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Abstract
We study the problem of efficiently generating
differentially private synthetic data that approx-
imate the statistical properties of an underlying
sensitive dataset. In recent years, there has been a
growing line of work that approaches this problem
using first-order optimization techniques. How-
ever, such techniques are restricted to optimiz-
ing differentiable objectives only, severely limit-
ing the types of analyses that can be conducted.
For example, first-order mechanisms have been
primarily successful in approximating statistical
queries only in the form of marginals for discrete
data domains. In some cases, one can circum-
vent such issues by relaxing the task’s objective
to maintain differentiability. However, even when
possible, these approaches impose a fundamental
limitation in which modifications to the minimiza-
tion problem become additional sources of error.
Therefore, we propose PRIVATE-GSD, a private
genetic algorithm based on zeroth-order optimiza-
tion heuristics that do not require modifying the
original objective; thus, it avoids the aforemen-
tioned limitations of first-order optimization. We
demonstrate empirically that on data with both dis-
crete and real-valued attributes, PRIVATE-GSD
outperforms the state-of-the-art methods on non-
differential queries while matching accuracy in
approximating differentiable ones.

1. Introduction
Access to high-quality data is critical for decision-making
and data analysis. However, the reliance on sensitive data
can reveal private information about the individuals in the
data, such as medical conditions or financial status. There-
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fore, privacy concerns impose legal and ethical constraints
on what one can access for data analysis. Differential pri-
vacy (Dwork et al., 2006) has become an increasingly popu-
lar framework for protecting sensitive information by pro-
viding a formal privacy guarantee that allows one to cali-
brate the trade-off between privacy and accuracy. Moreover,
differentially private synthetic data has become especially
attractive, given that such data can be accessed repeatedly
without added privacy costs. Consequently, we focus on
the problem of generating synthetic data that approximates
various properties of the underlying sensitive dataset while
providing privacy guarantees.

A standard approach to this problem is to find a synthetic
dataset that matches a large family of statistics derived from
the underlying dataset. In this work, we focus on statistics in
the form of statistical queries, which count the fraction of ex-
amples that satisfy some specific properties. This approach
is often framed as synthetic data for private query release,
where the goal is to release answers to an extensive collec-
tion of statistical queries by outputting a synthetic dataset
from which answers are derived from. There exists a long
line of research studying synthetic data for private query
release (Blum et al., 2008; Hardt et al., 2012; Gaboardi et al.,
2014b; McKenna et al., 2018; Vietri et al., 2020; McKenna
et al., 2019; Aydöre et al., 2021; Liu et al., 2021a;b). More-
over, when the set of statistical properties is sufficiently rich,
this approach has been shown to outperform differentially
private deep generative models (e.g., GANs) in both captur-
ing various statistical properties and enabling downstream
machine learning tasks (Tao et al., 2021; Vietri et al., 2022).

Even though the problem of generating synthetic data for pri-
vate query release is shown to be computationally intractable
in the worst case (Ullman & Vadhan, 2011; Ullman, 2013),
there has been a line of work on practical algorithms that
can perform well on real datasets (Gaboardi et al., 2014b;
Vietri et al., 2020; McKenna et al., 2019; Liu et al., 2021a).
Before our work, the algorithms that achieve state-of-the-art
performance all leverage gradient-based optimization (Liu
et al., 2021b; Vietri et al., 2022) to minimize the error for
certain classes of statistical queries. However, these meth-
ods require differentiability, severely limiting the types of
statistical properties one can optimize. For example, ex-
isting algorithms such as RAP (Aydöre et al., 2021) and
GEM (Liu et al., 2021b) focus specifically on using first-
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order mechanisms for approximating marginal queries that
apply to discrete data only, requiring real-valued attributes
be discretized first.

Many natural classes of queries for data containing real-
valued attributes are non-differentiable, such as prefixes
(equivalently the CDF of an attribute), and their higher-
dimensional extension, halfspaces. Moreover, these queries
cannot be optimized directly by methods that operate over
discrete data, even with the discretization of real-valued
features. Vietri et al. (2022) circumvent discretization by
approximating non-differentiable queries with differentiable
surrogate functions. Thus, their approach, RAP++, can
directly optimize over a large class of statistical queries.
However, their method induces additional error due to the
relaxation of the original minimization problem, which may
not produce an optimal solution for the original one. 1 2

In light of these challenges, we propose a new synthetic data
generation algorithm, PRIVATE-GSD, that is capable of out-
putting mixed-type data (i.e., containing both discrete and
real-valued attributes) without requiring differentiability in
its optimization objective or discretization of real-valued at-
tributes. PRIVATE-GSD is a zeroth-order mechanism based
on a genetic algorithm that avoids the limitations of first-
order methods such as RAP++, which uses surrogate loss
functions to ensure differentiability. Instead, PRIVATE-GSD
can optimize the error objective directly. Inspired by the
genetic algorithm SIMPLEGA (Such et al., 2017), our algo-
rithm PRIVATE-GSD evolves a population of datasets over
G generations—starting from a population of E randomly
chosen datasets, where on each generation, the algorithm
maintains a set of elite synthetic datasets. Then, the algo-
rithm uses this elite set to produce the population for the
next round by crossing samples (i.e., combining parameters)
and applying specific mutations (i.e., perturbing parameters).
For the purpose of private synthetic data, we devise new
strategies for crossing and mutating samples. To illustrate
the limitations of the first-order approach RAP++ and how
PRIVATE-GSD overcomes them, we provide a simple exam-
ple in Figure 1, where both algorithms try to approximate a
target distribution over real values.

Moreover, given that our method only requires zeroth-
order access to any objective function, we demonstrate that
PRIVATE-GSD can directly optimize over a wide range of
statistical queries that capture various statistical properties
summarizing both discrete and real-valued data attributes.
Specifically, we first conduct experiments in mixed-type
data domains, evaluating on random (1) halfspace and (2)

1In Appendix B.3, we show a simple example in which the
continuous relaxation leads RAP++ to a bad local minimum very
far from the optimal solution

2Figure 1 gives a simple example where RAP++ fails to opti-
mize a set of 3 prefix queries on 1-dimensional real-valued data.

Figure 1. The histogram visually demonstrates a specific scenario
where the RAP++ mechanism fails to generate synthetic data
that approximates a collection of statistical prefix queries. In this
particular scenario, both PRIVATE-GSD and RAP++ take as input
three prefix queries with thresholds set at 0.49, 0.50, and 0.51 and
the input dataset REAL, represented by the clear bars, that has all
values equal to 0.5. The output of both PRIVATE-GSD or RAP++
is represented by the blue histograms. The graph on the top shows
that PRIVATE-GSD successfully produces an optimal synthetic
data whose histogram exactly overlaps with the histogram of the
REAL data. On the other hand, the bottom graph shows how
RAP++ fails to optimize this case by generating a significant
portion of its synthetic points near 0.

prefix queries. We then explore categorical-only data, in
which we use (3) k-way categorical marginal queries. Lastly,
we again evaluate PRIVATE-GSD on mixed-type data using
(4) k-way binary-tree marginal queries (defined in Sec-
tion 5). Note that (3) and (4) can be represented as differen-
tiable functions, while (1) and (2) cannot.

We summarize our contributions3 as the following:

• We present PRIVATE-GSD, a versatile genetic algo-
rithm that can generate synthetic data to approximate
a wide range of statistical queries, regardless of their
differentiability. To achieve this, we develop novel
crossover and mutation functions that are crucial to the
efficacy of PRIVATE-GSD.

• We conduct an empirical evaluation on data derived
from the American Community Survey. We note that
our method is highly parallelizable, scaling to the high-
dimensional data settings explored in our experiments.

• In the mixed-type data domain, we show that PRIVATE-
GSD outperforms the state-of-the-art method, RAP++,
on non-differentiable queries (i.e., halfspace and pre-
fix queries). Furthermore, we show that even for dif-
ferentiable query classes (i.e., k-way categorical and
binary-tree marginals), PRIVATE-GSD matches first-
order optimization methods.4

3While not the primary focus of our work, we provide ML
evaluation experiments in Appendix C

4Our work is also the first to modify our baseline methods,
RAP and GEM, to optimize over k-way binary-tree marginals
for mixed type data, with the limitation being that real-valued
attributes are discretized first.
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Additional related work. In addition to algorithms RAP,
GEM, and RAP++ (Aydöre et al., 2021; Liu et al., 2021b;
Vietri et al., 2022), another benchmark algorithm that uses
first-order optimization is the PrivatePGM (PGM) algorithm
(McKenna et al., 2019) and its variations (McKenna et al.,
2022). Similar to RAP and GEM, PGM does not directly
does not support non-differentiable queries such as thresh-
olds and half-spaces on real-valued data. While one can
first discretize numerical features, Vietri et al. (2022) show
that RAP++ still performs better than PGM on real-valued
data for approximating prefix queries and downstream ma-
chine learning. Finally, there is a line of work (Xie et al.,
2018; Jordon et al., 2018a;b; Torkzadehmahani et al., 2019;
Takagi et al., 2020; Harder et al., 2021) that develops dif-
ferentially private algorithms for training deep generative
models (e.g., GANs, VAEs, etc.), but they generally have
not shown promising results for enforcing consistency with
simple classes of statistics when applied to tabular data (Tao
et al., 2021; Vietri et al., 2022).

2. Preliminaries
2.1. Datasets and Queries

Let’s considerX as a data domain of dimensionality d. Here,
each element x ∈ X is an observation within this data do-
main. For any given observation x ∈ X , we refer to its
i-th feature as xi ∈ Xi. The feature domain associated
with this i-th feature is denoted by Xi. We define a dataset
D as a multiset of observations derived from the data do-
main X , where D ⊆ X ∗. Often, to ensure a convenient
representation of categorical features, we employ the one-
hot encoding approach. In this context, one-hot encoding
portrays a categorical value as a binary vector where all
elements, barring the one corresponding to the category, are
set to zero. We introduce hoh : X → [0, 1]d

′
to denote the

function that maps elements of X to their one-hot encod-
ing, with d′ representing the dimensionality of the one-hot
encoded space. Finally, for any discrete set S, we define
U(S) as the uniform distribution over this set S. A random
sample from U(S) can be represented as s ∼ U(S). For
any integer i, we use [i] = 1, . . . , i to represent the set of all
integers from 1 to i.

In this research, our focus lies on mixed-valued datasets
within a bounded domain, with a particular emphasis on
answering statistical queries. A statistical query is defined
as a function q : X ∗ → [0, 1] that maps a dataset to a value
within the bounded interval [0,1]. The formal definition of
a statistical query in this context is

Definition 2.1 (Statistical Query (Kearns, 1998)). A statisti-
cal query is defined by a predicate function ϕ : X → {0, 1}.
Given a dataset D ∈ XN , the corresponding statistical
query qϕ is defined as : qϕ(D) = 1

N

∑
x∈D ϕ(x).

We use Q = {qi, . . . , qm} to represent a set of m statistical
queries and for a given dataset D. Furthermore, for conve-
nience, we use Q(D) = [q1(D), . . . , qm(D)] ∈ [0, 1]m to
denote the answers of all m statistical queries on D.

In this work, we are interested in answering different types
of statistical queries that capture different statistical prop-
erties. The first type is the class of categorical marginals,
which has been the primary focus of most prior works. The
k-way categorical marginal queries count the fraction of
rows in a dataset that matches a combination of values.

Definition 2.2 (Categorical Marginal Queries). A k-way
categorical marginal query is defined by a set of categorical
features S of cardinality |S| = k, together with a particular
element c ∈

∏
i∈S Xi in the domain of S. Given such a pair

(S, c), let X (S, c) = {x ∈ X : xS = c} denote the set of
points that match c. The corresponding statistical query qS,c
is defined as qS,c(D) =

∑
x∈D 1{x ∈ X (S, c)}, where 1

is the indicator function.

For real-values features, we define the class of range queries
or k-way range-marginals that capture the k. A 1-way
range query is defined by an attribute A and two real-values
a, b ∈ [0, 1] and counts the number of rows where real-
valued attribute A lies in [a, b].

Definition 2.3 (Range Marginal Queries). A k-way range
marginal query is defined by a set of categorical features
C, an element y ∈ XC , a set of numerical features R and
a set of intervals τ = {[τj,0, τj,1]}j∈R, with |C|+ |R| = k
and |R| = |τ |. Let X (C, y) be as in Definition 2.2 and let
R(R, τ) = {x ∈ X : τj,0 ≤ xj ≤ τj,1 ∀j∈R} denote
the set of points where each feature j ∈ R fall below its
corresponding threshold value τj . Then the statistical query
qC,y,R,τ is defined as

qC,y,R,τ (D) =
∑
x∈D

1{x ∈ X (C, y)} · 1{x ∈ R(R, τ)}.

We note that while range marginal queries are useful for
capturing statistical properties of real-valued data, they can
also be applicable to discretized data. For example, one
can discretize a real-valued column into the bins that are a
superset of the intervals τ defined in Definition 2.3.5

Next, we present two additional queries—halfspace and pre-
fix queries—that are also useful in summarizing real-valued
features. We emphasize that such queries are the focus of
our work, since they cannot be directly optimized by exist-
ing methods using first-order optimization. These queries
can in some ways be thought of as higher-dimensional gen-
eralizations of CDF functions. Moreover, synthetic data
matching statistical properties defined by these queries have

5In Section 5 and the appendix, we will discuss how range
marginal queries are still applicable to GEM and RAP, which
handle real-valued attributes by discretizing them first.
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been shown to do well on downstream tasks like machine
learning classification (Vietri et al., 2022).

Definition 2.4 (Halfspace Query). A halfspace query is de-
fined by a vector θ ∈ Rd′

and a threshold τ ∈ R. The halfs-
pace query is given by qθ,τ (D) =

∑
x∈D 1{⟨θ, hoh(x)⟩ ≤

τ}, where hoh : X → [0, 1]d
′

is the function that maps
elements of X to their one-hot encoding.

Definition 2.5 (k-way prefix queries). A k-way prefix query
is defined by a set of real-valued features C ⊆ [d] (|C| = k)
and a set of threshold τ = {τi ∈ [0, 1] : i ∈ C}. Let
X (C, τ) = {x ∈ X : xi ≤ τi ∀i ∈ C} be the set of
points, that has each feature i ∈ C fall below the corre-
sponding threshold τi. Then the prefix query qC,τ is given
by qC,τ (D) =

∑
x∈D I{x ∈ X (C, τ)}.

2.2. Differential Privacy

To protect user privacy, we estimate Q(D) under the con-
straint of differential privacy (Dwork et al., 2006), which is
a widely accepted notion of privacy protection at the user
level. For example, the US Census Bureau has begun us-
ing differential privacy to protect the privacy of individuals
when releasing census data. Differential privacy is used to
add noise to the census data in order to obscure the data of
any one individual, while still providing accurate statistical
information about the population as a whole.

To define differential privacy, we say that two datasets are
neighboring if they are different in at most one data point.
We give the formal definition here:

Definition 2.6 (Differential Privacy (DP) (Dwork et al.,
2006)). A randomized algorithm M : XN → R satis-
fies (ε, δ)-differential privacy if for all neighboring datasets
D,D′ and for all outcomes S ⊆ R we have

Pr [M(D) ∈ S] ≤ eεPr [M(D′) ∈ S] + δ

A related notion we use is zero-Concentrated Differential
Privacy (zCDP) (Dwork & Rothblum, 2016; Bun & Steinke,
2016a), which has a simpler privacy composition.

Definition 2.7 (zCDP (Bun & Steinke, 2016b)). A ran-
domized algorithm M : XN → R satisfies ρ-zero-
Concentrated differential privacy (ρ-zCDP) if for all neigh-
boring datasets D,D′ and for all α ∈ (1,∞) we have:
Dα(M(D),M(D′)) ≤ ρα, where Dα(M(D),M(D′)) is
α-Renyi divergence between the distributionsM(D) and
M(D′).

3. Private Query Release via Synthetic Data
For the problem of estimating statistics Q(D) subject to
differential privacy, we follow the framework of the projec-
tion mechanism (Nikolov et al., 2013; Dwork et al., 2015),

which consists of perturbing the statistics with a differen-
tially private mechanism followed by a projection step that
consists of finding a synthetic dataset that matches these
perturbed statistics.

In this study, we consider two versions of the private pro-
jection mechanism. The first is the standard projection
mechanism, referred to as the one-shot version. The sec-
ond is an adaptive version of the projection mechanism,
which proves useful in scenarios where a large number of
queries are required. A comprehensive description of both
frameworks is presented below.

One-shot projection mechanism: Suppose we are given
m statistical queries, represented by Q, and a dataset D.
Then the first step consists of independently perturbing every
coordinate of Q(D) to obtain a private estimate, denoted by
â. Given a privacy parameter ρ, the noisy answer vector is
computed as follows:

â← Q(D) +N
(
0, ∆(Q)

2ρ · I
)

(1)

Then, the project step involves finding a synthetic dataset D̂
that best explains the estimate â. To represent the projection
step, we construct a loss minimization problem, where the
loss function is defined by â and Q as follows:

Lâ,Q(D̂) = ∥â−Q(D̂)∥22 (2)

By the properties of the Gaussian mechanism and the post-
processing property (Theorem B.3), the projection mech-
anism framework satisfies ρ-zCDP regardless of the opti-
mization procedure used to solve (2).

Adaptive selection framework: In practice, when the
number of queries m is very large, the objective (2) be-
comes extremely noisy for any practical optimization rou-
tine. Therefore, we follow the Adaptive Selection Frame-
work of Liu et al. (2021b) that, over K rounds, chooses
high error queries adaptively using the report noisy max
mechanism (alternatively the exponential mechanism, as
defined in Definition B.5). Algorithm 2 of Appendix B.2
shows the details of this framework, which we note satisfies
the following theorem:

Theorem 3.1. For any K, ρ > 0, dataset D, query
set Q and any procedure used to solve objective (2), the
adaptive framework strategy satisfies ρ-zCDP. By exten-
sion, it also satisfies (ε, δ)-differential privacy for: ε =
ρ+ 2

√
ρ · log(1/δ).

We provide a proof sketch to Theorem 3.1 below in Ap-
pendix B.1.
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Algorithm 1 Private Genetic Algorithm for Synthetic Data
(PRIVATE-GSD)

1: Require: The search space XN ′
of mixed-type syn-

thetic datasets with N ′ rows and d features, num-
ber of generations G, mutations population size Pmut,
crossover population size Pcross and elite set size E.

2: Input: A set of m queries Q : X ∗ → [0, 1]m, (noisy)
query answers â ∈ [0, 1]m.

3: Set the objective function for the synthetic datasets:

LQ,â(D̂) = ∥â−Q(D̂)∥2

4: Initialize uniformly at random the elite set E1 ←
{D̄1,i ∼ U(XN ′

) : i ∈ [E]} of synthetic datasets
with N ′ rows.

5: for g = 1, . . . , G do
6: Set D̂⋆

g ← argminD̂∈Eg
LQ,â(D̂).

7: Initialize candidate population set Pg ← Eg .
8: Mutations: Repeat Pmut times: Initialize a syn-

thetic data D̃ equal to D̂⋆
g . Then, sample a row i ∼

U([N ′]), feature j ∼ U([d]) and value v ∼ U (Xj).
Update D̃ as follows: D̃(i, j)← v and add D̃ to Pg .

9: Crossovers: Repeat Pcross times: Initialize D̃ equal
to D̂⋆

g . Then, sample two rows i1, i2 ∼ U([N ′]), a
feature j ∼ U([d]), and elite member D̄ ∼ U(Eg)
and update D̃ as follows: D̃(i1, j)← D̄(i2, j). Then
add D̃ to Pg .

10: Update Elites: Evaluate each member of Pg on
LQ,â(·). Then, set Eg+1 as top E members from
population Pg with respect to minimizing objective
LQ,â(·).

11: end for
12: return D̂⋆

G

4. Private Genetic Algorithm (PRIVATE-GSD)
The generation of high-quality synthetic data through the
projection mechanism framework, as described in Section 3,
presents a challenging task that necessitates the solution of
an NP-hard optimization problem (Hardt & Talwar, 2010).
Therefore, we propose the PRIVATE-GSD algorithm, which
solves the projection step in the projection mechanism using
a genetic algorithm (GA).

4.1. Background on genetic algorithms

Genetic Algorithms (GA) are a class of optimization algo-
rithms inspired by natural selection and genetic recombina-
tion. Introduced by Holland (1992), GAs provide a heuristic
search technique to solve complex optimization problems
by evolving a population of candidate solutions towards an
optimal or near-optimal solution. Crucially, GAs do not
require differentiability in the optimization objective.

4.2. Private-GSD

This section presents a genetic algorithm named Private
Genetic Synthetic Data (PRIVATE-GSD), developed specifi-
cally for synthetic data generation. PRIVATE-GSD applies
two genetic operators known as ‘mutations’ and ‘crossover’
in the GA literature ((Such et al., 2017)). In contrast to
prior genetic algorithms, the mutation and crossover oper-
ator applied by PRIVATE-GSD are specifically designed
for searching the space of synthetic datasets and optimizing
the projection step described in Section 3. These operators,
aimed at generating incremental improvements in synthetic
datasets across multiple generations, have been designed for
computational efficiency and quick convergence. We begin
by unpacking the core elements and structure of PRIVATE-
GSD and then dive into the specifics of these genetic opera-
tors.

The PRIVATE-GSD algorithm operates on a set of statistical
queries, denoted as Q, and their respective target private re-
sponses, â. It formulates an optimization problem via the ob-
jective function LQ,â : XN ′ → [0, 1]. A proposed solution
to LQ,â is a synthetic dataset comprising a user-specified
number of rows, N ′. Thus, PRIVATE-GSD’s ultimate ob-
jective is to identify a synthetic dataset within XN ′

that
minimizes LQ,â. PRIVATE-GSD also incorporates other
parameters such as the maximum number of generations, G,
over which it will operate, as well as Pmut and Pcross, which
respectively represent the quantity of proposed solutions
generated using mutation and crossover strategies. Lastly,
the E parameter determines the number of candidates that
will be selected to parent the succeeding generation.

The genetic process unfolds across G generations. For each
generation, denoted as g ∈ [G], PRIVATE-GSD maintains a
set of elite E candidate solutions, symbolized as Eg . These
represent the optimal E candidate solutions discovered thus
far. The initial elite set, E1, is chosen at random from the
set XN ′

. Within each generation, PRIVATE-GSD generates
(Pmut + Pcross) new candidate solutions. These are obtained
by introducing minor random variations to the best syn-
thetic data identified up to generation g, denoted as D̂⋆

g . To
achieve this, PRIVATE-GSD applies a random genetic mod-
ification—either mutation or crossover—to D̂⋆

g , yielding a
new synthetic data candidate, D̃. This process allows for
inheriting traits from the elite synthetic dataset and adds
diversity, paving the way for potentially superior solutions.

The group of candidate synthetic datasets in generation
g ∈ [G], denoted as Pg, comprises the Pmut + Pcross new
candidates and the elite candidates Eg. PRIVATE-GSD as-
signs a score to each candidate in Pg based on their align-
ment with the objective function LQ,â. It then ranks all
Pmut + Pcross + E individual candidates according to their
scores, and the top E candidates with the highest fitness
scores are chosen as the next generation of elite candidates.
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This iterative procedure continues until a predetermined
termination criterion—such as reaching the maximum num-
ber of generations, achieving a satisfactory fitness level, or
meeting a predefined condition—is satisfied.

Now, we delve into the specifics of the ‘mutation’ and
‘crossover’ genetic operators, which play a significant role
in PRIVATE-GSD’s performance. These operators are only
applied to the optimal dataset D̂⋆

g , with the goal of incremen-
tal improvements over many generations. Moreover, both
operators only modify a single value of D̂⋆

g . Empirically,
we find that having sparse genetic updates is crucial to the
success of PRIVATE-GSD, as shown in Table 4 where al-
tering numerous values simultaneously performs noticeably
worse.

Mutation. The mutation process is a vital part of a genetic
algorithm. It introduces minor random perturbations to the
most optimal solution to create novel candidate solutions.
Controlled by parameter Pmut, the mutation strategy of the
PRIVATE-GSD algorithm determines the number of candi-
date synthetic datasets produced in each generation. During
the mutation phase, a row i ∈ [N ′] and column j ∈ [d]

are randomly selected. The entry in D̂⋆
g corresponding to

the selected row i and column j is then replaced by a value
sampled uniformly from the range of acceptable values for
column j. This modified dataset, which differs from D̂⋆

g

by a single entry,6 is subsequently added to the pool of
candidate solutions.

Crossover. Taking inspiration from genetic recombina-
tion, the crossover operator merges the parameters of two
parent candidates to generate a new offspring. Parame-
ter Pcross determines the number of candidate synthetic
datasets produced in each PRIVATE-GSD generation via
the crossover strategy. To sample a new candidate synthetic
dataset, the PRIVATE-GSD’s crossover operation selects an
elite dataset D̄ from the elite set Eg. It then combines the
parameters of D̄ with those of the optimal dataset D̂⋆

g to
produce a new dataset D̃. This synthetic dataset, differing
from D̂⋆

g by a single entry, is subsequently added to the
candidate solutions population, Pg. The crossover opera-
tion combines the parameters of D̂⋆

g and D̄ by selecting two
rows i1, i2 ∈ [N ′], and a feature j ∈ [d]. The new dataset
D̃ then has its (i1, j) entry set to match the value of D̄ at
row i2 and feature j (i.e., D̃(i1, j) = D̄(i2, j)), while all
other entries of D̃ mirror the corresponding values at D̂⋆

g .

The crossover operator plays an integral role in improving
the convergence rate of PRIVATE-GSD. Figure 2 shows the
convergence of the PRIVATE-GSD algorithm with and with-

6While we could adjust the number of mutated rows at each
step, our empirical data shows that in our settings, mutating a
single row often yields the best performance (see Table 1).

Figure 2. A comparison of the convergence rates of PRIVATE-
GSD under two different parameterizations, aiming to understand
the impact of the crossover genetic operator. The accompany-
ing plot illustrates the error of PRIVATE-GSD after each gener-
ation, in relation to matching the histogram distribution (1-way
marginals) of the input data. The the solid line represents parame-
ters Pmut = 200 and Pcross = 0, while the dotted line corresponds
to Pmut = 100 and Pcross = 100. The experiment employs an
artificially created dataset, intentionally designed to be sparse and
of high cardinality, thus challenging to approximate. The dataset
comprises five categorical features, each with a cardinality of 1000,
and contains 2000 rows.

out the crossover operator. By encouraging the replication
of significant values (with respect to the fitness function) in
subsequent generations, PRIVATE-GSD with the crossover
step converges exponentially faster compared to an algo-
rithm reliant solely on mutations.

4.3. Privacy And Accuracy

Below, we state the formal privacy guarantee of PRIVATE-
GSD, which directly follows from Theorem 3.1.

Corollary 4.1. For any ρ > 0, dataset D, and query set Q.
Running PRIVATE-GSD (Algorithm 1) under the adaptive
framework satisfies ρ-zCDP and (ε, δ)-differential privacy
for: ε = ρ+ 2

√
ρ · log(1/δ).

Given that PRIVATE-GSD falls within the ‘projection mech-
anism’ framework proposed by Nikolov et al. (2013), an
accuracy analysis can be performed under several assump-
tions: (1) the input data are discrete, (2) the number of
queries is finite, and (3) the optimization step invariably
finds the optimal solution of the objective. This kind of
analysis assumes access to a perfect optimization oracle and
is often referred to as ‘oracle-efficient’ accuracy analysis. It
follows a similar approach to previous studies by Gaboardi
et al. (2014a); Vietri et al. (2022); Aydöre et al. (2021).

The accuracy statement for PRIVATE-GSD is presented in
Theorem A.1, with a detailed proof provided in the Ap-
pendix. Our analysis of PRIVATE-GSD’s accuracy is sim-
ilar to the accuracy analysis of the RAP++ mechanism
(Aydöre et al., 2021), which also uses the projection mecha-
nism framework and adopts the ‘oracle-efficient’ assump-
tion. However, unlike RAP++, which implements a relax-
ation step in the data domain to maintain objective differ-
entiability, PRIVATE-GSD does not perform such a step.
Consequently, our accuracy theorem applies to a general
class of queries, whereas the one for RAP++ is limited to

6
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k-way marginal queries.

Remark 4.2. Theorem A.1 only applies if the underlying
optimization algorithm in Algorithm 1 is successful in min-
imizing the objective in Equation (2). Therefore, we ac-
company the accuracy theorem with empirical evidence that
validates the performance of PRIVATE-GSD across various
datasets (Section 5; Figure 5).

5. Experiments
We conduct experiments to compare the performance of
PRIVATE-GSD against baseline mechanisms in various set-
tings. In particular, we evaluate the performance of various
synthetic data mechanisms on mixed-typed data, which con-
tain both categorical and numerical attributes. Our results
demonstrate that in this setting, PRIVATE-GSD is strong
mechanism in approximating various types of statistical
queries, outperforming RAP++, the state-of-the-art method
for generating synthetic data with real-valued columns. In
addition, we demonstrate that PRIVATE-GSD achieves per-
formance comparable to that of mechanisms specifically
designed for—and restricted to—handling differentiable
query functions for discrete data.

5.1. Data

For our empirical evaluation, we use datasets derived from
the Folktables package (Ding et al., 2021), which defines
datasets using samples from the American Community Sur-
vey (ACS). The ACS is collected annually by the U.S. Cen-
sus Bureau to capture the demographic and economic char-
acteristics of individuals and households in the country. In
particular, Folktables provides an array of classification
tasks, which are defined by a target column, a collection
of mixed-type features, and some filter that specifies what
samples to include.7 The experiments in this section use
samples from California and the five ACS tasks listed in Ta-
ble 1. Finally, each dataset is normalized by linearly scaling
real-valued columns to lie in [0, 1].

Dataset N # Real # Cat.

ACSMOB-CA 64263 4 17
ACSEMP-CA 303054 1 16
ACSINC-CA 156532 2 9
ACSCOV-CA 110843 2 17
ACSTRA-CA 138006 2 14

Table 1. For each dataset, we list the number of rows N , as well
as the number of real and categorical features.

7For example, a task can be defined to include only rows with
individuals over the age of 18.

5.2. Statistical queries

Statistical queries are essential for data analysis and
decision-making, as they allow us to extract meaningful
insights from large and complex datasets. In this section,
we describe how we define the four sets of statistical queries
that we use in our experiments. We summarize these queries
in Table 2 and describe them in more detail below:

Random Prefixes: The first query class we consider is a
random set of 50, 000 prefix queries, as in Definition 2.5.
To generate a random prefix query, we randomly sample a
categorical column c and two numeric columns a, b. Then,
uniformly sample a target value v for column c and the two
thresholds τa, τb ∈ [0, 1] for the numeric columns a and
b, respectively. The corresponding prefix query qprefix is
defined as follows:

qprefix(x) = I{xc = v and xa < τa and xb < τb} (3)

Random Halfspaces Next, we sample m = 200, 000
random halfspace queries as in Definition 2.4. Each sample
is generated as follows: Let d′ be the dimension of the one-
hot encoding of X . First, sample a random vector θ ∈ Rd′

,
where the value of each coordinate i ∈ [d′] is an i.i.d sample
drawn from the normal distribution with variance 1

d (i.e.,
θi ∼ N (0, 1

d )). Then, sample a threshold value τ from the
standard normal distribution, i.e., τ ∼ N (0, 1). Finally, add
the query qθ,τ to the set QHS.

k-way Categorical Marginals: Using categorical
columns only, we select all 2-way marginals in the one-shot
setting and all 3-way marginal queries in the adaptive
setting. Since the query answers in a workload sum up to 1,
each workload has ℓ2-sensitivity ∆2 =

√
2.

k-way Binary-Tree Marginals: In this work we introduce
a class of queries, which we coined Binary-Tree Marginals.
The Binary-Tree marginals consists of a collection of range
queries, as in Definition 2.3) defined over various levels.
We construct range queries using one categorical attribute
and k − 1 real-valued attribute. Recall that real-valued
features lie in the domain [0, 1]. Thus, we define a workload
of range queries by the set of intervals of width 1

2j for
j ∈ {1, 2, . . . , 5}. Now consider the set

I = {
(

i
2j ,

i+1
2j

)
|0 ≤ i < 2j , j ∈ {1, 2, . . . , 5}}

Using the same notation from definition 2.3, for real-
valued feature c, the corresponding range workload Qc,I =
{qc,(a,b)}(a,b)∈I is the set of range queries defined by inter-
vals in I . This construction simulates the binary mechanism
of Chan et al. (2011) for releasing sum prefixes privately.

Note that a single data point only appears in one interval
of size 1/2j for each 0 < j ≤ 5. Therefore, adding a new

7
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data point only affects the counts of 5 range queries in the
workload Qc,I . By the same logic, replacing a data point
affects 10 range queries in Qc,I . Therefore, we say that the
workload Qc,I has ℓ2-sensitivity

√
10.

Query class Query set size ∆2

2-way Categorical
(
d
2

) √
2

3-way Categorical
(
d
3

) √
2

2-way Binary-Tree dcat · dnum
√
10

Random Prefix 200000 1

Random Halfspaces 200000 1

Table 2. The total number of queries depends on the input data
total number of features, which we denote by d and the number
of categorical and numerical features, dcat and dnum respectively.
In addition, we list the ℓ2-sensitivity ∆2 of each query class (the
sensitivity for categorical and binary-tree marginals is written with
respect to an entire workload of queries). In our experiments, the
number of categorical attributes binary-tree marginals is set to 1.

5.3. Baselines

RAP++. We compare our mechanism PRIVATE-GSD
against the mechanism RAP++ by Vietri et al. (2022). The
RAP++ algorithm uses a first-order optimization algorithm
called Sigmoid Temperature Annealing (pseudocode can
be found in Appendix B.3). Recall that RAP++ replaces
the prefix queries with a differentiable surrogate query by
using Sigmoid functions. To control the degree by which
the Sigmoid functions approximate the prefix functions, it
uses the inverse Sigmoid temperature parameter σit. The
algorithm starts with a small inverse temperature σit and
runs a gradient-based minimizer on the induced optimization
objective with learning rate LR, and then repeats the process
for a different choice of inverse temperature.

RP / GN. We also compare our method to RAP8 (Liu
et al., 2021b; Aydöre et al., 2021) and GEM (Liu et al.,
2021b), two gradient-based optimization algorithms for gen-
erating private synthetic data that belong to discrete data
domains. In both algorithms, datasets are modeled as mix-
tures of product distributions P over the attributes, with
the main difference being the way in which such distribu-
tions are parameterized—in GEM, P is parameterized by
a neural network that given Gaussian noise, outputs a set
of product distributions, while in RAP, P is parameterized
directly by the probabilities defining the distribution for
each attribute. Because both methods are limited to discrete

8We use the softmax variant proposed by Liu et al. (2021b),
which has been shown to perform much better that the versions
originally proposed in Aydöre et al. (2021). We note in Vietri et al.
(2022), references to RAP also refer to this softmax version.

data, real-valued columns must be discretized first. Con-
sequently, RAP and GEM can only optimize over k-way
categorical and binary-tree marginals. In Appendix B.4, we
show how we modify these methods to optimize over binary-
tree queries and also provide additional details about their
optimization procedures. Going forward, we denote the one-
shot version of RAP and GEM by RP (RelaxedProjection)
and GN (GenerativeNetwork) respectively.

PGM+EM. Lastly, we compare to a graphical model ap-
proach, PGM (McKenna et al., 2019), which like RAP and
GEM, is also limited to discrete data domains. However,
PGM instead models data distributions using probabilistic
graphical models. We run an adaptive version of PGM that
also uses the exponential mechanism. We refer to this vari-
ant as PGM+EM and run it on k-way categorical marginals.

Figure 3. Prefix Queries: Max and mean error evaluated on all
ACS tasks with non-differentiable queries— 200K random prefixes.
Using adaptive version of PRIVATE-GSD and RAP++.

Figure 4. Halfspace Queries: Max and average error evaluated on
all ACS tasks with non-differentiable queries— 200K random half-
spaces. Using adaptive version of PRIVATE-GSD and RAP++.

5.4. Early Stop

In all experiments, PRIVATE-GSD is set to operate over a
maximum of G generations but uses an early-stop rule if con-
vergence in optimizing the objective is achieved. This pro-
cedure saves computational time and the details are found
in Appendix D.1.

5.5. Results

We now present empirical results comparing PRIVATE-GSD
to various baseline methods. For our experiments, we
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fix δ = 1
N2 and ε ∈ {0.07, 0.23, 0.52, 0.74, 1.0} to ex-

amine the trade-off between privacy and accuracy. For
adaptive algorithms, we run using adaptive epochs T ∈
{25, 50, 75, 100} and report the best error (averaged over 3
runs) for each ε value.

First, we provide empirical evidence that PRIVATE-GSD
is a better algorithm for generating real-valued synthetic
data (i.e., when the statistical queries are non-differentiable).
As originally shown in Vietri et al. (2022), Figures 3 and
4 demonstrate that RAP++, the previous state-of-the-art
method, can optimize over prefix and halfspace queries us-
ing a surrogate differentiable approximation in combination
with temperature annealing. However, by directly optimiz-
ing over such objectives using zeroth order optimization,
PRIVATE-GSD significantly outperforms RAP++ with re-
spect to max and average error.

Next, we show that on discretized data (both categorical and
mixed-type), PRIVATE-GSD mechanism performs equally
as well as prior work RP, GN and PGM+EM. In Figures
5 and 7, we evaluate on categorical marginals, which are
one of the primary focuses of RP, GN and PGM.9 In ad-
dition, we evaluate on binary-tree queries in Figure 6. We
note that for RP and GN, we discretize the data in such a
way that the resulting bins align with the intervals compris-
ing our binary-tree marginal queries, allowing us to also
write differentiable forms of such queries for RP and GN.
Nevertheless, we observe that PRIVATE-GSD is able to syn-
thesize both categorical-only (for categorical marginals) and
mixed-type (for binary-tree marginals) data that matches
the performance of the three baseline algorithms. Moreover,
unlike the baseline methods, PRIVATE-GSD does not re-
quire that the numerical features be discretized first when
optimizing over binary-tree marginal queries.

Figure 5. 2-way Categorical Marginals: For this experiment,
we ran the one-shot version of PRIVATE-GSD and RAP. The plot
shows the max and average error evaluated on all ACS tasks with
differentiable queries— 2-way categorical marginal queries.

9We note that PGM cannot be run with the one-shot mechanism
since the size of graphical model becomes to large.

Figure 6. 2-way Binary Tree Marginals: For this experiment,
we ran the one-shot version of PRIVATE-GSD and RAP. The plot
shows the max and average error evaluated on all ACS tasks with
2-way range marginal queries.

Figure 7. Adaptive 3-way Categorical Marginals: For this ex-
periment, we ran the adaptive version of PRIVATE-GSD, RAP,
GEM and PGM. The plot shows the max error evaluated on all
ACS tasks with 3-way categorical marginal queries.

6. Conclusion
We present PRIVATE-GSD, a versatile genetic algorithm
that can generate synthetic data to approximate a wide
range of statistical queries, regardless of their differen-
tiability. Our empirical evaluation of the PRIVATE-GSD
mechanism on mixed-type data demonstrates that PRIVATE-
GSD outperforms the state-of-the-art method, RAP++, on
non-differentiable queries and matches first-order optimiza-
tion methods for differentiable ones. Overall, genetic algo-
rithms present a promising solution for generating mixed-
type synthetic data, and we hope our work will inspire fur-
ther exploration of such approaches in privacy research.The
PRIVATE-GSD source code is publicly available at https:
//github.com/giusevtr/private_gsd.
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A. Accuracy Analysis of PRIVATE-GSD
Our mechanism inherits similar oracle accuracy guarantees of the (non-adaptive) RAP mechanism, which were proven in
Aydöre et al. (2021).
Theorem A.1. For a discrete data domain X and any dataset D ∈ XN with N rows. Fix privacy parameters ϵ, δ > 0, the
synthetic dataset size N ′, and any set of m queries Q : X ∗ → [0, 1]m. If the one-shot PRIVATE-GSD mechanism solves the
minimization in the projection step exactly, then the one-shot PRIVATE-GSD mechanism outputs a synthetic data D̂ with
average error bounded as√

1
m∥Q(D)−Q(D̂)∥22 ≤ O

(
((log(|X |/β) ln(1/δ))1/4√

ϵ ·N
+

√
log(m)√
N ′

)

Proof. We begin with the projection mechanism, which has the following guarantee proven by Nikolov et al. (2013): Given
the discrete data domain X , let X ∗ be the set of datasets of arbitrary size with rows from the domain X .

The projection mechanism by Nikolov et al. (2013), perturbs the answers of Q on dataset D using the Gaussian mechanism
to obtain a vector â, and then finds a synthetic dataset D̂∗ ∈ X ∗ by solving the following objective

D̂∗ ← argminD̂∈X∗ ∥â−Q(D̂)∥

with the following accuracy guarantee:√
1
m∥Q(D)−Q(D̂∗)∥22 ≤ α = O

(
(ln(|X |/β) ln(1/δ))1/4√

ϵ ·N

)

Next, let m be the number of queries in Q. By a simple sampling argument, proven in Lemma 3.7 of Blum et al. (2008),
there exists a dataset D̂ of size N ′ that satisfies the following:

∥Q(D̂)−Q(D̂∗)∥∞ ≤
√

log(m)

N ′

Finally, suppose that the output of PRIVATE-GSD is D̂ ∈ XN ′
, which is generated by solving an optimization problem

exactly as follows:

D̂ ← argminD̂∈XN′ ∥â−Q(D̂)∥

Then, by triangle inequality:√
1
m∥Q(D)−Q(D̂)∥22 =

√
1
m∥Q(D)−Q(D̂∗) +Q(D̂∗)−Q(D̂)∥22

≤
√

1
m∥Q(D)−Q(D̂∗)∥22 +

√
1
m∥Q(D̂∗)−Q(D̂)∥22 (Triangle inequality)

≤
√

1
m∥Q(D)−Q(D̂∗)∥22 + ∥Q(D̂)−Q(D̂∗)∥∞

≤ O

(
(ln(|X |/β) ln(1/δ))1/4√

ϵ ·N

)
+

√
log(m)

N ′

Despite the bounds in Theorem A.1 matching from the bounds in Aydöre et al. (2021), there is no guarantee about
the performance PRIVATE-GSD’s optimization. Therefore, we empirically show that PRIVATE-GSD has comparable
performance to RAP on matching marginal statistics over many different datasets. In Figure 5, we provide results on
categorical marginals and with different ACS tasks as defined in Table 5. This brief experiment also shows that, like in
the adaptive setting, PRIVATE-GSD achieves similar performance to RAP on differentiable queries in the one-shot setting
across many datasets. We use the same hyperparameters used in our adaptive experiments (Table 7), excluding our choices
for T , which are not applicable in the one-shot setting.
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B. Additional algorithm details
B.1. Privacy Theorem details

We first provide additional preliminaries.

The composition property of zCDP differential privacy is given by the following result:

Lemma B.1 (zCDP Composition, (Bun & Steinke, 2016b)). Let A1 : XN → R1 be ρ1-zCDP. Let A2 : Xn ×R1 → R2 be
such that A2(·, r) is ρ2-zCDP for every r ∈ R1. Then the algorithm A(D) that computes r1 = A1(D), r2 = A2(D, r1)
and outputs (r1, r2) satisfies (ρ1 + ρ2)-zCDP.

Any mechanism that satisfies zCDP also satisfies DP.

Theorem B.2 (zCDP to DP). If M provides ρ-zCDP, then M is (ρ+ 2
√
ρ log(1/δ), δ)-differentially private for any δ > 0.

We will use the post-procession properties of zCDP in our analysis. Essentially, there is no loss of privacy when doing an
operation on the output of a zCDP mechanism.

Lemma B.3 (Post-processing). Let M : XN → Y and f : Y → Z be randomized algorithms. Suppose M satisfies ρ-zCDP.
Define M ′ : XN → Z by M ′(X) = f(M(X)). Then M ′ satisfies ρ-zCDP.

We use the Gaussian mechanism for privately estimating a subset of statistical queries, which perturbs the statistics with
Gaussian noise scaled by the queries’ sensitivity. A query of the data has low sensitivity if a small change in the data
produces a small change in the output. Formally, let ∆(Q) denote the ℓ2-sensitivity of vector-valued query Q, where
∆(Q) = maxneighboring D,D′ ∥Q(D)−Q(D′)∥2.

Definition B.4 (Gaussian Mechanism). Let Q : XN → Rm be a function of the dataset. The Gaussian mechanism on
input D ∈ XN , Q, and ρ > 0, outputs Q(D) +N

(
0, ∆(Q)2

2ρ · I
)

. And the Gaussian mechanism satisfies ρ-zCDP (Bun &
Steinke, 2016b).

We will also use the private selection algorithm report noisy max (Durfee & Rogers, 2019) with Gumbel perturbation noise,
whose output distribution is identical to that of the exponential mechanism (McSherry & Talwar, 2007).

Definition B.5 (Exponential Mechanism). Given some dataset D ∈ X ∗, arbitrary rangeR, and score function S : X ∗×R →
R, the exponential mechanismME(D,S,R, ε) selects and outputs an element r ∈ R with probability proportional to
exp

(
εS(D,r)
2∆S

)
, where ∆S is the sensitivity of S.

Definition B.6 (Report Noisy Max With Gumbel Noise). The Report Noisy Max mechanism RNM(D, q, a, ρ) takes as
input a dataset D ∈ XN , a vector of m statistical queries q, a vector of m query answers a, and a zCDP parameter ρ.
It outputs the index of the query with highest noisy error estimate, i∗ = argmaxi∈[m](|qi(D) − ai| + Zi) where each
Zi ∼ Gumbel(1/

√
2ρN). RNM(·, q, a, ρ) satisfies ρ-zCDP.

We now provide a proof sketch to Theorem 3.1.

Proof. In the adaptive selection framework, the report noisy max (RNM, Definition B.6) and Gaussian mechanism (GM,
Definition B.4) are both called K · S times, each with a privacy budget of ρ′ = ρ/(2 ·K · S). As shown in Definition B.4
and the work of Durfee & Rogers (2019), each individual call to RNM or GM satisfies (ρ′)-zCDP. Thus, by the composition
properties outlined in Bun & Steinke (2016b)(see Lemma B.1 ), the combination of 2 ·K · S ρ′-zCDP mechanisms satisfies
ρ-zCDP.

B.2. Adaptive Selection

We present the Adaptive Selection framework in Algorithm 2, and also provide its privacy proof below.

B.3. RAP++ and its limitations

We present the details of RAP++ ’s first-order optimization routine in Algorithm 3. As mentioned before, this technique
relaxes the objective to gain differentiability. However, some issues arise. In order to showcase the issue with the relaxation
step, we construct an example, where RAP++ fails to optimize even a single prefix query on a dataset with one real-valued
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Algorithm 2 Adaptive Framework for Synthetic Data
1: Input: A private dataset D ∈ XN with N rows and d columns, A set of queries Q, number of adaptive epochs T ,

number of samples per epoch S, privacy parameter ρ.
2: Split privacy budget ρ′ = ρ/(2 · T · S).
3: Randomly initialize a synthetic data D̂1.
4: for t ∈ [T ] do
5: for i ∈ [S] do
6: Select a query qt,i from Q using a ρ′-zCDP select mechanism and score function

score(q) = ∥q(D)− q(D̂t)∥∞

7: Measure statistic with Gaussian mechanism:

ât,i ← Q(D) +N
(
0, ∆(q)

2·ρ′

)
8: end for
9: Let ât = (a1,1, . . . , at,S) and Qt(D̂) = (q1,1(D̂), . . . , qt,S(D̂)).

10: Project D̂t+1 ← argminD̂ ∥ât −Qt(D̂)∥2
11: end for
12: return D̂T+1

Algorithm 3 Relaxed Projection with Sigmoid Temperature Annealing

1: Input: A set of m sigmoid differentiable queries {q̃[·]i }i∈[m], a set of m target answers â = {âi}i∈[m], initial inverse temperature
σ1 ∈ R+, stopping condition γ > 0, and initial dataset D̂1.

2: for j = 1 to J do
3: Set inverse temperature σj = σ1 · 2j−1.

4: Define the sigmoid differentiable loss function: Lj(D̂) =
∑

i∈[m]

(
q̃
[σj ]

i (D̂)− âi

)2

5: Starting with D̂ ← D̂j . Run gradient descent on Lj(D̂) until ∥∇Lj(D̂)∥ ≤ γ. Set D̂j+1 ← D̂.
6: end for
7: Output D̂J+1

feature. Let f0.5(x) = I{x ≤ 0.5} be a prefix function with threshold 0.5, then for a one-dimensional dataset D ∈ [0, 1]N

with N rows the corresponding statistical query is q0.5(D) = 1
N

∑
x∈D f0.5(x). And, let â = q0.5(D) be the true answer of

the prefix query on dataset D. Then, RAP++ wants to find a synthetic data D̂ that minimizes the objective ∥â− q0.5(D̂)∥2,
which is non-differentiable due to the threshold query. Therefore, RAP++ optimizes a differentiable relaxation of the
objective defined by q0.5. The relaxation stop replaces the prefix function f0.5, with a Sigmoid function, which has well-
behaved gradients with adjustable magnitudes via the inverse temperature parameter. A Sigmoid function with threshold
0.5 and inverse temperature parameter σit is given by f

[σit]
0.5 (x) = 1

(1+exp(−σit·(x−0.5)))

The corresponding Sigmoid approximation to the prefix query is given by q̃σ
it

0.5(D) = 1
N

∑
x∈D f

[σit]
0.5 (x). The relaxed

objective then becomes ∥â− q̃σ
it

0.5(D̂)∥2.

Now, using a simple example, we show that RAP++ can get stuck in a bad local minimum of the differentiable loss function.
Suppose that the input data D consist of N/2 entries with value equal to 0 and N/2 entries with value equal to 1, that is
D = {0, . . . , 0, 1, . . . , 1} ∈ [0, 1]N . Then the input dataset D, evaluates to q0.5(D) = 0.5 on the prefix query (half the
data points are bellow the 0.5 threshold). Next, consider the synthetic data point D̂ = {0.5, . . . , 0.5}, which evaluates to
q̃0.5(D̂) = 0.5 on the Sigmoid prefix function, then, D̂ is a local minimum of the objective function (∥â− q̃σ

it

0.5(D̂)∥2 = 0).
However, when evaluated on the actual prefix query, the synthetic data point D̂ evaluates to q0.5(D̂) = 1. Therefore, the
error on the original loss function is 0.5.

This simple example shows how the first-order optimization procedure by Vietri et al. (2022) can get stuck in a bad local
minimum, resulting in a poor approximation of the statistical queries. Furthermore, in the experiment section, we will show
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that the RAP++ algorithm fails in practice.

B.4. Modifications to RP / GN

Suppose we have a data domain X = X1× . . .×Xd contains d discrete attributes. Then both RP and GN (both the one-shot
and adaptive variants) model such features as a mixture of K product distributions over attributes Xi (and possible values
they can take on). We denote each product distribution as Pi =

∏d
j=1 Pij , where Pij is a distribution over the discrete

values of Xj . The difference between RP and GN then is how each distribution Pij is parametrized. In RP, the parameters
θ are exactly the values Pij . Meanwhile, GN instead outputs the values Pij using a neural network Fθ, which takes in as
input Gaussian noise z ∼ N (0, IK).

In either case, query answers for k-way categorical queries can be calculated as a product over various columns in Pi.
For example (relaxing notation), suppose Pi,COLOR=red and Pi,SHAPE=circle correspond to the probabilities that attributes
COLOR = red and SHAPE = circle. Then the 2-way marginal query counting the proportion of samples that are red circles
can be written down as the product query 1

K

∑K
i=1 Pi,COLOR=red × Pi,SHAPE=circle.

Now suppose we have some numerical column that has been discretized into bins. Then a k-way range marginal query
can be simple written down as a sum of product queries. For example, suppose we have an attribute QUANTITY that has
been discretized into bins of size 10. Then the 2-way range query for proportion of samples that are red and have quantity
between 1 and 20 can be written down as 1

K

∑K
i=1 Pi,COLOR=red × [Pi,QTY=1-10 + Pi,QTY=11-20]. Therefore, we are able to

still optimize over such queries, since they are simply sums over (differentiable) product queries that the algorithms were
originally designed for.

Finally, while Liu et al. (2021b) and Aydöre et al. (2021) propose different optimization strategies for their algorithms at
each round, we introduce a simpler update procedure that we find performs well across our experiments. We present this
procedure in Algorithm 4.

Algorithm 4 RP / GN Update
Input: RP/GNθ, queries (sampled via the exponential mechanism) Q = ⟨q1, . . . , qt⟩, noisy answers (measured via the
Gaussian mechanism) A = ⟨a1, . . . , at⟩, max iterations M , batch size B
for m = 1 to 2M do

Let synthetic answers Â = RAP/GEMθ(Q)
Let errors P = |A− Â|
if m mod 2 = 0 then

Sample a set of query indices S of size B uniformly
else

Sample a set of query indices S of size B proportional to errors P
end if
Update θ via stochastic gradient decent according to ∥PS∥1

end for

B.5. Ablation study on PRIVATE-GSD parameters

This sections analyzes different configurations and parameters of PRIVATE-GSD and their effect on the final approximation
error and runtime. As described in Algorithm 1, the relevant parameters are the number of generations G, the number of
mutations Pmut, the number of crossovers Pcross and the elite size E.

Population size In this section, we delve into the investigation of parameters Pmut and Pcross, which guide the generation
of candidate synthetic datasets in each iteration. Pmut and Pcross represent the count of candidates created via the mutation
and crossover strategies respectively. Consequently, these population size parameters correspond to the exploration rate of
the PRIVATE-GSD method; larger population sizes correspond to a broader array of potential solution candidates at each
generation.

Nonetheless, a trade-off exists: larger population sizes incur higher computational costs since PRIVATE-GSD to computes
the objective function for synthetic dataset candidate. If we denote the quantity of queries as m and the population size as
P , the computational cost of PRIVATE-GSD for each iteration equals O(P ·m). Conversely, a reduced population size
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Figure 8. Ablation Study Runtimes: Heat maps displaying the total runtime of PRIVATE-GSD optimizing over all 2-way binary-tree
marginals in the oneshot setting. This is carried out for varying Pmut and Pcross parameters across five datasets. The constant parameters
are: G = 300000, N ′ = 1000, ϵ = 1, and δ = 1/N2. The PRIVATE-GSD algorithm incorporates the early stopping rule described in
Section 4. Darker colors correspond to longer runtimes for each Pmut/ Pcross pairing. A color-runtime legend is provided under each heat
map. For a summary of error, runtime, and query set size in this ablation study, refer to Table 3.

P = Pmut + Pcross may result in slower convergence.

To identify the optimal population size, we conduct an experiment where we adjust the population size and observed its
impact on the final error and computation time. We run PRIVATE-GSD that outputs a synthetic dataset matching all 2-way
marginal queries on five separate ACS datasets. For each dataset, we initiate PRIVATE-GSD with different Pmut and Pcross
values, maintaining Pmut ≤ Pcross and keeping other parameters constant. The privacy parameter ϵ is set to 1, synthetic data
rows to N ′ = 1000, and the number of iterations to G = 300, 000 with early stopping.

We present our experimental findings in figures Table 3 and Figure 8. Table 3 offers insights into the impact of the population
size parameters on the final error and runtime. Notably, while the population size parameters only moderately affect the final
error, they substantially influence the computational time. Given the stability of the PRIVATE-GSD error across different
parameters, we next visualized the effect of these parameters on computational time in Figure 8.

The heatmap in Figure 8 presents total computational time for each parameter combination, where darker hues indicate
longer computational times. From this visualization, it is evident that the optimal population size is contingent on the
dataset in question. For instance, while the ACSCOV-CA, ACSEMP-CA, and ACSMOB-CA datasets benefited from larger
population sizes, the ACSINC-CA and ACSTRA-CA datasets performed better with smaller ones. However, we find that a
robust parameter configuration that yields consistently good performance across all tasks was found to be Pmut = 100 and
Pcross = 100.

Data Queries Min Average Error Max Average Error Min Run Time(s) Max Run Time(s)

ACSCOV-CA 15894 0.0005921 0.0006259 50 247
ACSEMP-CA 10570 0.0004293 0.0004939 41 206
ACSMOB-CA 38077 0.0005560 0.0005838 73 335
ACSINC-CA 274641 0.0000761 0.0000849 165 510
ACSTRA-CA 438594 0.0000960 0.0001012 234 598

Table 3. Ablation Study Summary: A summary of the PRIVATE-GSD ablation study outlined in Appendix B.5. The study entails
running PRIVATE-GSD to optimize over all 2-way binary-tree marginals in a oneshot setting, testing various Pmut and Pcross parameter
combinations. The ‘Queries’ column shows the total size of the query set designated for each dataset task. The remaining columns
indicate best and worst case error/runtime for each (Pmut, Pcross) pairing per dataset. This summary suggests that PRIVATE-GSD error is
relatively insensitive to Pmut and Pcross parameters, but the choice of these parameters significantly affects runtime.

.

Genetic Operators Rate In this section, we investigate an alternate approach to the PRIVATE-GSD algorithm that
formulates new candidates by modifying multiple rows of synthetic data via either mutation or crossover operations.
Typically, as detailed in Section 4, the PRIVATE-GSD method generates a new candidate synthetic data by adjusting a
single entry of the optimal synthetic dataset, D̂⋆

g . However, by applying genetic operators to multiple rows of D̂⋆
g , we can

potentially accelerate the convergence rate. We hence introduce ‘mutation rate’ and ‘crossover rate’ to denote the number of
rows altered in each operation. For example, if the mutation rate is k, each candidate solution generated using the mutation
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strategy will differ from D̂⋆
g at k locations.

We conduct an experiment to understand the influence of these rates, in which we vary both the mutation rate and the
crossover rate. We run PRIVATE-GSD on ACSMOB-CA and with all 2-way marginal statistics. The privacy parameter is set
to ϵ = 1, the maximum number of generations capped at 100, 000, the population size constrained to 100, and the size of
the synthetic data set at 1, 000.

Table 4 depicts the final average error and the corresponding runtime in seconds for each combination of mutation rate and
crossover rate. Our findings indicate that both the mutation rate and the crossover rate have a significant impact on error
and run time. Interestingly, a mutation rate and crossover rate of 1 yielded the best average error and run time across all
combinations, establishing it as a consistently dependable choice in our experiment. This result emphasizes the importance
of selecting these rates carefully for optimal algorithm performance. It further provides evidence that amplifying the level of
perturbation in the candidate generation step can destabilize PRIVATE-GSD and lead to suboptimal performance.

Mutation Rate
1 2 5 10 25

C
ro

ss
ov

er
R

at
e 1 0.0476 / (83) 0.0474 / (102) 0.0495 / (129) 0.0553 / (162) 0.0826 / (266)

2 0.0480 / (117) 0.0487 / (116) 0.0507 / (135) 0.0590 / (168) 0.0860 / (272)
5 0.0542 / (127) 0.0562 / (135) 0.0617 / (154) 0.0728 / (189) 0.0995 / (293)

10 0.0825 / (161) 0.0839 / (168) 0.0908 / (189) 0.0987 / (223) 0.1216 / (327)
25 0.1922 / (264) 0.1942 / (272) 0.1918 / (291) 0.1905 / (326) 0.1945 / (435)

Table 4. Effect of ‘mutation rate’ and ‘crossover rate’. The numbers represent the average error for answering 2-way range queries and, in
parenthesis, it is the total runtime in seconds. Results are averaged over 3 runs. For all experiments we fixed the following parameters:
Input data is ACSMOB-CA, the max number of generations was 100, 000, the synthetic data size was 1, 000, Pmut = 50 and Pcross = 50,
and the privacy parameter ϵ = 1.

C. ML Evaluation
This section critically assesses the utility of synthetic data in training machine learning models. We explore two main
parameters in our investigation: the choice of mechanisms, such as PRIVATE-GSD or RAP++, and the selection of statistics
to match, including categorical marginals, Binary Tree, or Halfspace queries.

We direct our attention toward datasets that encapsulate multiple classification tasks concurrently. To this end, we construct a
multitask dataset that amalgamates all five predictive tasks outlined in Figure 9 by combining all feature and target columns.
The learning challenge presented by a multitask dataset involves developing separate models, each predicting one of the
target columns based on the feature columns. We exclude the employment task because its target is highly correlated with
feature from another tasks, making the prediction problem trivial. Thus, the multitask dataset incorporates 25 categorical
features, nine numerical features, and four binary target labels.

We initiate the experiment by dividing each dataset into a training and test set, using an 80/20 partition. The training set
is subsequently processed by a private mechanism to produce a synthetic dataset that we use to train a logistic regression
model. Lastly, the performance of the model is evaluated on the test data using the F1 metric. The F1 metric considers both
precision and recall, providing a balanced assessment of model performance, particularly when dealing with imbalanced
datasets. It is calculated as the harmonic mean of precision and recall, with a potential range from 0 to 1, wherein a higher
score denotes superior model performance.

Our results are tabulated in Table ML and showcase the F1 score for predicting four target labels using logistic regression
trained on various synthetic data methodologies alongside the F1 score of a logistic regression model trained on the original
training data. The findings suggest that the PRIVATE-GSD mechanism coupled with Binary-Tree queries is a favorable
choice among the other synthetic data baselines examined in this experiment. However, we note that the F1 scores of all
private synthetic data methodologies are inferior to the model trained on the original data, even in a low privacy regime (i.e.,
ϵ = 1).

The question of why synthetic data does not get better performance in training ML models remains an open area of
exploration. One conjecture is that we have yet to identify the right set of data properties (or statistical queries) that can be
used to generate high-quality synthetic data for machine learning applications. However, we posit that the PRIVATE-GSD
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mechanism is well-equipped to tackle this challenge due to its inherent ability and flexibility in managing diverse queries.

Figure 9. Machine Learning Evaluation: F1 test score of logistic regression trained on synthetic data. Each ACS dataset is partitioned
into training and testing set, using an 80/20 split. The train set is used to train the synthetic data algorithm, and the F1 score is computed
using the test set. Each algorithm is trained either on Binary Tree (BT) marginal queries or Halfspace (HS) queries. We fix δ = 1/N2 and
vary ε ∈ {0.07, 0.23, 0.52, 0.74, 1.0}. Results are averaged over 3 runs.

D. Additional experiment details
In this section we include additional details about our experiments, including information about datasets, queries, and
hyperparameters.

Data. In Table 5, we list all attributes for each ACS task that are used in empirical results presented in either the main
paper or this appendix.

Table 5. We list the ACS data attributes used in our experiments.

Dataset Categorical Attributes Numeric Attributes

ACSMOBILITY
MIL, DREM, CIT, DIS, COW, MAR, SCHL, MIG, NATIVITY JWMNP, PINCP
ANC, DEAR, DEYE, SEX, ESR, GCL, RAC1P, RELP WKHP, AGEP

ACSEMPLOYMENT COW, OCCP, SCHL, MAR, SEX, PINCP, RAC1P, RELP, POBP AGEP

ACSCOVERAGE
MIL, FER, DREM, CIT, DIS, MAR, SCHL, PUBCOV PINCP, AGEPMIG, NATIVITY, ANC, DEYE, SEX, ESR, RAC1P, DEAR, ESP

ACSINCOME COW, OCCP, SCHL, MAR, SEX, PINCP, RAC1P, RELP, POBP WKHP, AGEP

ACSTRAVEL
JWMNP, PUMA, CIT, DIS, OCCP, SCHL, JWTR, MAR AGEP, POVPIPMIG, SEX, RAC1P, POWPUMA, RELP, ESP

ACSMULTITASK

OCCP, MIG, CIT, ESP, ANC, PUMA, FER, DEAR, DEYE INTP, WAGP
ESR, FOCCP, JWTR, WAOB, JWMNP bin, DREM, GCL SEMP, POVPIP
MIL, SCHL, RELP, MAR, NATIVITY, POWPUMA WKHP, JWRIP
RAC1P, DIS, COW, PUBCOV, SEX, PINCP AGEP

Table 6. Number of workloads for categorical and range marginal queries used in our experiments.

mobility coverage employment income travel

2-way Cat. Marginals 136 136 120 36 91
3-way Cat. Marginals 680 680 560 84 364
2-way BT Marginals 68 34 16 18 28

Hyperparameters. In Table 7, we list the hyperparameters used for our algorithms.
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Query Class Method Hyperparameter Values

All Experiments

PRIVATE-GSD

Data Size 2000

Pmut 500/50

Pcross 500/50

Elite Size 2

Max Generations 200000

RAP++

Data Size (N ′) 1000

Queries Sampled (K) 1000

Learning Rate 0.0005, 0.001, 0.002, 0.005, 0.01

Inverse Temp. (σit)
2, 4, 8, 16, 32, 64, 128

256, 512, 1024, 2048

RAP / GEM

# Product Mixtures (K) 1000

Batch Size (B) 5000

Max Iterations (M ) 1000

# Samples 50000

RAP LR 0.03

GEM

LR 0.0003

Hidden Layers (128, 256)

Noise Dimension 16

PGM+EM
Max Iterations 250

# Samples N

Halfspace / Prefix
PRIVATE-GSD T 25, 50, 75, 100

RAP++ T 3, 4, 5, 6, 7, 8, 9

3-way Categorical All algorithms T 25, 50, 75, 100

Table 7. Hyperparameters experiments (with adaptivity).

D.1. Early Stop

In all experiments, PRIVATE-GSD operates over a maximum of G generations. However, we employ an early-stop rule if
the algorithm has reached a satisfactory level of convergence in optimizing its objective. This not only aids in achieving the
desired result more swiftly but also conserves computational resources.

To determine the convergence of the algorithm, we utilize a time-window approach. We define a window size, w (where
w < G), for assessing the early-stop condition. The algorithm is halted if the percent change in loss between the current
generation, g, and the generation g − w is less than a predetermined threshold. In all cases in this paper, the threshold is set
to 0.0001. If the change in loss between the two generations within the window falls below this threshold, the algorithm is
halted prematurely. This allows us to conclude that the algorithm has sufficiently converged and further iterations would not
significantly contribute to the optimization of the objective. Additionally, the size of the time-window, w, is set to match
the size of the synthetic dataset, N ′. The proportionality of the window size to the dataset size ensures that our early-stop
condition is adapted to the scale of the problem at hand.
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