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Abstract

Extracting neural signals at the single motor neuron level provides an optimal
control signal for neuroprosthetic applications. However, current algorithms to
decompose motor units from high-density electromyography (HD-EMG) are time-
consuming and inconsistent, limiting their application to controlled scenarios in a
research setting. We introduce MUelim, an algorithm for efficient motor unit de-
composition that uses approximate joint diagonalization with a subtractive approach
to rapidly identify and refine candidate sources. The algorithm incorporates an
extend-lag procedure to augment data for enhanced source separability prior to diag-
onalization. By systematically iterating and eliminating redundant or noisy sources,
MUelim achieves high decomposition accuracy while significantly reducing com-
putational complexity, making it well-suited for real-time applications. We validate
MUelim by demonstrating its ability to extract motor units in both simulated and
physiological HD-EMG grid data. Across six healthy participants performing ramp
and maximum voluntary contraction paradigms, MUelim achieves up to a 36×
speed increase compared to existing state-of-the-art methods while decomposing
a similar number of high signal-to-noise sources. Furthermore, we showcase a
real-world application of MUelim in a clinical setting in which an individual with
spinal cord injury controlled an EMG-driven neuroprosthetic to perform functional
tasks. We demonstrate the ability to decode motor intent in real-time using a
spiking neural network trained on the decomposed motor unit spike trains to trigger
functional electrical stimulation patterns that evoke hand movements during task
practice therapy. We show that motor unit-based decoding enables nuanced motor
control, highlighting the potential of MUelim to advance assistive neurotechnology
and rehabilitation through precise, intention-driven neuroprosthetic systems.

1 Introduction

Electromyography (EMG) provides a natural motor interface for humans to interact with machines,
capturing the electrical activity of muscles to facilitate intuitive control. At the core of physiological
motor control is the motor unit, the smallest functional unit of muscle activation, consisting of a
single motor neuron and the fibers it innervates [Heckman and Enoka, 2012]. EMG signals recorded
at the periphery consist of a summation of motor unit action potentials and noise, with the input signal
originating from the central nervous system, providing a direct link to neuromotor intent [Farina and
Negro, 2015]. As a result, decomposing the physiological motor input to muscles via motor unit
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activity may provide a more advanced and intuitive control signal for neuroproshetics [Tanzarella
et al., 2023, Chen et al., 2020, Kapelner et al., 2019].

Recently, there have been significant advances in motor unit decomposition from non-invasive high-
density EMG (HD-EMG), leveraging swarm contrastive decomposition (SCD) [Grison et al., 2025],
convolutive blind source separation (BSS) [Negro et al., 2016, Holobar et al., 2014], convolutional
kernel compensation (CKC) [Holobar and Zazula, 2007], and deep learning-based approaches [Lin
et al., 2024, Wen et al., 2023]. Open-source tools [Grison et al., 2025, Avrillon et al., 2024, Formento
et al., 2021] have made it possible for researchers to analyze motor unit activity in controlled research
settings during both isometric and dynamic movements [Osswald et al., 2025, Tanzarella et al., 2023,
Chen et al., 2020]. However, these methods remain computationally intensive and inconsistent, often
requiring significant processing time or manual intervention [Del Vecchio et al., 2020, Negro et al.,
2016, Farina et al., 2014], prohibiting their use in real-time neuroprosthetic systems, where rapid and
reliable decoding of motor intent is essential.

Existing decomposition methods typically use blind source separation (BSS), such as independent
component analysis, in which the contrast functions used for source separation measure sparseness
of spike trains, rather than independence [Negro et al., 2016]. While effective, these higher-order
statistical methods are computationally demanding and sensitive to noise [Congedo et al., 2008].
Second-order statistical (SOS) methods [Belouchrani et al., 1997, Belouchrani and Amin, 1998] offer
a more efficient alternative by leveraging spectral and temporal signatures of sources through joint
diagonalization. However, SOS methods face two key challenges, namely joint diagonalization, a
core component of SOS methods, has historically been computationally expensive, and SOS methods
are constrained to decompose at most as many sources as there are recording channels [Congedo
et al., 2008, Pham and Cardoso, 2001, Pham, 2001].

Recent advancements in joint diagonalization techniques have significantly improved computational
efficiency [de Vlaming and Slob, 2021, Ablin et al., 2018], making SOS methods more practical
for real-world applications. To address the challenge of limited source separability, we propose
using strategies based on existing decomposition methods [Grison et al., 2025, Negro et al., 2016]
and electroencephalography data augmentation techniques [Carrara and Papadopoulo, 2024] to add
time-delayed extensions prior to joint diagonalization. This augmentation increases the effective
dimensionality and enhances source separability by capturing temporal dynamics, improving the
conditioning of the source separation problem. Taking inspiration from compressive sensing [Candès
et al., 2006, Donoho et al., 2005], we further accelerate the identification of candidate sources by
leveraging the sparsity of motor unit source activity contained within symmetric positive definite
(SPD) matrices. By randomly sampling SPD matrices for joint diagonalization, we can perform an
iterative BSS to find unique sources while significantly reducing computational overhead.

With these considerations in mind, we propose MUelim, a motor unit decomposition algorithm
that leverages approximate joint diagonalization to extract many candidate motor unit sources all
at once and then eliminates suspected noise sources. We validate MUelim on both simulated and
physiological HD-EMG datasets, demonstrating its ability to extract motor units with high accuracy
and speed. Furthermore, we showcase its application in a clinical setting, where it enables a spinal
cord injury (SCI) participant to control a neuroprosthetic device in real time, highlighting its potential
to advance assistive neurotechnology and rehabilitation.

2 Methods

2.1 Overview of EMG decomposition as a blind source separation problem

EMG signals represent the summation of motor unit action potentials (MUAPs) and noise (Figure
1A). These signals can be modeled as a linear instantaneous mixture of sparse sources, where each
source corresponds to the discharge timings of a motor unit. The observed EMG signals X ∈ RC×N ,
where C is the number of channels and N is the number of samples, can be expressed as:

X(t) = HS(t) +N(t), (1)

where H ∈ RC×M is the mixing matrix with M motor unit sources, S(t) ∈ RM×N represents the
spike trains, and N(t) is additive noise. The goal of EMG decomposition is to estimate the spike
trains S(t) from the observed signals X(t).
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Motor unit decomposition can be framed as a BSS problem, where the objective is to estimate the
separating matrix B ∈ RM×C such that:

Ŝ(t) = BX(t), (2)

where Ŝ(t) is the estimated motor unit source activity.

2.2 MUelim algorithm

2.2.1 Preprocessing and data augmentation

The input EMG data X is first divided into non-overlapping windows of size L for SPD matrix
computation. The windowed data is represented as Xbinned ∈ RW×C×L, where W is the number of
windows.

To incorporate temporal information, the data is extended using lagged versions of each channel. This
augmentation creates an extended dataset Xext ∈ RW×(C·R)×L, where R is the extension factor.
The extend-lag procedure increases the ratio of observations to sources, improving the conditioning
of the source separation problem [Holobar and Zazula, 2007]. By embedding the data into a higher-
dimensional space, this approach captures both spatial and temporal dependencies, which are critical
for resolving sources with overlapping activity.

The extend-lag procedure is inspired by the success in decoding from the tangent space of augmented
covariance matrices [Carrara and Papadopoulo, 2024]. The augmented covariance matrix combines
spatial covariance with temporal information, effectively embedding the original dataset into a higher-
dimensional space. This embedding enhances the separability of sources by capturing their nonlinear
dynamics [Takens, 2006]:

Xext(t) = [Xbinned(t),Xbinned(t− τ), . . . ,Xbinned(t− (R− 1)τ)]⊤, (3)

where τ is the lag parameter, and R is the extension factor.

2.2.2 Iterative blind source separation (BSS)

MUelim employs an iterative BSS approach to identify and refine sources. The algorithm assumes
that the sources are sparse in the transformed domain. The iterative process continues until a stopping
criterion is met, such as reaching the maximum number of iterations, finding the maximum number
of sources, or failing to identify a minimum number of new sources.

SPD matrix computation In each iteration, the extended dataset is sampled (X′
ext) for SPD matrix

computation. Depending on the characteristics of the data and the assumptions about the sources,
several types of SPD matrix estimators can be used. Simple covariance matrices, channelwise kernels,
such as linear, polynomial, or laplacian kernels, and cospectral matrices can be used to capture
nonlinear dynamics of the system [Congedo et al., 2008, Belouchrani and Amin, 1998, Belouchrani
et al., 1997].

In this study, cospectral matrices are used as the primary estimator due to their ability to capture both
spatial and spectral dependencies. For each frequency f in the range [fmin, fmax], the Fast Fourier
transform is applied to each window of the extended data to compute the cospectral matrix Cf :

Cf =
1

W

W∑
k=1

X′
ext,f [k]X

′
ext,f [k]

H , (4)

where H denotes the Hermitian transpose. The diagonal elements of Cf represent the power (auto-
spectra) of each channel, while the off-diagonal elements represent the in-phase SOS dependency
[Congedo et al., 2008].

Whitening To improve the numerical conditioning of the SPD matrices, whitening is applied.
Whitening ensures that the mean SPD matrix C̄ has an identity covariance structure, simplifying the
subsequent diagonalization step. This is achieved through eigenvalue decomposition:

Wwhiten = VΛ−1/2VT , Cwhiten
f = WwhitenCfW

T
whiten, (5)

where V and Λ are the eigenvectors and eigenvalues of C̄.
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Approximate joint diagonalization The separation of non-stationary signals can be achieved by
joint diagonalization of a set of autocorrelation matrices [Belouchrani and Amin, 1998, Belouchrani
et al., 1997]. In the context of MUelim, we consider a set of n SPD matrices {C1, . . . ,Cn} of size
p× p, where each matrix Ci represents a whitened SPD matrix computed from the extended EMG
data (Eq. 4). The goal of joint diagonalization is to find a matrix B ∈ Rp×p such that the transformed
set {BC1B

⊤, . . . ,BCnB
⊤} contains matrices that are as diagonal as possible. This is achieved by

minimizing the following joint diagonalization criterion:

L(B) =
1

2n

n∑
i=1

[
log det diag

(
BCiB

⊤)− log det
(
BCiB

⊤)] , (6)

where diag(·) extracts the diagonal elements of a matrix, and det(·) denotes the determinant. This
criterion, introduced by Pham [2001], is derived as the negative log-likelihood of a source separation
model for Gaussian stationary sources.

After solving the joint diagonalization problem, the forward and backward filters are computed. The
forward filters Wforward are used to project the extended EMG data into the source space, while the
backward filters Wbackward are used to reconstruct the original signals from the source space. Let
Wwhiten and W−1

whiten represent the whitening and inverse whitening filters, respectively. The forward
and backward filters are computed as:

Wforward = BW⊤
whiten, (7)

Wbackward = W−1
whitenB

−1. (8)

Peak detection and source refinement After obtaining the forward filters from the joint diagonal-
ization step, the full extended dataset is transformed into the source domain. For each source, the
source power γj(k) is computed as:

γj(k) = (WforwardXext)
2, (9)

Peaks are detected in the source power to refine each source filter wj as the mean of the corresponding
impulse indices:

wj =

∑
k∈peaks Xext(k)∥∥∥∑k∈peaks Xext(k)

∥∥∥
2

. (10)

The updated filter is then orthogonalized and normalized with respect to the previously identified
filters to ensure independence:

wj ← wj −W⊤
forward(Wforwardwj), (11)

wj ←
wj

∥wj∥2
. (12)

This process is repeated iteratively until convergence, ensuring that the filters are optimized for the
identified sources. During this improvement iteration step, k-means clustering is used to separate
signal peaks from noise peaks detected in the source power. The silhouette score (SIL) for each
source is then calculated from the detected peaks. Sources that do not converge or that have a low
SIL are eliminated from the final forward filters (Wforward).

Unique source identification Newly identified spatial filters per BSS iteration are compared with
previously found filters to ensure uniqueness. Spatial similarity is assessed using the cosine similarity
between filters. Temporal similarity between spike trains is evaluated based on the percentage of
coincident spike timings between motor unit spike trains. Newly identified candidate sources that
exceed predefined similarity thresholds are discarded.

Optionally, to remove the influence of already identified sources, existing sources can be peeled off
from the data [Chen and Zhou, 2015]. This step may improve the detection of weaker sources in sub-
sequent iterations by removing the contribution of already-identified sources. Refer to Supplementary
Algorithm 1 for pseudocode and Supplementary Figure 1 for an overview of the algorithm.
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2.2.3 Computational complexity

MUelim’s computational complexity is primarily determined by the joint diagonalization step, which
is performed on the extended data matrix. The data is extended using R lagged versions of each
channel, resulting in C ×R extended channels, where C is the number of original channels and R is
the extension factor. The per-iteration computational cost is O(K(C ×R)2 + (C ×R)3), where K
is the number of matrices being diagonalized. For large C × R, the (C × R)3 term dominates, so
the complexity is approximately O((C × R)3) per iteration. This scaling arises because the most
expensive operation is matrix multiplications of size (C ×R)× (C ×R). As channels or extension
factor increases, decomposition time increases accordingly. However, MUelim’s advantage becomes
more pronounced with more motor unit sources, as it efficiently extracts many sources simultaneously
rather than incrementally.

2.3 Algorithm evaluation

To validate the proposed algorithm, we tested the decomposition method on simulated EMG data. The
simulated EMG signals were generated using a Poisson neuron model to create spike trains, which
were then convolved with a MUAP template to produce signals across multiple channels. Random
noise and amplitude modulation were incorporated to mimic the variability and complexity of real
physiological signals. We tested MUelim, SCD [Grison et al., 2025], and MUEdit [Avrillon et al.,
2024] on identical simulated datasets to enable direct comparison of decomposition performance.

We evaluated two channel configurations spanning the physiologically realistic range for motor unit
decomposition: 32 channels with 5, 10, and 15 motor unit sources, and 64 channels with 5, 10, 15, 20,
25, and 30 motor unit sources. These configurations test up to N/2 sources across all three methods.
Signals were generated using a sampling rate of 2,048Hz with average motor unit firing rate of 10Hz
for 30s total. We assessed decomposition accuracy by comparing detected spike timings with ground
truth within a 25ms window, and calculated false positive and false negative rates for each method.

To assess the feasibility of using the MUelim algorithm in application, we decomposed motor
units from a 8x8 HD-EMG grid (GR10MM0808; 64 monopolar EMG channels) and Quattrocento
amplifier (OT Bioelettronica) across different parameters. EMG signals were recorded from the
flexor digitorum superficialis muscle in six healthy participants (N=6). Participants performed two
experimental paradigms: a ramped contraction for 45s, with the first 15s ramping up, the next 15s
plateaued at approximately 30% of the maximum voluntary contraction, and the last 15s ramping
down, and a maximum voluntary contraction (MVC) sustained for 10s. EMG measurements were
taken at a sampling rate of 2,048Hz. An initial bandpass filter for the incoming signal was set at
10-900Hz for each recording, and then an offline filter of 20-500Hz was applied to the recordings.
Force measurements were taken using a digital hand dynamometer at 10Hz and was synced with the
EMG signal offline.

Following decomposition, we plotted spike trains superimposed over target and force trajectories. We
extracted MUAP waveforms using spike-triggered averaging (STA), which averages the EMG signal
around detected spike times to isolate the waveform associated with each motor unit. For each spike
timing, we extracted a 30ms window centered on the spike impulse. To reduce cross-contamination,
we reconstructed the EMG signal from source space using the BSS inverse filters while suppressing
other motor unit sources. Waveforms were aligned to their global maxima across channels to handle
temporal jitter before averaging. We extracted waveforms from all channels and displayed results
from the 5 most active channels based on signal amplitude. Individual traces show the average
computed over a sliding window spanning one fifth of all detected MUAPs, with a stride equal to one
sixth of the window length. Subsequent inverse spatial filters were mapped to the 2D grid to visualize
source activity dipoles.

We conducted two tests to benchmark the number of decomposed sources and decomposition time
across different parameters in a single representative participant. First, we assessed the influence of
the extension factor and lag on decomposition performance. The extension factor was set between
1 and 6, with the lag between 1 and 10 for a total of 60 permutations. A cospectral estimator and
bin size of 20ms was used across all permutations. In the second test, we evaluated the influence of
the SPD estimator, as well as the variability in bin size to compute SPD matrices. We evaluated a
cospectral estimator and laplacian channelwise kernel over a range of bin sizes (10-2000ms) using
open-source methods from pyRiemann [Barachant et al., 2025]. For all cospectral matrices, we
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computed the FFT using a window size of 8 with 75% overlap between 0 and 60Hz. For this test,
we held the extension factor and lag constant at 2 extensions and 6 lag samples, respectively. For
both tests, we ran each decomposition permutation over 5 seeds to determine the consistency of
the algorithm with the given set of parameters. The average number of sources decomposed and
decomposition time ± standard error of the mean are reported. A SIL threshold of 0.85 was used
to determine high signal-to-noise sources. We found sources over 3 BSS iterations using a random
sampling of 50% of the data for diagonalization of SPD matrices. For all tests, JADOC [de Vlaming
and Slob, 2021] was used for joint diagonalization with a regularization strength of 0.85.

We then compared our results to current state-of-the-art open-source motor unit decomposition
algorithms across all six participants, namely SCD [Grison et al., 2025] and MUEdit [Avrillon
et al., 2024]. We assessed both number of sources decomposed and decomposition time. We held
all other parameters constant based on the open-source implementations, with 0.85 SIL threshold
used to determine acceptable sources. For SCD, we used the built-in GPU capability to increase
decomposition speed. All tests were evaluated using a HP ZBook Power 15.6 inch G8 Mobile
Workstation PC (Intel Core i7-11850H 2.50GHz, NVIDIA T1200 GPU, CUDA 12.2) python 3.11 or
MATLAB 2021 for MUEdit.

2.4 Application: Intention driven neuroprosthetic

To demonstrate MUelim’s utility in a realistic use-case, we evaluated its performance in an ongoing
registered clinical trial (NCT06087445) in an individual with SCI. All study procedures were
conducted under Institutional Review Board approval. The participant was informed of potential
risks and monitored for adverse events throughout the study. In the study, a C3 incomplete SCI
participant (ASIA D) used an EMG-based neuroprosthetic system to control movement-specific
functional electrical stimulation (FES) patterns based on motor intent. The participant could partially
open and close his hand, though not fully, and exhibited limited grip strength. Abnormal muscle
synergies, particularly overactivity in the wrist flexors, limited his ability to achieve wrist extension.
FES facilitated more complete hand opening, enhancing functional performance and reducing
reliance on compensatory strategies. The complete training and inference workflow is illustrated in
Supplementary Figure 3.

The neuroprosthetic system consists of 150 electrodes (75 bipolar EMG channels) embedded into
a stretchable fabric. An operator manually calibrated FES patterns at the beginning of the session
to evoke both hand open and hand close movements (Supplementary Video 1: Heatmap / Stim
Patterns). A sinusoidal waveform with 20Hz stimulation frequency was used for both patterns. Next,
a block of operator-guided stimulation was used to find spatial filters for motor unit decomposition
and train a spiking neural network (SNN) to decode motor intent from the decomposed motor
unit spike trains. The operator manually cued the participant to perform different tasks guided
by an occupational therapist (OT). The corresponding FES pattern was automatically stimulated
with an offset of 1,000ms to record intent with/without FES active. The BSS forward filters were
computed in-session after collecting this training block (fit phase), then applied for real-time inference
(transform phase), following standard scikit-learn convention (Supplementary Algorithm 1). EMG
was recorded with a sampling rate of 3,000Hz, collected in non-overlapping 100ms bins to generate
final predictions at 10Hz used to switch/turn-off FES patterns when in inference mode.

Following this training block, EMG data was filtered for subsequent motor unit decomposition. First,
FES artifact was removed using a template artifact filter, whereby a template of the artifact from
the previous pulse window was subtracted from the current pulse window. Next, a 20ms blanking
window was used to blank out any remaining artifact in between FES pulses. The subsequent signal
was then filtered using notch and bandpass filters similar to previous studies [Tacca et al., 2024,
Meyers et al., 2024]. Following the preprocessing pipeline, motor units were decomposed using the
proposed MUelim algorithm to compute the BSS forward filters from the training data. For enhanced
speed and accuracy, motor unit spike trains were downsampled within a bin to five sub-bin splits, with
a shape of nsamp × nMUs × nsplits. Next, the previous four bins were concatenated with the current
bin to provide additional time information to the SNN. This was then fed into a fully-connected SNN
developed using the LAVA framework. Hidden layers consisted of 1000 x 500 current based leaky
integrate and fire neurons. Default neuron parameters from LAVA were used for training. A dropout
of 40% was applied at each layer. The SNN was trained natively using the SLAYER module [Shrestha
and Orchard, 2018] within LAVA for 15 epochs with batch size of 128 and an initial learning rate
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of 0.001. The Adam optimizer with cosine annealing warm restarts was used to optimize the error
function. The built-in spike rate error function with true rate of 0.8 and false rate of 0.001 was used
to align the output SNN neuron activity with the three classes, namely Hand Open, Hand Close, and
Rest. Both SNN training and inference utilized a GPU to enhance speed for application. All steps
within the pipeline were wrapped in a sklearn transformer [Pedregosa et al., 2011] containing both fit
and transform methods to be used in the existing clinical software.

Once a decoder was trained, the full pipeline was used in inference mode, allowing the participant to
control FES based on motor intent decoded from the decomposed motor unit activity. The operator
manually labeled the task as the participant performed it with guidance from the OT to assess decoder
performance offline. Bin-wise accuracy was used to assess how many 100ms bins matched the
ground truth manually labeled by the operator. A live user-interface was generated to visualize
EMG activity, motor unit activity, SNN neuron output activity, and MUAP waveform generation. A
Unity-engine virtual hand shows the real-time predictions and active FES provided to the participant.

3 Results

3.1 MUelim decomposition validation

Representative decomposition results from simulated EMG data are shown in Figure 1B-D. MUelim
successfully decomposed the simulated signals into the three ground truth motor unit sources. Peak
detection in the source power domain (Figure 1B) identified spike timings that closely matched
ground truth (Figure 1C). Reconstructing the EMG signal at these spike timings with other sources
suppressed produced clear motor unit action potential waveforms (Figure 1D), demonstrating
successful recovery of the simulated MUAP shapes.

Figure 1: Overview of MUelim decomposition algorithm. A. Motor units, each consisting of
a motor neuron and the muscle fibers it innervates, generate action potentials that sum to form
high-density electromyography (HD-EMG). In this work, we present MUelim, an efficient motor unit
decomposition algorithm, that decomposes EMG into motor unit spike trains to provide an intuitive
control signal for assistive and rehabilitative neurotechnology. B. Peak detection from source power
of the identified sources decomposed from simulated EMG signals. Identified peak impulses have
high signal to noise ratio. C. Spike timings align with ground truth spike timings. D. Waveform
identification in the first EMG channel through the reconstruction of EMG signal from source domain
with other sources suppressed.

We compared MUelim against state-of-the-art decomposition methods on identical simulated EMG
datasets. Across all simulation scenarios (32 and 64 channels with 5 to 30 motor units), all three
methods successfully identified the correct number of sources. When comparing spike timings with
ground truth, MUelim achieved 99.99 ± 0.01% accuracy with 0.99 ± 0.14 false positives per source
and 0.03 ± 0.02 false negatives per source, closely matching SCD (99.99 ± 0.01% accuracy, 0.93 ±
0.13 FP per source, 0.03 ± 0.02 FN per source) and MUEdit (98.98 ± 0.07% accuracy, 0.00 ± 0.00
FP per source, 3.06 ± 0.20 FN per source) (Supplementary Table 1).

Next, motor units were decomposed from a HD-EMG grid as a healthy individual performed a
ramped contraction (Figure 2). Varying parameters were used to assess the impact on the number of
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sources decomposed and decomposition time (Supplementary Figure 2). Using an extension factor
of 4 and lag of 6, 19 unique motor unit sources were found in just under 5 minutes that align closely
to the force output (Figure 2A). Representative MUAP waveforms (Figure 2B) demonstrate clean
action potentials, while the inverse spatial filters (Figure 2C) show the spatial localization of motor
unit sources across the electrode grid.

Figure 2: Decomposition results align with force output in a healthy individual A. Spike train
decomposed using MUelim algorithm aligned with target (black) and force (red) trajectories B.
Motor unit action potential (MUAP) waveforms for two representative motor unit sources. MUAP
waveforms were identified by taking the spike-triggered average at the spike timings from the five
highest weighted channels of the reconstructed EMG signal. During reconstruction, other motor unit
sources were suppressed for cleaner MUAP waveforms. C. First extension of the inverse spatial
filters used to reconstruct EMG signal from motor unit source activity mapped to the HD-EMG grid.
Dipoles show weighting of motor unit source.

Across all six participants in both ramp and MVC paradigms, MUelim consistently decomposed
motor units with substantially reduced computational time compared to alternative methods (Table
1). For ramp contractions, MUelim achieved up to a 36× speed increase compared to MUEdit (3.1 vs
112.3 minutes, Supplementary Table 2). The motor unit yields observed are consistent with prior
reports for high-density grids in hand and forearm muscles [Farina et al., 2008, Negro et al., 2016].
Full timing results from the parameter sweep in a single participant are shown in Supplementary
Figure 2. Varying bin size for SPD matrix computation affected the number of sources decomposed,
while having a minimal effect on decomposition time (Supplementary Figure 2A-B). The optimal
bin size range to extract the most sources was 20-30ms. When comparing SPD matrix estimators,
cospectral matrices yielded more sources in the optimal bin size range, while taking less time to
decompose than a laplacian kernel estimator.

Table 1: Comparison of motor unit decomposition methods across N=6 healthy participants

Method Ext. Lag Ramp Experiment MVC Experiment

MUs Time (min.) SIL MUs Time
(min.) SIL

MUelim 2 4 12.8 ± 2.7 1.3 ± 0.1 0.91 ± 0.01 7.8 ± 1.8 0.3 ± 0.0 0.91 ± 0.01
4 4 18.8 ± 4.2 3.1 ± 0.2 0.92 ± 0.01 11.2 ± 2.2 0.7 ± 0.0 0.91 ± 0.01

SCD 6 1 2.4 ± 0.5 5.5 ± 0.6 0.89 ± 0.01 5.6 ± 1.4 9.2 ± 3.0 0.90 ± 0.02
16 1 3.2 ± 0.8 14.6 ± 3.6 0.90 ± 0.01 5.6 ± 1.7 5.7 ± 1.1 0.90 ± 0.01

MUEdit 6 1 3.2 ± 2.0 72.3 ± 4.5 0.88 ± 0.01 24.3 ± 9.6 10.9 ± 2.2 0.89 ± 0.00
16 1 18.2 ± 5.7 112.3 ± 28.5 0.89 ± 0.03 12.5 ± 3.2 30.9 ± 5.5 0.93 ± 0.01

Both extension factor and lag influenced the number of sources decomposed and decomposition
time (Supplementary Figure 2C-D). The number of sources decomposed began to saturate with an
extension factor greater than 2. A lag between 4-8 samples per extension yielded the most sources.
Across all permutations, SIL was greater than 0.85 for every source with a grand average SIL of
0.955± 0.001. The maximum decomposition time was just under eight minutes with extension factor
of 6 and lag of 8 samples. Using a small extension factor and lag > 1, a majority of sources can still
be found in a fast decomposition time. For example, with an extension factor of 2 and lag of 5, there
was an average of 15.4± 0.98 sources decomposed across the 5 iterations (81% of the peak number
of sources). Decomposition time for this setting was only 1.47± 0.01 minutes.
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3.2 Closed-loop control of a neuroprosthetic by a SCI user

To evaluate whether MUelim could be used to control a neuroprosthetic, we trained a SNN to decode
motor intent from a SCI participant’s motor unit activity to activate movement-specific FES patterns
during task practice therapy. The SCI participant was successfully able to control the neuroprosthetic
using the trained decoder (Figure 3 and Supplementary Video 1). The motor unit-based SNN
decoder achieved 85% bin-wise accuracy during live control. For comparison, an offline analysis
using standard root-mean-square (RMS) features with a neural network (NN) decoder achieved
86% accuracy on the same dataset. All of the intended movements of the 3 tasks were successfully
activated by the participant. Discrepancies between manual labels and final FES predictions can
be attributed to short delays in transition between movements and movement to rest (Figure 3B -
FES predictions above vs. lightly shaded labels on top of the motor unit spike train). Looking at
the first transition from rest to hand open to grab the pipe, MUelim detected the initial motor intent,
which triggered the hand open FES pattern to activate (Figure 3A). Following this, there was an
initial break-in period of the template artifact filter, with subsequent peaks detected after the second
FES pulse that oscillated with stimulation frequency. The user retained control of the device and
was successfully able to transition between states to allow the FES to assist in completing the task.
Waveforms generated from the spike triggered averaging of reconstructed EMG at detected spikes
show clean action potentials (Figure 3D), demonstrating the ability of the algorithm to detect spikes
in between FES pulses.

A SNN was able to dissociate between motor unit activity during the different movements independent
of the task (Figure 3C). The prediction probability calculated from the output neuron firing rate is
shown on top of the SNN output spike train. When there was no output neuron firing, the decoder
defaulted to a rest prediction. Corresponding snapshots of the tasks are shown below the spike trains
(Figure 3E). Refer to Supplementary Video 1 for the full live video demonstrating neuroprosthetic
control.

Figure 3: Spinal cord injury participant controls functional electrical stimulation (FES) in
real-time via intention decoded from motor unit activity using a spiking neural network (SNN).
A. Zoom-in plot of raw EMG with spike train on top at the transition between rest and hand open.
Spikes are detectable in a 50ms window between FES pulses with 20Hz stimulation frequency.
B. Full spike train that was decomposed in real-time while using the EMG-FES system in task
practice. Rectangles above the spike train indicate the final movement predicted that triggered the
corresponding FES movement to evoke assistance. The lighter shaded rectangles across the full spike
train indicate the ground truth manually labeled by the operator. C. Output of the SNN with 3 classes
and the resulting prediction probability based on the output neuron firing rates. D. Sample motor unit
action potential waveforms averaged across the five highest weighted channels. E. Snapshots of SCI
participant performing the rehabilitation tasks. See Supplementary Video 1 for a real-time demo.
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4 Discussion

We introduced an efficient method for motor unit decomposition that leverages approximate joint
diagonalization for rapid extraction of motor units from HD-EMG. Our approach incorporates
an extend-lag procedure, previously used in EEG and dynamical systems analysis [Carrara and
Papadopoulo, 2024, Takens, 2006], to augment the data and enhance source separability prior to joint
diagonalization. While the extend-lag procedure itself is not novel, its application in this context
enhances source separability by capturing temporal dynamics and improves the conditioning of the
source separation problem. MUelim builds on advances in convolutive BSS and joint diagonalization
[Negro et al., 2016, Holobar and Zazula, 2007, Belouchrani et al., 1997, Pham, 2001], and addresses
computational bottlenecks that have limited motor unit decomposition for real-time applications
[Congedo et al., 2008, Grison et al., 2025].

Comprehensive validation on both simulated and physiological data demonstrated MUelim’s effective-
ness. Direct comparison on identical simulated datasets showed that MUelim achieved comparable
decomposition accuracy to SCD and MUEdit. Validation across six healthy participants in both ramp
and MVC contractions demonstrated consistent performance with up to 36× speed improvements
compared to open-source methods such as SCD [Grison et al., 2025] and MUEdit [Avrillon et al.,
2024], while achieving similar or greater source yield. MUelim’s substantially reduced BSS filter com-
putation time (minutes vs up to hours) enables practical deployment in closed-loop neuroprosthetic
systems where rapid session setup is required.

We demonstrated this feasibility in a clinical neuroprosthetic control application, in which we decoded
motor intent from motor unit firing activity decomposed using MUelim to enable an individual with
SCI to volitionally control FES movement patterns. The motor unit-based SNN decoder achieved
comparable performance to an offline RMS-NN decoder (85% vs 86% accuracy), although direct
comparison is difficult since FES was already triggered during data collection, affecting subsequent
motor recruitment and EMG signals. Integrating MUelim with a SNN decoder enables spike-based
decoding, which has the potential to be incorporated in neuromorphic hardware for low-power
neuroprosthetics [Tanzarella et al., 2023, Chen et al., 2020].

There are several limitations to this work. MUelim was validated only on non-invasive HD-EMG and
has not yet been tested on intramuscular EMG, which may present different decomposition challenges
[Negro et al., 2016, Holobar et al., 2014]. Due to clinical trial constraints, the clinical evaluation
period was limited. As a result, spatial filters may require adaptation for long-term or at-home use, as
electrode shifts and signal quality changes can degrade performance over time [Del Vecchio et al.,
2020, Farina et al., 2014]. Future work should perform more rigorous benchmarking of motor unit-
based features against RMS and other standard EMG preprocessing approaches using open-source
datasets, such as those used in EMGBench [Yang et al., 2024]. Broader validation across diverse user
populations and movement tasks will also be important to establish generalizability of the approach
[Osswald et al., 2025, Wen et al., 2023]. As with any assistive neurotechnology, there is a potential
risk that MUelim could lead to unintended device actuation if motor units are incorrectly decomposed,
or raise privacy concerns if EMG data are not handled securely. Nevertheless, MUelim provides a
practical and efficient solution for real-time motor unit decomposition, supporting the development
of robust, intention-driven assistive technologies.

5 Conclusion

This work presents MUelim, an efficient algorithm for motor unit decomposition from HD-EMG
signals. By leveraging approximate joint diagonalization, MUelim achieves high decomposition accu-
racy while significantly reducing computational complexity, outperforming state-of-the-art methods
with up to a 36× speed improvement. Comprehensive validation on identical simulated datasets
demonstrated that MUelim achieves comparable accuracy to existing methods. Validation across
six healthy participants in both ramp and maximum voluntary contraction paradigms demonstrates
its ability to extract motor units with high signal-to-noise ratios. Furthermore, we showcased its
application in a clinical setting, where MUelim facilitated real-time decoding of motor intent to
control a neuroprosthetic device by a SCI participant, highlighting its potential for advancing assistive
neurotechnology.
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Disclaimer
The system used in the study referenced has not been approved or cleared as safe or effective by FDA.
This device is limited by U.S. federal law to investigational use.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The Abstract and Introduction sections state the contributions of the work
regarding development and validation of the MUelim algorithm, its benchmarking against
existing methods, and its application in a clinical neuroprosthetic setting. The claims
are consistent with the algorithm description in the Methods section, as well as with the
experimental results and discussion.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The paper discusses limitations in the discussion section, including the demon-
stration of the algorithm on both simulated and non-invasive HD-EMG, but not on intramus-
cular EMG, limited clinical evaluation period, and the need for broader benchmarking and
adaptation for long-term use.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: The paper does not introduce new theoretical results or formal proofs. In-
stead, it builds on established methods and references existing theoretical work for joint
diagonalization and blind source separation.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The manuscript provides detailed descriptions of the experimental setup,
including data generation, preprocessing, algorithm parameters, evaluation metrics, and
benchmarking procedures. These details are found throughout the Methods and Results
sections.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: The code and data used in this study are not currently publicly available. We
are actively considering options to make them accessible in the future, but at this time, open
access is not provided.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The Methods section provides detailed descriptions of the experimental setup,
including data generation, preprocessing steps, parameter sweeps, evaluation metrics, and
SNN training details such as optimizer, learning rate, batch size, and dropout.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
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Justification: Error bars representing the standard error of the mean are reported for the
parameter sweep experiments, as described in the Methods and shown in Table 1 and
Supplementary Figure 2. Statistical comparisons between methods were not performed
because only one seed was used for each alternative method due to practical constraints.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The Methods section specifies the hardware used for experiments, including
CPU and GPU models, as well as the time required for decomposition in minutes for each
method.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research was conducted in accordance with the NeurIPS Code of Ethics,
including appropriate handling of human subject data and privacy. The clinical study was
performed as part of an ongoing registered clinical trial with Institutional Review Board
(IRB) approval and participant consent.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
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• If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: The manuscript discusses the positive societal impact of enabling intention-
driven assistive neurotechnology for individuals with motor impairments using the MUelim
algorithm, as well as limitations and considerations related to generalizability and long-term
use. Potential negative impacts, such as risks associated with incorrect decomposition, are
acknowledged in the Discussion section.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper does not release any data or models that pose a high risk for misuse.
As a result, safeguards are not applicable.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.
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12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All external code packages used in this work are properly cited in the
manuscript, including references to open-source tools such as swarm contrastive decomposi-
tion (SCD) [Grison et al., 2025], MUEdit [Avrillon et al., 2024], pyRiemann [Barachant
et al., 2025], sklearn [Pedregosa et al., 2011], JADOC [de Vlaming and Slob, 2021], and
LAVA-SLAYER [Shrestha and Orchard, 2018]. All code packages were used in accordance
with their respective licenses and terms of use as specified by their original authors.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: At this time, the paper does not release any new datasets, code, or models as
assets, so this question is not applicable. If assets are released in the future, appropriate
documentation will be provided.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [Yes]
Justification: The clinical trial involving human subjects was conducted with IRB approval
and informed consent was obtained from all participants. Participants were compensated for
their time in accordance with ethical guidelines. Full instructions and screenshots are not
central to the contribution and are available upon request.
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Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Including this information in the supplemental material is fine, but if the main contribu-

tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [Yes]
Justification: The study involving human subjects was conducted with IRB approval, and
all participants provided informed consent after being informed of potential risks. Details
regarding the clinical trial and participant safety are described in the Methods and Disclaimer
sections, without revealing any information that would compromise anonymity.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: No LLMs were used to generate any of the core methods in this work.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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