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ABSTRACT

In this paper, we introduce a new representation for team-coordinated game-
theoretic decision making, which we coin team belief DAG form. In our rep-
resentation, at every timestep, a team coordinator observes the information that is
public to all its members, and then decides on a prescription for all the possible
states consistent with its observations. Our representation unifies and extends
recent approaches to team coordination. Similar to the approach of Carminati et al.
(2021), our team belief DAG form can be used to capture adversarial team games,
and enables standard, out-of-the-box game-theoretic techniques including no-regret
learning (e.g., CFR and its state-of-the-art modern variants such as DCFR and
PCFR+) and first-order methods. However, our representation can be exponentially
smaller, and can be viewed as a lossless abstraction of theirs into a directed acyclic
graph. In particular, like the LP-based algorithm of Zhang & Sandholm (2022),
the size of our representation scales with the amount of information uncommon to
the team; in fact, using linear programming on top of our team belief DAG form
to solve for a team correlated equilibrium in an adversarial team games recovers
almost exactly their algorithm. Unlike that paper, however, our representation
explicitly exposes the structure of the decision space, which is what enables the
aforementioned game-theoretic techniques.

1 INTRODUCTION

Decision making in teams has been a recent focus in computational game theory and reinforcement
learning. Teams that cannot communicate perfectly have particular problems that single players
and perfectly-communicating teams do not have. Examples include recreational games like Bridge
(in which two teams compete adversarially), collusion in poker, military situations with restricted
communications, various swindling settings, and many other real-world situations.

In general, computing optimal strategies in adversarial team games is NP-hard (Chu & Halpern,
2001), even given the extensive form and assuming there are only two players and no adversary.
Despite this, there are cases that are tractable. For example, if both teams exhibit so-called A-loss
recall (Kaneko & Kline, 1995) or triangle-free interaction between two players (Farina & Sandholm,
2020), then polynomial-time algorithms are known to exist.

Until recently, techniques for solving adversarial team games were focused largely on column
generation (Farina et al., 2018; 2021a; Zhang et al., 2021), which works well in some games in
practice but has no theoretical guarantees and scales poorly in most games. More recently, Zhang
& Sandholm (2022) developed an algorithm for solving adversarial team games based on a novel
tree decomposition of each player’s strategy space, and use it to devise a linear program. They
show parameterized complexity bounds on the runtime of the algorithm, and demonstrate strong
practical performance. Simultaneously, Carminati et al. (2021) developed a conversion algorithm
based on prior research in the multi-agent reinforcement learning community (e.g., Nayyar et al.
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2013; Sokota et al. 2021). Their algorithm converts an extensive-form adversarial team game into an
exponentially-larger public team game.

In this paper, we unify these last two lines of work. We give a representation of the decision problem
faced by a team of players as a sequential decision problem (Farina et al., 2019a) on a directed acyclic
graph (DAG), which we call the team belief DAG form.

Using a linear program to solve the resulting adversarial team game recovers almost exactly the
algorithm of Zhang & Sandholm (2022). However, our representation has several advantages. First
and most importantly, explicitly expressing the polytope as the set of flows over a DAG gives us a
description of the set of strategies in terms of scaled extensions. This description allows us to apply
the vast theoretical literature on sequence-form games, especially with respect to regret minimization,
to team games as well. Without understanding the special structure of the DAG, this development is
not possible. Second, it is slightly more concise, owing to the slight differences in definitions of public
states and ease of optimization of our method. This will become clear in the experimental evaluation
later in the paper. Finally, it is conceptually cleaner and easier to understand, not requiring the extra
machinery of tree decompositions. The conceptual ease also allows easier theoretical statements and
proofs with slightly tighter bounds.

Applying safe imperfect-recall abstraction (Lanctot et al., 2012) on top of the sequence form of
the folding representation of Carminati et al. (2021) for a given team yields a decision space that
is also basically equivalent to our team belief DAG form. However, this is a rather roundabout
construction: their folding representation can have size exponentially larger than the team belief
DAG, so our framework yields exponentially-faster algorithms by avoiding the construction of that
larger representation.

In experiments, we demonstrate that the state-of-the-art variants of counterfactual regret
minimization—namely DCFR (Brown & Sandholm, 2019) or PCFR+ (Farina et al., 2021b)—applied
on top of our team belief DAG form almost always outperform linear programming in team games.
This represents the new practical state of the art for adversarial team games.

2 PRELIMINARIES

We now introduce the paradigm of tree-form sequential decision making (Farina et al., 2019a), which
we will use throughout the paper.

2.1 TREE-FORM SEQUENTIAL DECISION MAKING

Definition 2.1. A tree-form sequential decision-making problem (TFSDP) T is a rooted tree with
node set S and labelled edges, in which each node is a decision node, at which the player takes an
action, or an observation nodes, at which the player receives an observation.

The edges out of decision nodes are called actions, and the edges out of observation nodes are called
observations. The root node is denoted ∅. The set of leaf, or terminal, nodes is denoted ZT .

If s, s′ ∈ S are two nodes, s ⪯ s′ means that there is a directed path from s to s′. If S, S′ are set of
nodes, S ⪯ S′ means s ⪯ s′ for some s ∈ S, s′ ∈ S′. As is the set of labels on edges descending
from node s (actions or observations). The node reached by following edge a ∈ As out of node s is
denoted sa. For two nodes s, s′ ∈ S, s ∧ s′ denotes the lowest common ancestor of s and s′.

A pure strategy is an assignment of one action to each decision node. The sequence form1 x ∈
{0, 1}ZT of a pure strategy is the vector for which x[z] = 1 if and only if the player plays all the
actions on the root→ z path. A mixed strategy is a distribution over pure strategies. The sequence
form of a mixed strategy is the corresponding convex combination x ∈ [0, 1]ZT .

2.2 ONLINE CONVEX OPTIMIZATION

Online convex optimization (Zinkevich, 2003) is a framework for describing repeated interactions
of a player with an arbitrary environment. At each timestep, the player selects a strategy xt from a

1Differing from most literature, in this paper we define the sequence form to be over terminal sequences only.
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convex, compact set X ⊆ Rm, and observes a (possibly adversarially chosen) utility vector ut ∈ Rm.
The goal of the player is to minimize the regret after T timesteps:

RT := max
x∈X

T∑
t=1

〈
ut,x− xt

〉
.

A regret minimizer is any algorithm for the player that guarantees that RT is sublinear in T . In
this paper, we will be concerned with regret minimizers over the decision space X ⊆ [0, 1]ZT of
sequence-form mixed strategies in various sorts of decision problems.

3 DECISION MAKING ON DAGS

In this section, we discuss how techniques that apply to sequential decision making, for example,
no-regret learning, can be used on a decision problem that is a DAG, which may be of independent
interest beyond our interest in teams.

Definition 3.1. A DAG-form sequential decision problem (DFSDP) is an TFSDP on a DAG instead
of a tree.

We will insist on the following technical conditions:

1. Observation nodes always have exactly one parent.
2. Nodes along every path alternate between decision nodes and observation nodes.
3. If p1 and p2 are two paths from the root ending at the same node, then the last node common to

both p1 and p2 is a decision node.

The first two conditions are for expository simplicity and are without loss of generality; the final one
is critical for our constructions to work.

The sequence form x ∈ {0, 1}ZT of a pure strategy is the vector for which x[z] = 1 if and only if
the player plays all the actions on some root→ z path2. Mixed strategies and their sequence forms
are defined as usual.

3.1 DFSDPS VIA SCALED EXTENSIONS

In this section, we show that the set of sequence-form strategies in a DFSDP can be expressed in
terms of scaled extensions (Farina et al., 2019b).

Definition 3.2. Given two nonempty, compact, convex sets X ,Y and a linear map h : X → R≥0,
the scaled extension of X with Y via h, is defined as

X h
◁ Y = {(x,y) : x ∈ X ,y ∈ h(x)Y}.

We now construct the set of sequence-form strategies in a given DFSDP. We begin with the set

X ← {1}. Then, for each decision node s, we perform the operation X ← X
x[s]
◁ ∆As where

x[s] :=
∑

s′ parent of s

x[s′].

The technical condition ensures that x[s] ∈ [0, 1] for every s. The restriction of the resulting set X
on the set of terminal states ZD is exactly the set of sequence-form mixed strategies. Thus, we have
shown:

Theorem 3.3. The set of sequence-form strategies on a DFSDP can be expressed by scaled extension
operations with simplices via functions h : X → [0, 1].

Corollary 3.4. This set can be expressed as a polytope with O(E) constraints, where E is the number
of edges.

2The final technical condition ensures that there is at most one such path.
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3.2 REGRET MINIMIZATION IN DFSDPS

Any set that can be built from scaled extensions and simplexes admits a regret minimizer that can
be constructed starting from any simplex regret minimizer (Farina et al., 2019b). This construction
extends CFR (Zinkevich et al., 2007), and all its modern variants, to such sets. In particular, applying
Proposition 1 of Farina et al. (2019b) on top of Theorem 3.3 gives us:
Corollary 3.5. Deterministic variants of CFR (e.g., CFR+, DCFR (Brown & Sandholm, 2019),
PCFR+ (Farina et al., 2021b)) can be run on a DFSDP, with regret bounded by O(|S|

√
T ) after T

timesteps and iteration time O(E) where E is the number of edges in the DAG.

Pseudocode for running CFR on an arbitrary DFSDP can be found in Algorithm 1.

4 TEAM SEQUENTIAL DECISION MAKING

In this section, we define the team TFSDP, a generalization of the TFSDP to the setting where there
are multiple collaborating players with uncommon information.
Definition 4.1. A team TFSDP is a TFSDP in which decision nodes are partitioned into information
sets, or infosets.

We will insist that decision nodes in the same information set have the same action set. The action set
in a given information set I will be denoted AI .

To disambiguate from non-team TFSDPs and to be consistent with literature on extensive-form games,
we will use H for the set of nodes in a team TFSDP instead of S. For an infoset I and an action
a ∈ AI , we will use Ia to denote {ha : h ∈ I}.
The team sequence σ(h) of a node h is the sequence of infosets reached and actions played by the
team along the root→ h path, including, if any, the infoset containing h itself. The effective size of a
set of nodes H ⊆ H is the number of distinct team sequences among the nodes in H .

A team TFSDP is timed if no infoset spans multiple layers of the decision problem. That is, paths
from the root to nodes in the same infoset must have the same length. In this paper, we will only
work with timed team TFSDPs3.

A pure strategy is an assignment of one action to each infoset. Insisting on choosing actions on the
infoset level ensures that team members are not making decisions based on information that they
do not know. A correlated strategy is a distribution over pure strategies4. The sequence form of a
correlated strategy is called its correlation form.

It is known that the polytope of correlation plans cannot be represented by polynomially many
constraints unless P = NP (Chu & Halpern, 2001).

It will occasionally be useful to us to distinguish the individual players on a team. Formally, if the
team consists of n players, we partition the collection of infosets into n collections I1, . . . , In, where
Ii is the set of infosets at which player i plays. The player sequence σi(h) of a node h for a player
i is the sequence of infosets reached belonging to i, and actions played by i, on the root→ h path,
again including the infoset at h itself if i plays at h. We will assume that each individual player on a
team has perfect recall: if h, h′ ∈ Ii, then σi(h) = σi(h

′).

A team TFSDP can also be thought of as a (single-agent) TFSDP with imperfect recall. In this
presentation, the team is represented as a single player whose memory is repeatedly updated to only
contain the information of the team member who is currently playing. The two models are equivalent.

5 PUBLIC STATES AND THE TEAM BELIEF DAG FORM

Let T be a team TFSDP. We will assume that T is completely inflated (Kaneko & Kline, 1995): there
does not exist a partition I1 ⊔ I2 of any infoset I in T such that, for every h1 ∈ I1 and h2 ∈ I2, there

3As long as the relation ⪯ on infosets is a partial order, it is always possible to make a team TFSDP timed by
adding dummy nodes.

4We use “correlated” instead of “mixed” because, unlike in the single-player case, we cannot assume without
loss of generality that the decisions at each infoset are made independently.

4



Presented at the Gamification and Multiagent Solutions Workshop (ICLR 2022)

is some infoset I ′ such that I ′a1 ⪯ h1 and I ′a2 ⪯ h2 for different actions a1 ̸= a2 ∈ AI′ . This
assumption assumptions can be satisfied WLOG by preprocessing the tree.

Definition 5.1. Two nodes h, h′ in the same layer of T , and either both terminal or both nonterminal5,
are connected if they have the same team sequence, or there is an infoset I such that h ⪯ I and
h′ ⪯ I .

Connectedness induces a graph whose nodes are the decision nodes, which we call the connectivity
graph.

Definition 5.2. A public state is a connected component of the connectivity graph.

Intuitively, a public state is a set of nodes P such that whether P has been reached is common
knowledge among the team. The public states themselves induce a tree, which is known as the public
tree. We will be interested in two separate branching factors. First, the team branching factor b is the
largest number of actions at any decision node in T . Second, the public branching factor b′ is the
branching factor of the public tree6.

The team belief DAG form of a team TFSDP T is a DFSDP D defined as follows. All nodes in the
team belief DAG form are identified with sets of nodes in the team TFSDP.

1. The initial node of D is a decision node corresponding to the set {∅} containing only the root
node of the original problem.

2. At a decision node B in D, let I1, . . . , Im be all the infosets with nonempty intersection with
B, and let J be the set of observation nodes (of T ) in set B. The player selects a prescription
a ∈×i∈[m]

AIi , consisting of one action ai in each infoset Ii. The decision problem then
transitions to the observation node Ba consisting of all children of nodes in B which are
consistent with the actions of the player. Formally,

Ba = {hai : h ∈ Ii ∩B} ∪ {ha : h ∈ J, a ∈ Ah}.

3. At an observation node O in D, let P1, . . . , Pm be the public states with nonempty intersection
with O. Then the player transitions to the decision node O ∩ Pi for some i ∈ [m].

If a decision node B contains terminal nodes in D, then it is terminal.

The sets B identified with decision nodes in D are called beliefs. In this construction, multiple
decision nodes may be identified with the same belief. The subtrees induced by these decision nodes
are copies of each other. Therefore, we merge them, forming a DAG. This DAG is the team belief
DAG, and the DFSDP is the team belief DAG form. For an example, see Figure 1; for pseudocode,
see Algorithm 2.

To be consistent with the previous two sections and to distinguish a team TFSDP from its team belief
DAG form, we will useH to refer to the set of nodes in the former, and S to refer to the set of nodes
in the latter.

Given a sequence-form mixed strategy x′ in the team belief DAG form, we construct a correlation
plan x in T as follows. For each terminal node z in x, let Σ(z) be the set of all terminal nodes inH
sharing a team sequence and a level with z, that is,

Σ(z) = {z′ ∈ ZT : σ(z) = σ(z′), z, z′ are at the same level}.

Then Σ(z) is a terminal decision node in D by construction. We set x[z] = x′[Σ(z)].

Theorem 5.3. The set of vectors x constructible in the above fashion is exactly the set of correlation
plans of the team TFSDP.

The proof of this theorem and the proofs of all following theorems are in the appendix.

5The inclusion of the careful edge case for terminal nodes is so that every terminal node in T maps onto a
node in D. Compare nodes F and L in Figure 1. There is a node in the DAG representing the reach probability of
F, but not one for L. For the latter, one would have to sum the reach probabilities of nodes L and LM in the DAG.

6The public branching factor is usually larger than the branching factor of the original tree. For example, our
notion of public tree has each terminal team sequence belonging to its own public state, and thus information
that was previously private suddenly becomes public at the very end of the game.
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6 THE SIZE OF A TEAM BELIEF DAG

Since all our theoretical results depend on the size of the team belief DAG, it is critical to analyze that
size. The hardness result of Chu & Halpern (2001) means that our size bounds will not be polynomial.
However, we can still bound the size relative to natural parameters related to the complexity of the
game.

The correspondence between our construction and that of Zhang & Sandholm (2022) allows us to
achieve similar theoretical guarantees to that paper. Here, we explicitly give such results in our
language. Let T be a team TFSDP with node set S and public state set P .

Theorem 6.1. The team belief DAG of T has at most
(

p
≤w

)
bwb′|P| ≤ (b(p + 1))wb′|P| edges7,

where p is the largest effective size of any public state and w is the largest effective size of any belief.

The parameter w is identical to the same-named parameter in Zhang & Sandholm (2022). As
discussed in that paper, w depends only on the amount of uncommon external information, that is,
observations (as opposed to decisions) that are not common knowledge to the team.

In a certain family of team TFSDPs including those with team-public actions, we can do better.

Definition 6.2. An n-player team TFSDP is k-private if, in every public state, there are at most k
distinct player sequences. That is, |{σi(h) : i ∈ [n], h ∈ P}| ≤ k for every P ∈ P .

This is distinct from the effective size p, which is the total number of team sequences in P . In
particular, in games with team-public actions (such as poker), where each player has at most t private
types, we have k ≤ nt.

In a k-private team TFSDP, it is possible that w = (k/n)n, so Theorem 6.1 gives a bound of
(2bp)(k/n)

n

b′|P|, which is bad. However, we can improve upon this through a more careful analysis.

Theorem 6.3. The team belief DAG of a k-private team TFSDP has at most (b+ 1)kb′|P| edges.

If necessary, it is possible to “mix and match” the analyses of Theorems 6.1 and 6.3 when some
public states have low w and some have low t. To save the cumbersome notation, we will not do that
here.

7 ADVERSARIAL TEAM GAMES

All our results so far have been given from the perspective of a single team. However, they generalize
very naturally to the case of multiple teams competing in a game.

An extensive-form adversarial team game Γ consists of:

1. a tree of nodesH, where the edges are labelled with actions. The set of terminal nodes inH will,
as usual, be denoted ZΓ;

2. a partition I of nonterminal nodes inH into infosets, where every node in a given infoset must
have the same action set;

3. a partition of I into three collections IC ⊔ I⊕ ⊔ I⊖, where IC is the collection of infosets at
which chance acts, and Iτ is the collection of infosets assigned to team τ ∈ {⊕,⊖};

4. for each infoset I ∈ IC assigned to chance, a fixed distribution over the actions available at I;
and

5. a utility function u : ZΓ → R, where u(z) denotes the utility for ⊕ in terminal node z. The
utility for ⊖ is −u(z).

As usual, we will not demand that the teams have perfect recall. An extensive-form game immediately
defines a team TFSDP for each team τ , with information partition Iτ . For consistency with our
definition of the team belief DAG form, we insist that non-chance nodes all have exactly 2 children.

A team correlated equilibrium (TMECor) in an adversarial team game is a Nash equilibrium of the
game viewed as a two-player zero-sum game between the two teams. A TMECor can be expressed as

7( p
≤w

)
:=

∑w
i=1

(
p
i

)
.
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the solution to a convex bilinear saddle-point problem
max
x∈X

min
y∈Y
⟨x,Ay⟩ (1)

where A is the payoff matrix, whose bilinear form is the expected utility for ⊕ if ⊕ plays correlation
plan x and ⊖ plays correlation plan y.

Let S and E be the total number of nodes and edges respectively across the team belief DAGs of
both teams the following results follow from standard results on linear programming for saddle-point
problems and regret minimization, and Corollary 3.5:
Corollary 7.1. Nash equilibria in adversarial team games can be found via a linear program of size
O(E + |ZΓ|).
Corollary 7.2. In adversarial team games, after T iterations of a CFR variant, the average strategy
for both players is an O(S/

√
T )-Nash equilibrium. Each iteration takes time O(E).

The former result is analogous to the results shown in Zhang & Sandholm (2022). The latter, to our
knowledge, is new.

In light of Corollary 3.5 and Theorems 6.1 and 6.3, Corollaries 7.1 and 7.2 immediately imply
fixed-parameter runtime and convergence bounds for both the CFR family of algorithms and linear
programming.

8 EXPERIMENTS

We experimentally investigate solving adversarial team games using the team belief DAG form. Since
all our experiments are in games with public actions, we preprocess with branching factor reduction
in all cases.

8.1 EQUILIBRIUM-FINDING ALGORITHMS

We investigate the application of the following two categories of game-solving algorithm on the belief
DAG of the team:

1. CFR-like algorithms obtained from the scaled extension decomposition of the team belief DAG
(Section 3.2). We implemented the following state-of-the-art variants of CFR: Predictive CFR+

(PCFR+) (Farina et al., 2021b), Discounted CFR (DCFR) (Brown & Sandholm, 2019), and
Linear CFR (LCFR) (Brown & Sandholm, 2019). PCFR+ and DCFR use quadratic averaging of
iterates, while LCFR uses linear averaging. PCFR+ is a predictive regret minimization algorithm.
At each time t, we use the previous utility vector for each time as prediction for the next. Each
implementation is single-threaded.

2. Linear programming (LP) solvers applied directly on the bilinear saddle point formulation of the
equilibrium problem (1). To solve the linear program, we used the commercial solver Gurobi. We
investigated using both the barrier algorithm, and the (concurrent primal-dual) simplex algorithm.
For each algorithm, we experimented leaving the presolver on or off. We allowed Gurobi to use
up to four threads.

We compare solving an adversarial team games in team belief DAG form against two prior state-of-
the-art algorithms:

1. The tree-decomposition-based LP solver proposed by Zhang & Sandholm (2022) (henceforth
“ZS22”), which has already discussed at length in this paper. We used the original implementation
of the authors, which internally uses the barrier algorithm implemented by the commercial solver
Gurobi. As recommended by the authors, we turned Gurobi’s presolver off to avoid numerical
instability and increase speed. We allowed Gurobi to use up to four threads.

2. The single-oracle algorithm of Farina et al. (2021a) (henceforth “FCGS21”). FCGS21 iteratively
refines the strategy of each team by solving best-response problems using a tight integer program
derived from the theory of extensive-form correlation (von Stengel & Forges, 2008; Farina et al.,
2021b). We used the original code by the authors, which was implemented for three-player
games in which a team of two players faces an opponent. Like ZS22 and our LP-based solver,
FCGS21 uses the commercial solver Gurobi to solve linear and integer linear programs. We
allowed Gurobi to use up to four threads.
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All algorithms were run on a 64-core AMD EPYC 7282 processor. Each algorithm was allocated a
maximum of 4 threads, 60GBs of RAM, and a time limit of 6 hours.

8.2 GAME INSTANCES

We ran experiments on the following standard, parametric benchmark games:

• nKr: n-player Kuhn poker with r ranks (Kuhn, 1950).
• nLbrs: n-player Leduc poker with a b-bet maximum in each betting round, r ranks, and s

suits (Southey et al., 2005).
• nDd: n-player Liar’s Dice with one d-sided die for each player (Lisỳ et al., 2015).
• nG and nGL: n-player Goofspiel with 3 ranks. GL is the imperfect-information variant.

These are the same games used by Zhang & Sandholm (2022) and Farina et al. (2021a) in their
experimental evaluations. We refer the reader to the latter paper for detailed descriptions of the games.
The size of each game, measured in terms of number of terminal states (leaves), is reported in the
second column of Table 1.

Experimental results are summarized in Table 1. Overall, we observe that our algorithms based on
the team belief DAG form are generally 2-3 orders of magnitude faster than ZS22. In games with
low parameters p and k, our algorithms are also several orders of magnitude faster than FCGS21,
validating the conclusion of Zhang & Sandholm (2022). The difference in runtime between our
algorithms and FCGS21 is especially dramatic in Leduc games. In games with high parameters (e.g.,
3K8 and 3K12), on the other hand, FCGS21 is significantly more scalable, as it avoids the exponential
dependence in the parameters at the cost of requiring the solution to integer programs, for which
runtime guarantees are hard to give.

9 CONCLUSION AND FUTURE RESEARCH

We have given a new representation, the team belief DAG form, for the decision problem faced by a
team of correlating players, which we have used to develop new algorithms for solving adversarial
team games. Our method enjoys the parameterized complexity bounds of Zhang & Sandholm (2022),
and the extensibility and interpretability of Carminati et al. (2021). Experiments show that modern
variants of CFR applied with our team belief DAG form give state-of-the-art performance across
multiple domains. Possible directions for future research include:

1. devising a technique to allow the use of Monte Carlo CFR (MCCFR) (Lanctot et al., 2009) in
DFSDPs, and in particular in the team belief DAG form;

2. finding theoretically sound techniques for mitigating the exponential blowup in parameters w
and k;

3. finding a “best-of-both-worlds” algorithm that combines the strengths of our approach and the
single-oracle-based methods;

4. investigating extensions of our technique to correlated equilibrium in general-sum games;
5. relaxing the assumption of timeability;
6. devising a construction that additionally generalizes the triangle-free interaction (Farina &

Sandholm, 2020), a known polynomially-solvable subclass of the problem; and
7. investigating the use of other standard game-theoretic techniques in two-player zero-sum games,

such as abstraction, dynamic pruning, subgame solving, etc., in team games.

ACKNOWLEDGMENTS

This material is based on work supported by the National Science Foundation under grants IIS-
1718457, IIS-1901403, and CCF-1733556, and the ARO under award W911NF2010081.

8



Presented at the Gamification and Multiagent Solutions Workshop (ICLR 2022)

REFERENCES

Noam Brown and Tuomas Sandholm. Solving imperfect-information games via discounted regret
minimization. In AAAI Conference on Artificial Intelligence (AAAI), 2019.

Luca Carminati, Federico Cacciamani, Marco Ciccone, and Nicola Gatti. Public information repre-
sentation for adversarial team games. In NeurIPS Cooperative AI Workshop, 2021.

Francis Chu and Joseph Halpern. On the NP-completeness of finding an optimal strategy in games
with common payoffs. International Journal of Game Theory, 2001.

Gabriele Farina and Tuomas Sandholm. Polynomial-time computation of optimal correlated equilibria
in two-player extensive-form games with public chance moves and beyond. In Conference on
Neural Information Processing Systems (NeurIPS), 2020.

Gabriele Farina, Andrea Celli, Nicola Gatti, and Tuomas Sandholm. Ex ante coordination and
collusion in zero-sum multi-player extensive-form games. In Conference on Neural Information
Processing Systems (NeurIPS), 2018.

Gabriele Farina, Christian Kroer, and Tuomas Sandholm. Online convex optimization for sequential
decision processes and extensive-form games. In AAAI Conference on Artificial Intelligence,
2019a.

Gabriele Farina, Chun Kai Ling, Fei Fang, and Tuomas Sandholm. Efficient regret minimization algo-
rithm for extensive-form correlated equilibrium. In Conference on Neural Information Processing
Systems (NeurIPS), 2019b.

Gabriele Farina, Andrea Celli, Nicola Gatti, and Tuomas Sandholm. Connecting optimal ex-ante
collusion in teams to extensive-form correlation: Faster algorithms and positive complexity results.
In International Conference on Machine Learning, 2021a.

Gabriele Farina, Christian Kroer, and Tuomas Sandholm. Faster game solving via predictive Blackwell
approachability: Connecting regret matching and mirror descent. In AAAI Conference on Artificial
Intelligence (AAAI), 2021b.

Mamoru Kaneko and J Jude Kline. Behavior strategies, mixed strategies and perfect recall. Interna-
tional Journal of Game Theory, 24(2):127–145, 1995.

H. W. Kuhn. A simplified two-person poker. In H. W. Kuhn and A. W. Tucker (eds.), Contributions
to the Theory of Games, volume 1 of Annals of Mathematics Studies, 24, pp. 97–103. Princeton
University Press, Princeton, New Jersey, 1950.

Marc Lanctot, Kevin Waugh, Martin Zinkevich, and Michael Bowling. Monte Carlo sampling for
regret minimization in extensive games. In Conference on Neural Information Processing Systems
(NeurIPS), 2009.

Marc Lanctot, Richard Gibson, Neil Burch, Martin Zinkevich, and Michael Bowling. No-regret
learning in extensive-form games with imperfect recall. In International Conference on Machine
Learning (ICML), 2012.

Viliam Lisỳ, Marc Lanctot, and Michael H Bowling. Online monte carlo counterfactual regret
minimization for search in imperfect information games. In Autonomous Agents and Multi-Agent
Systems, 2015.

Ashutosh Nayyar, Aditya Mahajan, and Demosthenis Teneketzis. Decentralized stochastic control
with partial history sharing: A common information approach. IEEE Transactions on Automatic
Control, 58(7):1644–1658, 2013.

Samuel Sokota, Edward Lockhart, Finbarr Timbers, Elnaz Davoodi, Ryan D’Orazio, Neil Burch,
Martin Schmid, Michael Bowling, and Marc Lanctot. Solving common-payoff games with
approximate policy iteration. In AAAI Conference on Artificial Intelligence (AAAI), volume 35, pp.
9695–9703, 2021.

9



Presented at the Gamification and Multiagent Solutions Workshop (ICLR 2022)

Finnegan Southey, Michael Bowling, Bryce Larson, Carmelo Piccione, Neil Burch, Darse Billings,
and Chris Rayner. Bayes’ bluff: Opponent modelling in poker. In Conference on Uncertainty in
Artificial Intelligence (UAI), July 2005.

Bernhard von Stengel and Françoise Forges. Extensive-form correlated equilibrium: Definition and
computational complexity. Mathematics of Operations Research, 33(4):1002–1022, 2008.

Brian Hu Zhang and Tuomas Sandholm. Team correlated equilibria in zero-sum extensive-form
games via tree decompositions. In AAAI Conference on Artificial Intelligence (AAAI), 2022.
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Algorithm 1 CFR on an arbitrary DFSDP
1: function D.NEXTSTRATEGY
2: ▷ x′ will store the unscaled probabilities
3: x,x′ ← 1∈RS

4: for each decision node s in D (top down) do
5: if s is not the root then
6: x[s]←

∑
s′ parent of s x[s

′]

7: S ←
∑

a∈As
R[sa]+

8: for each action a ∈ As do
9: if S = 0 then x′[sa] = 1/|As|

10: else x′[sa]← R[sa]+/S

11: x[sa]← x′[sa]x[s]
12: return x
13: function D.OBSERVEUTILITY(u ∈ RZD )
14: for each s ∈ S \ ZD do u[s]← 0

15: for each decision node s in D (bottom up) do
16: u[s]← u[s] +

∑
a′∈As

u[sa′]x′[sa′]
17: for each action a ∈ As do
18: R[sa]← R[sa] + u[sa]− u[s]

19: for each parent s′ of s do
20: u[s′]← u[s′] + u[s]

Algorithm 2 Constructing the team belief DAG form.
1: function D.MAKEDECISIONNODE(B ⊆ H)
2: if D has a decision node s with belief B then
3: return s
4: s← new decision node in D with belief B
5: if B contains terminal nodes in T then
6: for each z ∈ B do D.Σ(zs)← s

7: add sh to ZD
8: return s
9: {I1, . . . , Im} ← {I ∋ h : h ∈ B, I ∈ I}

10: J ← {h ∈ B : h is an observation node}
11: for each prescription a ∈×i∈[m]

AIi do
12: Ba← {hai : h∈Ii∩B} ∪ {ha : h∈J, a∈Ah}
13: s′ ← D.MAKEOBSERVATIONNODE(Ba)
14: add edge s→ s′

15: return s
16: function D.MAKEOBSERVATIONNODE(O ⊆ H)
17: s← new observation node in D
18: {P1, . . . , Pm} ← {P ∋ h : h ∈ O,P ∈ P}
19: for i ∈ [m] do
20: s′ ← D.MAKEDECISIONNODE(O ∩ Pi)
21: add edge s→ s′

22: return s
23: function MAKETEAMBELIEFDAGFORM(
24: team TFSDP T with node setH)
25: D ← new decision problem
26: D.MAKEDECISIONNODE({∅∈H})
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Figure 1: An example decision problem of a team (left) and its team belief DAG form (right).
Decision nodes have light text on a dark background; observation nodes have the opposite. Dotted
lines connect decision nodes in the same infoset. Red shaded regions connect nodes in the same
public state. The team decision problem can be viewed as having two (BCDI and LM), three (e.g.,
BCD, I, and LM), or four (one at each infoset) players on the team. Which view is chosen is not
relevant to our algorithms.

A EXPERIMENTS TABLE

Experimental results are summarized in Table 1.

Column ‘Game‘ indicates the game, and the set of players on Team ⊖. Columns ‘Team ⊕’s DAG’
and ‘Team ⊖’s DAG’ report the total number of vertices and edges in the team belief DAG for teams
⊕ and ⊖ respectively. Column ‘Team ⊕ value’ reports the utility that team ⊕ can expect to gain at
equilibrium. Column ‘P. S. Size’ reports the largest effective size p of any public state. Column ‘k’
reports the value of k for which both teams are k-private.

Column ‘This paper, CFR’ of Table 1 reports the time to convergence of the best CFR variant to an
average team exploitability of less than 10−3 times the range of payoffs of the game. Convergence
plots for all CFR variants on all games can be found in the appendix. Column ‘This paper, LP’
reports the runtime of the best of the LP algorithms (see Section 8.1) operating on the belief DAG
form of the game, solving to to Gurobi’s default precision.8

Column ‘ZS22’ reports the time it took ZS22 to compute an equilibrium strategy for team ⊕, again to
Gurobi’s default precision. Finally, column ‘FCGS21’ reports the time it took FCGS21 to compute
an equilibrium strategy for team ⊕ with exploitability of less than 10−3 times the range of payoffs of
the game. The missing values in that column are due to the fact that the implementation of FCGS21
by the original authors only supported 3-player games.

B BRANCHING FACTOR REDUCTION

Since the branching factor b appears as the base of an exponential in Theorems 6.1 and 6.3, it is
natural to ask whether it can reduced without affecting the other parameters. This turns out to be true
assuming team-public actions, which we now formalize.

8LP-based algorithms generally do not produce feasible iterates, and therefore they are not anytime algorithms
for the purposes of computing strong team strategies, unlike our CFR-based algorithms and FCGS21. Thus, we
report only the runtime to default precision.
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Game {⊖} Leaves Team ⊕’s DAG Team ⊖’s DAG Team ⊕ P. S.
k

This paper ZS22 FCGS21Vertices Edges Vertices Edges Value Size CFR LP
3K3 {3} 78 502 957 37 36 0.000 6 6 0.00s 0.00s 0.01s 0.00s
3K4 {3} 312 2,130 6,789 49 48 −0.042 12 8 0.00s 0.01s 0.02s 0.04s
3K6 {3} 1,560 54,330 337,139 73 72 −0.024 30 12 0.03s 0.48s 1.12s 0.22s
3K8 {3} 4,368 1,784,066 15,565,129 97 96 −0.019 56 16 4.27s 44.74s 3m 40s 0.75s
3K12 {3} 17,160 — — — — −0.014 132 24 oom oom oom 1.76s
4K5 {3,4} 3,960 26,716 125,265 4,621 15,415 −0.037 20 10 0.03s 0.65s 2.01s —
4K5 {4} 3,960 1,005,711 4,673,340 121 120 −0.030 60 15 1.92s 1m 31s 4m 5s —
3L133 {3} 6,477 23,983 49,005 685 684 0.215 9 6 0.02s 0.23s 0.60s 2m 24s
3L143 {3} 20,856 139,964 417,027 1,201 1,200 0.107 16 8 0.09s 4.71s 9.64s 48m 1s
3L151 {3} 10,020 153,607 501,036 1,501 1,500 −0.019 20 10 0.18s 6.26s 11.14s 14.37s
3L153 {3} 51,215 855,397 3,486,091 1,861 1,860 0.024 25 10 1.45s 3m 46s 4m 19s > 6h
3L223 {3} 8,762 32,750 45,913 2,437 2,436 0.516 4 4 0.03s 0.13s 0.28s 51.94s
3L523 {3} 775,148 2,911,352 4,183,685 220,705 220,704 0.953 4 4 10.28s 1m 19s 3m 56s > 6h
4L133 {3,4} 80,322 79,351 158,058 75,157 155,475 0.147 9 6 0.24s 5.58s 12.07s —
3D3 {3} 13,797 91,858 215,967 1,522 1,521 0.284 9 6 0.10s 0.74s 2.28s 5m 59s
3D4 {3} 262,080 4,043,377 13,749,608 16,381 16,380 0.284 16 8 26.48s 3m 47s 9m 38s > 6h
4D3 {2,4} 331,695 514,072 1,232,775 485,986 1,168,029 0.200 9 6 2.18s 7.52s 1m 22s —
6D2 {2,4,6} 262,080 253,778 459,259 216,046 387,883 0.072 8 6 1.81s 2.76s 19.84s —
6D2 {4,6} 262,080 988,801 2,025,010 46,592 61,563 0.265 16 8 4.00s 14.14s 2m 11s —
6D2 {6} 262,080 3,131,832 7,356,087 5,551 5,550 0.333 32 10 27.54s 25.80s 8m 20s —
3G {3} 1,296 1,531 1,530 505 504 1.253 1 2 0.00s 0.00s 0.08s 1.02s
4G {4} 7,776 10,441 10,440 1,477 1,476 1.780 1 3 0.01s 0.01s 0.85s —
5G {4,5} 46,656 30,853 30,852 13,195 13,194 0.600 1 3 0.01s 0.06s 7.04s —
3GL {3} 1,296 1,207 1,206 289 288 1.252 1 2 0.00s 0.00s 0.06s 0.53s
4GL {4} 7,776 7,921 7,920 577 576 1.780 1 3 0.00s 0.01s 0.55s —
5GL {4,5} 46,656 16,489 16,488 5,095 5,094 0.600 1 3 0.01s 0.04s 3.72s —

Table 1: Experimental investigation of the runtime of our CFR- and LP-based algorithms (columns
‘This paper’) using the team belief DAG form, compared to the prior state-of-the-art algorithms
by Zhang & Sandholm (2022) (‘ZS22’) and Farina et al. (2021a) (‘FCGS21’), on several standard
parametric benchmark games. See the beginning of Appendix A for a detailed description of the
meaning of each column, and Section 8.2 for a description of the games. Missing or unknown values
are denoted with ‘—’. For each row (benchmark game), the background color of each runtime column
is set proportionally to the ratio R with the best runtime for the row, according to the logarithmic
color scale

1 10 ≥ 100
.

Definition B.1. A team TFSDP has team-public actions if, for all public states P containing decision
nodes, for all edge labels (i.e., actions or observations) a ∈

⋃
h∈P Ah, the set {ha : h ∈ P, a ∈ Ah}

is a union of public states.

Intuitively, this means that any action taken by a team member becomes common knowledge for the
team. The definition also allows for information other than the action to become common knowledge,
and for some public states to give the team members private information.

Theorem B.2. Given a team TFSDP T with public actions, there exists another realization-equivalent
team decision problem T ′ such that the branching factor of T ′ is at most 2 at each decision node, the
parameters p, n, k, w in T ′ are the same as in T , and |P| has increased by at most a constant factor.

Corollary B.3. In a team TFSDP T with public actions, it is possible to create a team DAG for T
with O((2p+ 2)wb′|P|) or O(3kb′|P|) edges.

C PROOFS

C.1 THEOREM 5.3

We will show the claim for pure strategies, which is enough since mixed and correlated strategies
come from taking convex combinations of pure strategies.
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(⇒) Consider a pure strategy π in T , inducing a correlation plan x. Consider the pure strategy in
the team belief DAG form in which the team chooses the prescription in each belief consistent
with π, inducing a sequence form x′.
Let z be a terminal node in T , and suppose x[z] = 1. We need to demonstrate a path through
D leading to Σ(s) such that π plays every action prescribed along that path. Consider the path
through D defined by following the prescriptions of π, and always selecting the public state
that leads to z. By construction of the team belief DAG form, this path must end exactly at z,
so x′[Σ(z)] = 1.
Conversely, suppose that such a path exists. Then, every infoset I ⪯ z must have appeared
in some belief node B along the path, and, at that belief node, in order for Σ(z) to still have
been reachable, the team must have chosen the action at I leading to z. Thus, the team plays all
actions on the path from the root to z, so x[z] = 1.

(⇐) Consider a pure strategy π′ in D, and let x′ be its sequence form. Define the pure strategy
π in T as follows. In each public state P , π′ induces a unique belief B ⊆ P . Let a be the
prescription in π′ at B. At every infoset I ⊆ P , define π(I) = aI if I intersects B, and
arbitrarily otherwise. We claim that π defined in this way is realization-equivalent to π′. As
before, let x be the correlation plan of π.
Suppose x′[Σ(z)] = 1; that is, there is a path through D ending at Σ(z) at which π′ plays every
prescription. Then, at each public state P along this path, the belief B ⊆ P induced by π′

must be exactly the unique belief used to construct π at P . Thus, in particular, if P contains
an infoset I ⪯ z, then I ∩ B ̸= ∅. Thus, the team plays all actions on the root→ z path, so
x[z] = 1.
Conversely, suppose x[z] = 1. Then, a straightforward induction shows that, at every public
state P on the root→ z path, the belief at B induced by π′ must contain an ancestor of z and
thus must be played to. This completes the proof.

C.2 THEOREM 6.1

A belief B ⊆ P of a public state P ∈ P is uniquely identified by its sequence set σ(B). We have
|σ(B)| ≤ w by definition. Hence, there are at most

(
p

≤w

)
such beliefs, and at most bw prescriptions

a at B. For each prescription a, the children of Ba must be public state children of P ; in particular,
there are at most b′ of them. Multiplying these gives the desired result.

C.3 THEOREM 6.3

Consider a public state P . Each of the k player sequences corresponds to at most one information set
in P . Thus, to specify that player sequence’s contribution to a belief-prescription pair Ba, it suffices
to specify one of: either the player does not play to the sequence, or the player chooses one of her b
possible actions at the sequence. Thus, there are at most (b+ 1)k possible belief-prescription pairs
Ba. Each one has at most b′ children as argued before. The bound follows.

C.4 THEOREM B.2

Consider a public state P of T . If P contains no decision nodes, we leave it alone. Otherwise, let
B be an arbitrary binary tree with leaf set A :=

⋃
h∈P Ah. The internal nodes of B will be labelled

with partial actions ã, which we can think of as partial bitstrings of indices of actions in A. For
each node h ∈ P , we replace h with a modified copy of B wherein subtrees containing no nodes
in Ah have been pruned. If h and h′ are in the same infoset in P , then for every partial action (i.e.,
nonterminal node) ã ∈ B we connect hã and h′ã in an infoset. This creates a new public tree T ′,
whose parameters we must now analyze.

For each public state P of T , the construction creates the internal nodes of a public subtree in T ′

with leaves corresponding to the child public states of P . This adds at most as many public states as
there are children of P in T , so the number of public states in T ′ is at most twice that of T .

The number of players n remains the same.

For each new public state P ∗ constructed in this process, we have P ∗ ⊆ P ã := {hã : h ∈ P, ã ⪯
a ∈ Ah} for some ã, where ⪯ denotes precedence in B (the subset may not be the whole set, because
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it is possible for the partial action ã to have already revealed further common knowledge that was not
available at P ). Thus, every team or player sequence σ(h) in P identifies at most one unique team or
player sequence in P ∗—namely σ(hã), if present—and thus p and k have not increased.

Finally, for each belief B ⊆ P , the largest belief in P ã induced by B is Bã, which has no larger
effective size. Hence, w has not increased. This completes the proof.

D CFR CONVERGENCE PLOTS

In this section, we show the performance of each of the three CFR variants that we implemented to
perform no-regret learning on the team belief DAG. As a rule of thumb, the predictive algorithm
PCFR+ (Farina et al., 2021b) is fastest when high precision (low team exploitability) is necessary. For
low precision, DCFR (Brown & Sandholm, 2019) is often the fastest algorithm in practice, especially
in certain variants of Kuhn poker.
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