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Abstract

In this paper, we present a method to disentangle appearance and structural infor-
mation in the latent space of StyleGAN. We train an autoencoder whose encoder
extracts appearance and structural features from an input latent code and then
reconstructs the original input using the decoder. To train this network, we propose
a video-based latent contrastive learning framework. With the observation that the
appearance of a face does not change within a short video, the encoder learns to
pull appearance representations of various video frames together while pushing
appearance representations of different faces apart. Similarly, the structural rep-
resentations of augmented versions of the same frame are pulled together, while
the representation across different frames are pushed apart. As face video datasets
lack sufficient number of unique identities, we propose a method to synthetically
generate videos. This allows our disentangling network to observe a larger variation
of appearances, expressions, and poses during training. We evaluate our approach
on the tasks of expression transfer in images and motion transfer in videos.

1 Introduction

In recent years, Generative Adversarial Networks (GANs) have become effective in generating high-
quality samples. Among them, StyleGANs [1, 2, 3, 4] have demonstrated amazing ability to produce
high-definition and photo-realistic face images. The fact that StyleGANs induce a semantically
interpretable latent space has enabled many downstream face editing tasks [5, 6, 7, 8, 9, 10, 11, 12, 13].
In this work, we aim to discover a disentanglement which separates appearance and structural features
in the latent space. Here, we define appearance features as subject-dependent properties including
face identity, hair style, skin tone, eye color, facial hair, presence of glasses, etc., and structural
features as subject-independent properties like face pose and expression. Unlike common facial
attributes such as smile, lip color, or head pose that can be characterized using a small number of latent
dimensions [8], face appearance features (e.g. face identity) are difficult to measure and often heavily
correlated with structural features. To tackle this problem, we hypothesize that within a short video
clip, since the variations of subject-dependent properties are smaller compared to subject-independent
properties, the “appearance features” extracted from the latent codes of individual frames should be
close to each other. We propose to realize this idea by training an autoencoder in the StyleGAN latent
space using a novel video-based latent contrastive learning so that the encoder extracts appearance
and structural features from input latent codes, and the decoder reconstructs the original input.

Contrastive learning has been shown to be effective in visual representation learning [14, 15, 16,
17, 18] and unpaired image-to-image translation [19]. The idea is to encourage the networks to
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Figure 1: Comparison of our video-based latent contrastive learning approach with conventional con-
trastive learning for self-supervised learning [14]. Conventional contrastive learning uses augmented
versions of the anchor image as positive samples and different images as negatives. Our proposed
appearance contrastive loss uses different frames of the same video as positive samples and different
identities as negative samples. The structural contrastive loss uses visually augmented versions of the
anchor image as positives and different frames of the video as negatives.

associate visual cues at image/patch level by training on a large number of corresponding and
non-corresponding images/patches. The corresponding pairs can be defined as images augmented
by simple color transformation or patches in the same spatial location [19]. In StyleGAN latent
space, however, finding a large number of corresponding and non-corresponding pairs through
simple image transformation is challenging since the association between image space operations
and StyleGAN latent representation is non-trivial or even intractable. In this work, we consider those
pairs discovered by the latent representation of video frames. Specifically, for appearance features,
different frames within the same videos are considered corresponding pairs and video frames from
different subjects are non-corresponding pairs. For structural features, video frames with similar
expression and pose are considered as corresponding pairs whereas different frames within the same
video are non-corresponding pairs. In Figure 1, we present the core differences between conventional
contrastive learning and the proposed video-based latent contrastive learning.

Successfully learning with a contrastive objective requires a large number of face videos such that
there is sufficient variation of appearance, expressions, and poses. However, most face video datasets
do not contain enough unique identities to learn robust appearance and structural representations. We
propose to exploit the property that video frames embedded in StyleGAN latent space are intrinsically
low-rank, and the latent codes can be easily augmented by projecting into the subspace spanned by
these frame embeddings. By augmenting the latent codes, we generate synthetic video frames to
ensure sufficient number of unique identities with different expressions and poses. To our knowledge,
the use of such a contrastive objective to disentangle GAN latent representations and this manner of
generating synthetic videos for training has not been previously explored.

2 Related Work

Disentangled representation learning One of the main goals in representation learning is to
disentangle the underlying factor of variations that explain real-world data. Most existing works aim
to disentangle factors such as background, object, shape, or texture [20, 21, 22]. In unsupervised
image-to-image translation [23, 24, 25, 26], disentanglement between content and style is commonly
adopted to achieve global texture transfer between multiple domains. On the other hand, our
formulation of learning disentangled appearance and structural features focuses on a more fine-grained
disentanglement. Peng et al. [27] propose disentangling “identity” and “non-identity” features in a
supervised manner from samples generated by a 3DMM. Recently, Nitzan et al. [28] train a deep
CNN to disentangle the identity and other facial attributes (pose, expression, and illumination) with a
cyclic and adversarial objective. In contrast, our approach is applied directly on the GAN latent space
(w ∈ W+) and our video-based contrastive learning objective is novel for this task.

StyleGAN-based video generation Earlier works on GAN-based video generation are mainly
limited to generating videos in lower resolution. Recently, StyleGAN’s capability of generating
photo-realistic images has motivated some work to synthesize short video clips by traversing in the
StyleGAN latent space [29, 30, 31]. In [29], the authors propose to synthesize smooth random motion
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Figure 2: Network Architecture Overview. Given an input latent code, our encoder disentangles
the appearance and structural features. These disentangled features are passed to the decoder to
reconstruct the input latent code. When appearance and structural features from different images
are input to the decoder, a new face is generated with the appearance of one face and the pose and
expression of the other.

on user-specified facial regions from a single image. In [30, 31], it has been shown that temporal
dynamics in a video clip can be learned by a latent space generator. However, this requires training
one latent generator for each video clip. In contrast, our work can synthesize new videos with the
same motions as the driving video without the need to re-train the network at inference time.

3 Our Approach

The goal of this work is to disentangle the GAN latent space into appearance and structural features.
Once disentangled, features from different images can be swapped to perform tasks like expression
and motion transfer. To this end, we train a latent autoencoder (AE) with an encoder, fE , and a
decoder, fD, so that given a latent code w ∈ W+, we obtain w(a), w(s) = fE (w), where w(a)

captures appearance and w(s) captures structural features. The decoder reconstructs the input latent
from these disentanged representations, w = fD

(
w(a), w(s)

)
. This is depicted in Figure 2. For

training, we assume the existence of K video sequences {vk}Kk=1, such that the Tk frames in each
video (where Tk can vary between videos) is encoded into latent vectors, {wk,t}Tk

t=1. Next, we present
a video-based contrastive objective to train fE to disentangle appearance and structural features.

3.1 Video Contrastive Learning

Contrastive Appearance Loss Under the assumption that a person’s appearance does not change
throughout a video sequence, we attempt to push appearance representations of frames within the
same video to be closer to each other than the appearance representations across different videos.
That is, |w(a)

i,t − w
(a)
i,t′ | < |w(a)

i,t − w
(a)
j,t′′ |, i ̸= j. This can be accomplished using a contrastive loss

[32, 14], where positive samples are two frames taken from the same video and negative samples are
frames taken from different videos. Formally, for a batch with B samples we use the Masked Margin
Softmax (MMS) loss [33], defined as
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where S is a similarity function between two vectors and γ is a margin hyper-parameter. Here, we
use the negative L2 distance, S(a, b) = −

∑
(a− b)2, as the similarity measure.

Contrastive Structural Loss We learn the structural features in a similar manner. In this case,
positive samples would consist of different subjects with the same expression and pose, and negative
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samples would consist of the same face with different expression and pose. Although it is simple
to obtain the negative samples by sampling different frames of the same video, obtaining two faces
with the same expression would require manual annotations. To this end, we augment versions of the
same face to obtain these pairs as described in 3.2. The augmented version of a latent code is denoted
w̃k,t. This produces the appearance and structural features, w̃(a)

k,t and w̃
(s)
k,t respectively. Therefore,

the structural contrastive loss is defined as

Ls =
1

B
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3.2 Training Data Generation

Video Generation Since contrastive learning often requires large amounts of data, existing datasets
often contain insufficient unique identities to learn robust appearance and structural representations
(e.g. the VoxCeleb2 dataset [34] contains only 5992 individuals). Therefore, we propose a method to
generate a large amount of synthetic videos which have variation of appearance, expressions, and
poses. Fox et al. [30] propose the Offset Trick to transfer the motion of a generated video to different
subjects. Given a real video, we project each frame into the GAN latent space and use the Offset
Trick to transfer the motion to multiple sampled latent codes’ generated faces.1 With a sufficiently
large number of sampled latent codes, we can ensure our network trains on videos which contain a
greater variation in appearance. Specifically, we train our AE on a large synthetic video dataset by
randomly sampling 5 million latent codes and using the Offset Trick on 1000 VoxCeleb2 videos.

Image Augmentation To obtain positive samples for the contrastive structural loss, we augment
the face images in a video using style-mixing [1] and latent space sliders [7]. For style mixing, we
randomly mix latent codes from the last 10 styles (layers 8-18) in the W+ latent space. We further
augment faces by randomly traversing the latent space in the direction of controllable sliders obtained
by [7]. We select sliders that correspond with appearance and do not change pose or expression:
“age”, “bald”, and “skin tone”. Combining these sets of augmentations allows for a change in the
face’s appearance while ensuring their pose and expression remain the same. Moreover, we increase
the variety of poses and expressions by including the horizontally flipped version of faces during
training. These flipped images not only improve the learned structural representations, but also are
useful “hard positives” for the appearance contrastive loss: a horizontal flip is a more drastic head
pose change than what is present in most videos.

3.3 Auxiliary Losses

Latent and Image Cyclic Losses We include cyclic losses to to ensure the encoder produces
consistent appearance and structural features, even when the input latent is obtained from two
different images. For latent codes wi and wj , we extract the appearance and structural features
w

(a)
i and w

(s)
j . Then, these features are given to the decoder network to obtain a new latent code

fD(w
(a)
i , w

(s)
j ) = wij . If the encoder is able to extract disentangled appearance and structural

features, it is expected to recover w(a)
i and w

(s)
j from wij . Therefore, with the resulting disentangled

features fE (wij) = ŵ
(a)
i , ŵ

(s)
j , we can compute the a latent cyclic loss Lcyc−lat =

(
w

(a)
i − ŵ

(a)
i

)2

+(
w

(s)
j − ŵ

(s)
j

)2

for B pairs of latent codes in the batch. Similarly, we compute an image-based cyclic
loss which is computed on image pixels as opposed to latent codes. Here, the GAN generator, G,
generates an image from the latent code output from the decoder network. The image cyclic loss is

calculated as Lcyc−img =
[
xi −G

(
fD

(
ŵ

(a)
i , w

(s)
i

))]2
, where xi is the original input image.

3DMM Consistency Loss Lastly, we include a 3D Morphable Model based loss which improves
the quality of the disentangled features. Given an image, CNNs can be used to regress various
coefficients (pose, expression, identity, texture, and lighting2) of a 3DMM face model. We employ a

1Identities can change when there are large pose variations, but in the majority of cases, the face pose only
has minor changes throughout a video. Refer to supplemental materials for examples of this behaviour.

2In this work, we do not include lighting coefficients during training.

4



Table 1: Results on Motion Transfer on the VoxCeleb dataset.

Method AKD↓ ACED↓ FID↓ FVD↓
Offset Trick [30] 2.164 0.771 121.0 272.8
FOMM [43] 2.388 0.701 148.1 244.8
Ours 1.928 0.711 139.5 275.8

pretrained model [35] to estimate these coefficients during training, and enforce consistency across
faces generated with the same appearance and structural features. Images generated from the same
appearance features should have consistent identity and texture coefficients. Meanwhile, the pose and
expression should be consistent across images with the same structural features. Let us denote Ma (x)
as the regressed appearance coefficients (identity and texture) and Ms (x) as the regressed structural
coefficients (pose and expression) for an image x. We then define the losses between pairs of images
(xi, xj) as L3DMMa

= [Ma (xi)−Ma (G (wij))]
2 and L3DMMs

= [Ms (xi)−Ms (G (wji))]
2.

3.4 Network Architecture

The encoder, fE : R18×512 → Rda × Rds , consists of two MLPs which output the appearance
and structural features, with dimensions da and ds, respectively. The decoder, fD : Rda × Rds →
R18×512, consists of a three layer MLP. It combines these disentangled features and outputs a latent
representation that can be used by the GAN to generate an image. As this is an autoencoder, both
the encoder and decoder are trained jointly using a reconstruction loss: Lrec = [wi − fD (fE (wi))]

2.
The network is trained end-to-end using a weighted sum of reconstruction, contrastive, cyclic, and
3DMM consistency losses. At inference time, this network can be applied to expression transfer by
passing the appearance features of one face image and the structural features of the target expression
image through the decoder. Similarly, motion transfer is performed by using the appearance features
of the source image and the structural features from each frame of the driving video.3

4 Experimental Evaluation
Implementation Details and Evaluation Protocol As described in Section 3.1, we train on a large
synthetic video dataset, generated from a 1000 video subset of the VoxCeleb2 dataset [36, 34] and
5M randomly sampled latent codes. To obtain GAN latent codes from images and to generate images
from a given code, we use a pre-trained e4e [37] and StyleGAN2 [2] respectively. We quantitatively
evaluate our method on the task of motion transfer. Given a driving video and a source image,
the driving video’s motion is transferred to the source image to obtain an output video. We report
the Average Keypoint Distance (AKD), Average Classifier Embedding Distance (ACED), Frèchet
Inception Distance (FID) [38] and Frèchet Video Distance (FVD) [39] metrics. AKD uses a pretrained
facial landmark detector [40] and measures the distance between landmarks in the output and driving
videos; ACED measures the L1 distance between the embedding layer of a ResNet-50 [41] face
classifier trained on the UMDFaces dataset [42]. The ACED and AKD metrics should be viewed
jointly: whereas ACED measures how well a method maintains a person’s identity, AKD measures
how well pose and expression are preserved. FID and FVD are used to evaluate each methods’
image naturalness and motion quality, respectively. Additional information on hyper-parameters and
evaluation protocol can be found in the supplement.

4.1 Quantitative Evaluation

We present a comparison with two previous methods [43, 30] in Table 1. We first compare with the
Offset Trick [30], which assumes that the directions in W+ space which control identity and motion
(i.e. expression, pose, and articulation) are mostly orthogonal. Our method outperforms the Offset
Trick on both AKD and ACED metrics. Generally, the Offset Trick transfers motion well, but tends
to fail when there are large pose differences between the source image and frames in the driving
video. Furthermore, the identities produced by the Offset Trick can shift throughout the output video
depending on the changes in pose of the driving video. In contrast, our method tends to maintain a
consistent identity for all frames of the output video.

Next, we compare with the first order motion model (FOMM) [43], which estimates a dense motion
field from a driving frame to the source image and passes this motion field to a generation module

3More details about the inference process is included in the Supplementary Materials.
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Figure 3: Qualitative comparisons with theOffset Trick and First Order Motion Model (FOMM) for
the task of motion transfer. Here, the motion of a VoxCeleb video is transferred to an FFHQ image.

Figure 4: Expression transfer examples of our method. The first row contains the various expressions
which will be used, and the first column in rows 2-4 contains the identities. We find that the identity
is maintained across different expressions.

which warps the source image to generate the output frames. FOMM slightly outperforms our method
on the ACED metric. Although FOMM outputs faces which are similar to the source image, the
generated images tend to have much lower quality; not only do they have a lower resolution (256x256
when compared with the StyleGAN’s 1024x1024), but also the warping operation may generate
deformed faces. This artifact is especially prevalent when there are sudden facial movements or when
the source face’s pose greatly differs from the poses present in the driving video, and could explain
the undesirable increase in the AKD and FID scores.

4.2 Qualitative Evaluation

Motion Transfer In Figure 3, we present motion transfer examples using the Offset Trick, FOMM,
and our proposed approach. Here, the motion for VoxCeleb videos are transferred to FFHQ [1]
images. Although the Offset Trick tends to mimic the the driving videos’ facial expression changes,
there is often a change in the identity throughout the output video. The FOMM preserves the identity
of the actor throughout the video, but it generates lower resolution frames and faces which seem
warped, as depicted in the figure’s first example. In the supplemental materials, we include a variety
of videos generated by our method.
Expression Transfer Our method can also perform expression transfer on individual images. Since
we combine the structural features of one image and the appearance features of another, the resulting
image has the expression and pose corresponding to the prior image. We present examples of our
method performing expression transfer between FFHQ images in Figure 4. The generated faces
maintain identity across a variety of target expressions.

5 Conclusion
We have presented a novel approach to disentangle GAN latent representations using a video-based
contrastive objective. The latent codes are decomposed into appearance and structural features.
Appearance features represent those aspects of the face which remain consistent throughout a video,
such as identity, hair-style, and presence of glasses; structural features represent those aspects that
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change, like expression and face pose. To train our network, we proposed a method for synthetically
generating a diverse set of video frames by augmenting a small set of real video with randomly
sampled latent codes. Once trained, our method can perform various tasks like expression transfer in
images and motion transfer in videos.
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