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A person is doing karate moves.

A person is dancing in the spot. Lo-Fi
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Figure 1: Frequency of human motion. The diagram illustrates that dynamic motions exhibit higher
frequencies, while static motions correspond to lower frequencies. This observation provides key
insights for the frequency-aware sparsification design of our FlashMo.

Abstract

Diffusion models have recently advanced 3D human motion generation by pro-
ducing smoother and more realistic sequences from natural language. However,
existing approaches face two major challenges: high computational cost during
training and inference, and limited scalability due to reliance on U-Net inductive
bias. To address these challenges, we propose FlashMo, a frequency-aware sparse
motion diffusion model that prunes low-frequency tokens to enhance efficiency
without custom kernel design. We further introduce MotionSiT, a scalable diffu-
sion transformer based on a joint-temporal factorized interpolant with Lie group
geodesics over SO(3) manifolds, enabling principled generation of joint rotations.
Extensive experiments on the large-scale MotionHub V2 dataset and standard
benchmarks including HumanML3D and KIT-ML demonstrate that our method
significantly outperforms previous approaches in motion quality, efficiency, and
scalability. Compared to the state-of-the-art 1-step distillation baseline, FlashMo
reduces 12.9% inference time and FID by 34.1%.

1 Introduction

The conditional generation of 3D motions has recently garnered significant attention due to its broad
applicability across various domains, including robot manipulation [65], urban planning [11], virtual
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[83] and augmented reality [87], game development [21, 101], and video creation [5]. Notably,
recent progress in text-to-motion generation, particularly with autoregressive [100, 60, 59, 30, 85,
39, 92] and diffusion models [70, 93, 7, 94, 44, 73], has enabled the synthesis of natural human
motion from natural language. While VQ-VAE-based autoregressive methods achieve outstanding
quantitative results, they generate less natural motion with jitters due to frame-wise noise arising from
directly decoding discrete tokens, and fine-grained motion details are sometimes lost during token
discretization [13]. In contrast, motion diffusion models generate smoother and more realistic human
motion, showing a promising trend in human motion generation [73, 74, 95]. However, despite their
strengths, diffusion-based approaches still face two significant challenges, collectively limiting their
applicability in real-world scenarios.

(1) Efficiency. Motion diffusion suffers from high computational cost, as well as long training and
inference times [41]. Existing efficient methods such as step distillation [17, 16, 41], step reduction
[104], and linear models [99, 89] either require additional training of teacher models or involve
complex scanning mechanisms, resulting in overengineering and low efficiency.

(2) Scalability. Recent works in image [24, 54, 48, 71] and video generation [82, 72] indicate that
the U-Net [64] inductive bias is not critical for diffusion [24], while plain transformer denoisers show
promising scalability. However, existing motion diffusion models are mostly restricted conventional
U-Net architectures on smaller datasets [31, 61], resulting in limited and unexplored scalability.

To tackle the first challenge without additional engineering, we leverage intrinsic data characteristics.
We observe that dynamic motion, which is more important [97, 100], exhibits higher frequency
compared to static motion in generation process, as shown in Figure 1. Hence, we design a frequency-
aware sparsification mechanism that dynamically prunes tokens corresponding to low frequency
motion, enhancing efficiency while preserving high frequency motion at the attention head level. This
structured sparsification allows seamless adaptation to hardware-efficient exact attention [19, 18, 67]
without the need to customize kernels, which further enhances the efficiency. Furthermore, the unified
training and inference sparsification strategy resolves the sparsity granularity gap, enabling a 2.25×
speedup over full attention while maintaining comparable performance.

To tackle the second challenge, we design MotionSiT, along with FlashMo, tailored for motion
diffusion, which differs from the standard SiT that interpolates all dimensions together in Euclidean
space. Instead, we perform temporal-spatial factorized interpolant with Lie group geodesics on the
manifolds of joint rotations. This benefits our diffusion on the so(3) representation of joint rotations
[26, 37] and makes it more feasible to scale training on larger datasets [50]. Comprehensive analyses
also validate the effectiveness of each component and their synergistic integration.

Furthermore, to demonstrate the efficiency and scalability of FlashMo, we pretrain on the large-
scale open-source dataset MotionHub V2 [50] and evaluate our method on standard text-to-motion
benchmarks, including HumanML3D [31] and KIT-ML [61]. The results in Figure 5 show our method
significantly outperforms prior approaches in terms of motion quality, efficiency, and scalability.

The contributions of our paper can be summarized as follows:
• We present FlashMo, a frequency-aware sparse motion diffusion that prunes low-frequency

tokens to improve efficiency without kernel customization. Moreover, our trainable sparsification
strategy eliminates the sparsity granularity gap between training and inference, achieving a
2.25× speedup over full attention without sacrificing performance.

• We introduce MotionSiT, a diffusion transformer with factorized Lie group interpolant that
enables scalable motion diffusion on SO(3) manifolds of joint rotations.

• To evaluate our method’s efficiency and scalability, we conduct comprehensive experiments on
the pretraining dataset MotionHub V2 [50] and downstream benchmarks including HumanML3D
[31] and KIT-ML [61]. The results show that our model outperforms previous methods and
achieves outstanding balance between efficiency and performance. Compared to the state-of-the-
art 1-step distillation baseline (MotionPCM), FlashMo reduces inference time by 12.9% and
FID by 34.1%.

2 Related Work

Motion diffusion. Diffusion models have been widely adopted for human motion generation due
to their strong ability to synthesize realistic and diverse sequences [70, 93, 7, 94, 44, 73, 95, 42, 80,
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Figure 2: FlashMo architecture. FlashMo leverages frequency-aware sparsification and a MotionSiT
backbone to efficiently and scalably generate motion from noised latent inputs.

12, 38, 8, 74, 43, 90, 76, 33]. However, the time-consuming problem has motivated recent efforts of
acceleration. Existing approaches include step distillation [17, 16, 41], GAN-based discriminators
[104], and lightweight linear models [99, 98, 97, 89]. However, these methods often either rely on
multi-stage training with teacher models, require additional discriminators, or trade-off performance
for efficiency. Moreover, recent motion diffusion methods have explored motion frequency for
designing consistency losses [6] or decomposing hidden states in linear models [47]. However, they
have not investigated its role at the attention-head level or its potential for further improving efficiency
[57]. These methods have also been applied to downstream tasks such as long motion generation
[66, 2] and motion editing [79, 62, 92, 39, 95, 14].

Sparse attention. Sparse attention manifests in two forms: token sparsification and activation
sparsification. Depending on the granularity of sparsity, token sparsification can be categorized
into unstructured, semi-structured, and structured schemes. Unstructured sparse attention [75, 55]
applies token sparsification without a fixed attention pattern, resulting in hardware unfriendly and
challenges in kernel design [22]. Semi-structured sparse attention performs token sparsification with:
(1) pyramid [102], local [86, 3, 78, 88, 105, 51], or sliding windows [96, 34, 53, 84], (2) predefined
attention mask [40, 77, 56], (3) introducing N : M sparsity into attention weights [25, 23, 10],
according to the observed attention patterns, (4) block-wise sparse attention with a pooling operation
[81, 45, 27, 84]. However, it often requires custom computational kernels tailored to each sparsity
pattern or dedicated hardware support. Structured sparse attention [4, 63, 1, 52, 103, 35] prunes tokens
before the attention computation, enabling acceleration without the need for custom kernels. However,
due to its coarse granularity, it sometimes underperforms and is therefore typically accompanied by
distillation [49, 46], which introduces additional computation to pretrain the full attention teacher
model. For activation sparsification, it reduce computational cost by zeroing insignificant activations
[91, 9, 68, 29].

3 Method

3.1 Overview

Our FlashMo introduces innovations in both the formulation and architecture of motion diffusion, as
shown in Figure 2. We propose a geometric factorized interpolant that respects the temporal-spatial
structure of motion and preserves joint rotation consistency via manifold-based interpolation. This
allows us to achieve superior performance and improved scalability. To improve efficiency, we design
a frequency-aware sparse attention layer that prunes low-frequency tokens while preserving high-
frequency ones at the head level. Token selection is adaptively guided by the attention distribution,
enabling unified training and inference without the sparsity granularity mismatch. Our sparsification
integrates seamlessly with hardware-efficient exact attention [19, 18, 67] without kernel customization,
achieving high efficiency without sacrificing performance.
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3.2 MotionSiT

MotionSiT is a latent generative model. Given a motion representation M ∈ ML×D where L denotes
the motion length and D the spatial feature dimension encoded from rotations, we apply a VAE to
compress M along the temporal axis. The encoder maps M to a latent representation X ∈ RT×S ,
where T = L/r is the reduced temporal resolution with compression ratio r, and S is the latent
dimension in spatial direction. Compared to standard SiT as in Appendix A.1, which targets image
generation, motion generation differs due to its temporal-spatial structure and the manifold geometry
of motion representations. According to these characteristics, our MotionSiT introduces following
geometric interpolant tailored for motion.

Temporal-spatial factorized interpolant. The original SiT assumes each input sample is a flat
vector and defines a simple linear stochastic interpolant between a noise sample ϵ ∼ N (0, I) and the
data sample x∗ via:

xt = α(t)x∗ + σ(t)ϵ.

While effective for image data, this formulation overlooks the heterogeneous nature of motion
representation, where temporal and spatial dimensions carry distinct physical meanings and roles in
motion representation.

Figure 3: Euclidean interpolant vs. Lie
group geodesics interpolant.

Hence, we introduce a temporal-spatial factorized inter-
polant (FI), which applies independent noise schedules
along the temporal and spatial dimensions. Specifically,
we define:

xt = αT (t)⊙ αS(t)⊙ x∗ + σ(t)ϵ,

where αT (t) ∈ RT and αS(t) ∈ RS are scalar schedules
for temporal and spatial dimensions, respectively. The
element-wise product ⊙ is broadcasted to modulate x∗

at each timestep and spatial location individually. This
factorization allows flexible noise control across time and
joints, reflecting motion’s structural characteristics.

Lie group geodesics interpolant. Another limitation
of interpolation in vanilla SiT lies in its assumption of
Euclidean geometry, as shown in Figure 3 However, for
motion representation, joint orientations are commonly expressed as rotation matrices in SO(3)
[26, 37]. Applying such interpolation directly to the motion manifold leads to geometric inconsistency
in joint rotations.

Hence, we introduce the Lie group geodesic interpolant (LI) to respect the underlying manifold
structure through Lie group geodesics. Given a target motion sample x∗ ∈ G, where G denotes a
Lie group, we first map x∗ to its tangent space g using the logarithmic map log : G → g. We then
interpolate within the tangent space before mapping back to the manifold with the exponential map:

xt = Exp (α(t) · log(x∗) + σ(t) · ϵ) ,

where ϵ is Gaussian noise in the Lie algebra g. This approach ensures that the interpolated sample xt

always lies on the manifold and that noise is injected in a way that respects the local geometry of the
motion space.

Geometric factorized interpolant. Building on the temporal-spatial factorization introduced
earlier, we now incorporate the Lie group geodesic to define the geometric factorized interpolant
(GFI) in MotionSiT. Specifically, for motion representation lies on a manifold such as SO(3), we
perform geodesic interpolant on both temporal and spatial dimension:

xτ,s
t = Exp (αT (t)τ · αS(t)s · log(x∗τ,s) + σ(t) · ϵτ,s) ,

where x∗τ,s denotes the motion state at time τ and spatial location s, and ϵτ,s is Gaussian noise in
the corresponding tangent space. This formulation combines the benefits of temporal-spatial control
while preserves the geometric consistency of joint rotations during interpolation.
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Figure 4: Frequency magnitude vs. attention heatmap of attention heads. The frequency
magnitude is computed with the Fast Fourier Transform (FFT) and averaged over 100 latent motion
features. Brighter colors indicate higher magnitudes. Pixels closer to the center represent lower
frequencies. Both maps are visualized from the last layer of MotionSiT.

3.3 Frequency-Aware Sparsification

Through observation of the frequency of attention heads in the upper part of Figure 4, the heads can
be categorized into Hi-Fi and Lo-Fi groups. Moreover, the lower part of Figure 4 shows that Hi-Fi
and Lo-Fi heads exhibit clearly distinct patterns in the attention heatmap, providing strong empirical
evidence for designing dynamic token sparsification.

Frequency-aware head partition. Given the number of head Nh, we first partition the Nh attention
heads based on their frequency with an ratio β ∈ [0, 1], where the first βNh heads are low-frequency
(Lo-Fi) heads HLo and the remaining (1− β)Nh heads are high-frequency (Hi-Fi) heads HHi.

HLo ⊂ {1, . . . , Nh},with |HLo| = βNh, and HHi = {1, . . . , Nh} \ HLo

Full attention for Hi-Fi heads. Given a motion latent representation X ∈ RT×S , for each attention
head h ∈ HHi, we define projection matrices W(h)

q ,W
(h)
k ,W

(h)
v ∈ RS×dk , where dk is the hidden

dimensions for a head. We project X into Q,K,V for each head:

Q[X](h) = XW(h)
q , K[X](h) = XW

(h)
k , V[X](h) = XW(h)

v ,

where Q[X](h),K[X](h),V[X](h) ∈ RT×dk . We then calculate full attention for each Hi-Fi head:

Attention(Q[X](h),K[X](h),V[X](h)), where h ∈ HHi.

Sparse attention for Lo-Fi heads. We perform attention-guided sparsification on Lo-Fi heads,
adaptively pruning less important low-frequency motion tokens while preserving key motions

Attention-based adaptive token selection. Previous works [100] have successfully incorporated
attention-guidance for selecting key motion tokens. However, they are limited to attention masking
and do not adapt the masking ratio across layers. In contrast, our sparsification is adaptive across
layers based on their attention distribution.

Given a full attention score in each head A = Q[X](h)K[X](h)
⊤ ∈ RT×T , the cumulative attention

score ax for each token x is calculated by summing the corresponding column, and the normalized
cumulative attention score ãx by averaging over the non-zero entries in that column.

ax =

T∑
c=1

Ac,x, ãx =

∑T
c=1 Ac,x∑T

c=1 I[Ac,x ̸= 0]
.

We then select the minimum number of tokens κ whose cumulative attention scores reach the threshold
γ of the total attention mass:

κ = min

{
κ ∈ Z

∣∣∣∣∣
κ∑

i=1

asorted(i) ≥ γ

T∑
i=1

asorted(i)

}
,
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where asorted(i) denotes the i-th highest attention score, obtained by sorting cumulative attention
scores a in descending order.

We then select the top κ tokens from X ∈ RT×S according to their normalized cumulative attention
scores ãx, and obtain the selected token matrix Z ∈ Rκ×S , where κ < T . This allows κ to vary
depending on the distribution of attention scores in each attention layer:

Tκ = Top-κ(ãx), Z = X[Tκ, :], Z ∈ Rκ×S .

Sparse attention calculation. For each attention head h ∈ HLo, we project X into Q, and Z into
K,V for each head:

Q[X](h) = XW(h)
q , K[Z](h) = ZW

(h)
k , V[Z](h) = ZW(h)

v ,

where Q[X](h) ∈ RT×dk , and K[Z](h),V[Z](h) ∈ Rκ×dk . We then calculate sparse attention for
each Lo-Fi head:

Attention(Q[X](h),K[Z](h),V[Z](h)), where h ∈ HLo.

Sparse multi-head attention. Hence our frequency-aware sparse multi-head attention can be
calculated as:

Sparse-MHA(X) = Concat
[{

Attention(Q[X](h),K[X](h),V[X](h)), h ∈ HHi

Attention(Q[X](h),K[Z](h),V[Z](h)), h ∈ HLo,

]
Wo

where Wo ∈ R(Nh·dk)×S projects back to the original latent dimension.

4 Experiments

4.1 Datasets and Evaluation Metrics

Datasets. For pretraining, we utilize the recent large-scale open-source dataset MotionHub V2
[50], which contains 142,350 motion clips and 259,998 captions. For downstream evaluation, we
conduct experiments on standard text-to-motion (T2M) datasets, including HumanML3D [31] and
KIT-ML [61]. HumanML3D comprises 14,616 motion clips, each accompanied by three textual
descriptions, resulting in a total of 44,970 captions. The KIT-ML dataset consists of 3,911 motions
paired with 6,278 textual descriptions. For both datasets, we adopt the pose representation defined in
T2M [31] to ensure consistency in motion representation across evaluations.

Evaluation metrics. We adopt standard evaluation metrics to assess different aspects of our
experiments. We use FID and R-Precision to evaluate the realism and accuracy of generated motions,
MultiModal Distance to measure motion-text alignment, and a diversity metric to quantify variation in
motion features. Additionally, we employ the Multi-Modality (MModality) metric to assess diversity
among motions generated from the same text description. Moreover, we calculate Average Inference
Time (AIT) for showing efficiency.

4.2 Implementation Details

The encoder and decoder of the VAE consist of 4 layers with a compression rate r = 4. MotionSiT
has a depth of 8, with a frequency ratio β = 0.5 and an attention threshold γ = 0.95. Both the
VAE and MotionSiT use 4 attention heads with a latent dimension of 512. We employ a frozen text
encoder from CLIP ViT-B/32. A constant learning rate of 1× 10−4 is used, with a batch size of 256
and the AdamW optimizer. For fair comparison, each model is trained for 6K epochs during the VAE
stage and 3K epochs during the diffusion stage. We adopt 1000 diffusion steps during training and 10
sampling steps during inference. All experiments are conducted on an Intel Xeon Platinum 8469C
CPU at 2.60GHz, with a single NVIDIA H20 96G GPU and 32GB of RAM.
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Table 1: Comparison of text-to-motion generation on HumanML3D [31] and KIT-ML [61] datasets.
→ indicates the closer to real data, the better. Bold and underline indicate best and second best
results.

Method Venue AIT(s) ↓ R-Precision ↑ FID ↓ MM Dist ↓ Diversity → MModality ↑
Top-1 Top-2 Top-3

HumanML3D [31]

Real - - 0.511±.003 0.703±.003 0.797±.002 0.002±.000 2.974±.008 9.503±.065 -

MMM [60] CVPR 2024 0.081 0.504±.003 0.696±.003 0.794±.002 0.080±.003 2.998±.007 9.411±.058 1.164±.041

MoMask [30] CVPR 2024 0.120 0.521±.002 0.713±.002 0.807±.002 0.045±.002 2.958±.008 - 1.241±.040

BAMM [59] ECCV 2024 0.411 0.525±.002 0.720±.003 0.814±.003 0.055±.002 2.919±.008 9.717±.089 1.687±.051

MoGenTS [85] NeurIPS 2024 0.181 0.529±.003 0.719±.002 0.812±.002 0.033±.001 2.867±.006 9.570±.077 -

MotionLCM [17] (1-step) ECCV 2024 0.030 0.502±.003 0.701±.002 0.803±.002 0.467±.012 3.022±.009 9.631±.066 2.172±.082

MotionLCM [17] (2-step) ECCV 2024 0.035 0.505±.003 0.705±.002 0.805±.002 0.368±.011 2.986±.008 9.640±.052 2.187±.094

MotionLCM [17] (4-step) ECCV 2024 0.043 0.502±.003 0.698±.002 0.798±.002 0.304±.012 3.012±.007 9.607±.066 2.259±.092

EMDM [104] ECCV 2024 0.050 0.498±.007 0.684±.006 0.786±.006 0.112±.019 3.110±.027 9.551±.078 1.641±.078

Motion Mamba [99] ECCV 2024 0.058 0.502±.003 0.693±.002 0.792±.002 0.281±.009 3.060±.058 9.871±.084 2.294±.058

StableMoFusion [38] MM 2024 0.499 0.553±.003 0.748±.002 0.841±.002 0.098±.003 - 9.748±.092 1.774±.051

MotionLCM-V2 [16] (1-step) Preprint 2024 0.031 0.546±.003 0.743±.002 0.837±.002 0.072±.003 2.767±.007 9.577±.070 1.858±.056

MotionLCM-V2 [16] (2-step) Preprint 2024 0.038 0.551±.003 0.745±.002 0.836±.002 0.049±.003 2.765±.008 9.584±.066 1.833±.052

MotionLCM-V2 [16] (4-step) Preprint 2024 0.050 0.553±.003 0.746±.002 0.837±.002 0.056±.003 2.773±.009 9.598±.067 1.758±.056

Light-T2M [89] AAAI 2025 0.151 0.511±.003 0.699±.002 0.795±.002 0.040±.002 3.002±.008 - 1.670±.061

MotionPCM [41] (1-step) Preprint 2025 0.031 0.560±.002 0.752±.003 0.844±.002 0.044±.003 2.711±.008 9.559±.081 1.772±.067

MotionPCM [41] (2-step) Preprint 2025 0.036 0.555±.002 0.749±.002 0.839±.002 0.033±.002 2.739±.007 9.618±.088 1.760±.068

MotionPCM [41] (4-step) Preprint 2025 0.045 0.559±.003 0.752±.003 0.842±.002 0.030±.002 2.716±.008 9.575±.082 1.714±.062

FlashMo (Ours) - 0.027 0.562±.004 0.754±.005 0.847±.005 0.041±.002 2.711±.006 9.614±.056 2.812±.046

FlashMo w/ pretrain (Ours) - 0.027 0.568±.005 0.761±.002 0.851±.003 0.029±.002 2.703±.005 9.601±.073 2.851±.069

KIT-ML [61]

Real - - 0.424±.005 0.649±.006 0.779±.006 0.031±.004 2.788±.012 11.08±.097 -

MMM [60] CVPR 2024 - 0.404±.005 0.621±.005 0.744±.004 0.316±.028 2.977±.019 10.91±.101 1.232±.039

MoMask [30] CVPR 2024 - 0.433±.007 0.656±.005 0.781±.005 0.204±.011 2.779±.022 - 1.131±.043

BAMM [59] ECCV 2024 - 0.438±.009 0.661±.009 0.788±.005 0.183±.013 2.723±.026 11.01±.094 1.609±.065

MoGenTS [85] NeurIPS 2024 - 0.445±.006 0.671±.006 0.797±.005 0.143±.004 2.711±.024 10.92±.090 -

EMDM [104] ECCV 2024 - 0.443±.006 0.660±.006 0.780±.005 0.261±.014 2.874±.015 10.96±.093 1.343±.089

Motion Mamba [99] ECCV 2024 - 0.419±.006 0.645±.005 0.765±.006 0.307±.041 3.021±.025 11.02±.098 1.678±.064

StableMoFusion [38] MM 2024 - 0.445±.006 0.660±.005 0.782±.004 0.258±.029 - 10.94±.077 1.362±.062

Light-T2M [89] AAAI 2025 - 0.444±.006 0.670±.007 0.794±.005 0.161±.009 2.746±.016 - 1.005±.036

MotionPCM [41] (1-step) Preprint 2025 - 0.433±.007 0.654±.007 0.781±.008 0.355±.011 2.820±.022 10.78±.078 1.337±.047

MotionPCM [41] (2-step) Preprint 2025 - 0.437±.005 0.664±.005 0.787±.006 0.294±.011 2.844±.018 10.83±.094 1.254±.050

MotionPCM [41] (4-step) Preprint 2025 - 0.443±.005 0.664±.004 0.789±.005 0.336±.013 2.881±.023 10.76±.096 1.258±.056

FlashMo (Ours) - - 0.449±.002 0.670±.004 0.799±.002 0.152±.004 2.709±.005 10.64±.074 3.287±.042

FlashMo w/ pretrain (Ours) - - 0.453±.001 0.679±.004 0.807±.003 0.132±.005 2.701±.005 10.79±.093 3.591±.070

(a) FID vs. AIT(s) ↙ (b) Training Time ↓ (c) Parameters ↓ (d) GFLOPS ↓

Figure 5: Efficiency comparison. The figure demonstrates that FlashMo achieves the lowest inference
time, training time, model size, and FLOPs while maintaining superior performance compared to
other methods.

4.3 Comparative Study

We compare our method with recent efficient motion diffusion models and VQ-VAE-based models
on both HumanML3D and KIT-ML. We include both our model trained from scratch and the version
pretrained on MotionHub V2 [50]. And we follow T2M [31] and report the average over 20 runs
with 95% confidence intervals. The results in Table 1 demonstrate that our method consistently
outperforms other approaches across most quantitative performance metrics, achieving a 10% effi-
ciency improvement compared to previous fastest 1-step distillation [17], without the need to train an
additional teacher model. Please see the full comparison table in Appendix D.

Efficiency. We compare our method with other approaches in terms of Average Inference Time
(AIT), training time, model parameters, and GFLOPs. For the inference setting, we follow [7]
to calculate AIT, measured on the same Tesla V100 GPU. The results in Figure 5 and Table 1
demonstrate that our method not only achieves superior performance but also maintains the lowest
inference time, training time, model size, and GFLOPs.
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(a) R-Precision Top-1 ↑ (b) R-Precision Top-2 ↑ (c) R-Precision Top-3 ↑

(d) FID ↓ (e) MM Dist ↓ (f) MModality ↑

Figure 6: Scaling trend. The figure demonstrates the scaling trends of different denoiser designs
(U-Net, DiT, SiT, and MotionSiT) with varying proportions of pretraining data. The results show
that our MotionSiT exhibits superior scalability and outperforms other methods.

Table 2: Interpolants design. The model is trained from scratch on HumanML3D [31]. The right
arrow → means that the closer to the real motion, the better. Bold indicates the best result.

Method R Precision ↑ FID↓ MM Dist↓ Diversity→ MModality↑
Top 1 Top 2 Top 3

Real 0.511±.003 0.703±.003 0.797±.002 0.002±.000 2.974±.008 9.503±.065 -

SBDM-VP 0.503±.002 0.705±.005 0.791±.003 0.094±.015 2.774±.009 9.642±.078 2.209±.063

Linear 0.535±.001 0.733±.004 0.837±.005 0.065±.009 2.744±.007 9.595±.069 2.449±.088

GVP 0.542±.005 0.741±.003 0.840±.001 0.058±.002 2.736±.008 9.588±.043 2.600±.039

FI (Linear) 0.544±.001 0.743±.003 0.842±.005 0.054±.002 2.732±.005 9.590±.077 2.659±.064

FI (GVP) 0.507±.005 0.710±.002 0.802±.006 0.089±.008 2.784±.001 9.632±.057 2.218±.067

LI (Linear) 0.551±.005 0.748±.001 0.844±.003 0.048±.002 2.730±.014 9.602±.047 2.705±.029

LI (GVP) 0.550±.001 0.745±.001 0.841±.003 0.044±.005 2.725±.012 9.633±.072 2.788±.075

GFI (Linear) 0.562±.004 0.754±.005 0.847±.005 0.041±.002 2.711±.006 9.614±.056 2.812±.046

4.4 Ablation Study

Scalability. To showcase our method’s scalability, we compare various denoiser architectures
against our backbone using different proportions of pretraining data. As shown in Figure 6, our
method consistently improves performance as data increases, demonstrating strong scalability and
generalization capability. This scaling trend shows promising results for 3D human motion generation,
as larger amounts of motion data can be acquired by HMR [28, 15] and MoCap [20, 36], highlighting
a promising direction for foundational motion generative models.

Interpolants design. The interpolant approach is one of the key innovations in FlashMo. Since we
propose the geometrically factorized interpolant, the choice of an appropriate interpolant function
becomes particularly important. Both score-based [69] and velocity-field diffusion models [54]
have explored different interpolant functions α(t) and variances σ(t), as discussed in Appendix A.1.
The results in Table 2 show that our geometric factorized interpolant with a linear interpolation
function significantly outperforms other interpolants. Furthermore, when leveraging the factorized
interpolant, the linear function exhibits a notable advantage compared to GVP, which contrasts
with SiT [54] where GVP demonstrates better performance. This is mathematically sound because
although factorization better aligns with the temporal-spatial structure of motion, combining it with
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Table 3: Sparsification parameters. The model is trained from scratch on HumanML3D [31]. The
right arrow → means that the closer to the real motion, the better. Bold indicates the best result.

Method AIT(s)↓ R Precision ↑ FID↓ MM Dist↓ Diversity→ MModality↑
Top 1 Top 2 Top 3

Real - 0.511±.003 0.703±.003 0.797±.002 0.002±.000 2.974±.008 9.503±.065 -

Full Attention 0.061 0.565±.002 0.759±.004 0.850±.006 0.033±.004 2.708±.003 9.598±.042 2.833±.043

β = 0.75 γ = 0.93 0.014 0.466±.003 0.652±.005 0.747±.006 0.644±.003 3.316±.007 9.638±.071 1.073±.042

β = 0.75 γ = 0.95 0.016 0.517±.005 0.694±.001 0.798±.004 0.305±.005 3.035±.003 9.745±.055 2.653±.025

β = 0.75 γ = 0.97 0.019 0.538±.001 0.723±.004 0.819±.002 0.097±.004 2.734±.005 9.649±.053 2.707±.052

β = 0.50 γ = 0.93 0.023 0.515±.001 0.690±.006 0.792±.003 0.065±.004 2.752±.005 9.598±.042 2.619±.071

β = 0.50 γ = 0.95 0.027 0.562±.004 0.754±.005 0.847±.005 0.041±.002 2.711±.006 9.614±.056 2.812±.046

β = 0.50 γ = 0.97 0.035 0.559±.002 0.752±.005 0.844±.007 0.040±.003 2.713±.004 9.442±.064 2.820±.043

β = 0.25 γ = 0.93 0.042 0.545±.005 0.742±.002 0.810±.006 0.107±.003 2.935±.004 9.465±.031 2.364±.045

β = 0.25 γ = 0.95 0.048 0.560±.002 0.753±.004 0.846±.001 0.040±.003 2.711±.002 9.657±.063 2.819±.035

β = 0.25 γ = 0.97 0.053 0.562±.005 0.753±.002 0.845±.003 0.039±.004 2.715±.002 9.633±.053 2.826±.063

Table 4: Model configurations. The model is trained from scratch on HumanML3D [31]. The right
arrow → means that the closer to the real motion, the better. Bold and underline indicate best and
second best results.

Method AIT(s)↓ R Precision ↑ FID↓ MM Dist↓ Diversity→ MModality↑
Top 1 Top 2 Top 3

Real - 0.511±.003 0.703±.003 0.797±.002 0.002±.000 2.974±.008 9.503±.065 -

Nh = 2 0.024 0.532±.004 0.732±.002 0.814±.002 0.064±.003 2.954±.005 9.616±.024 2.426±.064

Nh = 6 0.032 0.561±.001 0.750±.006 0.841±.002 0.041±.004 2.710±.002 9.785±.053 2.810±.061

Nh = 8 0.039 0.566±.006 0.752±.003 0.847±.002 0.039±.006 2.709±.003 9.692±.047 2.809±.083

r = 2 0.035 0.542±.002 0.745±.005 0.839±.006 0.047±.002 2.722±.001 9.684±.074 2.793±.025

Depth = 4 0.023 0.541±.006 0.740±.001 0.836±.002 0.050±.004 2.728±.001 9.688±.074 2.807±.047

Depth = 6 0.025 0.553±.003 0.749±.002 0.840±.005 0.045±.002 2.719±.005 9.704±.036 2.809±.064

Depth = 10 0.033 0.565±.003 0.754±.006 0.846±.001 0.038±.001 2.708±.007 9.719±.064 2.811±.057

Ours 0.027 0.562±.004 0.754±.005 0.847±.005 0.041±.002 2.711±.006 9.614±.056 2.812±.046

GVP breaks the variance preserving property, which is a theoretical guarantee in score-based and
velocity-field diffusion training. In contrast, the linear interpolant does not have this issue.
Sparsification parameters. We conducted experiments with different head ratios β and attention
thresholds γ, keeping all other settings the same. The results in Table 3 show that increasing the
number of Lo-Fi heads and pruning more tokens improves speed but leads to a decrease in perfor-
mance. In contrast, our sparsification parameters achieve an excellent balance between efficiency
and sparsity, delivering performance comparable to full attention while achieving a 2.25× speedup,
enabled by unified training and inference without token granularity mismatch.
Model configurations. We investigate different model configuration including number of heads Nh

and model depth of MotionSiT, compression ratio r of VAE, compare to our default settings (Nh = 4,
r = 4, depth = 8). The results in Table 4 demonstrate the robustness of our model across different
configurations. While increasing the model’s depth and number of attention heads improves metrics
such as FID and MM Dist, it sacrifices efficiency. Our chosen configuration balances performance
and efficiency.

5 Conclusion
We present FlashMo, a frequency-aware sparse motion diffusion framework that addresses both
efficiency and scalability challenges in 3D human motion generation. By introducing a unified training
and inference sparsification strategy, FlashMo achieves a 2.25× speedup over full attention without
compromising motion quality. Our proposed MotionSiT architecture leverages a geometrically
factorized interpolant with Lie group geodesics, enabling principled modeling of joint rotations on
SO(3) manifolds. Extensive experiments on HumanML3D, and KIT-ML validate the effectiveness of
FlashMo, demonstrating significant improvements over state-of-the-art methods in both performance
and efficiency. Beyond empirical gains, FlashMo highlights the importance of respecting manifold
geometry in diffusion processes, demonstrating that modeling motion trajectories along SO(3)
geodesics preserves rotational consistency and yields smoother, physically coherent human motions
compared to Euclidean approximations.
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Appendix

A Preliminaries

A.1 Scalable Interpolant Transformer (SiT)

Scalable Interpolant Transformers (SiT) [54] is a diffusion transformer [58] based on stochastic
interpolants, which defines a class of time-indexed stochastic processes that map a noise sample
x0 ∼ p0 to an intermediate point x(t) over t ∈ [0, 1]. These interpolants are defined without requiring
a target sample x1 (as in standard DDPMs), and instead use structured noise perturbation with learned
dynamics to generate samples.

The interpolant is defined as:

x(t) = α(t)x0 + σ(t)ϵ, ϵ ∼ N (0, I),

where α(t) and σ(t) are time-dependent scalar functions, x0 is a noise sample (analogous to initial
state in forward diffusion). It holds that x(0) = x0, and x(1) ideally follows p1, the data distribution.

These interpolants allow generation and learning without explicitly simulating a forward diffusion
trajectory from x1 to x0 as in traditional diffusion models.

Forward SDE. The forward generative process in diffusion models is typically described using a
stochastic differential equation of the form:

dx = f(x, t) dt+ g(t) dwt,

where f(x, t) is a drift function, g(t) is a diffusion coefficient, wt is standard Brownian motion.

Reverse-time SDE. The reverse-time dynamics of this process can be derived from the theory of
time-reversal of stochastic processes. The reverse time SDE is:

dx =
[
f(x, t)− g(t)2∇x log pt(x)

]
dt+ g(t)dw̄t,

where ∇x log pt(x) is the score function, which denotes the gradient of the log-density at time t, dw̄t

is a reverse-time Brownian motion.

This reverse-time SDE shows that, to sample from the data distribution starting from noise, we need
to access the time-dependent score function of intermediate states. This is typically learned using
score matching in diffusion models.

Probability flow ODE. An alternative, deterministic formulation of the same marginal distributions
is given by the probability flow ODE:

dx

dt
= f(x, t)− 1

2
g(t)2∇x log pt(x).

Unlike the reverse SDE, this ODE yields a deterministic mapping from x0 to x1. Critically, both the
reverse-time SDE and the probability flow ODE share the same marginal distribution pt(x) for each
t.

This connection allows one to model generation either stochastically (via sampling the reverse SDE)
or deterministically (via integrating the ODE). In SiT, the idea is to sidestep direct score estimation
and instead predict the time-derivative of the interpolant path.

Velocity fields and learning objectives. Rather than explicitly learning the score function
∇x log pt(x), SiT models the trajectory of the interpolant x(t) by learning its velocity field:

v(x(t), t) :=
dx(t)

dt
.

Given the analytic form of the interpolant:

x(t) = α(t)x0 + σ(t)ϵ,
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its time derivative is:
dx(t)

dt
= α̇(t)x0 + σ̇(t)ϵ.

Since x0 and ϵ are both known (sampled during training), this velocity is analytically computable.

The SiT model learns a velocity estimator vθ(x(t), t) by minimizing the expected squared error
between the predicted and true velocity:

L(θ) = Ex0,ϵ

[∫ 1

0

∥∥∥∥vθ(x(t), t)−
dx(t)

dt

∥∥∥∥2 dt
]
.

This learning objective removes the need for score estimation or denoising objectives and allows SiT
to scale better.

Interpolants design. The choice of interpolant functions α(t), the deterministic scaling of the input
noise x0 and σ(t), the time-dependent standard deviation controlling the magnitude of the stochastic
perturbation directly determines the geometry of the stochastic path x(t) = α(t)x0 + σ(t)ϵ. This,
in turn, influences training dynamics, sample quality, and generalization. Below, we describe two
common interpolant designs that capture different trade-offs

The linear interpolant is defined as:

α(t) = 1− t, σ(t) =
√
t.

This design induces a linear interpolation in the input x0 and a square-root scaling of the noise. At
t = 0, we have x(0) = x0; at t = 1, α(1) = 0 and σ(1) = 1, hence x(1) = ϵ, a pure noise sample.

This interpolant is simple and intuitive, but its marginal distribution pt(x) varies in both mean and
variance across time. Specifically:

E[x(t)] = α(t)E[x0] = 0, Var[x(t)] = α(t)2 + σ(t)2 = (1− t)2 + t.

Thus, the total variance is time-varying.

To address the variance inconsistency, the GVP interpolant is constructed such that the total variance
remains constant over time:

α(t)2 + σ(t)2 = 1.

A canoncial choice under this constraint is:

α(t) = cos
(π
2
t
)
, σ(t) = sin

(π
2
t
)
.

This design ensures that:
x(t) ∼ N (0, I), ∀t ∈ [0, 1].

That is, the marginal distribution of x(t) stays isotropic Gaussian throughout the path. This simplifies
score estimation and enhances training stability. Moreover, the smooth transition from x0 to noise is
nonlinear, leading to smoother gradients and more coherent sample trajectories.

The choice between them depends on downstream task requirements and model capacity.

A.2 Lie Groups for Rigid Body Rotations and Motions

Rigid body rotations and transformations in three-dimensional space are not elements of Euclidean
space, but instead belong to structured non-Euclidean manifolds with group structures, specifically
Lie groups. This geometric structure is critical for ensuring mathematically consistent operations
such as interpolation, averaging, and noise perturbation, which are frequently needed in motion
analysis and generation tasks.

The Special Orthogonal Group SO(3). The space of all 3D rotation matrices forms a Lie group
known as the special orthogonal group:

SO(3) =
{
R ∈ R3×3 | R⊤R = I, det(R) = 1

}
,

which is a compact, connected, non-commutative Lie group of dimension 3. Each element of
SO(3) represents a proper rotation in R3, and the group operation is matrix multiplication. The
non-Euclidean nature of SO(3) implies that standard linear operations, such as averaging two rotation
matrices or interpolating between them, may lead to results that no longer lie on the manifold.
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The Special Euclidean Group SE(3). For full rigid body transformations, including both rotation
and translation, the appropriate Lie group is SE(3):

SE(3) =

{[
R t
0 1

]
∈ R4×4

∣∣∣∣ R ∈ SO(3), t ∈ R3

}
,

which is a 6-dimensional, non-compact, non-commutative Lie group. The group operation is again
matrix multiplication, and SE(3) encapsulates both orientation and position of a rigid body in space.

Lie Algebras and Local Coordinates. Associated with each Lie group G is a Lie algebra g, which
serves as the tangent space at the identity element and provides a local, linear coordinate system for
the manifold. For SO(3), the Lie algebra so(3) consists of all 3D skew-symmetric matrices:

so(3) =
{
A ∈ R3×3 | A⊤ = −A

}
.

A standard isomorphism between R3 and so(3) is provided by the hat operator:

[ω]× =

[
0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

]
, ω ∈ R3,

which maps a vector to its corresponding skew-symmetric matrix. The inverse operation is the vee
operator, mapping from so(3) to R3.

Exponential and Logarithmic Maps. The exponential map exp : g → G and its inverse, the
logarithmic map log : G → g, provide the tools to move between the manifold and its tangent space.
For SO(3), the exponential map is given in closed form by Rodrigues’ formula:

exp([ω]×) = I +
sin θ

θ
[ω]× +

1− cos θ

θ2
[ω]2×, θ = ∥ω∥.

This constructs a rotation matrix corresponding to a rotation of angle θ around axis ω/∥ω∥. The
logarithmic map inverts this operation, computing the minimal-axis rotation vector ω corresponding
to a given rotation matrix R:

log(R) =
θ

2 sin θ
(R−R⊤), θ = cos−1

(
Tr(R)− 1

2

)
.

Interpolation and Perturbation on Lie Groups. A major benefit of the Lie group structure is
that interpolation and noise perturbation can be carried out in the tangent space, ensuring that the
results lie back on the manifold after mapping. Given two rotations R1, R2 ∈ SO(3), a geodesic
interpolation can be defined via:

R(t) = R1 · exp
(
t · log(R⊤

1 R2)
)
, t ∈ [0, 1],

which traces the shortest path on the manifold between R1 and R2. More generally, any operation of
the form:

R = exp(ω), ω ∼ N (0,Σ),

defines a distribution on SO(3) by sampling from a Gaussian in the tangent space R3 and mapping
to the manifold via the exponential map. Such constructions are widely used in manifold-aware
generative models and motion synthesis.

Extensions to SE(3). For rigid body motion in SE(3), the corresponding Lie algebra se(3) is a
6-dimensional space encoding translational and rotational velocities. Elements of se(3) are typically
expressed using twist coordinates (v, ω) ∈ R6, and the exponential or logarithmic maps general-
ize accordingly. The Baker-Campbell-Hausdorff formula governs the non-linear composition of
transformations, and matrix representations of exp and log are available via the theory of screw
motions.

This Lie group machinery forms the mathematical foundation for handling rotation and transformation
data in a consistent, geometry-aware manner, and is indispensable in domains such as robotics,
graphics, and motion modeling.
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B User Study

This study conducts a comprehensive user evaluation of our method compared with MotionLCM
[17] and MoGenTS [85]. We assess the real-world applicability of motion sequences generated by
Motion Anything and baseline models using a Google Forms survey completed by 50 participants. As
shown in Figure 7, the user interface presents 3–4 motion clips (Videos 1–3/4) generated by the same
model, followed by a comparative set (Videos A–C) from different models. Participants evaluate each
animation based on motion accuracy and overall user experience, using a 3-point scale (1 = low, 3 =
high). In the comparison section, users select the model they perceive as most realistic and engaging.
This evaluation is designed to measure both the fidelity of the generated motion to real-world human
movement and the overall effectiveness of each model in delivering visually compelling results.

Results:

• Our method achieved a motion quality rating of 2.92, with 94% of participants agreeing
that it produces high-quality motion with minimal jitter, sliding, or unrealistic artifacts.

• For motion diversity, we received a rating of 2.86, with 90% of participants indicating that
our method generates complex and varied motion sequences.

• In terms of text-motion alignment, our model scored 2.80, and 82% of users reported that
the generated motions were well-aligned with the given text descriptions.

• Notably, 92% of participants preferred our method over competing approaches.

C Qualitative Results

To qualitatively evaluate our performance in text-to-motion generation, we compare the visualizations
generated by our method with those produced by both state-of-the-art diffusion and VQ-VAE based
methods specializing in text-to-motion generation, including MotionLCM [17] and MoGenTS [85].
The text prompts are customized based on the HumanML3D [31] test set. As shown in Figure 8
and video demos, our method generates motions with superior quality, greater diversity, and better
alignment between text and motion compared to the previous state-of-the-art methods.

D Full Comparison Tables

To comprehensively evaluate our method on text-to-motion generation, we report full comparisons
with prior approaches in Table 5 and 6. Our method consistently achieves state-of-the-art performance
on both HumanML3D [31] and KIT-ML [61], outperforming existing baselines across all metrics.

E Broader Impacts

Our work advances the field of 3D human motion generation by addressing key limitations in
efficiency and scalability that hinder real-world deployment. By introducing frequency-aware
sparsification and a scalable transformer architecture with principled geometric modeling, FlashMo
offers a more practical solution for generating realistic human motion at scale. This has broad
implications for downstream applications such as human-robot interaction, AR/VR environments,
animation, and digital avatars. By reducing computational demands without sacrificing quality,
our approach lowers the barrier to adoption in resource-constrained settings and paves the way for
real-time, interactive, and embodied AI systems.

F Limitations and Future Work

Currently, our design has not yet explored other interpolant functions, and we still rely on learning
latent diffusion models on the tangent space. In future work, we will investigate how different
interpolant forms benefit temporal-spatial factorization and Lie group geometric interpolation for
improved motion modeling. Moreover, we will continue to investigate manifold geometry in motion
generation from an optimization perspective.
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Table 5: Comparison of text-to-motion generation on HumanML3D [31] dataset. → indicates the
closer to real data, the better. Bold and underline indicate best and second best results. Efficient
motion diffusion models are highlighted in blue.

Method Venue AIT(s) ↓ R-Precision ↑ FID ↓ MM Dist ↓ Diversity → MModality ↑
Top-1 Top-2 Top-3

Real - - 0.511±.003 0.703±.003 0.797±.002 0.002±.000 2.974±.008 9.503±.065 -

TM2T [32] ECCV 2022 0.760 0.424±.003 0.618±.003 0.729±.002 1.501±.017 3.467±.011 8.589±.076 2.424±.093

T2M-GPT [92] CVPR 2023 0.380 0.492±.003 0.679±.002 0.775±.002 0.141±.005 3.121±.009 9.722±.082 1.831±.048

CoMo [39] ECCV 2024 0.620 0.502±.002 0.692±.007 0.790±.002 0.262±.004 3.032±.015 9.936±.066 1.013±.046

MMM [60] CVPR 2024 0.081 0.504±.003 0.696±.003 0.794±.002 0.080±.003 2.998±.007 9.411±.058 1.164±.041

MoMask [30] CVPR 2024 0.120 0.521±.002 0.713±.002 0.807±.002 0.045±.002 2.958±.008 - 1.241±.040

BAMM [59] ECCV 2024 0.411 0.525±.002 0.720±.003 0.814±.003 0.055±.002 2.919±.008 9.717±.089 1.687±.051

MoGenTS [85] NeurIPS 2024 0.181 0.529±.003 0.719±.002 0.812±.002 0.033±.001 2.867±.006 9.570±.077 -

MDM [70] ICLR 2023 24.74 0.320±.005 0.498±.004 0.611±.007 0.544±.044 5.566±.027 9.559±.086 2.799±.072

MotionDiffuse [93] TPAMI 2024 14.74 0.491±.001 0.681±.001 0.782±.001 0.630±.001 3.113±.001 9.410±.049 1.553±.042

MLD [7] CVPR 2023 0.217 0.481±.003 0.673±.003 0.772±.002 0.473±.013 3.196±.010 9.724±.082 2.413±.079

ReMoDiffuse [94] ICCV 2023 0.624 0.510±.005 0.698±.006 0.795±.004 0.103±.004 2.974±.016 9.018±.075 1.795±.043

M2DM [44] ICCV 2023 - 0.497±.003 0.682±.002 0.763±.003 0.352±.005 3.134±.010 9.926±.073 3.587±.072

Fg-T2M [73] ICCV 2023 - 0.492±.002 0.683±.003 0.783±.002 0.243±.019 3.109±.007 9.278±.072 1.614±.049

FineMoGen [95] NeurIPS 2023 - 0.504±.002 0.690±.002 0.784±.002 0.151±.008 2.998±.008 9.263±.094 2.696±.079

GraphMotion [42] (50-step) NeurIPS 2023 0.776 0.496±.003 0.686±.003 0.778±.002 0.118±.008 3.143±.009 9.796±.069 2.603±.095

GraphMotion [42] (150-step) NeurIPS 2023 2.552 0.504±.003 0.699±.002 0.785±.002 0.116±.007 3.070±.008 9.692±.067 2.766±.096

B2A-HDM [80] AAAI 2024 - 0.511±.002 0.699±.002 0.791±.002 0.084±.004 3.020±.010 9.526±.080 1.914±.078

M2D2M [12] ECCV 2024 - - - 0.799±.002 0.087±.004 3.018±.008 9.672±.086 2.115±.079

MotionLCM [17] (1-step) ECCV 2024 0.030 0.502±.003 0.701±.002 0.803±.002 0.467±.012 3.022±.009 9.631±.066 2.172±.082

MotionLCM [17] (2-step) ECCV 2024 0.035 0.505±.003 0.705±.002 0.805±.002 0.368±.011 2.986±.008 9.640±.052 2.187±.094

MotionLCM [17] (4-step) ECCV 2024 0.043 0.502±.003 0.698±.002 0.798±.002 0.304±.012 3.012±.007 9.607±.066 2.259±.092

EMDM [104] ECCV 2024 0.050 0.498±.007 0.684±.006 0.786±.006 0.112±.019 3.110±.027 9.551±.078 1.641±.078

Motion Mamba [99] ECCV 2024 0.058 0.502±.003 0.693±.002 0.792±.002 0.281±.009 3.060±.058 9.871±.084 2.294±.058

StableMoFusion [38] MM 2024 0.499 0.553±.003 0.748±.002 0.841±.002 0.098±.003 - 9.748±.092 1.774±.051

MotionLCM-V2 [16] (1-step) Preprint 2024 0.031 0.546±.003 0.743±.002 0.837±.002 0.072±.003 2.767±.007 9.577±.070 1.858±.056

MotionLCM-V2 [16] (2-step) Preprint 2024 0.038 0.551±.003 0.745±.002 0.836±.002 0.049±.003 2.765±.008 9.584±.066 1.833±.052

MotionLCM-V2 [16] (4-step) Preprint 2024 0.050 0.553±.003 0.746±.002 0.837±.002 0.056±.003 2.773±.009 9.598±.067 1.758±.056

MMDM-t [8] Preprint 2024 - 0.464±.006 0.654±.007 0.754±.005 0.319±.026 3.288±.023 9.299±.064 2.741±.112

MMDM-b [8] Preprint 2024 - 0.435±.006 0.627±.006 0.733±.007 0.285±.032 3.363±.029 9.398±.088 2.701±.083

FTMoMamba [47] Preprint 2024 - 0.489±.003 0.680±.002 0.777±.002 0.181±.009 3.151±.009 9.789±.085 2.277±.099

Light-T2M [89] AAAI 2025 0.151 0.511±.003 0.699±.002 0.795±.002 0.040±.002 3.002±.008 - 1.670±.061

Free-MDM [6] Preprint 2025 0.045 0.466±.008 0.657±.007 0.757±.005 0.256±.045 - 9.666±.080 -
Free-StableMoFusion [6] Preprint 2025 0.036 0.520±.013 0.707±.003 0.803±.006 0.051±.002 - 9.480±.005 -
MotionPCM [41] (1-step) Preprint 2025 0.031 0.560±.002 0.752±.003 0.844±.002 0.044±.003 2.711±.008 9.559±.081 1.772±.067

MotionPCM [41] (2-step) Preprint 2025 0.036 0.555±.002 0.749±.002 0.839±.002 0.033±.002 2.739±.007 9.618±.088 1.760±.068

MotionPCM [41] (4-step) Preprint 2025 0.045 0.559±.003 0.752±.003 0.842±.002 0.030±.002 2.716±.008 9.575±.082 1.714±.062

Fg-T2M++ [74] IJCV 2025 - 0.513±.002 0.702±.002 0.801±.003 0.089±.004 2.925±.007 9.223±.114 2.625±.084

BioMoDiffuse [43] Preprint 2025 - 0.547±.003 0.743±.002 0.835±.002 0.071±.003 2.784±.008 9.567±.086 1.919±.063

HiSTF Mamba [90] (10-step) Preprint 2025 0.690 0.488±.005 0.685±.004 0.784±.005 0.189±.018 3.101±.022 9.712±.090 2.529±.044

HiSTF Mamba [90] (15-step) Preprint 2025 - 0.504±.005 0.699±.005 0.798±.005 0.249±.023 3.053±.022 9.383±.091 2.276±.036

ACMo [76] Preprint 2025 - 0.493±.002 0.698±.003 0.795±.002 0.102±.003 2.973±.006 9.749±.082 2.614±.100

FlashMo (Ours) - 0.027 0.562±.004 0.754±.005 0.847±.005 0.041±.002 2.711±.006 9.614±.056 2.812±.046

FlashMo w/ pretrain (Ours) - 0.027 0.568±.005 0.761±.002 0.851±.003 0.029±.002 2.703±.005 9.601±.073 2.851±.069
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Figure 7: User study Google Forms. The User Interface (UI) used in our user study.
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MotionLCM MoGenTS FlashMo

The man appears to 
walk forward bend 
slightly grabbing an 
object with their left 

hand.

Text

A person is spinning 
with is arms spread out 
and then he falls over.

The man starts to 
dance a lot.

A person walks 
forwards straight while 

stumbling.

A person does karate 
by striking with their 

hands and kicking 
their legs.

Figure 8: Qualitative evaluation on HumanML3D [31] test set. We qualitatively compared the
visualizations generated by our method with those produced by MotionLCM [17] and MoGenTS
[85].
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Table 6: Comparison of text-to-motion generation on KIT-ML [61] dataset. → indicates the closer
to real data, the better. Bold and underline indicate best and second best results. Efficient motion
diffusion models are highlighted in blue.

Method Venue R-Precision ↑ FID ↓ MM Dist ↓ Diversity → MModality ↑
Top-1 Top-2 Top-3

Real - 0.424±.005 0.649±.006 0.779±.006 0.031±.004 2.788±.012 11.08±.097 -

TM2T [32] ECCV 2022 0.280±.005 0.463±.006 0.587±.005 3.599±.153 4.591±.026 9.473±.117 3.292±.081

T2M-GPT [92] CVPR 2023 0.416±.006 0.627±.006 0.745±.006 0.514±.029 3.007±.023 10.92±.108 1.570±.039

CoMo [39] ECCV 2024 0.422±.009 0.638±.007 0.765±.011 0.332±.045 2.873±.021 10.95±.196 1.249±.008

MMM [60] CVPR 2024 0.404±.005 0.621±.005 0.744±.004 0.316±.028 2.977±.019 10.91±.101 1.232±.039

MoMask [30] CVPR 2024 0.433±.007 0.656±.005 0.781±.005 0.204±.011 2.779±.022 - 1.131±.043

BAMM [59] ECCV 2024 0.438±.009 0.661±.009 0.788±.005 0.183±.013 2.723±.026 11.01±.094 1.609±.065

MoGenTS [85] NeurIPS 2024 0.445±.006 0.671±.006 0.797±.005 0.143±.004 2.711±.024 10.92±.090 -

MDM [70] ICLR 2023 0.164±.004 0.291±.004 0.396±.004 0.497±.021 9.191±.022 10.85±.109 1.907±.214

MotionDiffuse [93] TPAMI 2024 0.417±.004 0.621±.004 0.739±.004 1.954±.062 2.958±.005 11.10±.143 0.730±.013

MLD [7] CVPR 2023 0.390±.008 0.609±.008 0.734±.007 0.404±.027 3.204±.027 10.80±.117 2.192±.071

ReMoDiffuse [94] ICCV 2023 0.427±.014 0.641±.004 0.765±.055 0.155±.006 2.814±.012 10.80±.105 1.239±.028

M2DM [44] ICCV 2023 0.405±.003 0.629±.005 0.739±.004 0.502±.049 3.012±.015 11.38±.079 3.273±.045

Fg-T2M [73] ICCV 2023 0.418±.005 0.626±.004 0.745±.004 0.571±.047 3.114±.015 10.93±.083 1.019±.029

FineMoGen [95] NeurIPS 2023 0.432±.006 0.649±.005 0.772±.006 0.178±.007 2.869±.014 10.85±.115 1.877±.093

GraphMotion [42] (50-step) NeurIPS 2023 0.417±.008 0.635±.006 0.755±.004 0.262±.021 3.085±.031 11.21±.106 3.568±.132

GraphMotion [42] (150-step) NeurIPS 2023 0.429±.007 0.648±.006 0.769±.006 0.313±.013 3.076±.022 11.12±.135 3.627±.113

B2A-HDM [80] AAAI 2024 0.436±.006 0.653±.006 0.773±.005 0.367±.020 2.946±.024 10.86±.124 1.291±.047

M2D2M [12] ECCV 2024 - - 0.753±.006 0.378±.023 3.012±.021 10.71±.121 2.061±.067

EMDM [104] ECCV 2024 0.443±.006 0.660±.006 0.780±.005 0.261±.014 2.874±.015 10.96±.093 1.343±.089

Motion Mamba [99] ECCV 2024 0.419±.006 0.645±.005 0.765±.006 0.307±.041 3.021±.025 11.02±.098 1.678±.064

StableMoFusion [38] MM 2024 0.445±.006 0.660±.005 0.782±.004 0.258±.029 - 10.94±.077 1.362±.062

MMDM-t [8] Preprint 2024 0.432±.006 0.643±.007 0.760±.006 0.237±.013 2.938±.025 10.84±.125 1.457±.129

MMDM-b [8] Preprint 2024 0.386±.007 0.603±.006 0.729±.006 0.408±.022 3.215±.026 10.53±.100 2.261±.144

Light-T2M [89] AAAI 2025 0.444±.006 0.670±.007 0.794±.005 0.161±.009 2.746±.016 - 1.005±.036

Free-MDM [6] Preprint 2025 0.382±.006 0.587±.006 0.707±.007 0.401±.033 - 10.73±.102 -
Free-StableMoFusion [6] Preprint 2025 0.431±.003 0.671±.001 0.789±.002 0.155±.079 - 10.90±.045 -
MotionPCM [41] (1-step) Preprint 2025 0.433±.007 0.654±.007 0.781±.008 0.355±.011 2.820±.022 10.78±.078 1.337±.047

MotionPCM [41] (2-step) Preprint 2025 0.437±.005 0.664±.005 0.787±.006 0.294±.011 2.844±.018 10.83±.094 1.254±.050

MotionPCM [41] (4-step) Preprint 2025 0.443±.005 0.664±.004 0.789±.005 0.336±.013 2.881±.023 10.76±.096 1.258±.056

Fg-T2M++ [74] IJCV 2025 0.442±.006 0.657±.005 0.781±.004 0.135±.004 2.696±.011 10.99±.105 1.255±.078

BioMoDiffuse [43] Preprint 2025 0.448±.008 0.666±.005 0.788±.005 0.211±.101 2.772±.017 11.11±.094 1.380±.050

HiSTF Mamba [90] (10-step) Preprint 2025 0.437±.006 0.651±.006 0.772±.006 0.289±.021 2.846±.018 10.92±.096 1.512±.088

HiSTF Mamba [90] (15-step) Preprint 2025 0.440±.006 0.657±.006 0.774±.006 0.293±.017 2.819±.015 10.93±.099 1.347±.056

FlashMo (Ours) - 0.449±.002 0.670±.004 0.799±.002 0.152±.004 2.709±.005 10.64±.074 3.287±.042

FlashMo w/ pretrain (Ours) - 0.453±.001 0.679±.004 0.807±.003 0.132±.005 2.701±.005 10.79±.093 3.591±.070
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Yes — the abstract and introduction clearly reflect the paper’s contributions in
efficiency, scalability, and interpolant design, which are consistently supported throughout
the paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Yes, in last section of main paper.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]
Justification: While not a purely theoretical paper, it builds on established theoretical
foundations from prior work, and all relevant assumptions are supported or cited accordingly.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Yes — the paper provides sufficient implementation details, model configu-
rations, and evaluation settings to reproduce the main experimental results that support its
core claims.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [No]
Justification: While the method is easy to implement and the authors intend to release
code and data after acceptance, they are not yet publicly available and require institutional
approval for open-sourcing code and model weights.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/

public/guides/CodeSubmissionPolicy) for more details.
• While we encourage the release of code and data, we understand that this might not be

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Yes — the paper specifies all necessary training and testing details, including
hyperparameters, optimizer settings, and experimental configurations.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Yes — the paper reports error bars based on multiple runs, providing appropri-
ate statistical information to support the experimental results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Yes — the paper provides sufficient information on computational resources,
including GPU type, memory, and execution settings, to reproduce the experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Yes — the research fully conforms to the NeurIPS Code of Ethics, with no
ethical concerns identified in methodology, data usage, or reporting.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Yes — the paper discusses both positive and negative societal impacts, includ-
ing the benefits for digital avatars and related applications, as outlined in the appendix.

Guidelines:
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper does not involve high-risk models or data, and thus no specific
safeguards are necessary.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: Yes — all external assets used in the paper are properly credited, with licenses
and terms of use clearly respected.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: Yes — the new assets introduced in the paper are well documented, including
anomalous visualizations provided in the supplemental ZIP file.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve any crowdsourcing or human subjects, so this
requirement does not apply.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This paper does not involve any crowdsourcing or human subjects, so this
requirement does not apply.

Guidelines:
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• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The paper does not use LLMs as a core component of the methodology; they
are only used for grammar checking, which does not require declaration.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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