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Multi-Resolution Data Fusion for Super
Resolution Imaging
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Abstract—Applications in materials and biological imaging are
limited by the ability to collect high-resolution data over large
areas in practical amounts of time. One solution to this prob-
lem is to collect low-resolution data and interpolate to produce
a high-resolution image. However, most existing super-resolution
algorithms are designed for natural images, often require aligned
pairing of high and low-resolution training data, and may not
directly incorporate a model of the imaging sensor.

In this paper, we present a Multi-resolution Data Fusion (MDF)
algorithm for accurate interpolation of low-resolution electron
microscope data at multiple resolutions up to 8x. Our approach
uses small quantities of unpaired high-resolution data to train a
neural network prior model denoiser and then uses the Multi-Agent
Consensus Equilibrium (MACE) problem formulation to balance
this denoiser with a forward model agent that promotes fidelity to
measured data.

A key theoretical novelty is the analysis of mismatched back-
projectors, which modify typical forward model updates for com-
putational efficiency or improved image quality. We use MACE
to prove that using a mismatched back-projector is equivalent to
using a standard back-projector and an appropriately modified
prior model. We present electron microscopy results at 4x and
8x interpolation factors that exhibit reduced artifacts relative to
existing methods while maintaining fidelity to acquired data and
accurately resolving sub-pixel-scale features.

Index Terms—Data fusion, MACE, Multi-Agent consensus
equilibrium, MDF, Multi-Resolution data fusion, super resolution,
Plug-and-Play.

I. INTRODUCTION

MANY important material science problems require the
collection of high resolution (HR) data over large fields

of view (FoV). For example, high resolution images are needed
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to extract detailed features, such as the 4 nm curli fibers struc-
tures in E. coli, which are fundamental in the formation of bacte-
rial biofilms, or the 10-20 nm structures in gold nanorods materi-
als, which are of interest due to their near-infrared light tunability
and biological inertness [1]. Also, a large FoV is typically
required to collect the representative volumes (RV) of materials
that are needed to determine macroscopic properties such as
material toughness and fracture strength [2]. However, imaging
multiple, large FoVs at high resolution is difficult under realistic
constraints. For example, raster scanning a 1 mm × 1 mm FoV at
a resolution of 10 nm requires the acquisition of approximately
10 G-pixels of data, which requires roughly 17 hours under
conditions described in [3]. One approach to overcoming this
barrier is to acquire a large FoV at low resolution (LR) and
interpolate it to obtain a higher resolution image of sufficient
quality. Ideally, 4x interpolation in each direction leads to a 16x
decrease in acquisition time, while 8x interpolation leads to a
64x decrease.

Traditional interpolation methods such as splines [4] do not
offer sufficient quality, but recent advances using deep neural
networks (DNNs) have produced a number of methods for high
quality interpolation of natural images. For example, [5] and [6]
use end-to-end DNNs trained on HR/LR paired images. This
approach is improved in SRGAN [7] through adversarial train-
ing and perceptual loss. Another approach is EnhanceNet [8],
which uses automated texture synthesis and perceptual loss but
focuses on creating realistic textures rather than reproducing
ground truth images. ESRGAN [9] introduces architectural
improvements to SRGAN, and ESRGAN+ [10] adds further
refinements. DPSR [11] uses a form of Plug-and-Play (PnP) as
described later, but still requires a CNN super-resolver trained on
HR/LR pairs. And finally, DPSRGAN [11] attempts to fuse these
Plug-and-Play methods with the realistic textures generated by
GANs.

An impediment to applying these DNN methods to material
imaging problems is that they are typically trained using a large
set of aligned HR/LR patch pairs. However, in practice it is
difficult to acquire large quantities of accurately aligned HR/LR
data [12]. More recently, zero-shot learning has been proposed as
a method that does not require aligned HR/LR data for training.
In zero-shot learning, the LR image is further downsampled
to produce paired data to train a small, image-specific CNN
that is used to upsample the original [13]. While this allows
for quick and accurate reconstructions, it does not make use of
high-resolution data in its training.
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Fig. 1. Overview of the MDF pipeline. A small set of high-resolution data (unpaired with low-resolution data) is used to tune a CNN denoiser. This tuned denoiser
is used in the MACE framework with a microscopy-based forward model to produce high-resolution images from low-resolution data.

In this paper, we update the MDF algorithm of [14] to use
a prior model based on deep learning and give a theoretical
justification for the use of mismatched backprojectors. Our
method yields accurate 4x and 8x interpolation of large FoV
low-resolution EM images using selected unpaired patches of
HR data. Moreover, our method can perform interpolation by a
range of factors without retraining of the prior model.

More specifically, the novel contributions of this work in-
clude:
� An update of the MDF algorithm from [14] to incorporate

recent advances in deep learning and a description of this
algorithm in the MACE problem formulation.

� The use of the MACE formulation to show that the use
of a mismatched or relaxed adjoint projector (RAP) is
provably equivalent to using the standard back projector
with an appropriately modified prior. See Section III for
more details on RAP.

� Experimental results indicating that interpolation factors
of 4x to 8x are possible with realistic transmission and
scanning electron microscopy data sets.

Our MDF-RAP approach can be applied to a number of
imaging processing tasks and modalities, and its modularity
allows for changes in forward models, resolution level, and
regularization strength without retraining. Our analysis of the
Relaxed Adjoint Projection interprets this particular change to
the forward model to a corresponding change to the prior.

In Fig. 1, we provide a visual representation of the MDF
approach. Using a LR base image, we train a denoiser on a sparse
set of HR patches of the same (or similar) specimen. This allows
the denoiser to learn the underlying manifold of the HR data
while simultaneously being trained to remove additive white
Gaussian noise (AWGN). This denoiser is then applied in the
MACE framework to achieve a super-resolution reconstruction
of the low-resolution base image. This approach does not require
registered pairs of HR and LR data, allowing for flexible levels
of super resolution and simple generalization to other problems.
Additionally it allows for use of known forward models and has
a single parameter that can be used to control the weight of data
fidelity relative to strength of regularization.

Code for this project is available at https://www.github.com/
emmajreid/MDF.

II. RELATED WORK & PROBLEM FORMULATION

Data fusion, or the combination of multiple sources of data,
has been used successfully in domains such as medical imaging,
remote sensing, and others for many years [15], [16]. In medical
imaging, scientists combine scans from multiple sources such
as PET, CT, and MRI to reconstruct images that better show
internal body properties [17]. Recent work on data fusion in
remote sensing [18] provides a framework for multi-modal and
cross-modal deep learning methods for pixel-wise classification
and spatial information modeling. In a separate direction, [19]
applies super-resolution in the spectral domain to images that
are spatially high-resolution but spectrally low-resolution; this
is done by learning a joint sparse and low-rank dictionary of par-
tially overlapping hyperspectral and multispectral images and
their sparse representations. In [20] this is done with an unsuper-
vised hyperspectral super-resolution network that blends spatial
information from multispectral sensors and spectral information
from hyperspectral sensors.

The PnP algorithm [21], [22] and MACE problem formula-
tion [23] provide a framework in which multiple models can
be combined with little modification, thus providing a natural
approach to data fusion. A PnP approach was used in [24] to
combine CT and MRI modalities across sensor, data, and image
priors, but all at a single resolution. In [25], PnP was used with
the Nonlocally Centralized Sparse Representation algorithm to
combine sparse coding and dictionary learning to turn a denoiser
into a super-resolver. However this method begins to break
down in the presence of noise, which is prevalent in microscopy
images.

In work closely related to the current paper, [14] uses PnP to
develop MDF for microscopy. In that work, they used a fixed
library of domain-specific HR patches as the basis for a non-local
means denoiser and then coupled this with a data-fitting forward
model to achieve super-resolution from LR image data over
a large field of view. However, the resulting denoiser is com-
putationally expensive relative to a neural network approach.
Moreover, that paper did not provide theoretical foundation to
guide modifications to the algorithm.

As noted above, we extend the work in [14] to use a neural
network prior and describe our method and the use of RAP in
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terms of the MACE formulation. In Section II-A to II-C, we
examine the modeling of the microscope’s point spread function,
detail the forward model derivation from [14], motivate RAP,
and describe the MACE framework developed in [23] and the
relationship between MACE and PnP.

A. Microscopy Forward Model

Our goal is to interpolate a rasterized image y ∈ RM to a
HR version x ∈ RN . Super-resolution by a factor of L implies
scaling by L in each direction, so that N = L2M . For such a
problem, the forward model is typically

y = Ψx+ ε, (1)

where Ψ ∈ RM×N represents the point spread function of the
microscope and ε ∼ N(0, σ2

w) is an M dimensional vector of
AWGN. For our application, ψ is closely modeled by averaging
overL× L patches. The data-fitting cost function is then 1

2‖y −
Ψx‖2, which is embedded in a proximal map and balanced by
the action of a prior model. For application purposes, we now
need to approximate Ψ.

In bright-field transmission electron microscopy, a parallel
beam of electrons illuminates a thin material sample, and the
resulting transmitted beam is formed into an image using the
microscope’s objective lens. This is then further magnified using
the microscope’s projection lens system. Using this configura-
tion, the transmission electron microscope can yield a magnifi-
cation ranging from 1,000X to over 1,000,000X. The magnified
beam is sampled at the image plane using a pixel array detector
such as a direct electron detector or CCD camera. Since the
electron-optical magnification can be controlled and the image is
detected using a pixel array detector, a block-averaging forward
model is a good approximation for this acquisition modality. In
this forward model, a square region in the high-resolution image
is averaged to produce a single pixel value in the low-resolution
image.

For scanning electron microscopy, an electron beam is fo-
cused to a small diameter probe which is then raster scanned
across the surface of the sample using beam deflectors. As the
probe strikes the sample, secondary electrons are ejected from
the sample and collected with an integrating detector, which
sums the total number of electrons scattered at each point on
the surface of the sample. The raster array dimensions can be
controlled to give LR and HR data, so again a block-averaging
forward model is a good approximation to the imaging system.
The image acquisition process for transmission and scanning
electron microscopy is depicted in Fig. 2.

B. PnP Formulation

Plug-and-play (PnP) [21], [22] is an algorithm for solving
inverse problems that replaces the probabilistic encoding of
Bayesian prior information with an algorithmic encoding; a
candidate reconstruction is denoised to produce a more plausible
reconstruction without using a cost function or likelihood. This
prior update is combined iteratively with a forward update until
a fixed point is reached. Using the description in Section II-A,
we approximate the forward model Ψ by block-averaging every

Fig. 2. Illustration of the transmission and scanning electron microscopy
image acquisition process. We approximate both image acquisition processes
by block-averaging a HR image as described in Section II-B. The scanning
electron microscopy image shown is adapted from [26].

non-overlapping neighborhood ofL× L pixels in the HR image
to obtain the LR image [14]. For notational convenience, we let
A represent summation over L× L blocks, in which case Ψ ≈
A/L2 in (1). Also, AT is given by replicating each pixel into
an L× L block, soAAT = L2I . The negative log-likelihood is
then

l(x) =
1

2σ2
w

∥∥∥∥y − 1

L2
Ax

∥∥∥∥
2

+
M

2
log(2πσ2

w). (2)

As part of the Plug-and-Play algorithm, Sreehari et al. used
the proximal map of l(x), given by

F (x;σλ) = argmin
x̂≥0

[
l(x̂) +

1

2σ2
λ

||x− x̂||22
]
. (3)

As in the proof of Lemma 1 in the Appendix, we use the
fact that AAT = L2I to reparameterize the solution of (3) in
a simpler form. We also use clipping to impose the physical
constraint of nonnegativity as in the constrained minimization
of (3). This yields

F (x;σλ) =

[
x+

σ2
λ

σ2
λ + L2σ2

w

AT

(
y − 1

L2
Ax

)]
+

. (4)

The block replication inherent in AT can lead to blocky
artifacts in the final reconstruction, which motivates our intro-
duction of the Relaxed Adjoint Projector in Section III. Sree-
hari et al. used a library-based Non-Local Means (NLM) prior
model to incorporate HR data, which led to slow reconstruction
times due to the computational cost of NLM [27]. For this
reason, we opted to use a deep neural network denoiser as
our prior model. PnP has been used with similar denoisers as
prior models in [28]–[30]. However, limitations of this previous
work include little ability to control regularization strength and
the use of generically trained neural networks as opposed to
domain-specific denoisers.

C. MACE Reconstruction Framework

In PnP, which is derived from the ADMM solution to a
Bayesian inversion problem, forward and prior models can be
designed separately, thus promoting modularity and separating
sensor modeling from image domain modeling. However, the
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resulting fixed point of the PnP algorithm no longer has the
probabilistic interpretation given in the Bayesian approach.

Multi-Agent Consensus Equilibrium (MACE) [23] provides a
formulation and interpretation of the problem solved by the PnP
algorithm and leads naturally to generalizations and analysis
of PnP. MACE describes the fixed point of PnP in terms of
an equilibrium condition and extends the algorithmic denoisers
of PnP to a framework for the fusion of multiple forward
and prior models; MACE also provides parametric control of
regularization. MACE itself is not an algorithm, but the solution
of the MACE equations can be found with PnP or with other
algorithms for solving systems of equations.

The motivating problem for MACE is to minimize the func-
tion

f(x) =
K∑
i=1

μifi(xi) s.t. xi = x, i = 1, . . . ,K, (5)

with x, xi ∈ RN and weights μi > 0 with
∑K

i=1 μi = 1.
Buzzard et al. [23] describe a framework that generalizes

(5) to include algorithmic priors and forward maps (sometimes
called agents). For K vector valued maps, Fi : RN → RN ,
i = 1, . . . ,K, define the consensus equilibrium for these maps
to be any solution (x∗,u∗) ∈ RN × RNK such that

Fi(x
∗ + u∗

i ) = x∗, i = 1, . . .K and u∗
μ = 0 (6)

where u is a vector in RNK constructed by stacking vectors
u1, . . . uK , and uμ is the weighted average uμ =

∑K
i=1 μiui.

In the case of (5), the maps Fi are chosen to be proximal maps
associated with the fi.

The conditions in (6) are equivalent to a related system of
equations.Namely for v ∈ RNK with v = (vT1 , . . . , v

T
K), vi ∈

RN ∀i, define F(v) by stacking the vectors Fj(vj), and define
Gμ(v) by stacking K copies of vμ. Additionally for x ∈ RN ,
define x̂ to be the vector obtained by stacking N copies of x.
Then (x∗,u∗) satisfies (6) if and only if v∗ = x̂∗ + u∗ satisfies
v∗
μ = x∗ and

F(v∗) = Gμ(v
∗). (7)

As in PnP, the Fi may be replaced by more general operators
such as CNN denoisers, in which case the solution of (7) is the
fixed point of a generalized PnP algorithm. This is solved with
Mann iterations in [31] as shown in Algorithm 1, which we use
for our results.

In the case of 2 agents as in our results below, this algorithm
is equivalent to the PnP algorithm of [14], but the MACE
formulation is central to the analysis of RAP presented below.

III. RAP AND MDF

A key strength of the MACE framework is the ability to
incorporate algorithmic denoisers and other operators. In this
section, we leverage this observation in two ways.

First, we show that using a mismatched backprojector in (4)
is equivalent to using the original forward operator in (4) with
a modified prior agent. We call the mismatched backprojector a
Relaxed Adjoint Projector (RAP). More precisely, we modify
the forward operator in (4) by replacing AT with a related

matrix B. This change means that the forward operator is no
longer the proximal map for l(x). However, we show using
the MACE framework that this formulation is equivalent to a
formulation using the original forward operator in (4) but with
an alternative prior that depends on B. This provides important
intuition for the use of RAP and allows for the application of
existing convergence results.

Second, we describe our method of MDF, in which represen-
tative HR patches are collected independently of the LR scan.
These patches are then used to train a denoising prior model,
which intrinsically learns the underlying distribution of the high-
resolution modality. We then perform LR scans over a large area
and fuse the two modalities using the Multi-Agent Consensus
Equilibrium framework to produce a HR image encompassing
the full FoV.

A. Relaxed Adjoint Projection

The matrixAT in (4) is often called a back-projector because
it takes the error between measurements y and the forward model
and projects them back to image space. In practice, a different
matrix may be used in place of AT ; this is known in some
contexts as using a mismatched backprojector. This may be done
for computational simplicity, as in [32], or because the mismatch
leads to improved results, as in earlier work on iterative filtered
backprojection [33]–[35].

In the context of (4), we provide an interpretation of this
mismatch, which we term Relaxed Adjoint Projection (RAP), as
equivalent to the standard backprojector with an appropriately
modified prior. That is, the equilibrium problem obtained with a
given prior update map and a forward update with a mismatched
backprojector has the same solutions as a modified prior map and
the standard backprojector update.

For MDF-RAP, we consider the RAP update map

F̃ (x;σλ) =

[
x+

σ2
λ

σ2
λ + L2σ2

w

B

(
y − 1

L2
Ax

)]
+

, (8)

where the matrix B represents bicubic upsampling by a factor
of L and replaces the block replication operator AT . We note
that while bicubic backprojection is used here to avoid blocky
artifacts observed when using AT , other interpolants can be
used.
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We first describe the equilibrium problem associated with
RAP, then prove that the solution of this problem arises from
3 different formulations:
� RAP forward update, standard prior, equal weight aver-

aging
� standard forward update, standard prior, modified averag-

ing
� standard forward update, modified prior, equal weight

averaging.
Thus, replacing AT with B is equivalent to using AT with a

modified prior that can be described in terms of B.
In general, the update in (8) is not a proximal map for any

function when the matrixBA is not symmetric since a symmetric
Jacobian is a property of all proximal maps. By converting the
RAP update into a modified prior, we recover the ability to
use standard convergence results while maintaining the bene-
fits associated with mismatched backprojection. We note that
results in [36] prove convergence for an adjoint mismatch in the
Proximal Gradient Algorithm but do not address the equivalence
described here.

To describe RAP further, note that the first-order optimality
condition for a solution of (5) when all μj are equal is

∇f1(x∗) + · · ·+∇fK(x∗) = 0. (9)

Also, the proximal map for a convex and differentiable fj is
given by Fj(vj) = xj = vj −∇fj(xj); i.e, the update can be
regarded as an implicit gradient descent step, with the gradient
evaluated at the output point Fj(vj) = xj .

In the case of a mismatched backprojector, we assume
for the moment that FRj

j is given by F
Rj

j (vj) = xj = vj −
Rj∇fj(xj) for some matrix Rj , which we think of as close
to the identity (precise conditions onR are given in the theorem
statements in the appendix). In the case of (4) and (8), this
corresponds to RAT = B, and if B is close to AT , then R
can be chosen to be close to the identity. Using this FR and
all μ = 1/K in the equilibrium condition (7), we have

v∗j −Rj∇fj(x∗j) =
1

K

∑
k

v∗k. (10)

Since the left hand side is x∗j for each j and the right hand
side is independent of j, we have x∗j = x∗ is independent of j.
Summing these equations over j and subtracting the sum of the
v∗j from both sides and taking the negative gives

R1∇f1(x∗) + · · ·+RK∇fK(x∗) = 0. (11)

This is the corresponding equilibrium condition for the oper-
ators FRj

j and equal weight averaging.
Theorem 1 states that the set of solutions of the equilibrium

condition with RAP are the same as those obtained using stan-
dard back projections but an alternative averaging operator GR,
given by a matrix-weighted average using the Rj as matrix

weights. As before, we stack the operators F
Rj

j to obtain FR.
The details of the notation, hypotheses, and the proof are given
in the appendix.

Theorem 1: Under appropriate hypotheses (see appendix) on
F and R, there is a map from solutions v∗ of

FR(v∗) = G(v∗)

to solutions v̂∗ of

F(v̂∗) = GR(v̂∗)

such that for each such pair, G(v∗) = GR(v̂∗). There is also
such a map from v̂∗ to v∗.

The map G(v∗) is obtained by stacking the solution x∗, so
this theorem implies that these two formulations have the same
set of possible reconstructions. The following corollary applies
this to give the equivalence between the use of mismatched
backprojection in the data-fitting operator and the use of standard
backprojection with an alternative prior.

Theorem 2: With appropriate assumptions (see appendix) on
B = RAT and the denoiser H , and with equal weighting μj =
1/2, the following two choices lead to the same MACE solution
in (7):
� F1 = F̃ is the RAP update in (8) and F2 = H is a given

prior operator;
� F1 = F is the standard update in (4) and F2 = H ◦ ΦR,

where ΦR is a function dependent on the matrix R.
This makes precise the idea that the mismatch in RAP is

equivalent to a corresponding modification to the update step
of the prior operator. By using the mismatch, which is often
more efficiently implemented in the form of RAP than with
alternative averaging, we gain the ability to more closely match
the prior to the observed structure of the data without changing
the algorithmic implementation of the prior.

B. Convergence of Relaxed Adjoint Projection (RAP)

From [23], Algorithm 1 is known to converge when the map
v �→ 2F(v)− v is nonexpansive, and this condition is satisfied
when each Fj is the proximal map for a convex function. When
the RAP update is used, thenFj is typically no longer a proximal
map and may not be nonexpansive.

In Theorem 3 we give conditions under which Fj using RAP
is a proximal map after an appropriate change of coordinates.
The key idea, related to work in [37], is to consider operators of
the form F (x) =Wx+ q. When F is a proximal map, then W
is symmetric and positive-definite. A change of variables allows
us to recover this property even for some non-symmetric W .
This allows us to prove convergence of Algorithm 1 when using
the RAP forward model and denoiser H as in Theorem 2. The
proof is in the appendix.

Theorem 3: Let F (x) =Wx+ q where W = V ΛV −1 is an
N ×N matrix, Λ is diagonal with eigenvalues in (0,1], and q ∈
RN , and letH be a denoiser such that V −1HV is nonexpansive.
Then the Algorithm 1 converges using the operatorsF1 = F and
F2 = H .

C. Multi-Resolution Data Fusion

The MACE formulation with either the standard or RAP
forward operator provides a natural way to incorporate low-
resolution data and maintain fidelity of the reconstruction to this
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data. For MDF, we use a neural network denoiser as a prior
agent to incorporate selected high-resolution data, either from
the image under reconstruction or from related images.

The theoretical foundation of Plug-and-Play implies that the
prior operator should be a denoiser for images in the target
distribution perturbed by AWGN, in principle independent of
the noise present in the data itself [38]. However, as seen in [21]
the prior operator can play a large role in the quality of the
final reconstruction. In the context of learned denoisers such as
CNNs, this means that the CNN must denoise well on the images
in the distribution under consideration. Since we use an iterative
algorithm, the CNN must also denoise well on neighboring
images in order to converge to a high-quality reconstruction.
Ideally, the denoiser should be able to take any image in the
reconstruction space and move it closer to an image in the target
distribution, but in practice we must settle for an approximation
based on a sparsely sampled set of images near the distribution.

We note here that increasing the super-resolution factor L
necessarily increases the set of data-consistent reconstructions
– increasing L increases the dimension of the kernel of A. In
particular, given two reconstructions that both fit the data equally
well and that are both equally well-denoised by the denoiser
(more precisely, both are equilibrium solutions), there is no
reason to favor one over the other. This means first that the
importance of the prior operator increases withL and second that
larger L gives any reconstruction algorithm more opportunity
to “hallucinate” detail that may or may not be present in the
true image. In the context of scientific and medical applications
where the reconstruction can influence important decisions, it
can be detrimental to push the limits of super-resolution and/or
regularization beyond reasonable expectations [39].

IV. METHODS AND RESULTS

We apply the MDF-RAP method on 3 microscopy datasets
with pronounced differences in data distribution: gold nanorods,
an E. coli biofilm, and pentacene crystals. The gold nanorod
images are composed of non-overlapping, nearly linear seg-
ments at various angles with nearly circular impurities. The
E. coli biofilm images contain a wide variety of shapes and
textures as well as large regions of nearly empty space. The
pentacene crystal images are typically composed of large regions
of relatively constant intensity with sharply defined edges. The
nanorod and pentacene images were obtained using scanning
electron microscopy, while the E. coli images were obtained
using transmission electron microscopy.

We present comparisons of MDF-RAP with a variety of
alternatives for both 4x and 8x interpolation. At 4x we compare
with bicubic interpolation, DPSR, DPSRGAN [11], and PnP
with DnCNN trained on natural images. However, at 8x, we do
not compare with DPSRGAN since it is not available for this
interpolation rate.

A. Computational Methods

We use a MACE formulation as in (7) with two agents, one
for data fidelity and one to incorporate prior information in the
form of a denoiser. With 2 agents, the relative weightsμi simplify

to one weight μ for the forward agent and the complementary
weight 1− μ for the prior agent. Since the prior agent operates in
the reconstruction space of HR images, we train a CNN denoiser
to remove 10% AWGN from high-resolution target images.

We use Algorithm 1 to determine the corresponding recon-
structions. Based on the MACE equation F(v) = G(v), we
define a measure of convergence error as

Convergence Error =
||G(v)− F(v)||2
σn||G(v)||2 , (12)

where σn is the noise level used to train the prior model. We
display a plot of convergence behavior in Section IV-C.

For a baseline case (labeled PnP below), we use the standard
backprojector as in equation (4) and a DnCNN denoiser [40]
trained on natural images. We use μ = 0.5 for all results with
this approach. Algorithm 1 in this context is equivalent to Plug-
and-Play [23], hence the label PnP. This case is comparable to
other methods with no domain-specific training.

For the data fusion case (labeled MDF-RAP below), we use
the RAP backprojector as in equation (8) and a DnCNN denoiser
trained on representative high-resolution microscopy images.
Although this involves two changes relative to the PnP baseline,
Theorem 2 implies that using RAP is equivalent to using the
standard backprojector with a further modified prior. In order to
disambiguate RAP from the domain-specific prior, we illustrate
the effect of RAP separately in Fig. 7. In the case of MDF-RAP,
the use of RAP changes the effect of the prior, so we adjust
the regularization strength using μ = 0.8 for synthetic data and
μ = 0.2 for real data.

The DnCNN architecture consists of 17 total layers with the
following structure: (i) Conv+ReLU for the first layer with 64
filters of size 3x3x1. (ii) Conv+BatchNorm+ReLU for layers
2-16 with 64 filters of size 3x3x64. (iii) Conv for the last layer
with 1 filter of size 3x3x64 [40]. The network uses a residual
mapping D to learn the structure of the noise in its training
pairs (xclean, xnoisy). A forward pass through the model is thus
given by x̂clean = xnoisy −D(xnoisy). We used code adapted from
https://github.com/cszn/KAIR to implement DnCNN.

To train each image-tuned prior for MDF-RAP, we randomly
extracted 400 180x180 patches from a high-resolution training
image. This represents a naive sampling of the high-resolution
data. We employed a 80/10/10 split for training, validation, and
testing data. The amount of HR data used for training for each
respective dataset is given in Table III. Using these training
patches, we generate corresponding noisy patches by adding
AWGN with standard deviation σ = 0.1. These patch pairs are
then passed through the network for training (note that there is no
pairing of high-resolution images with low-resolution images).
We used an increase in validation loss as a stopping criterion to
avoid overfitting. Each of our MDF-RAP networks trained for
1-2 hours using 1 Nvidia V100 GPU.

B. Data Generation

In order to provide quantitative accuracy metrics and demon-
strate real-world behavior, we present two experimental ap-
proaches: (i) partially simulated and (ii) fully real data.
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Fig. 3. 8x super-resolution reconstructions of a simulated LR EM image of gold nanorods with µ = 0.8 for MDF-RAP. Each shows a field of view 569 nm wide.
MDF-RAP produces nanorods with clear edges and the proper shape, while each of the other methods includes significant blurring and/or incorrect shapes.

Fig. 4. 4x super-resolution reconstructions of a simulated LR EM image of E coli with µ = 0.8 for MDF-RAP. Each shows a field of view 251 nm wide.
MDF-RAP provides the best visual compromise between clarity and fit to data as shown by its reconstruction of distinct curli fibers and background preservation.

TABLE I
ACQUISITION PARAMETERS FOR EXPERIMENTAL DATASETS. WE OMIT LR

PIXEL SPACING FOR E. COLI AS WE DO NOT PERFORM SUPER RESOLUTION ON

MEASURED DATA IN THIS CASE. THE 2.2 NM NANORODS SAMPLE WAS USED

FOR THE RESULTS SHOWN IN FIG. 3

In the partially simulated case, we use actual HR microscopy
data and then apply the forward model x �→ Ax/L2 to obtain
simulated LR data. Each algorithm is applied to the LR data and
the result is compared to the paired HR data using PSNR (and
FRC in select cases) to provide quantitative accuracy measures.

In the case of fully real data, both the HR and the LR data are
obtained experimentally and used as in the previous case with
the exception that we do not have aligned pairs and so cannot
quantitatively compare the super-resolved output of an algorithm
to a reference HR image. These results on real data allow for
qualitative assessment under practical application conditions.

For MDF-RAP, we use domain-specific HR images to train
the CNN denoiser, but these are not required to be aligned
with corresponding LR images, and the LR images are not
used for training. In all cases, we need LR data to illustrate
super-resolution. All data used in testing the algorithm (both
LR and HR) was taken from the test set and therefore excluded
from MDF-RAP training data.

Our HR data was collected using two separate microscopy
methods to yield three data sets. Table I describes the exper-
imental parameters used for data acquisition. Scanning elec-
tron microscopy images for gold nanorods and pentacene were

obtained on an FEI XL30 at 5 kV with a secondary electron
detector and a Zeiss Gemini at 5 kV using an in-lens secondary
electron detector. The interaction volume of the focused electron
beam was on the order of the size of the resulting pixel size in
the image. The Scanning Electron Microscopy modality raster
scanned a focused beam across the sample with a pixel dwell
time of 50 nanoseconds. TEM images for E. coli were obtained
on a 60-300 Thermo Fisher Titan operating at 300 kV in bright
field mode. Images were collected on a 4 k by 4 k Gatan K2
Direct Electron Detector using Serial EM at various electron
optical magnifications. LR overview images were first collected,
followed by automated HR image montages. The bright field
imaging modality uses a wide illumination that covers the entire
imaging array.

C. Results on Partially Synthetic Data

In Figs. 3–5, we display a HR ground-truth image, the cor-
responding simulated LR data, the output of bicubic upsam-
pling (as a baseline), DPSRGAN (when possible), DPSR, PnP
(using a CNN trained on natural images as the prior agent),
and MDF-RAP (using RAP and domain-specific training). Note
that MDF-RAP is the only method that incorporates microscopy
data in its training. None of Bicubic Interpolation, DPSRGAN,
DPSR, and PnP have seen the microscopy data; we include these
comparison points to illustrate the limits of domain-independent
methods. The comparisons with MDF-RAP are meant to charac-
terize improvements obtained by incorporating domain-specific
data fusion in the prior model.

Fig. 3 illustrates 8x super-resolution on gold nanorods, which
are highly structured. Although 8x super-resolution is signifi-
cantly underconstrained, MDF-RAP leverages the data-fidelity
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Fig. 5. 4x super-resolution reconstructions of a simulated LR EM image of pentacene crystals with µ = 0.8 for MDF-RAP. Each shows a zoomed field of view
5.34 µ wide. MDF-RAP performs well in terms of PSNR (and FRC in Fig. 8) while DPSR produces edges that are even sharper than the edges in the HR GT.

Fig. 6. Left: Plot of intensities along the blue segment for selected reconstructions from Fig 5. DPSR produces the sharpest edge boundary, while PnP and
MDR-RAP better approximate GT image on crystal edges. Right: Comparison of 4x super-resolution reconstructions of a simulated LR EM image of pentacene
crystals at varying regularization levels. Note as µ increases, more detail is present in the final reconstruction. However this can introduce textural artifacts from
the forward model into the final reconstruction.

operator and a domain-specific CNN to produce a high-quality
reconstruction. Here the competing reconstructions each have
significant shortcomings. Additionally note that no retraining
was required to apply PnP or MDF-RAP at 8x, since changes to
the resolution factor requires only a change of L in the forward
model rather than retraining the prior model.

In Fig. 4, with 4x super resolution on data with less regularity
and more fine detail, MDF-RAP produces the highest PSNR,
although not by a significant margin. However, MDF-RAP
arguably provides the best visual compromise between clarity
and fit to data among the competing methods. While DPSR
produces lines and background structures with sharper edges
than MDF-RAP, these sharp features do not always align with
structures in the HR GT.

In Fig. 5, we show 4x super resolution reconstructions of
pentacene crystals. MDF-RAP outperforms the other methods in
terms of PSNR, with PnP a close second in this metric. Visually,
DPSR produces an image with edges that are sharper than in
the HR GT image, which may account for the lower PSNR of
DPSR relative to MDF-RAP. Such sharpness is clear in the 1D

TABLE II
AVERAGE PSNRS OVER 100 IMAGES FOR E. COLI, PENTACENE, AND

NANORODS DATASETS AT 4X INTERPOLATION. ON AVERAGE, TECHNIQUES

INCORPORATING MDF OUTPERFORM ALL OTHER METHODS

resolution profile shown in Fig. 6, as the peak of DPSR’s plot
is significantly higher than that of the GT. To further investigate
the the accuracy of MDF-RAP versus DPSR, we use Fourier
Ring Correlation to compare these reconstructions to the HR
GT (discussion below and plots in Fig. 8).

In Table II, we show average results for reconstructions of syn-
thetic LR data at 4x interpolation. For each dataset, we extracted
100 256x256 images and created corresponding simulated LR
data. These images were then passed into each interpolation
method for reconstruction. Finally we collected the PSNRs
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Fig. 7. Top row and bottom right: 4x super-resolution reconstructions of a simulated LR image of pentacene crystals as in Figs. 5 and 6. Here PnP (with or
without RAP) uses a DnCNN denoiser trained only on natural images, while MDF (with or without RAP) uses a domain-specific denoiser. PnP (no RAP) has a
herringbone texture, while MDF w/o RAP has 4x4 blocky artifacts, neither of which appears in the HR GT or the reconstructions with RAP. MDF with or without
RAP produces a clearer edge than the PnP reconstructions. Bottom left: Convergence Error (equation (12)) plots for 4x PnP and 4x MDF-RAP on pentacene, gold
nanorods, and E. coli datasets. All methods converge with under 5% error, with fastest convergence on the E. coli dataset. .

relative to the original high-resolution image and averaged these
across the 100 images to generate the values shown. We also
include a comparison to using an image-tuned prior model
with the forward model in (4), labeled as MDF. As shown in
Table II, methods using an image-tuned prior outperform all
other interpolation methods tested.

We investigate the effect of the prior model on image re-
construction in two ways. First, the weight μ in the MACE
formulation can be used to tune the regularization strength of
the prior. As μ increases, the forward model is weighted more
and thus the amount of regularization is reduced. In Fig. 6,
we compare reconstructions as μ varies and note the increased
smoothing that occurs as μ is decreased. We used μ = 0.8 for
the reconstructions in Figs. 3–5 to preserve image detail in the
final reconstructions.

Second, we investigate domain-specific training and RAP one
at a time in Fig. 7. While the use of RAP is explicitly a change
in the forward agent, it is equivalent to a change in the prior. The
top 2 reconstructions show PnP and MDF without RAP, both of
which yield unnatural artifacts in texture. PnP has a herringbone
pattern, while MDF without RAP has 4x4 blocks that do not
match the surrounding background. The results with RAP in the
bottom two images do not have these artifacts. The MDF-RAP
reconstruction provides the best clarity and PSNR.

A possible explanation for the artifacts in the reconstructions
without RAP is that the equilibrium solution in (6) requires an
update from the forward model that is counterbalanced by an
equal but opposite update from the prior model. In the case of the
standard backprojector, the update in (4) has the form of adding
a blocky image in the range ofAT to the existing reconstruction.

This must be balanced by an update from the neural network that
results in the same output image. A blocky update from a neural
network is unlikely unless the underlying image itself has some
structure that promotes such an update. We hypothesize that
the artifacts seen in the no-RAP reconstructions arise from this
need to balance the forward and prior updates and that the use
of the smoother RAP update reduces the need for such artificial
structures in the final reconstruction.

In the bottom left of Fig. 7, we plot the average convergence
error in (12) as a function of iteration over these 100 256x256
images. For each dataset, MDF-RAP converged with under 5%
error. The gold nanorods dataset at 8x superresolution leads
to the highest convergence error, which is likely due to the
existence of multiple data-consistent reconstructions at this level
of superresolution.

In Fig. 8, we use Fourier Ring Correlation (FRC) [41] to es-
timate image resolution. FRC measures the correlation between
the frequency spectra of 2 images, with the frequency domain
subdivided into concentric rings to define spectral correlation as
a function of spatial frequency. The effective image resolution
is determined by the intersection of the FRC curve with a given
threshold curve, with higher FRC values indicating closer match
to the target image. We use code from [42] to generate the plots
in Fig. 8.

The plots in Fig. 8 show that MDF-RAP recovers significantly
more of the high frequency components of the 8x gold nanorods
image than DPSR, which in turn captures more than the LR
image. This is consistent with the visual results of Fig. 3.
MDF-RAP, DPSR, and the LR image all have very similar
FRC curves for the E. coli images, again consistent with Fig. 4.
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Fig. 8. Fourier Ring Correlation plots for gold nanorods, E. coli, and pentacene. FRC describes the correlation in frequency domain between two images; higher
values indicate closer correlation. The green lines are from the simulated LR images, with sharp decay near the sampling rates of 1/8 for nanorods and 1/4 for
E. coli and pentacene. MDF-RAP outperforms DPSR on nanorods, but neither method improves significantly over the LR image for E. coli. Consistent with the
PSNR results in Fig. 3, MDF-RAP outperforms DPSR on the pentacene example, despite the visual appeal of the DPSR result. .

Fig. 9. 4x super-resolution reconstructions of a measured LR EM image of gold nanorods. In this case there is no aligned HR image; the left panel is for qualitative
comparison. Each panel shows a field of view 352 nm wide, and MDF-RAP uses µ = 0.2. While all methods reconstruct the nanorods’ shape, only MDF-RAP
reconstructs the nanorods without internal gaps and maintains the slightly curved ends characteristic of gold nanorods.

Fig. 10. 4x super-resolution reconstructions of a measured LR EM image of pentacene crystals. In this case there is no aligned HR image; the left panel is for
qualitative comparison. Each panel shows a field of view 10.67 µ wide, and MDF-RAP uses µ = 0.2. Note the significant aliasing artifacts along the crystal edges
in all non-MDF reconstructions.

In the case of pentacene, the FRC curve for MDF-RAP stays
noticeably higher than DPSR in the upper frequency range.
This is consistent with the PSNR in Fig. 5 despite the visual
appeal of the DPSR result. The intersection of the FRC curves
with the threshold SNR curve indicates that DPSR achieves an
effective super-resolution of roughly 2x on gold nanorods, while
MDF-RAP achieves a super-resolution in the range of 3x to 5x.
Neither method provides a significant improvement on the E.
coli image, and both achieve something close to the target 4x
super-resolution on the pentacene image.

D. Results on Measured Data

In Figs. 9–10, we show results using measured LR data as
input. In this case there is no paired HR data for quantitative
comparison, so we provide a measured HR image of a similar
specimen for visual comparison.

In Fig. 9, with 4x superresolution of gold nanorod images,
the data is not severely undersampled, so each method is able

to reconstruct the shape of the nanorods. However, relative
to the other methods, MDF-RAP provides a more faithful re-
construction of the nanorod interiors and ends while removing
background noise.

In Fig. 10, the majority of the methods produce aliasing
artifacts along the edge of the crystal. MDF-RAP minimizes
these artifacts relative to the other methods and again provides
a good balance between clarity and realistic texture.

E. Speed-Up and Computational Complexity

In Table III, we examine the speed-up in acquisition time by
using MDF-RAP. The speed-up is calculated by taking the ratio
of the pixels necessary for a HR FoV to the sum of the pixels in
the LR FoV and the pixels in the HR training data.

Speed-Up =
HR Reconstruction Pixels

Acquired LR pixels + HR Training Pixels
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TABLE III
DATA ACQUISITION SPEEDUP WITH MDF-RAP. THE SPEEDUP FACTOR IS CALCULATED BY TAKING THE RATIO OF THE NUMBER OF HR RECONSTRUCTED PIXELS

TO THE SUM OF THE ACQUIRED LR PIXELS AND HR TRAINING PIXELS

In the ideal case, in which a domain-specific CNN denoiser is
already trained, the acquisition speed-up for Lx interpolation
is L2. In the cases shown in Table III we include the HR data
acquisition needed for CNN training, so the actual speed-up
ranges from roughly 50% to 62% of the ideal.

A limitation of our method is reconstruction time. Running
20 iterations of MDF-RAP on a 256 x 256 GT image takes 32.6
seconds on a CPU, while DPSR takes 12.2 seconds. This ratio is
preserved on a GPU, where MDF-RAP takes 18.8 seconds and
DPSR takes 7 seconds. The longer running time of MDF-RAP
is likely caused by repeated application of the prior model.
One could accelerate the MDF-RAP code by incorporating
parallelization and better managing memory, which we leave as
future work. In contrast, an advantage of MDF-RAP over DPSR
is that the CNN for MDF-RAP is trained on high-resolution
images, so does not require retraining for new super-resolution
levels or point spread functions.

V. CONCLUSION

We introduced a Multi-Resolution Data Fusion framework
with a Relaxed Adjoint Projection and a domain-specific neural
network prior operator. RAP leads to reduced textural artifacts,
is easy to implement, and is shown to be equivalent to using the
standard data fitting operator with a modified prior. The domain-
specific neural network prior operator is trained on a limited
set of high-resolution images that do not require pairing with
low-resolution images.

In a set of experiments, MDF-RAP improves quality relative
to existing methods while maintaining data fidelity, accurately
resolving sub-pixel-scale features, and providing speed-ups of 8
to 20 times relative to imaging a full high-resolution image.
MDF-RAP can be used at multiple super-resolution factors
without additional training, and by changing the forward model,
it can be used for multiple image acquisition models. This
modularity is an important strength in that each component can
be used for multiple applications.

More philosophically, the goal of MDF-RAP (and of regular-
ized inversion generally) is to bias the reconstruction to com-
pensate for a set of imperfect measurements. The comparisons
between the MDF-RAP and PnP reconstructions show that the
results are improved by using domain-specific training data. This
bias-variance tradeoff can be pushed too far in the case of many
reasonable reconstructions that are consistent with measured
data, so any use of super-resolution methods requires thoughtful
use and some form of validation. Even so, speed-ups of 8 to 20
times relative to imaging a full high-resolution image justify
further investigation and use.

APPENDIX

In this appendix, we prove Theorem 1, which shows that
the equilibrium solutions of RAP are identical to those using
a standard backprojector with an alternative averaging operator.
We then provide a series of lemmas that culminate in Theorem
2, which shows that the use of RAP with a given denoiser is
equivalent to using the standard backprojector and an alternative
prior. Finally, we prove Theorem 3, which shows that Algorithm
1 with RAP converges to a fixed point.

We begin with a proposition necessary to define several maps.
Proposition 1: Let φ be maximally monotone. Then (I +

φ)−1 is globally defined, single-valued, and nonexpansive.
Proof: See [43, section 6]. �
In the theorem below, we use maps Fi that are implicitly

defined in the sense that the map φi is evaluated at the output
of the corresponding map Fi. This is a generalization of the
condition satisfied by a proximal map and is equivalently written
as (I + φi)

−1, which is known as the resolvent of φi, as in
Theorem 1.

Theorem 1: Assume that each of φi and Riφi are maximal
monotone functions from Rn to itself for each i = 1, . . . ,K,
where eachRi is an n× nmatrix with

∑
iRi invertible. Define

� Fi(vi) = vi − φi(Fi(vi)) = (I + φi)
−1(vi)

� FR
i (vi) = vi −Riφi(F

R
i (vi)) = (I +Riφi)

−1(vi)
� Gi(v) =

1
K

∑
i vi

� GR
i (v) = (

∑
iRi)

−1(
∑

iRivi)
Then there is a map from solutions v∗ of

FR(v∗) = G(v∗)

to solutions v̂∗ of

F(v̂∗) = GR(v̂∗)

such that for each such pair, G(v∗) = GR(v̂∗). There is also
such a map from v̂∗ to v∗. Moreover, the common value x∗ in
the stacked vector G(v∗) satisfies

∑
iRi∇fi(x∗) = 0.

Note thatG(v∗) is formed by stacking copies of the consensus
solution x∗, so this theorem says that the two formulations in (i)
and (ii) have exactly the same set of consensus solutions.

Proof: Assume thatFR(v∗) = G(v∗), and definex∗ to be the
identical entries of G(v∗), so that Fi(v

∗
i ) = x∗ for each i. Ap-

plying G to both sides yields G(FR(v∗)) = G2(v∗) = G(v∗).
Expanding using the definitions of FR

i and Gi yields

1

K

∑
i

(v∗i −Riφi(Fi(v
∗
i ))) =

1

K

∑
i

v∗i . (13)
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Multiplying by K and canceling the sum of the v∗i gives∑
i

Riφi(x
∗) = 0. (14)

Conversely given x∗ such that
∑

iRiφi(x
∗) = 0, define v∗i =

x∗ +Riφi(x
∗) for all i. We will show that FR(v∗) = G(v∗).

Since FR
i (vi) = (I +Riφi)

−1(vi), we have

FR
i (v

∗
i ) = (I +Riφi)

−1(x∗ +Riφ(x
∗)) = x∗. (15)

Also,

G(v∗)i =
1

N

∑
i

(x∗ +Riφ(x
∗)) (16)

= x∗ +
1

N

∑
i

Riφi(x
∗). (17)

Note that the second term in this sum is 0 by assumption, so
G(v∗)i = x∗ for all i and hence FR(v∗) = G(v∗).

Assume now thatF(v̂∗) = GR(v̂∗), and let x̂∗ be the identical
entries of F(v̂∗). As before, GR(F(v̂∗)) = GR(v̂∗) and this
with the definitions yields(∑

Ri

)−1 ∑
Ri(v̂

∗
i − φi(Fi(v̂

∗
i )))

=
(∑

Ri

)−1 (∑
Riv̂

∗
i

)
. (18)

Applying (
∑
Ri) to both sides, canceling

∑
Riv̂

∗
i , and using

Fi(v̂
∗
i ) = x̂∗ gives

∑
iRiφi(x̂

∗) = 0.
Conversely given x̂∗ such that

∑
Riφi(x

∗) = 0, define v̂∗i =
x̂∗ + φi(x

∗) for all i. A calculation similar to the previous case
shows that F(v̂∗) = GR(v̂∗).

Hence for each v∗ satisfying (i), the identical entries x∗ of
G(v∗) satisfy (14). This condition then determines v̂∗ satisfying
(ii) and so thatx∗ is the common entry inGR(v∗). The map from
v̂∗ to v∗ is the same in reverse. �

Lemma 1: The map F in (4) can be expressed as either
1) F (x) = (I +∇f)−1(x)
2) F (x) = (I − r∇f)(x),
where σ2 =

σ2
λ

σ2
w

, f = σ2

2 ‖y −Ax‖22 and r = 1/(1 + σ2 L2).
Proof: We’ll first establish the form in 1. Note that the

first order optimality condition for F (x) = argminv{f(v) +
1
2‖v − x‖2} is ∇f(v) + v − x = 0. Solving for v gives v∗ =
(I +∇f)−1(x). Since f is a positive, semi-definite quadratic
penalty, its subdifferential is maximal monotone, hence this
inverse is well-defined by Proposition 1.

Using ∇f(v) = σ2AT (Av − y) in the first order optimality
condition above and isolating v∗ gives

v∗ = x− σ2AT (Av∗ − y). (19)

Therefore, v∗ is of the form v∗ = x+AT z for some z. Using
this form of v∗ in (19) gives

x+AT z = x− σ2AT (A(x+AT z)− y). (20)

Some algebra and AAT = L2I gives

AT (y −Ax) = (1 + L2σ2)AT z, (21)

with a solution of z = σ2

1+σ2 L2 (y −Ax). We substitute this into
v∗ = x+AT z to obtain F (x) = v∗ = x+ rσ2AT (y −Ax),
or (I − r∇f)(x), where r = 1

1+σ2 L2 . �
Lemma 2: Suppose Lip(ψ) ≤ α < 1. Then Ψ = I + ψ is

invertible and

Lip(Ψ−1) ≤ 1

1− α
(22)

Lip(I −Ψ−1) ≤ α

1− α
(23)

Proof: If ψ is Lipschitz with constant α, then Ψ = I + ψ
is also Lipschitz. Consequently Ψ will be differentiable almost
everywhere by Rademacher’s theorem. The forward and reverse
triangle inequalities imply

(1− α)‖x− z‖ ≤ ‖Ψ(x)−Ψ(z)‖ ≤ (1 + α)‖x− z‖. (24)

These bounds show that the singular values of Ψ are bounded
away from 0, which implies its Jacobian is of full rank. The
Lipschitz Inverse Function Theorem [44] implies that Ψ is
invertible. Defining w = Ψ(x) and v = Ψ(z) transforms the
bounds on ‖Ψ(x)−Ψ(z)‖ to

(1− α)‖Ψ−1(w)−Ψ−1(v)‖ ≤ ‖w − v‖
≤ (1 + α)‖Ψ−1(w)−Ψ−1(v)‖. (25)

Dividing the left hand side of the inequality by 1− α yields
Lip(Ψ−1) ≤ 1/(1− α).

Now fix v1 and v2, and letwj = Ψ(vj) = vj + ψ(vj), so that
(I −Ψ−1)(wj) = ψ(vj). Using the Lipschitz constants for ψ
and Ψ−1 gives

‖(I −Ψ−1)(w1)− (I −Ψ−1)(w2)‖ (26)

= ‖ψ(v1)− ψ(v2)‖ (27)

≤ α‖v1 − v2‖ (28)

= α‖Ψ−1(w1)−Ψ−1(w2)‖ (29)

≤ α

1− α
‖w1 − w2‖. (30)

�
Lemma 3: Assume σ2 < 1/L2 and let f and r be as in

Lemma 1 with this σ2. Then there exist constants δ, C1 > 0
such that if R is a matrix satisfying ‖R− I‖ < δ, then there
exists a matrix R̃ depending on R so that
� ‖R̃− I‖ ≤ C1‖R− I‖
� R̃∇f is maximal monotone
and so that

x− rR∇f(x) = (I + R̃∇f)−1(x). (31)

Proof: Define W = σ2ATA. Note that ATA can be fac-
tored as a projection followed by scaling by L2, hence
‖rW‖ = σ2 L2/(1 + σ2 L2) < 1/(1 + σ2 L2) by assumption.
Thus there exists δ1 > 0 so that if ‖R− I‖ < δ1, then
‖rWR‖ < 1, hence (I − rWR) is invertible by Lemma 2. As
motivated below, let

R̃x =

{
rR(I − rWR)−1x for x ∈ range(AT )

Rx for x ∈ null(A).
(32)
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Since the orthogonal complement of range(AT ) is null(A),
we can extend by linearity to all of Rn.

Since AAT = L2I , induction shows that W kAT =
(σ2 L2)kAT . Since σ2 L2 < 1, we can expand the first
part of (32) at R = I using a convergent power series to get

r(I − rW )−1AT = r
∞∑

k=0

rkW kAT (33)

= r
∞∑

k=0

(rσ2 L2)kAT (34)

=
r

1− rσ2 L2
AT . (35)

Since r = 1/(1 + σ2 L2), this is AT .
The same idea shows that for R sufficiently close to the

identity, say ‖R− I‖ < δ2 for some δ2 ∈ (0, 1), R̃ = R̃(R)
restricted to range(AT ) can be written as a power series inR and
satisfies R̃(I) = I . Expanding this power series about R = I
gives constants c1, c2 > 0 so that

‖R̃− I‖ ≤ (c1 + c2‖R− I‖)‖R− I‖. (36)

Define C1 = max(1, c1 + c2). Since ‖R− I‖ ≤ 1, we have

||R̃− I|| ≤ C1||R− I|| (37)

on range(AT ), hence on all of Rn since R̃ = R on null(A).
We now show that R̃∇f is maximal monotone. Note that

R̃∇f(x)− R̃∇f(w) = σ2R̃ATA(x− w), (38)

so R̃∇f is maximal monotone when R̃ATA is positive semi-
definite. Note that if x ∈ null(A), then xT R̃ATAx = 0. If x ∈
range(AT ), then x = AT z for some z ∈ Rn. Substituting this
for the right-side x gives

xT R̃ATAx = xT R̃ATAAT z. (39)

SinceAAT = L2I , this isL2xT R̃x. By reducing δ2 if needed,
(37) implies that R̃ is positive definite. Extending by linearity
shows that R̃ATA is positive semi-definite, so R̃∇f is maximal
monotone. Let δ = min{δ1, δ2}.

Finally, let F̃ (x) = x− rR∇f(x), so F̃ (x) = (I −
rR∇f)(x). Then F̃ (x) = (I + R̃∇f)−1(x) exactly when

(I + R̃∇f) ◦ (I − rR∇f)(x) = x (40)

Expanding and rearranging gives

R̃∇f ◦ (I − rR∇f) = rR∇f. (41)

Let p = σ2AT y, so that∇f(x) =Wx− p. Using this in (41)
gives

R̃(Wx− rWR(Wx− p)− p) = rR(Wx− p), (42)

and collecting terms gives

R̃(I − rWR)(Wx− p) = rR(Wx− p). (43)

Since Wx− p maps Rn onto range(AT ), this is equivalent
to R̃(I − rWR) = rR on range(AT ), which is consistent with

(32). Hence R̃ as defined in (32) satisfies (31), thus completing
the proof. �

Lemma 4: Let f be as in Lemma 1 and letφ be a Lipschitz and
strongly maximal monotone function with Lipschitz constant k.
Then there exists a constant δ > 0 such that ifR is a matrix sat-
isfying ‖R− I‖ < δ, then R̃−1φ is maximal monotone, where
the matrix R̃ is from Lemma 3. Moreover, there exists a function
ΦR and constant C such that

Lip(ΦR − I) ≤ C‖R− I‖
and so that

(I + φ)−1 ◦ ΦR = (I + R̃−1φ)−1.

Proof: It suffices to show ΦR(x) = (I + φ)(I +
R̃−1φ)−1(x) has the desired properties. We add and subtract φ
and factor out (I + φ)−1 to obtain

ΦR = (I + φ)(I + φ+ (R̃−1 − I)φ)−1 (44)

= (I + φ)[(I + (R̃−1 − I)φ(I + φ)−1)(I + φ)]−1 (45)

= (I + (R̃−1 − I)φ(I + φ)−1)−1. (46)

Hence ΦR = (I + ψ)−1 with ψ = (R̃−1 − I)φ(I + φ)−1.
By Lemma 3, ‖R̃− I‖ ≤ C1‖R− I‖. Restrict R so that this
is less than 1/2, so by Lemma 2 with Ψ = R̃,

‖R̃−1 − I‖ ≤ 2C1‖R− I‖. (47)

Let d1 = Lip((I + φ)−1), which is at most 1 since the resol-
vent of a monotone operator is nonexpansive [43]. Then

Lip(ψ) ≤ 2C1 kd1‖R− I‖. (48)

Hence there exists δ1 > 0 such that if ‖R− I‖ < δ1, then
Lip(ψ) < 1, in which case Lemma 2 implies ΦR = (I + ψ)−1

is well-defined with Lip(ΦR) ≤ 1/(1− Lip(ψ)). Lemma 2
with Ψ = I + ψ = Φ−1

R implies

Lip(I − ΦR) = Lip(I −Ψ−1) ≤ Lip(ψ)

1− Lip(ψ)
. (49)

By (48), we can choose δ > 0 so that if ‖R− I‖ < δ, then
Lip(I − ΦR) ≤ C‖R− I‖, where C = 4C1 kd1.

Recall that φ strongly monotone means that there exists m >
0 so that for allx, v, (x− v)T (φ(x)− φ(v)) ≥ m||x− v||22. Let
η = R̃−1 − I . By (47), we can reduce δ to get ‖η‖ < m

2k . To
show that R̃−1φ is maximal monotone, note that

(x− v)T (R̃−1φ(x)− R̃−1φ(v))

= (x− v)T (φ(x)− φ(v))− (x− v)T (η(φ(x)− φ(v))

By assumption, the first term is bounded below by m||x−
v||22. Additionally ‖φ(x)− φ(v)‖ ≤ k‖x− v‖ by assumption,
so

(x− v)T (R̃−1φ(x)− R̃−1φ(v)) (50)

≥ m||x− v||22 − k‖η‖‖x− v‖22, (51)

which gives a lower bound of m
2 ‖x− v‖22. Hence R̃−1φ is

strongly monotone, and since R̃−1 is linear, R̃−1φ is maximal
monotone. �
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Theorem 2: Suppose φ is a Lipschitz and strongly maximal
monotone function and letH = (I + φ)−1 and μ1 = μ2 = 1/2.
Assumeσ2 < 1/L2. Then there existα > 0 andC > 0 such that
if R is a matrix satisfying RAT = B and ‖R− I‖ ≤ α < 1,
there exists ΦR a Lipschitz map depending on H and R with
Lip(ΦR − I) ≤ C‖R− I‖ such that the following two choices
lead to the same set of solutions x∗ in (7):
� F1 = F̃ is the RAP update in (8) and F2 = H;
� F1 = F is the standard update in (4) and F2 = H ◦ ΦR.
This theorem says that the effect of RAP with a denoiser H

can be explained by using the standard data-fitting term together
with a modified denoiser defined by a Lipschitz transformation
of the image domain followed by the original denoiser.

Proof: In order to apply Theorem 1, we verify that each Fj

is of the form (I + ω)−1 for ω a maximal monotone func-
tion. By Lemma 1, we have that F = (I +∇f)−1 and ∇f
is maximal monotone. As φ is maximal monotone, H is of
the desired form, and H is well-defined by Proposition 1.
Since σ2 < 1/L2, Lemma 3 with the same f, r as defined in
Lemma 1 implies that F̃ = (I + R̃∇f)−1. Lemma 3 also gives
that R̃∇f is maximal monotone. Finally as φ is assumed to
be a Lipschitz and strongly maximal function, Lemma 4 gives
that H ◦ ΦR = (I + R̃−1φ)−1 is well-defined and that R̃−1φ is
maximal monotone. Thus we may apply the results of Theorem
1 to each pair (F̃ ,H) and (F,H ◦ ΦR).

From the proof of Theorem 1, since F̃ = (I + R̃∇f)−1 and
H = (I + φ)−1 we see that v∗ = (v∗1, v

∗
2) is a solution of[

F̃ (v∗1)
H(v∗2)

]
= G(v∗)

if and only if

R̃∇f(x∗) + φ(x∗) = 0,

where x∗ is the common entry of the stacked vector G(v∗).
Since R̃ is invertible, this is equivalent to

∇f(x∗) + R̃−1φ(x∗) = 0.

SinceF = (I +∇f)−1 andH ◦ ΦR = (I + R̃−1φ)−1, again
the proof of Theorem 1 implies that this is true if and only if
ṽ∗ = (ṽ∗1, ṽ

∗
2) is a solution of[

F (ṽ∗1)
H(ΦR(ṽ

∗
2))

]
= G(ṽ∗)

with x∗ the common entry of the stacked vector G(ṽ∗).
This implies that the two formulations have the same set of

consensus solutions, x∗. �
Proposition 2: IfA is an n× n symmetric matrix with eigen-

values in (0,1] and b ∈ Rn, then the mapping F (x) = Ax+ b
is a proximal map.

Proof: The conditions onA imply thatA−1 − I is symmetric
and positive semidefinite, so the Cholesky decomposition gives
an invertible R such that RTR = 1

σ2 (A
−1 − I) (for specified

σ2 > 0). Define p so that σ2ART p = b and consider the prox-
imal map defined by

argminu

{
1

2
||Ru− p||2 + 1

2σ2
||u− x||2

}
. (52)

The first-order optimality condition yields

RT (Ru∗ − p) +
1

σ2
(u∗ − x) = 0, (53)

and gathering the u∗ terms and multiplying by σ2 gives

(I + σ2RTR)u∗ = x+ σ2RT p. (54)

Noting that (I + σ2RTR) = A−1 and using the choice of p
givesu∗ = Ax+ b. HenceF (x) = Ax+ b is a proximal map.�

Proposition 3: Let F (x) =Wx+ q where W = V ΛV −1

with Λ diagonal having eigenvalues in (0,1] and q ∈ RN . For
x ∈ RN define x̂ = V −1x. Then F̂ (x̂) = V −1F (V x̂) is a prox-
imal map in the coordinates x̂.

Proof: Expanding F̂ using W = V ΛV −1 gives F̂ (x̂) =
Λx̂+ V −1q. Since Λ is diagonal with eigenvalues in (0,1], the
previous proposition implies that F̂ (x̂) is a proximal map. �

Proposition 3 applies with F as the RAP update in (8) and
F̂ as the standard update in (4). Theorem 3 then implies that
Algorithm 1 converges to a fixed point using the RAP update.

Theorem 3: Let F and F̂ be as in Proposition 3. Let H be a
denoiser such that Ĥ(x̂) = V −1H(V x̂) is nonexpansive in the
coordinates x̂. Then Algorithm 1 converges using the operators
F and H .

Proof: An expansion ofF andG shows that Algorithm 1 with
two operators is equivalent to the standard PnP algorithm of [21].
By Proposition 3, F̂ is a proximal map, and by assumption, Ĥ
is nonexpansive. Hence by [23], Algorithm 1 using operators
F1 = F̂ and F2 = Ĥ converges to a fixed point.

The bilinear change of variables x̂ = V −1x yields a one-to-
one correspondence

F̂ (x̂) = V −1F (V x̂) (55)

Ĥ(x̂) = V −1H(V x̂) (56)

Applying this to each component and map in Algorithm 1
produces a shadow sequence equivalent to running Algorithm 1
with F1 = F and F2 = H . This shadow sequence converges by
continuity of V and V −1, so the PnP algorithm converges using
F and H . �
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