the suboptimality upper bound we obtain tighter, that is, the performance estimation
of the algorithm in this case of a well-explored dataset is more accurate and the range of the upper
bound is smaller.

6.1 MINIMAX OPTIMALITY: INFORMATION-THEORETIC LOWER BOUND

We establish the minimax optimality of Theorems [T] via the following information-theoretic lower
bound.

Theorem 2 (Information-Theoretic Lower Bound). For the output Algo(D) of any algorithm, there
exist a linear MDP M = (S, A, H, P, ), an initial state € S, and a dataset D, which is compli-
ant with M, such that:

SubOpt(Algo(D); x)

io H T 4 (0)—1 1/2
2 h=1 Ex- [(‘/’(Shvah) Ay, "/’(Shaah)) 5121;}

>c

=6

where ¢ > 0 is an absolute constant. Here E - is taken according to the trajectory induced by 7* in
the underlying MDP given the fixed matrix A}lo). Meanwhile, Ep is taken for Pp, where Algo(D)
and A;LO ) depend on D.

This theorem establishes a lower bound on the suboptimality of any algorithm. It shows that there
is a fundamental limit to the performance of algorithms, and our proposed algorithm achieves a
performance that is close to this limit, indicating its optimality in a minimax sense.

7 CONCLUSION

In conclusion, we have presented a novel knowledge transfer framework for offline reinforcement
learning. This framework addresses the crucial challenges of data scarcity and high-dimensional fea-
ture spaces. By assuming a linear relationship between target and source data and comprehensively
considering task relationships within the linear MDP framework, we have introduced innovative
approaches to knowledge transfer. Our theoretical contributions include establishing relationships
between the learning processes of target and source tasks and providing bounds for algorithm evalu-
ation, demonstrating both the suboptimality upper bound and the minimax optimality. In algorithm
design, we have focused on efficient source data processing and integration, along with ensuring
dataset compliance and trajectory independence. Overall, our work significantly contributes to the
advancement of offline reinforcement learning, offering a practical and theoretically sound solution
for more efficient learning in various applications.

10
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APPENDIX

You may include other additional sections here.

A PROOF FOR LEMMA(I]
Lemma 1 (¢-Uncertainty Quantifier for Linear MDP). Suppose that Assumption 2] holds and the
underlying MDP is a linear MDP. In Algorithm|[I] we set

A=1, ~y=c-LH+\/C, where(=Ilog(2LHK/¢)

Here ¢ > 0 is an absolute constant and & € (0, 1) is the confidence parameter. It holds that {T' h}=
specified in Equation are &-uncertainty quantifiers, where {‘7h+1 }hH:1 used in Equation
are obtained by Algorithm|]]

Proof for Lemma I} It suffices to show that under Assumption 2} the event £ defined in Equation
satisfies Pp(€) > 1 — € with the £-uncertainty quantifiers {I‘h}le defined in Equation .
To this end, we upper bound the difference between (IB%;L\A/;LH) (z,a) and (I/B\B;L\A/Hl) (z,a) for all

h € [H] and all (z,a) € S x A, where the Bellman operator B, is defined in Equation (3), the

estimated Bellman operator B n 1s defined in Equation l) and the estimated value function V1
is constructed in Line[I8]of Algorithm

For any function V : § — [0, H], Deﬁnition ensures that P,V and B,V are linear in the feature
map ¢ for all h € [H]. To see this, note that Equation (5) implies

(PLV) (z,a) = <¢(:E,a), /S V (2") pp, (2") dx'> , V(z,a) € S x A, Vh € [H|. (17)

Also, Equation (5) ensures that the expected reward is linear in ¢ for all h € [H], which implies

(BLV) (x,a) = (¢(z,a),0p) + <¢(m,a), /S V (2") pp, (") dx’> . V(z,a) € S x A,Vh € [H].

(13)
Hence, there exists an unknown vector 3, € R< such that
(Bhf/\'hﬂ) (z,a) = ¢(x,a) " By, = P(x,a) "wy, Y(z,a) €S x A, Vhe[H]. (19)

Recall the definition of wy, in Equation and the construction of B h ‘A/;H_l in Equation . The
following lemma upper bounds the norms of wy, and Wy, respectively.

Lemma 2 (Bounded Weights of Value Functions). Let Vi .x > 0 be an absolute constant. For any
function V : 8§ — [0, Vinax] and any h € [H|, we have

180l < (14 Vi) VA, ||Ba]| < B2KLVA/A, ]| < HVEL/X.

Proof of Lemma 2} For all h € [H], Equations and imply
Br =6 +/ V(@) pn (') da’.
s

By the triangle inequality and the fact that ||, (S)|| < V/d in Definition [1{ with the notation
len(S) = [s len (2")]| da’, we have

184 < [164] + H [V @) e 0)

< 10n] + / IV (@) o () ]
S

<V + Vi - 10 (S)
< (1 + Vmax) \/a

13
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where the third inequality follows from the fact that V' € [0, Viax]. Meanwhile, by the definition of
wy, in Equation and the triangle inequality, we have

K
ALY (Z Y (x},ap,) - (7“;: + Vi ($Z+1))> H
=1

K
<> HA;W (zh,ap) - (7“2 + Vit (902+1)> H
T=1

[lwnl =

Note that |77 + Vi1 (2 +1)‘ < H, which follows from the fact that ] € [0,1] and V,y; €

[0, H — 1] by Line|18|of Algorithm Also, note that Ay, > A - I, which follows from the definition
of Ay in Equation (I2). Hence, we have

K K
l@nll < H- S [[A7 1% (o) | = H -3 Vo (o, ap) T A7 2 A A 24 (a7, 0f)
=1 =1

H & -
<53 Vo (5. ap) T AL (af ap)

where the last inequality follows from the fact that ||A,;1 Hop < A% Here || - ||op denotes the matrix
operator norm. By the Cauchy-Schwarz inequality, we have

K
l@nll < HVE/X (| S (aF,a7) " A, (2, a7)
T=1
K
=H\K/X- | Tr (Ahl Zw (x7,a7) % (x;,a;f)
=1

= HV/E/A - \JTr (A (An — A1)
< HVEK/X\[Tr (A 'A)

= H\/KL/X 1)

where the second equality follows from the definition of A, in Equation (I2). Similarly, we can
show that

K

|80 < BVEX- [ Y 6 Gha)T AP (0] a])

T=1

K
— HYE/X- || Tr (AEZH S ¢, a]) ¢ (4], a;f)
T=1

= VR [T (407 (A -1 1))
< HYE/A- ([T (A 71A]))

= H/Kd/X (22)

L
18] =X ||Bwi?|| < ||1BV.B2)..... B9 | Jhonll < VEHVEd/A-HKLIX = HAKLVA/A.
=1

14
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Therefore, combining Equations (20) and (21)), we conclude the proof of Lemma[2] We upper bound
the difference between Bth 41 and IB%th 41- Forall h € [H] and all (z,a) € S x A, we have

(Bth+1) (z,a) — (Bth+1> (z, ( ﬁh)
= ¢(x,a)" By, — P(z,a) "A* (Z#’ (x,ap) (’“ + Vit $h+1))>
3

= ¢(x»a)—rﬁh - d’(x,a)TA;:l ( (z}h, ap) BthH) T, ah))

M
P(w,a)TAL <Z¢ 7, al) - (r; +Vin (2740) — (Bhffhﬂ) (xﬁ,aﬁ))) @3

(ii)
Here the first equality follows from the definition of the Bellman operator By, in Equation (3), the

decomposition of B;, in Equation , and the definition of the estimated Bellman operator B,
in Equation (10, while the second equality follows from the definition of ;. By the triangle
inequality, we have

|(BiViis) () = (BaTia) ()| < 10)]+ (D).

In the sequel, we upper bound terms (i) and (ii) respectively. By the construction of the estimated
value function V;, |, in Lineof Algorithm we have V| € [0, H — 1]. By Lemma we have
18|l < H+v/d. Hence, term (i) is upper bounded by

()] = |p(x,a)" B — (x,a) TA <Z¢ Th,ap) P xh,ag)Twh>
- |Q,b(x, a)Twh — w(;v,a)TAh (Ap=X-1) wh| =\ ‘w(;v,a)TAglwﬂ

<X flwillys - b )l or < A CVIIX - \fdb(a,a)TA p(aa). 24)

Here, we assume ||wy,||,-1 < C. Here the second equality follows from the definition of Aj, in
h

Equation (T2)). Also, the first inequality follows from the Cauchy-Schwarz inequality, while the last
inequality follows from the fact that

Jonla; = vl Ay < 471207 leonll < OV

Here | - ||op denotes the matrix operator norm and we use the fact that ||A; " Hop < AL It remains

to upper bound term (ii). For notational simplicity, for any h € [H], any 7 € [K], and any function
V : S — [0, H], we define the random variable

(V) =rh +V (2741) — (BLV) (a7, a,) -
By the Cauchy-Schwarz inequality, term (ii) is upper bounded by

()] = [ (z,a) "AL? <Z¢ Tf, ap,) - € (Vh+1>>|
K

> (af.ap) - (Vi)

T=1

IN

()50

-1
Ah

K

> (afaf) - i (Vi)

T=1

-\/w(x,a)TA,jlw(@a). (25)

-1
AL

(iii)

15
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In the sequel, we upper bound term (iii) via concentration inequalities. An obstacle is that IA/hH
depends on {(z7}, a;)}le via {(2},, af/ )}, ¢ (e pr> - @S it is constructed based on the dataset D.
To this end, we resort to uniform concentration inequalities to upper bound

sup
VGV}1+1(R,B,)\)

K
> W (ah,a7) - (V)
=1

for each h € [H], where it holds that ‘7}14'_1 € Vh+1(R, B, ). Here for all h € [H]|, we define the
function class

Vi(R, B, A) = {Vi(2;6,7,%) : § — [0, H] with [|0]| < R,y € [0, B], X = A - I}

where V,(2;0,7,%) = maxgeq {min {d)(gc, a)'0 — v - \/P(x,a) TS p(z,a), H— h+ 1}+}

For all ¢ > 0 and all h € [H], let NV, (g; R, B, \) be the minimal e-cover of V,(R, B, \) with
respect to the supremum norm. In other words, for any function V' € V, (R, B, \), there exists a
function VT € A}, (e; R, B, \) such that

sup |V () — VT(I)| <e.
z€S

Meanwhile, among all e-covers of V,(R,B,)\) defined by such a property, we choose
Ny (e; R, B,)\) as the one with the minimal cardinality. By Lemma we have H,@hH <

H?KL+/d/\. Hence, for all h € [H], we have

Vst € Vig1 (Ro, Bo,A),  where Ry = H2KLVd/\, By = 2.
Here A > 0 is the regularization parameter and v > 0 is the scaling parameter, which are specified
in Algorithm [1] For notational simplicity, we use V1 and N 11(¢) to denote Vy, 1 (Ro, Bo, \)
and N, 11 (g5 Ro, Bo, \), respectively. As it holds that ‘7h+1 € Va1 and Ny, 41(¢) is an e-cover of
Vh 11, there exists a function V}:r 4 € Np11(€) such that

sug \7h+1(x) — VhTH(a:)‘ <e. (26)
xc

Hence, given VhT 41 and XA/hH, the monotonicity of conditional expectations implies
’(th,j +1) (z,a) — (Phﬁhﬂ) (x,a)‘ @7
= ‘E [VhTH (Sht1) | Sn = z,ap = a} —E |:‘7h+1 (Sht1) | Sh =z, ap = a} ‘
<E HVJH ($he1) — Vi (sh+1)‘ | s =z, ap = a} <e, VY(z,a)€ S xAVhe[H]

Here the conditional expectation is induced by the transition kernel Py (- | , a). Combining Equa-
tion (27) and the definition of the Bellman operator B, in Equation (3), we have

‘(Bhvg+1) (z,a) — (Bhffhﬂ) (z, a)‘ <e Y(z,a) €S x AVhe [H] (28)
By the triangle inequality, Equations (26) and (28] imply

‘(rh(x, a) + ‘A/h.H (') — (Bh‘A/;L+1> (x,a)) — (rh(x,a) + VhTJrl (z") — (B;LVJH) (z, a))‘ < 2¢
(29)

forall h € [H] and all (z,a,2’) € S x Ax S. Setting (z,a,2') = (27, a}, x}_ ) in Equation ,
we have R
‘e; (VhH) e (V}jﬂ)’ <2, Vre|K],Vhe [H] (30)

Also, recall the definition of term (iii). By the Cauchy-Schwarz inequality, for any two vectors
a,b € R? and any positive definite matrix A € R7*%, it holds that ||a + b[|2 < 2- [la]|Z +2 - [|]13.
Hence, for all h € [H], we have

2 2

K

S v @haf) -6 (Vi)

T=1

K

S han) - (6 (Vi) = e (Vi) )

T=1

+2-
AT

(i) < 2-

At
(3D
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The second term on the right-hand side is upper bounded by

2| Tzid; (ziap) - (e (V) =i (Vi) ) 134

K

=20 30 o) A (o) - (6 () = h () ) (& (Foen) =i (Vl0))

T,7'=1

K K
<8t 3 [wanan) A (a7 0 )| <82 3 I Gaqap)l- [w (a7 a) | - 187,
T,7'=1 7,7’

where the first inequality follows from Equation (30). As it holds that A, = X - I by the definition
of Ay, in Equation (12) and ||¢(z, a)|| < ||Bu || (x, a)|| < H2KLv/d/X for all (z,a) € S x Aby
Definition[1], for all & € [H], we have

2

K
2. Z ¢ (x;, a;) . (6; (?thl) — 6;; (VJ+1)) < 852H4K3L2d/)\3, (32)
=1 A;l
Combining Equations and , for all h € [H], we have
x 2
| (iii)* <2+ sup (D o(@f.ap) e (V)| +82H'KL2d/X\%. (33)
VeNrL11(e) —1 A;l

Note that the right-hand side of Equation does not involve the estimated value functions @h
and V},1, which are constructed based on the dataset D. Hence, it allows us to upper bound the first
term via uniform concentration inequalities. We utilize the following lemma to characterize the first
term for any fixed function V' € N, 41 (e). Recall the definition of €}, (V). Also recall that Pp is the
joint distribution of the data collecting process.

Lemma 3 (Concentration of Self-Normalized Processes). Let V : & — [0, H — 1] be any fixed
Sfunction. Under Assumption 2.2, for any fixed h € [H] and any 6 € (0, 1), we have

2

Pp > H?-(2-1og(1/8) +d-log(1+ K/\)) | <.

-1
Ah

K
S 6 (@ a]) - (V)
T=1

Proof of Lemma 3] For the fixed 2 € [H] and all 7 € {0, ..., K}, we define the o-algebra

o= (e} et}

where o(-) denotes the o-algebra generated by a set of random variables and (7 4+ 1) A K denotes
min{7 + 1, K'}. For all 7 € [K], we have ¢ (2}, a}) € Fnr—1, as (¢}, a},) is Fp r—1-measurable.
Also, for the fixed function V : § — [0, H — 1] and all 7 € [K], we have

(V) =1, +V (2741) — BLV) (27, 0}) € Fir

as (1], a7, ) is Fh,.-measurable. Hence, {ef (V)}X

-—1 1s a stochastic process adapted to the filtra-
tion {fh77}f=0. We have

. . T . . T—1
Ep [(V) | Furo1] = Ep {r,: +V (@) [ {(ahal) ) {(hadin) ) 1} — (ByV) (aF,
= -
=E[ry (sn.an) +V (snt1) | sn = af, an = a] — (BLV) (2}, a) =0
where the second equality follows from Equation (T4) and the last equality follows from the defini-
tion of the Bellman operator B;,. Here [Ep is taken with respect to Pp, while [E is taken with respect

to the immediate reward and next state in the underlying MDP. Moreover, as it holds that r} € [0, 1]
andV € [0, H—1], wehave r] +V (x},,) € [0, H]. Meanwhile, we have (B, V) (z7,a}) € [0, H],

17

ap,)



Under review as a conference paper at ICLR 2025

which implies |e} (V)| < H. Hence, for the fixed h € [H]| and all 7 € [K], the random variable
€7 (V') is mean-zero and H-sub-Gaussian conditioning on Fj, -_1.

We invoke Lemma E. 2 with My = XA - Tand My, = X - I + Zle Y (2], a]) ¢ (z],a7) " for all
k € [K]. For the fixed function V' : § — [0, H — 1] and fixed h € [H], we have

2
det (A)""? ) )

]P) PR S
P 5 - det(\-1)1/2

K
Yo% (a7.ah) - (V)
T=1

> 2H? - log <
At
forall 6 € (0,1). Here we use the fact that M = Aj. Note that ||¢(x,a)|] < 1and ||¢p(x,a)| <
1Bullllp(x,a)|| < H2KLv/d/X for all (z,a) € S x A by Definition[1] We have

K
A T+> "4 (o, af) 9 (2],a5)

T=1

AR llop =

op
K
<A+ Y v @han) v @han)T|| <A+ B L2/
T=1 op
where || - |lop denotes the matrix operator norm. Hence, it holds that det (A,) < (A +

H*K3L2d/A\?)Y and det(\ - I) = A\E, which implies
2

K
Pp [ 1> 4 (F,a]) - (V) > H?-(2-log(1/0) + L -log(1 + HAK3L?d/\?))
T=1 A;l
K ’ det (Ap)"/?
T T T 2 v
<Pp ;wxh,ah)-eh(w - > 2H" -log <W> <0

Therefore, we conclude the proof of Lemma [3] Applying Lemma [3] and the union bound, for any
fixed h € [H], we have

2

K
> ¢ (af.a) - (V) > H?-(2-log(1/0) 4+ L -log(1 + H*K3L%d/\?))

T=1

Pp sup
VENL11(e)

AT
<60 [Nusa(e)]-
Forall £ € (0,1) and all e > 0, we set 6 = &/ (H - [Nr+1(¢)|). Hence, for any fixed h € [H], it

holds that

K 2

Yo (af.ap) - e (V)

T=1

< H? - (2-log (H - |Nis1(e)] /€) €) 34)
At
with probability at least 1 — ¢/H, which is taken with respect to Pp. Define M = 2H? - 2 -
log (H - [Nny1(e)| /€)+2H? Llog(1+ H*K3L2d/\3)+8¢*H* K3 L?d /3. Combining Equations
(33) and (34), we have

Po| ()4

he[H]

sup
VGN},,+1(E)

2

<M} >1-¢ (35)
At
which follows from the union bound. It remains to choose a proper € > 0 and upper bound the
e-covering number [N}, (¢)]. In the sequel, we set ¢ = dH/K and A = 1. By Equation (35)), for
all h € [H], it holds that

S () (Vier)

T=1

2
< 2H?21og (H - |[Npy1(e)| /&) +2H? Llog(1+H* K3 L2d)+8H K L*d®
AT

i Y (xf,, af,) - €, (‘7h+1)
=1

(36)
with probability at least 1 — £, which is taken with respect to Pp. To upper bound [Ny 11 ()|, we
utilize the following lemma. Recall the definition of the function class Vi, (R, B, A). Also, recall
that NV}, (e; R, B, \) is the minimal e-cover of V;,(R, B, \) with respect to the supremum norm.
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Lemma 4 (¢-Covering Number (Jin et al., 2020)). For all h € [H| and all ¢ > 0, we have

log [ No(e: R, B,\)| < L -log(1 +4R/e) + L2 - log (1 +8LY/2B%) (52)\)) .

Recall that
Vg1 € Vis1 (Ro, By, N),  where Ry = H2KLVd/A, By = 2y,A =1,y =c- LH+\/C

Here ¢ > 0 is an absolute constant, £ € (0, 1) is the confidence parameter, and { = log(2LH K /¢)
is specified in Algorithm [I} Recall that NV}, 1(e) = Npn11 (g5 Ro, Bo, A) is the minimal e-cover
of Vi1 = Vhi1 (Ro, Bo, A) with respect to the supremum norm. Applying Lemma {4] with ¢ =
dH /K, we have

log [Nwi1(e)| < L - log (1 + 4L*1/2K3/2> + 12 log (1 +32¢% L1/2K2(> 37)
< L-log (1 + 4L1/2K2) + L2 log (1 43262 L1/2K2<)

As it holds that { > 1, we set ¢ > 1 to ensure that the second term on the right-hand side of Equation
is the dominating term, where 32¢2 - L'/2K2( > 1. Hence, we have

log N1 (€)] < 2L2 - log (1 + 3262 -L1/2K2<) <212 log (64c2 - L1/2K2C) (38)

By Equations and , for all h € [H], it holds that

K 2

> (afap) - (Vi)

T=1

(39)

A
<2H?. (2 log(H/€) + 4L? - log (64(:2 LY 2K2C> +log(1 + HAK3L2d) + 4H4KL2d3)

with probability at least 1 —¢&, which is taken with respect to Pp. Note that log(1+ K) < log(2K) <
¢ and log ¢ < (. Hence, we have

2 -log(H/€&) +4L* - log (Ll/ 2K2g) +log(1 4+ H*K3L?d) + 4H*K L*d®
<2L?-log (LHK"/¢) + H'K®L?d + 4L*¢ + AH'K L*d* < 18H*K*L*d*(.
As it holds that { > 1 and log { < ¢, Equation (39) implies

K 2

Z ¥ (@}, ap,) - €, (Vh—&-l)

T=1

< L*H?C- (36H?K*L*d +8-log (64c%)) (40

—1
Ah

We set ¢ > 1 to be sufficiently large, which ensures that 36 H2 K3 L?d* + 8 - log (64¢?) < ¢?/4 on
the right-hand side of Equation (40). By Equations and (@0), for all h € [H], it holds that

()] < ¢/2- LHV/C - \Jola,0) Ay 0w, a) = 7/2- (e, @) A (e a) (@D)

with probability at least 1 — &, which is taken with respect to Pp. By Equations (13), 23), (24), and
(@1), forall b € [H] and all (z,a) € S x A, it holds that

‘(Bh‘/}h+1> (z,a) — (@}L‘/}h_lrl) (x,a)‘ < (H\/(j+’y/2) . \/zb(x,a)TA;lw(z,a) <Th(z,a)

with probability at least 1 — &, which is taken with respect to Pp. In other words, {Fh}hH:1 are
&-uncertainty quantifiers. Therefore, we conclude the proof of Lemmal]
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B PROOF FOR THEOREM I

It suffices to show that {Fh}le are ¢-uncertainty quantifiers, which are defined in Definition
In the following lemma[I} we prove that such a statement holds when the regularization parameter
A > 0 and scaling parameter 3 > 0 in Algorithm|[T]are properly chosen.

As Lemmalproves that {Fh} h— are -uncertainty quantifiers, & satisfies Pp(€) > 1 — £. Recall
that Pp is the joint distribution of the data collecting process. By specializing Theorem [I] to the
linear MDP, we have

H
SubOpt(Pess(D Z o (O (snyan) | 81 = 7]
h=1

= Zil: {( sh,ah)TAﬁlw(Sh,ah))l/z | s1 = x]

for all z € S under €. Here the last equality follows from Equation (I3). Therefore, we conclude
the proof of Theorem [I]

C PROOF FOR COLLORARY 1]

Proof of Corollary[I] For all h € [H] and all T € [K], we define the random matrices

ZA r=(af,al) v (af,af) T — S

where >j, = Ex [¢ (sh,an) ¥ (Sh, ah)w

Forallh € [H]and all 7 € [K], we have Ez [A}] = 0. Here Ex is taken with respect to the trajectory
induced by the fixed behavior policy 7 in the underlying MDP. As the K trajectories in the dataset
D are i.i.d., for all h € [H], {(wﬁ,a;,r;)}il are also i.i.d.. Hence, for all h € [H], {4}, }T | are
i.i.d. and centered.

We assume ||¢(x,a)|| < 1and |[¢(z,a)| < C forall (x,a) € S x A. By Jensen’s inequality, we
have

12 llop < Ex W (sns@1) ¥ (snsan) " } <.

For any vector v € R? with ||v|| = 1, the triangle inequality implies
T T T T T\
lazoll < || @7 ap) e (a7, ap) "o + ISwoll < lloll + 1Zalg, - 0] < 2C2
Hence, for all h € [H] and all 7 € [K], we have
T T T T\ T
147y <267 {47 (ADT]| <1471y - |(4R)T| <4

As {A} } _, are i.i.d. and centered, for all h € [H], we have

K

S Ex 47 (47)7]

T=1

Sy

B (202, =

op

< K-Es [HA}L (ap)’ OJ < 4KC*

op
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where the first inequality follows from Jensen’s inequality. Similarly, forall h € [H] and all T € [K],
as it holds that

S

< [can”

(ARl < 4C*
op

op —

we have

||]E7? [Z}—erh] ||0p < 4KO4

For any fixed h € [H] and any ¢ > 0, we have

PD (HZhHop > t) =

For all ¢ € (0,1), we set t = /10KC*-log(4LH/E). When K is sufficiently large so that
K> %, we have 2t/(3C*) < K. Hence, for the fixed h € [H], we have

t2/2
S e WV Ty

Pp (I Znllop < t) 21— 2L - exp (—£2/(SKC" + 4t/3))
>1—-2L-exp (—t*/(10KC")) =1—¢/(2H)

By the union bound, for all h € [H], it holds that

< V10/K -log(ALH/£)
op
with probability at least 1 — £/2, which is taken with respect to Pp. By the definition of Zj,, we
have

120/ Kllop =

K

1 T T T T

K 27/1 (zh,ap) ¢ (fmah)T — X
T=1

K
Zn=3 0. ap) b @faf) —K-Sy= (A - A-I) - K%

T=1
Recall that there exists an absolute constant ¢ > 0 such that Ay, () > ¢/L, which implies
||E,:1H0p < L/c. When K is sufficiently large so that K > 40L/c - log(4LH/€), for all h € [H],
it holds that
Amin (An/K) = Amin (En + N K -1+ 2, /K)
> Amnin (Zn) = 120/ K ||, = ¢/L — \/10/K -log(4LH/€) > ¢/(2L)

Hence, for all h € [H], it holds that
185 lop < (- Amin (An/E)) ™" < 2L/ (K - ¢)

with probability at least 1 — £/2 with respect to Pp, which implies

Vi@, a)TA; b(a,a) < e, a)l - A < VITE, ¥(x,a) € S x AVh e [H]

Here we define the absolute constant ¢/ = /2C?/c and use the fact that ||¢)(z,a)|| < C for all
(x,a) € S x A.

We define the event

{\/(/)maTA Yo(x,a) < '\/d/K forall (x,a) €S x Aandall h € [H }}
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We have Pp (£5) > 1 —¢&/2for K > 40L/c - log(4LH/€). Also, we define the event

H
& = {Subopt(?f; £) <2y-) En [\/¢ (snyan) " AL (sn,an) | s1 = T} forall z < 5}
h=1

Here we set v = ¢ - LH+/log(4LHK/{). We have Pp (£5) > 1 — &/2. Hence, when K is
sufficiently large so that K > 40/c - log(4LH/§), on the event £* = £ N &5, we have

SubOpt (7;2) < 2v-H-"\/L/K = ¢ - L*/?H*\/log(ALHK /¢) /K, Vze S

By the union bound, we have Pp (£*) > 1 — £ with ¢ = 2¢ - ¢, where ¢’ = /2C?/c Therefore,
we conclude the proof of Corollary [T}
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