
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

UNDERSTANDING IMPACTS OF DIFFERENTIAL PRIVACY:
A UNIFIED FRAMEWORK WITH TWO-LAYER NEURAL
NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

With the growing demand for data and the increasing awareness of privacy, differen-
tially private learning has been widely applied in various deep models. Experiments
have observed several side effects of differentially private learning, including bad
learning features (performance), disparate impact, and worse adversarial ro-
bustness that hurt the trustworthiness of the trained models. Recent works have
expected pre-training to mitigate these side effects. It is valuable to theoretically
understand the impact of differential privacy on the training process. However,
existing theoretical research only explained parts of the phenomena and failed
to extend to non-convex and non-smooth neural networks. To fill this gap, we
propose a unified framework to explain all the above phenomena by studying the
feature learning process of differentially private stochastic gradient descent in
two-layer ReLU convolutional neural networks. By analyzing the test loss, we find
both its upper and lower bound decrease with feature-to-noise ratios (FNRs). We
then show that disparate impact comes from imbalanced FNRs among different
classes and subpopulation groups. Additionally, we show that the suboptimal
learned features and reduced adversarial robustness are caused by the randomness
of privacy-preserving noise introduced into the learned features. Moreover, we
demonstrate that pre-training cannot always improve the model performance, espe-
cially with increased feature differences in the pre-training and fine-tuning datasets.
Numerical results on both synthetic and real-world datasets validate our theoretical
analyses.

1 INTRODUCTION

Modern deep learning models have achieved remarkable success in various applications, such
as image classification (He et al., 2022) and natural language processing Vaswani et al. (2017).
Many of these applications require training on datasets that contain sensitive private information.
Differentially private learning, as an approach, seeks to train these models while ensuring rigorous
privacy guarantees (Abadi et al., 2016). A standard differentially private learning algorithm is
Differential Privacy Stochastic Gradient Descent (DP-SGD) (Abadi et al., 2016), which injects noise
into network parameter updates during optimization.

While DP-SGD provides robust privacy guarantees, it introduces side effects, including

• Bad learned features (Tramer & Boneh, 2020): DP-SGD trained models might learn bad
features that are worse than handcrafted ones.

• Disparate impact (Bagdasaryan et al., 2019; Sanyal et al., 2022): DP-SGD trained models
achieve different accuracy on different classes and different subpopulation groups.

• Worse adversarial robustness (Tursynbek et al., 2020): DP-SGD trained models might be
less adversarially robust than non-private models.

Moreover, recent work (De et al., 2022) has shown that pre-training improves the accuracy of
DP-SGD trained models by 30% compared with training from scratch.
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Understanding these phenomena is essential for deploying trustworthy, differentially private learning
systems. Although several studies have explored side effects such as disparate impact (Esipova et al.,
2022; Bagdasaryan et al., 2019), existing models are not applicable to ReLU neural networks due to
their inherent non-convex and non-smooth nature. Moreover, a unified theoretical framework that
explains all of the aforementioned phenomena is still lacking.

Thus, there remains an open problem:

How to theoretically explain the aforementioned phenomena in DP-SGD trained ReLU neural
networks with a unified framework?

Facing the challenges in non-convex and non-smooth neural networks, we answer this problem in two
steps. First, we derive test loss bounds of two-layer ReLU Convolutional Neural Network (CNN)s
trained with DP-SGD in Section 3. Then, we extend the test loss analysis in Section 4 to explain the
aforementioned phenomena.

1.1 RELATED WORK

In this section, we discuss the related works from two perspectives. Interested readers can refer to
Appendix A for a detailed discussion.

Analysis on differentially private learning side effects. After observing the side effects of
differentially private learning, some researchers provided theoretical explanations. For example, Tran
et al. (2021) employed Taylor expansion to understand the disparate impact from the optimization
local loss landscape for twice differentiable loss functions. Sanyal et al. (2022) studied unfairness
in long-tailed data distribution in an asymptotic setting where the number of training data tends to
infinity. Zhang & Bu (2022) studied the adversarial robustness of private linear classifiers. However,
these analyses relied on some restricted assumptions that are not applicable to neural networks due to
their non-convex and non-smooth nature. In this paper, we provide a unified framework to explain
all the mentioned side effects by characterizing the feature learning process of DP-SGD trained
two-layer ReLU CNNs.

Feature learning in neural networks. Feature learning in neural networks explores how neural
networks learn data-related patterns during training, offering insights into phenomena such as
momentum (Jelassi & Li, 2022), benign overfitting (Cao et al., 2022; Kou et al., 2023), adversarial
training (Allen-Zhu & Li, 2022; Li & Li, 2023), and data augmentation Zou et al. (2023). In this work,
we make an initial step towards studying the generalization performance and effects in DP-SGD
trained two-layer neural networks.

Although the convergence and feature learning process are analyzed in two-layer neural networks
before, their approaches are not applicable to DP-SGD trained neural networks as the key properties
for feature growth may not hold due to the perturbation of added noise. In this paper, we design new
techniques to study the generalization performance of DP-SGD trained models.

1.2 CONTRIBUTIONS AND MAIN RESULTS

We provide a unified framework to explain the side effects in DP-SGD trained two-layer ReLU CNNs.
Specifically,

• We explore the feature learning process of DP-SGD trained neural networks. Considering
the technical challenges posed by non-convex and non-smooth ReLU CNN and the random
Differential Privacy (DP) noise, we propose a new proof technique to derive the standard
and adversarial test loss bounds. The high-level idea is to use a piece-wise linear function to
bound the non-linear loss function. We theoretically prove that the upper and lower bounds
of test loss depend on data feature size and DP-SGD noise.

• We provide theoretical explanations for the side effects and the effectiveness of pre-training
in DP-SGD trained neural networks.

– The noise from DP-SGD highly perturbs the learned activation patterns during itera-
tions, resulting in bad learned features (performance).
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– Three factors, i.e., the gradient clipping, the group or class sizes, and feature sizes,
contribute to disparate impact in DP-SGD trained models by influencing the test loss
within a given group or class.

– The DP-SGD trained models exhibit worse adversarial robustness because they learn
non-robust, class-irrelevant features from the random DP noise.

– The fine-tuning performance on a pre-trained neural network decreases with increased
feature difference. This implies that the benefits from pre-training may actually come
from distribution overlaps between pre-training and fine-tuning datasets.

1.3 NOTATION

We use lowercase letters, lowercase boldface letters, and uppercase boldface letters to denote scalars,
vectors, and matrices, respectively. We use [m] to denote the set {1, · · · ,m}. Given two sequences
{xn} and {yn}, we denote xn = O(yn) if |xn| ≤ C1|yn| for some positive constant C1 and xn =
Ω(yn) if |xn| ≥ C2|yn| for some positive constant C2. We use xn = Θ(yn) if both xn = O(yn) and
xn = Ω(yn) hold. We use Õ(·), Θ̃(·), Ω̃(·) to omit logarithmic factors in these notations. Given a
set T , we use |T | to denote its cardinality. For a vector x ∈ Rd, we denote its ℓp(p ≥ 1) norm as

∥x∥p =
(∑d

i=1 |xi|p
)1/p

. The notation (x, y) ∼ D indicates that the data sample (x, y) is generated
from a distribution D.

2 MODEL

We consider a one-hidden layer CNN with data structured as follows. Similar data structures have
been applied in (Allen-Zhu & Li, 2020; Jelassi & Li, 2022; Jelassi et al., 2022; Li & Li, 2023; Zou
et al., 2023; Cao et al., 2022).1

Data distribution. We consider a 2-class classification problem over 2-patch inputs. Each labelled
data is denoted as (x, y), with label y ∈ {1, 2} and data vector x =

(
x(1),x(2)

)
∈ Rd×2. We assume

that each label class y has 2-group features, i.e., the majority (common) group features uy,Maj and
the minority (rare) group features uy,Min. A sample (x, y) is generated from a data distribution D as
follows.

1. The label y is randomly sampled from {1, 2}. With probability pc > 0, the label is selected
as y = 1; otherwise, it is selected as y = 2.

2. Each input data patch x(1),x(2) ∈ Rd contains either feature or noise.

• Feature patch: One data patch (x(1) or x(2)) is randomly selected as the feature patch.
With probability pf > 0.5, this patch contains majority features uy,Maj for y ∈ {1, 2}.
Otherwise, this patch contains minority features uy,Min for y ∈ {1, 2}.

• Noisy patch: The remaining patch ξ is generated from a Gaussian distribution
N (0, σ2

pH), where H = I−
∑2

i=1

∑
j∈{Maj,Min} ui,ju

⊤
i,j · ∥ui,j∥−2

2 .

Without loss of generality, we assume all the feature vectors are orthogonal, i.e., ⟨ui,j ,ui′,j′⟩ = 0
for all i ∈ {1, 2}, j ∈ {Maj,Min} when (i, j) ̸= (i′, j′). Additionally, we consider the features of
majority and minority satisfy pf ∥ui,Maj∥2 > (1− pf ) ∥ui,Min∥2 for all i ∈ {1, 2}.

Moreover, we define distributions Di,j , i ∈ {1, 2}, j ∈ {Maj,Min}, with probability density func-
tions given by:

PDi,j
[(x, y)]=PD[(x, y)|y = i,Feature patch of x=ui,j ] .

Learner model. We consider a two-layer CNN with ReLU activation as the learner model. The
first layer of the CNN comprises m neurons (filters) for class 1 and m neurons for class 2. Each
neuron processes the two data patches separately. The parameters of the CNN’s second layer are

1See (Allen-Zhu & Li, 2020) for detailed experimental justifications of the data distribution.
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fixed as 1/m. Given an input vector x = (x(1),x(2)), the model outputs a vector [F1, F2] whose kth

element is

Fk (W,x) =
1

m

m∑
r=1

2∑
j=1

σ
(〈

wk,r,x
(j)
〉)

, (1)

where σ(·) = max{·, 0} denotes the activation function ReLU(·). We use W to denote the collection
of all model weights and wk,r to denote the weight vector the rth neuron associated with Fk(W,x).

Training objective. Given a training dataset S = {(xi, yi)}ni=1 drawn from the distribution D, we
train the neural networks by minimizing the empirical risk with cross-entropy loss, i.e.,

LS =
1

n

n∑
i=1

L(W,xi, yi) =
1

n

n∑
i=1

[− log(probyi
(W,xi))], (2)

where prob(·) represents the softmax predictions with the output of the neural network, i.e.,

probyi
(W,xi) =

exp(Fyi
(W,xi))∑2

k=1 exp(Fk(W,xi))
. (3)

Differential privacy and training algorithm. DP (Dwork et al., 2014) (see the definition below)
stands as the benchmark for quantifying privacy leakage, offering rigorous privacy guarantees.

Definition 2.1 ((α, δ)-Differential privacy). A randomized algorithm M : Z → R is (α, δ)-DP if
for every pair of neighboring datasets Z,Z ′ ∈ Z that differ in one entry and for any subset of output
S ⊆ R, we have

P [M(Z) ∈ S] ≤ eαP [M(Z ′) ∈ S] + δ. (4)

DP-SGD, the standard and most popular training algorithm (Abadi et al., 2016) (refer to Appendix C
for details), achieves DP through an update given by

W(t+1)=W(t)− η

B
·
∑

(x,y)∈S(t)

clipC

(
∇L

(
W(t),x, y

))
+η · n(t), (5)

where η represents the learning rate and clipC(x) is the gradient clipping function with clipping
threshold C on vector x, i.e.,

clipC(x) =
x

max {1, ∥x∥2 /C}
. (6)

In (5), S(t) represents the randomly selected mini-batch datasets with a batch size B from the training
dataset S generated from the data distribution D, and n(t) is the noise used for privacy protection
following N (0, σ2

nI) at iteration t. We initialize network parameters with Gaussian initialization,
where all entries of W(0) are sampled from i.i.d. Gaussian distributions N (0, σ2

0I).

3 TEST LOSS ANALYSIS

In this section, we analyze the test loss of DP-SGD trained CNNs, serving as a stepping-stone for
analyzing the impacts of DP-SGD in Section 4.

3.1 STANDARD TEST LOSS ANALYSIS

We first define the standard test loss of the trained model on data distribution Di,j , for any i ∈ [2] and
j ∈ {maj,min} as follows.

LDi,j (W) = E(x,y)∼Di,j
[L(W,x, y)] . (7)

Our results for test loss are based on the following conditions and assumption.
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Condition 3.1. Suppose that there exists a positive constants c1 > 0, 0 < c2 < 1 and a sufficiently
large constants c3, c4 > 0 such that

1. The CNNs have sufficiently large number of neurons, i.e., m ≥ c1 · d.

2. The dimension d satisfies d ≥ 50.

3. The batch size satisfies B ≥ c2 · n.

4. Feature size, patch noise and DP-SGD noise satisfies ∥ui,j∥2 = Θ(
√
dσp), σn ≤ c3σp, for

i ∈ [2], j ∈ {maj,min}.

5. The learning rate satisfies η ≤
(
c4(C +

√
dσn)(maxi,j ∥ui,j∥2 +

√
dσp)

)−1

.

Condition 1 and 2 are common in theoretical analyses (e.g., (Allen-Zhu et al., 2019; Kou et al., 2023))
and also match the practical setting that modern neural networks are usually over-parameterize, i.e.,
have more parameters than the number of training examples. Condition 3 guarantees that batch size
is proportional to the training dataset size so that stochastic gradients can take advantage of large
training datasets. Condition 4 ensures that (1) the feature in not small so that the model can learn
features (Kou et al., 2023); (2) the noise added by DP is in a reasonable range, i.e., privacy budgets
are not too tight (ϵ ≥ 0.5). Condition 5 ensures that the model update is bounded.
Assumption 3.2 (s-non-perfect model). We assume the model is almost surely not perfect on a test
example, i.e.,

L
(
W(t),x, y

)
≥ s, ∀(x, y) ∼ D, (8)

with some constant s > 0.

Assumption 3.2 is considered a mild assumption. Given that DP-SGD introduces randomness in the
model training, the resulting trained model is randomized and is unlikely to attain a zero cross-entropy
loss on a test example.

Next, we define Feature-to-Noise Ratios (FNRs) and the clipping factor to facilitate the analyses.
Definition 3.3 (Feature-to-noise ratios). Feature-to-noise ratio of the class i in group j is defined as

Fi,j =
∥ui,j∥2√

dσn

, (9)

where γi,j denotes the expected proportion of class i group j data in the whole training dataset, i.e.,
γ1,maj = pcpf , γ1,min = pc(1− pf ), γ2,maj = (1− pc)pf , γ2,min = (1− pc)(1− pf ).
Definition 3.4 (Clipping factor). The clipping factor for the class i in group j is defined as

Λi,j =
C

∥ui,j∥2 + σp

√
d
. (10)

Here, the clipping factor Λi,j quantifies the maximum change of gradient magnitude on data from
class i and group j.

Based on the conditions, assumption, and definitions, we characterize upper bound test loss of
DP-SGD trained models in Theorem 3.5.
Theorem 3.5. Under Condition 3.1 and Assumption 3.2, with a probability at least 1− exp(−Ω̃(d)),
for any i ∈ {1, 2}, j ∈ {maj,min}, the test loss of a DP-SGD trained model satisfies

LDi,j

(
W(T )

)
≤ L̄i,j(W

(T )), (11)

where

L̄i,j(W
(T ))=exp

(
−Ω

(
Λi,jγi,j ∥ui,j∥22√

m
T

))
LDi,j

(
W(0)

)
︸ ︷︷ ︸

Vanishing error

+O

( √
d√

mnγi,jΛi,j

)
︸ ︷︷ ︸

Generalization error

+O
( √

m

Λi,jγi,jFi,j

)
︸ ︷︷ ︸

Privacy protection error

.

(12)
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We defer the proof of Theorem 3.5 to Appendix G.2. As the randomness of noise may improve the
model, the high probability test loss lower bound becomes trivial. We instead provide a lower bound
of the expected test loss in the following.
Theorem 3.6. Under Condition 3.1 and Assumption 3.2, with the number of iterations T ≥
Ω
(
−1/ log

(
1− Ω

(
ηmini,j{γi,j ∥ui,j∥22}/m

)))
and a probability at least 1− Õ (1/d), for any

i ∈ {1, 2}, j ∈ {maj,min}, the expected test loss a DP-SGD trained model satisfies

E
[
LDi,j

(W(T ))
]
≥ exp

(
−Ω

(
γi,j ∥ui,j∥22

m
T

))
LDi,j

(W(0))+ Ω

(
σ2
p

γi,jF2
i,j

)
︸ ︷︷ ︸

Privacy protection error

−O

(
1

γi,j

√
d

n

)
.

(13)
Remark 3.7. Theorems 3.5 and 3.6 show that the upper and lower bound of test loss both decrease
with the feature-to-noise ratio Fi,j . Moreover, Theorem 3.5 illustrates the presence of non-vanishing
error terms in the test loss bound, i.e., generalization error and privacy protection error. Specifically,

• Generalization error arises from data noise patch. This error decreases with O(1/
√
n),

aligning with the generalization error bounds derived in neural networks (Arora et al., 2019;
Xu & Mannor, 2012).

• Privacy protection error stems from DP noise. With a fixed privacy budget ((α, δ) in
Definition 2.1), the noise variance σ2

n increases with the number of iterations T as σ2
n =

Θ(T ) (Abadi et al., 2016). Consequently, the error due to privacy protection increases with
the number of iterations as Θ(

√
T ). This rate aligns with the non-vanishing training error of

DP-SGD on Lipschitz-smooth objectives (Bu et al., 2024).
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Figure 1: Illustration of the privacy-utility phase
transition between benign and harmful privacy pro-
tection. The yellow region represents a benign
regime where the test loss is small. The blue re-
gion represents a harmful regime where the test
loss is large.

Privacy-Utility Tradeoff Privacy composi-
tion (Theorem 1 in (Abadi et al., 2016)) shows
that the noise variance σ2

n increases with Θ(T )
under (α, δ)-DP. Then, the privacy protection
error in (12) is in order O(

√
T log(1/δ)/(nα)),

implying that 1) larger privacy budget leads to
larger loss; 2) larger dataset has small error
thanks to privacy amplification by subsampling;
3) the loss increases with the number of itera-
tions. In addition, we demonstrate a sharp phase
transition between benign and harmful privacy
protection to model utility, as shown in Figure
1. Details about the simulation settings are pro-
vided in Appendix D.2.

3.2 ADVERSARIAL TEST LOSS ANALYSIS

In this subsection, we analyze the impact of
DP-SGD on adversarial robustness as a basis for
understanding the side effect of worse adversarial robustness in Section 4.

Adversarial robustness refers to a machine learning model’s ability to withstand carefully manipulated
input samples, commonly known as adversarial examples.
Definition 3.8 (Adversarial example). For an data example (x, y), the corresponding adversarial
example is x̃ = x+ ζ, where ζ = argmax∥ζ∥p≤ζ̄ L (W,x+ ζ, y) is the adversarial perturbation
and ζ̄ is the perturbation radius.

We evaluate the performance of the trained model on adversarial robustness using adversarial test
loss, which is defined as

Ladv
D (W) = E(x,y)∼D

[
max

∥ζ∥p≤ζ̄
L(W,x+ ζ, y)

]
. (14)
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We give our main result on adversarial test loss in the following theorem.

Theorem 3.9. Under Condition 3.1 and Assumption 3.2, with probability at least 1− exp(−Ω̃(d)),
for any i ∈ {1, 2}, j ∈ {maj,min}, the adversarial test loss of a DP-SGD trained model with learning
rate η = Θ(1) satisfies

Ladv
Di,j

(
W(T )

)
≤ L̄i,j(W

(T ))+O

([
T

m
C+

√
Td

m
σn+

√
dσ0

]
ζ̄d1−1/p

)
︸ ︷︷ ︸

By adversarial perturbation

.
(15)

We defer the proof of Theorem 3.9 to Appendix G.4.

Remark 3.10. Theorem 3.9 shows that the error induced by adversarial perturbation increases
at a rate of O(T ) and contains a DP noise term

√
Td/mσn, which increases at a rate of O(

√
T ).

Moreover, the test loss bound aligns with the excess risk bound of adversarial training (Xiao et al.,
2022).

4 UNDERSTANDING DP-SGD IMPACTS

In Sections 3, we establish the test loss bounds (Theorems 3.5 and 3.9) for a DP-SGD trained model.
In this section, we extend the results to interpret the side effects and the effectiveness of pre-training.
We extend the upper bound in Theorem 3.5, and we can also get a similar lower bound by extending
the lower bound in Theorem 3.6 to obtain similar insights.

4.1 INTERPRETATION OF BAD FEATURES (PERFORMANCE)

Theorem 3.5 implies that the learned features are perturbed by the noise introduced during DP-SGD
training. This noise prevents CNNs from learning perfect features, ultimately resulting in a non-
vanishing error. Be specific, this loss increases when the feature is seriously affected by the DP noise,
i.e., a smaller FNRDP

i,j (see Definition 3.3).

4.2 INTERPRETATION OF DISPARATE IMPACT

Define the distribution of class i as PDi
[(x, y)]=PD[(x, y)|y = i] , i ∈ {1, 2}. We evaluate model

performance on different classes by bounding the test loss on data distribution within a class.

Corollary 4.1 (Disparate impact of different classes). Under Condition 3.1 and Assumption 3.2, with
probability at least 1 − exp(−Ω̃(d)), for any i ∈ {1, 2}, the test loss of a DP-SGD trained model
with learning rate η = Θ(1) satisfies

LDi

(
W(T )

)
≤ 1∑

j∈{min,maj} γi,j

∑
j∈{min,maj}

γi,j · L̄i,j

(
W(T )

)
. (16)

Similarly, define the distribution of group j as Dj , j ∈ {maj,min}. We evaluate model performance
across different groups (majority and minority) by the test loss on data distribution within a group.

Corollary 4.2 (Disparate impact of subpopulation groups). Under Condition 3.1 and Assumption
3.2, with probability at least 1 − exp(−Ω̃(d)), for any j ∈ {maj,min}, the test loss of a DP-SGD
trained model with learning rate η = Θ(1) satisfies

LDj

(
W(T )

)
≤ 1∑2

i=1 γi,j

2∑
i=1

γi,j · L̄i,j

(
W(T )

)
. (17)

Recall the expression of L̄ in (12). Corollaries 4.1 uncovers three sources of disparate impact:
gradient clipping Λi,j , data imbalance γi,j , and feature disparity ∥ui,j∥2, which correspond to three
key components of FNRs and clipping factors (see Definition 3.3 and 3.4). We discuss them in detail
below.

7
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Gradient clipping. Theorem 3.5 shows that the test loss depends on the clipping factor Λi,j . This
implies that a class or group with a larger gradient norm will experience more aggressive clipping,
leading to poorer feature learning performance.

Data imbalance. As the privacy protection error terms in Theorems 3.5 and 3.6 decrease with the
data proportion γi,j , a group or a class with more data enjoys better performance and vice versa. This
raises a risk of worse model performance on the skewed data sources2 and the long-tailed distributed
applications (Feldman & Zhang, 2020).3

Feature disparity. The feature-to-noise ratio Fi,j (see Definition 3.3) depends on the feature
sizes of the data ui,j . In real-world applications, data from different classes or groups may have
significantly different feature sizes, resulting in divergent model performances.
Remark 4.3. Recent papers, e.g., (Esipova et al., 2022) have pointed out that the disparate impact
mainly arises from gradient clipping. However, we show that even without gradient clipping, different
groups still exhibit different performances due to data imbalance and the intrinsic differences in
feature sizes.

4.3 INTERPRETATION OF ADVERSARIAL ROBUSTNESS

As shown in Theorem 3.9, DP-SGD leads to a high adversarial test loss. We interpret worse adversarial
robustness from two perspectives.

Feature learning. As pointed out in Allen-Zhu & Li (2020), an adversarially robust model typically
removes the non-robust class-irrelevant noises and learns robust features. However, DP-SGD injects
much noise during the training process, making the neural networks inevitably learn non-robust
class-irrelevant noises.

Network parameter growth. Due to the noise added by DP-SGD, the network parameters have a
consistently growing norm with the number of iterations. As adversarial perturbation ζ attacks the
model by changing the neurons’ activated inner products, i.e.,

Fk(W,x+ ζ) =
1

m

m∑
r=1

2∑
j=1

σ
〈wk,r,x

(j)
〉
+

〈
wk,r, ζ

(j)
〉

︸ ︷︷ ︸
By adversarial perturbation


 , (18)

higher network parameter norms result in increased vulnerability to adversarial attacks.

4.4 PRE-TRAINING AND FINE-TUNING

As demonstrated in Berrada et al. (2023), pre-training on public datasets can significantly reduce the
accuracy drop and mitigate the side effects caused by DP-SGD. With pre-training, the neural network
utilizes good pre-trained features and the loss at initialization LDi,j (W

(0)) is relatively small. As
a result, fine-tuning only needs a small number of iterations, leading to smaller privacy protection
errors and thus, mild side effects. In Tramèr et al. (2022), the authors pointed out that many of
the existing pre-training and fine-tuning datasets satisfy the private fine-tuning data distribution is
essentially a subset of the public data distribution (e.g. pre-training on ImageNet and fine-tuning on
CIFAR-10). So, in this subsection, we explore how the distribution shifts affect the private fine-tuning
performance.

Consider a two-layer CNN model (defined in Section 2) that is trained on a simplified data distribution
Dpt that each class only has one feature with the same magnitude, i.e., u1 for class 1, and u2 for class 2

2Take ImageNet (Deng et al., 2009) as an example. More than 45% of ImageNet data comes from the United
States, corresponding to only 4% of the world’s population; In contrast, China and India contribute just 3% of
ImageNet data (Zou & Schiebinger, 2018). Thus, DP-SGD trained models on ImageNet may perform poorly on
tasks concerning China and India.

3For example, in the SUN dataset (Xiao et al., 2010), the number of examples in each class displays a
long-tailed structure (Feldman, 2020).
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and ∥u1∥2 = ∥u2∥2, with SGD and fine-tuned on similar data distribution Dft (data is first generated
from Dpt and then rotated with an angle θ) (Details are discussed in Appendix B). Based on the results
in Kou et al. (2023), a ReLU CNN trained with gradient descent learns the feature in a constant order.
Therefore, we assume that the pre-trained trained model is w̃j,r = C1 · uj + C3 · N (0, σpH) for
simplicity. Then we can characterize the fine-tuning test loss as follows (We define Λi in a similar
manner that Λi = C/ ∥ui∥2 + σp

√
d).

Proposition 4.4. Suppose, then the fine-tuned test loss satisfies

LDft(W
(T )) ≤ exp

(
−Ω

(
Λi ∥ui∥22√

m
T

))
· L̃+O

( √
d√

mnΛi

)
+O

( √
mdσn

Λi ∥ui∥2

)
, (19)

where

L̃ =− 1

2
ln

(
exp(C1 cos θ ∥u1∥22)

exp(C1 cos θ ∥u1∥22) + exp(C1 sin θ ∥u1∥22 + C3σ2
p)

)

− 1

2
ln

(
exp(C1 cos θ ∥u2∥22)

exp(C1 cos θ ∥u2∥22) + exp(C3σ2
p)

)
.

(20)

Remark 4.5. A worth noting fact is that L̃ increases with θ, meaning that the fine-tuning test loss
decreases with increased feature difference, i.e., θ. Even worse, when L̃ > LD2(W

(0)), the pre-
training can lead to worse performance than training from scratch. Hence, as indicated in Tramèr
et al. (2022), the remarkable good performance of pre-training on private learning may come from
the distribution overlap between pre-training and fine-tuning datasets.

5 EXPERIMENTS

In this section, we use synthetic data and real-world datasets MNIST (LeCun et al., 1998) and
CIFAR-10 (Krizhevsky et al., 2009) to verify our theory.

5.1 SYNTHETIC DATASETS

Synthetic data generation. We generate a synthetic dataset following the data distribution described
in Section 2. Specifically, we set the sizes of both training and test datasets to 450. We set the
feature vector length in each patch to 100. The feature vector sizes and dataset sizes of the majority
and minority groups of classes 0 and 1 are specified as ∥u1,maj∥2 = 4, γ1,maj = 44%, ∥u1,min∥2 =
2, γ1,min = 22%, ∥u2,maj∥2 = 1.5, γ2,maj = 22% and ∥u2,min∥2 = 0.5, γ2,min = 11%. The differ-
ence in feature vector sizes and dataset sizes characterize feature disparity and data imbalance. In
addition, we set the standard deviation of the noise patch to σp = 0.2.

We train a two-layer CNN with ReLU activation function and cross-entropy loss (see Section 2). We
set the number of neurons as 64, i.e., m = 32. We utilize the default initialization in PyTorch. We
train the CNN with DP-SGD with batch size B = 128 for 20 epochs.

Test loss. We experiment on the model’s test loss of groups with different features in Figure 2 (a).
We observe that the test loss generally increases with the DP noise standard deviation, aligning with
the findings in Theorem 3.5 where the upper bound of test loss depends on the corresponding FNR.
Furthermore, the class and the group with a larger feature size incur smaller test losses. It is also
worth noting that the gaps among the groups become more significant with increasing noise standard
deviation.

Adversarial robustness. In Figure 2(b), we assess the adversarial robustness by attacking the
model with the projected gradient descent method (generate the adversarial examples by maximizing
the loss with projected gradient descent) with ζ̄ = 0.02. We observe that the DP-SGD trained model
experiences a degradation in adversarial robustness on certain groups/classes. This aligns with the
results from Theorem 3.5 that the upper bound of the model’s adversarial test loss increases with DP
noise standard deviation.

9
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(a) Test loss versus DP noise standard devia-
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(b) Adversarial test loss attacked with the
Projected Gradient Descent Method.

Figure 2: Model standard test loss and adversarial test loss.

5.2 REAL-WORLD DATASETS

Setup. For MNIST and CIFAR-10, we train LeNet and a CNN following the architecture in (Tramer
& Boneh, 2020) with DP-SGD. We fix the privacy budget as α = 3, δ = 10−5. We fix the gradient
clipping threshold as C = 0.1 (Tramer & Boneh, 2020). We fix the batch size as 256 and try various
learning rates. We use the DP-SGD implementation in Opacus (Yousefpour et al., 2021). We obtain
the adversarial example through the projected gradient descent method with ζ̄ = 4/255.

Impact of feature size. In real images, it is hard to distinguish which part of the images represents
the features. We simply see the object as features and regard the background as noise. To emulate
the image backgrounds, we apply zero-padding to the periphery of the input images and the resize
the image back to the original size (as shown in Figure 3 in the appendix). The table below shows
both the test accuracy and adversarial test accuracy with different padding ratios. As indicated in the
theory, the model accuracy decreases with the padding ratios (feature sizes).

Padding ratio 0% 13% 26% 38% 50% 62% 75%
MNIST 97% 97% 97% 96% 95% 94% 86%
CIFAR-10 58% 56% 54% 52% 51% 48% 46%
MNIST (adversarial) 95% 93% 89% 77% 50% 20% 1%
CIFAR-10 (adversarial) 3% 3% 2% 2% 1% 0% 0%

Pre-training vs. fine-tuning. We maintain the training dataset unrotated. We rotate the test images
and split them into fine-tuning training dataset and test dataset. We additionally use ResNet-18 (He
et al., 2016) for CIFAR-10. The table below shows the fine-tuning test performance under different
rotation angles. As indicated in the theory, the model accuracy decreases with the rotation angle.

Rotation angle 0◦ 22.5◦ 45◦ 67.5◦ 90◦

MNIST 99% 97% 94% 94% 94%
CIFAR-10 (CNN Tramer & Boneh (2020)) 70% 59% 51% 49% 51%
CIFAR-10 (ResNet-18) 91% 66% 43% 37% 44%

6 CONCLUSIONS AND FUTURE WORKS

In this paper, we investigate the side effects of DP-SGD in two-layer ReLU CNNs. We show that the
side effects of DP-SGD trained CNNs depend on data’s feature, data noise, and privacy-preserving
noise. Our results uncover three sources of disparate impact: gradient clipping, data imbalance, and
feature disparity. In addition, we show that the privacy-preserving noise introduces randomness into
the learned features, leading to bad learned features and worse adversarial robustness. Moreover,
we demonstrate that the fine-tuning performance with pre-trained models decreases with increased
feature differences in the pre-training and fine-tuning datasets. Numerical results on both synthetic
and real-world datasets validate our theoretical analyses.

10
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7 REPRODUCIBILITY STATEMENT

We put the source code in the Supplementary Material. All the experimental results can be reproduced
with the source code.
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A ADDITIONAL RELATED WORK

Side effects in differentially private learning. Side effects of DP have been widely studied in deep
learning literature. Disparate impact was initially observed in classification tasks Bagdasaryan et al.
(2019) and generative tasks (Ganev et al., 2022). Then, researchers have proposed several methods,
such as a regularization approach (Tran et al., 2021), re-weighting, and stratification methods (Esipova
et al., 2022; Rosenblatt et al., 2024) to mitigate the disparate impacts. A recent paper (Berrada et al.,
2023) showed that the DP models pre-trained with large datasets and fine-tuned with large batch
size can have marginal disparate effects. We discuss the implication of this work to pre-training in
Appendix ??.

The interplay between DP and fairness is also a widely studied topic. Cummings et al. (2019) showed
that exact fairness is not compatible with DP under the PAC learning setting. Sanyal et al. (2022)
showed that it is not possible to build accurate learning algorithms that are both private and fair when
data follows a specific kind of long-tailed distribution. Mangold et al. (2023) bounded the difference
in fairness levels between private and non-private models under the assumption that the confidence
margin is Lipschitz-continuous.

Some other side effects have also been studied. Tramer & Boneh (2020) showed that Differentially
Private Learning (DPL) may perform worse after bad feature learning compared with learning
handcraft features. Tursynbek et al. (2020) studied adversarial robustness in DPL and showed
that models trained by DPL may be more vulnerable compared with non-private models. Zhang &
Bu (2022) studied the adversarial robustness of private linear classifiers and showed differentially
privately fine-tuned pre-trained models may be robust under certain parameter settings. In addition,
Zhang et al. (2022) studied calibration of DPL and observed miscalibration across a wide range
of vision and language tasks. Bu et al. (2023) studied DPL with neural tangent kernel (NTK) and
demonstrated that a large clipping threshold may benefit the calibration of DPL.

In these works, researchers have studied the convergence of DPL and explored explanations for the
aforementioned side effects. However, these analyses relied on some restricted assumptions that are
not applicable to neural networks because (1) differentially private neural networks training is not in
the NTK regime as the noise keeps the network parameter far away from the initialization during
training; (2) training loss of ReLU neural networks is non-convex and non-smooth, contradicting the
assumptions in most analyses. In this work, we aim to overcome these challenges and explain the
side effects of DP-SGD on a two-layer ReLU CNN.

B DETAILS ABOUT PRE-TRAINING AND FINE-TUNING DATA DISTRIBUTIONS

To illustrate the impact of pre-training, we simplify the data distribution as follows. We consider the
following pre-training and fine-tuning data distributions. We control their difference by a parameter
θ.

Pre-training data distribution. We consider a 2-class classification problem over 2-patch inputs.
Each labelled data is denoted as (x, y), with label y ∈ {1, 2} and data vector x =

(
x(1),x(2)

)
∈

Rd×2. A sample (x, y) is generated from a data distribution D as follows.

1. The label y is randomly sampled from {1, 2}. With probability 1/2, the label is selected as
y = 1; otherwise, it is selected as y = 2.

2. Each input data patch x(1),x(2) ∈ Rd contains either feature or noise.

• Feature patch: One data patch (x(1) or x(2)) is randomly selected as the feature patch.
This patch contains a feature uy for y ∈ {1, 2}.

• Noisy patch: The remaining patch ξ is generated from a Gaussian distribution
N (0, σ2

pH), where H = I−
∑2

i=1 uiu
⊤
i · ∥ui∥−2

2 .

Fine-tuning data distribution. We consider a 2-class classification problem over 2-patch inputs.
Each labelled data is denoted as (x, y), with label y ∈ {1, 2} and data vector x =

(
x(1),x(2)

)
∈

Rd×2. A sample (x, y) is generated from a data distribution D as follows.
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Figure 3: Examples on using image padding to control feature sizes. For digits and objects, we pad
the images with their background color.

1. The label y is randomly sampled from {1, 2}. With probability 1/2, the label is selected as
y = 1; otherwise, it is selected as y = 2.

2. Each input data patch x(1),x(2) ∈ Rd contains either feature or noise.

• Feature patch: One data patch (x(1) or x(2)) is randomly selected as the feature patch.
For y = 1, this patch contains a feature u′

1 = cos θu1 + sin θu2. For y = 2, this this
patch contains a feature u′

2 = cos θu2 − sin θu1.
• Noisy patch: The remaining patch ξ is generated from a Gaussian distribution
N (0, σ2

pH), where H = I−
∑2

i=1 u
′
i(u

′
i)

⊤ · ∥u′
i∥

−2
2 .

C DP-SGD ALGORITHM

Input: training set S, learning rate η, DP noise standard deviation σn, batch size B
initialize W(0) randomly
for each round t = 1, 2, · · · , T do

Take a random training subset S(t) uniformly from S with probability B
n

Compute g(t) = 1
B

∑
(x,y)∈S(t) ∇L

(
W(t−1),x, y

)
+N

(
0, σ2

nI
)

W(t) = W(t−1) − ηg(t)

end for
Algorithm 1: DP-SGD

D DETAILS ABOUT EXPERIMENTS

In this section, we introduce the experimental details.

D.1 VISUALIZATION OF PADDING IMAGES

In Figure 3, we present examples of padding images.

D.2 EXPERIMENTAL DETAILS OF FIGURE 1

Because we mainly characterize the privacy-utility tradeoff, we simply set 2 classes with equal feature
sizes and equal dataset sizes 100. We vary the feature size from 0 to 21 and the DP-SGD noise
standard deviation σn from 0 to 4. We set the noise patch standard deviation σp as 0.02. We set the
clipping threshold as C = 2. We set the number of neurons as m = 32.
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E SOME DATASETS AND NEURAL NETWORK ARCHITECTURES OBSERVING
SIDE EFFECTS

Bagdasaryan et al. (2019) has identified disparate effects in datasets such as MNIST, CelebA, and
Twitter posts using ResNet and LSTM networks. Unfairness has been observed in CelebA and
CIFAR-10 datasets using ResNet networks (Sanyal et al., 2022). Zhang et al. (2022) observed
miscalibration in QNLI, QQP, SST-2 with fine-tuned RoBERTa-base.

F OVERVIEW OF CHALLENGES AND PROOF SKETCH

In this section, we outline the main challenges in studying feature learning of DP-SGD on CNNs and
the key proof techniques employed to overcome the challenges.

F.1 CHALLENGE 1: NON-SMOOTHNESS OF THE RELU ACTIVATION FUNCTION

The first challenge arises from the non-smoothness of the ReLU activation function. Some existing
papers (e.g., (Girgis et al., 2021)) analyzed DP-SGD with Lipschitz-smoothness-based approaches.
However, this kind of approach is not applicable to ReLU neural networks.

In a two-layer CNNs, we can track the neurons’ feature learning process through their gradients. For
any i ∈ {1, 2}, r ∈ [m], the gradient on w

(t)
i,r can be decomposed as

∇
w

(t)
i,r
LS(W

(t)) =
∑

j∈{maj,min}

(µi,jui,j − µ3−i,ju3−i,j)︸ ︷︷ ︸
Data features

+

n∑
k=1

ξk(ρ̄i,j,kI(yk = i)− ρ
i,j,k

I(yk ̸= i))︸ ︷︷ ︸
Data noise

,

where µi,j , µ3−i,j , ρ̄i,j,k, ρi,j,k ≥ 0 are constants. The neurons tend to learn both class-relevant data
features and data noise of the targeted class while unlearning others.

Some existing approaches (e.g., (Cao et al., 2022)) bound the feature learning process by characteriz-
ing the leading neurons that learn the most features. However, this approach only works for ReLUq

(q > 2) activation functions, where the leading neurons dominate other neurons during training. As
the ReLU function is piece-wise linear, these approaches fail in ReLU neural networks.

To overcome this challenge, we study the feature learning process by analyzing the dynamics of the
model outputs Fi(W,x), i ∈ [2] defined in Section 2

F.2 CHALLENGE 2: RANDOMNESS FROM DP-SGD

The second challenge stems from the randomness introduced by DP-SGD. The learning process is
significantly perturbed due to the random noise in DP-SGD. Kou et al. (2023) attempted to bound
the feature learning process based on the monotonicity of the weights of feature vectors. However,
due to the randomness from DP-SGD, the weights are not consistently increasing.

To address this challenge, we track the increments of the model outputs for any data point (x, y) ∼
Di,j instead. The key proposition is presented as follows.

Proposition F.1. For any (x, y) ∼ Di,j , i ∈ [2], j ∈ {maj,min}, with probability at least 1 −
exp(−Ω̃(d)),

• The increment of model output for the targeted class y satisfies

∆(t)
y (x) =Fy

(
W(t+1),x

)
− Fy

(
W(t),x

)
≥Ω

(
η√
m

· γi,j · Λi,j · E(x,y)∼Di,j

[
1− proby

(
W(t),x

)])
· ∥ui,j∥22

−O
(

η

m
∥ui,j∥22 + ησn

√
d ∥ui,j∥2 +

η

m
√
n
dσ2

p + ηdσnσp

)
.

(21)
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• The increment of model output for the other class 3− y satisfies

∆
(t)
3−y(x) =F3−y

(
W(t+1),x

)
− F3−y

(
W(t),x

)
≤O

(
ησn

√
d ∥ui,j∥2 +

η

m
√
n
dσ2

p + ηdσnσp

)
.

(22)

Proposition F.1 shows that the model output on the data (x, y) with respect to the targeted class,
Fy(W,x), tends to increase over iterations (see term 1 in the RHS of (21)). However, due to the
noise perturbation introduced by DP-SGD, the model increment ∆(t)

y becomes smaller and cannot
always be positive (because of the second negative term in RHS of (21)). In addition, the model
output on the data (x, y) with respect to the other class may increase due to the randomness from
batches and DP-SGD. The results of Proposition F.3 allow us to track the test loss increments, as
shown in the following subsection.

F.3 CHALLENGE 3: NON-LINEARITY OF CROSS-ENTROPY AND SOFTMAX FUNCTIONS

Due to the non-linearity of cross-entropy and softmax functions, the model output increment bounds
in Proposition F.1 cannot be directly applied to bounding test loss.

To tackle this challenge, we bound the non-linear functions with a piece-wise linear function, as
stated in Lemma F.2.
Lemma F.2. Under Assumption 3.2, we have

L
(
W(t+1),x, y

)
−L

(
W(t),x, y

)
≤c1 · σ

(
∆

(t)
3−y(x)−∆(t)

y (x)
)
−c2 · σ

(
∆(t)

y (x)−∆
(t)
3−y(x)

)
,

for some constants c1, c2 > 0.

Lemma F.2 allows us to apply the model output increment bounds in Proposition F.1 to bound the
test loss, as shown in Proposition F.3.

Proposition F.3. Under Condition 3.1 and Assumption 3.2, with probability at least 1−exp
(
−Ω̃(d)

)
,

for any i ∈ [2], j ∈ {maj,min}, we have

LDi,j

(
W(t+1)

)
−LDi,j

(
W(t)

)
≤−Ω

(
η√
m

· γi,j · Λi,j · ∥ui,j∥22

)
· E(x,y)∼Di,j

[
1−proby

(
W(t),x

)]
+O

(
η

m

√
d

n
∥ui,j∥22 + ησn

√
d ∥ui,j∥2 +

η

m
√
n
dσ2

p + ηdσnσp

)
︸ ︷︷ ︸

:=ϕ

.

With the fact that under Assumption 3.2,

1− proby

(
W(t),x

)
= Θ(1) · L

((
W(t)

)
,x, y

)
(23)

holds, Proposition F.3 can be applied to establish the following test loss bound

LDi,j

(
W(t+1)

)
≤
(
1−Ω

(
η√
m

· γi,j · Λi,j · ∥ui,j∥22

))
· LDi,j

(
W(t)

)
+ ϕ. (24)

Recursively applying (24) over T iterations yields Theorem 3.5.

G PROOF

G.1 PRELIMINARIES

Lemma G.1 (Gaussian distribution tail bound). A variable x following N (0, σ2
0) satisfies

P[x ≥ tσ0],P[x ≤ −tσ0] ≤ exp

(
− t2

2

)
,∀t ≥ 0. (25)
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Lemma G.2 (Chi-squared distribution tail bound). A variable x ∼ N (0, σ2
0Id) satisfies With

probability at least 1− exp(−td/10), we have

P
[
∥x∥2 ≥ σ0

√
2(t+ 1)d

]
≤ exp(−(t+ 1)d/10),∀t ≥ 0. (26)

Lemma G.3 (Half-normal distribution concentration bound). Suppose x1, x2, · · · , xn ∼ N (0, σ2
0).

Then,

P

[
1

n

n∑
i=1

|xi| −
√

2

π
σ0 ≥ tσ0

]
,P

[
1

n

n∑
i=1

|xi| −
√

2

π
σ0 ≤ −tσ0

]
≤ exp

(
− t2

2

)
,∀t ≥ 0. (27)

Proof. First, half-normal variables |xi|,∀i ∈ [n] are sub-Gaussian as a half-normal variable has a
negative tail bounded by −

√
2/π and a Gaussian delay positive tail. Then, by Hoeffding’s inequality,

we have

P

[
1

n

n∑
i=1

|xi| −
√

2

π
σ0 ≥ tσ0

]
,P

[
1

n

n∑
i=1

|xi| −
√

2

π
σ0 ≤ −tσ0

]
≤ exp

(
− t2

2

)
,∀t ≥ 0. (28)

Lemma G.4. Let x1, · · · , xm be m independent zero-mean Gaussian variables. Denote zi as
indicators for signs of xi, i.e., for all i ∈ [m],

zi =

{
1, xi > 0,

0, xi ≤ 0.
(29)

Then, we have

P

[
m∑
i=1

zi ≥
m

4

]
≥ 1− exp (−2m) . (30)

Proof. Because zi, i ∈ [m] are bounded in [0, 1], zi, i ∈ [m] are sub-Gaussian variables. By
Hoeffding’s inequality, we have

P

[
m ·

(
1

m

m∑
i=1

zi

)
≤ m ·

(
1

2
− ϵ

)]
≤ exp

(
2m2ϵ2

m(1/16)

)
. (31)

Let ϵ = 1/4, we have

P

[
m∑
i=1

zi ≤
m

4

]
≤ exp (−2m) . (32)

Therefore, we have

P

[
m∑
i=1

zi ≥
m

4

]
≥ 1− exp (−2m) . (33)

This completes the proof.

Lemma G.5. Let x1 be a Gaussian variable following N (0, σ1) and x2 be a Gaussian variable
following N (0, σ2). Then, with probability at least 1− exp(t21/2)− exp(t22/2), we have

⟨x1, x2⟩ ≤ t1t2σ1σ2. (34)

Lemma G.5 can be proved by using Lemma G.1.
Lemma G.6. For N Independent and Identically Distributed (IID) random variables x1, · · · , xN ∈
[0, 1] with expectation µ, we have

P

[
1

N

N∑
i=1

xi − µ ≤
√

t

N

]
≥ 1− exp (−2t) (35)

with t > 0.
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Lemma G.6 can be proved by Hoeffding’s inequality.
Lemma G.7. For any constant t ∈ (0, 1] and x ∈ [−a, b], a, b > 0, we have

log(1 + t · (exp(x)− 1)) ≤ Γ(x)x, (36)
where Γ(x) = I(x ≥ 0) + [log(1 + t · (exp(−a)− 1))/− a] · I(x < 0).

Proof. First, considering x ≥ 0, we have
∂ log(1 + t · (exp(x)− 1))

∂t
=

exp(x)− 1

1 + t · (exp(x)− 1)
≥ 0. (37)

Thus, log (1 + t · (exp(x)− 1)) ≤ x, ∀x > 0. Second, considering x < 0, we have
∂2 log(1 + tv(exp(x)− 1))

∂x2
=

(1− t)t exp(x)

[1 + t(exp(x)− 1)]2
≥ 0. (38)

So log(1 + t(exp(x)− 1)) is a convex function of x. We can conclude that

log(1 + t(exp(x)− 1)) ≤ log(1 + t(exp(−a)− 1))

−a
x, ∀x < 0. (39)

This completes the proof.

Lemma G.8. For x ∈ [x0, 1] and x0 > 0, we have

1− x ≥ 1− x0

− log(x0)
· (− log(x)) . (40)

Lemma G.8 can be proved by applying the convexity of − log(x).
Lemma G.9. For a geometric sequence defined as zt+1 = βzt for a constant β < 1, we have

T∑
t=1

zt =
1− βT

1− β
· z1. (41)

Lemma G.9 is obtained from the property of Geometric sequences.
Lemma G.10. For x ≤ x0, we have

1

exp(x) + 1
≥ 1

exp(x̄0) + 1
− exp(x̄0)

(exp(x̄0) + 1)2
· (x− x̄0), (42)

where x̄0 = |x0|.

Lemma G.10 can be prove by the monotonicity and convexity of function f(x) = 1/ exp(x) + 1
with x > 0.
Lemma G.11. In each iteration t, with probability at least 1− exp(−Ω(d)), for any (x, y) ∈ Di,j ,
we have ∥∥∥∇W(t)L(W(t),x, y)

∥∥∥
2
≤ O

(
1√
m

·
(
∥ui,j∥2 + σp

√
d
))

. (43)

Lemma G.11 follows from Lemma G.2.
Lemma G.12. For a variable x ∈ [a, b](a < 0, b > 0), the function f(x) = log(1 + x) satisfies

f(x) ≥ log(1 + b)

b
x · I(x ≥ 0) +

log(1 + a)

−a
x · I(x < 0). (44)

Lemma G.12 can be proved by the monotonicity and concavity of the log(·) function.
Lemma G.13. For any (x, y) ∼ D, With probability at least 1− 1/d, we have

σ2
pd

2
≤ ∥ξ∥2 ≤

3σ2
pd

2
(45)

Proof. By Bernstein’s inequality, with probability 1− 1/d, we have

| ∥ξ∥2 − σ2
p(d− 2)| = O(σ2

p

√
d log(2d)). (46)

As d ≥ 50, we have
σ2
pd

2
≤ ∥ξ∥2 ≤

3σ2
pd

2
, (47)

with probability 1− 1/d.
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G.2 PROOF OF THEOREM 3.5

In this subsection, we will prove Theorem 3.5. For convenience, we first define the clipping multiplier
of data (x, y) as

h(C,x, y) =
1

max
{
1,
∥∥∇L

(
W(t),x, y

)∥∥
2
/C
} . (48)

Then, we compute the gradient of the neural networks and prove a bound for it.

G.2.1 NETWORK GRADIENT

The stochastic gradient on wq,r, q ∈ {1, 2} at iteration t is

∇
w

(t)
q,r

LS(W
(t))

=− 1

mB
·

∑
(x,y)∈S(t)

I (y = q) ·
(
1− probq(W

(t),x)
)
·

2∑
j=1

σ′
(〈

w(t)
q,r,x

(j)
〉)

· x(j)


+

1

mB
·

∑
(x,y)∈S(t)

I (y ̸= q) · probq(W
(t),x) ·

2∑
j=1

σ′
(〈

w(t)
q,r,x

(j)
〉)

· x(j)

 .

(49)

G.2.2 BOUND OF THE CLIPPING MULTIPLIER h(C,x, y)

By definition (48), we know that

h(C,x, y) ≤ 1. (50)

In addition, from Lemma G.11, we know that with probability at least 1− exp(Ω(d)),

h(C,x, y) ≥ Ω

(
C
√
m

∥ui,j∥2 + σp

√
d

)
. (51)

G.2.3 LOSS INCREMENT

For any data (x, y) ∼ Di,j , i ∈ {1, 2}, j ∈ {Maj,Min}, with some rearrangement, we can express
the increment of the loss as

L(W(t+1),x, y)− L(W(t),x, y) = − log
(

proby

(
W(t+1),x

))
+ log

(
proby

(
W(t),x

))
= log

(
1 +

(
1− proby

(
W(t),x

))(
exp

(
∆

(t)
3−y (x)−∆(t)

y (x)
)
− 1
))

,

(52)
where ∆

(t)
y (x) = F

(t+1)
y (x)− F

(t)
y (x) ,∆

(t)
3−y (x) = F

(t+1)
3−y (x)− F

(t)
3−y (x) represent the model

output increments at iteration t. As we can see in (52), one key factor that control the loss increment is
∆

(t)
3−y (x)−∆

(t)
y (x). We then bound the term it as follows. We first decompose ∆(t)

3−y (x)−∆
(t)
y (x)

as following.

∆
(t)
3−y (x)−∆(t)

y (x)

=
1

m

m∑
r=1

[
σ
(〈

w
(t+1)
3−y,r,ui,j

〉)
−σ
(〈

w
(t)
3−y,r,ui,j

〉)]
︸ ︷︷ ︸

A

+
1

m

m∑
r=1

[
σ
(〈

w
(t+1)
3−y,r, ξ

〉)
−σ
(〈

w
(t)
3−y,r, ξ

〉)]
︸ ︷︷ ︸

B

− 1

m

m∑
r=1

[
σ
(〈

w(t+1)
y,r ,ui,j

〉)
−σ
(〈

w(t)
y,r,ui,j

〉)]
︸ ︷︷ ︸

C

− 1

m

m∑
r=1

[
σ
(〈

w(t+1)
y,r , ξ

〉)
−σ
(〈

w(t)
y,r, ξ

〉)]
︸ ︷︷ ︸

D

,

(53)
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where ξ is the noise patch of a data sample (x, y) generated from Di,j . We then upper bound A, B
and lower bound C,D to find the upper bound of ∆(t)

3−y (x)−∆
(t)
y (x).

Here, we prove that ∆(t)
3−y (x)−∆

(t)
y (x) is bounded.

Lemma G.14. For any (x, y) ∼ D, with probability at least 1− exp−Ω̃(d), we have

|∆(t)
3−y (x)−∆(t)

y (x) | ≤ O
(
η(C +

√
dσn)(max

i,j
∥ui,j∥2 +

√
dσp)

)
. (54)

Proof. With Lemma G.2, we have

|∆(t)
3−y (x)−∆(t)

y (x) | ≤2η
(
C +

∥∥∥n(t)
∥∥∥
2

)(
max
i,j

∥ui,j∥2 + ∥ξ∥2

)
≤O

(
η(C +

√
dσn)(max

i,j
∥ui,j∥2 +

√
dσp)

)
,

(55)

with probability at least 1− exp(−Ω̃(d)). By the learning rate condition in Condition 3.1, we can
conclude that |∆(t)

3−y (x)−∆
(t)
y (x) | is upper bounded by a constant.

For the term A, with probability at least 1− exp(−Ω̃(d)), we have the following inequality,

A=
1

m

m∑
r=1

σ
〈w(t)

3−y,r−
η

mB
·
∑

(xk,yk)∈S(t)
i,j

σ′
(〈
w

(t)
3−y,r,ui,j

〉)
· h(C,xk, yk) · prob3−y

(
W(t),xk

)
· ui,j

+ η · n(t)
3−y,r,ui,j

〉)]
− 1

m

m∑
r=1

[
σ
(〈

w
(t)
3−y,r,ui,j

〉)]
(a)

≤ 1

m

m∑
r=1

[
σ
(〈

w
(t)
3−y,r + ηn

(t)
3−y,r,ui,j

〉)]
− 1

m

m∑
r=1

[
σ
(〈

w
(t)
3−y,r,ui,j

〉)]
(b)

≤ 1

m

m∑
r=1

[∣∣∣〈ηn(t),ui,j

〉∣∣∣]
(c)

≤O(ησn

√
d ∥ui,j∥2),

(56)
where (a) is obtained by the monotonicity of ReLU activation function; (b) is because ReLU function
is 1-Lipschitz continuous; (c) is due to Lemma G.3.
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For the term B, we have that with probability at least 1− exp(−Ω̃(d)),

B=
1

m

m∑
r=1

σ
〈w(t)

3−y,r−
η

mB
·

∑
(xk,yk)∈S(t)

y

σ′
(〈
w

(t)
3−y,r, ξk

〉)
· h(C,xk, yk) · prob3−y

(
W(t),xk

)
·ξk

+
η

mB
·

∑
(xk,yk)∈S(t)

3−y

σ′
(〈
w

(t)
3−y,r, ξk

〉)
· h(C,x, y)·

(
1−prob3−y

(
W(t),xk

))
· ξk+ηn

(t)
3−y,r, ξ

〉


− 1

m

m∑
r=1

[
σ
(〈

w
(t)
3−y,r, ξ

〉)]
(a)

≤ 1

m

m∑
r=1

∣∣∣∣∣∣
〈

η

mB
·

∑
(xk,yk)∈S(t)

ξk, ξ

〉∣∣∣∣∣∣+
∣∣∣〈ηn(t)

3−y,r, ξ
〉∣∣∣


(b)

≤O
(

η

m
√
B

√
dσp + η

√
dσn

)
· O
(√

dσp

)
=O

(
η

m
√
B
dσ2

p + ηdσnσp

)
,

(57)
where (a) is because σ′(·) ≥ 0, proby, prob3−y ∈ [0, 1] and ReLU function is 1-Lipschitz continuous;
(b) is because of Cauchy–Schwarz inequality, the property of 1-norm and 2-norm, and Lemma G.3.

For the term C, we have

C=
1

m

m∑
r=1

σ

〈w(t)
y,r+

η

mB
·

∑
(xk,yk)∈S(t)

i,j

σ′
(〈

w(t)
y,r,ui,j

〉)
· h(C,xk, yk)·

(
1−proby

(
W(t),xk

))
·ui,j

+η · n(t)
y,r,ui,j

〉)
− 1

m

m∑
r=1

σ
(〈

w(t)
y,r,ui,j

〉)
(58)

Based on Lemma G.4, we can conclude that with probability at least 1− exp(−2m), the number of
activated neurons at iteration t are at least m/4. Then, with probability at least 1− exp(−Ω̃(d)), we
have

C≥ 1

m

m∑
r=1

σ

〈w(t)
y,r+

η

mB

∑
(xk,yk)∈S(t)

i,j

σ′
(〈

w(t)
y,r,ui,j

〉)
· h(C,xk, yk) ·

(
1−proby

(
W(t),xk

))

ui,j ,ui,j⟩)−
1

m

m∑
r=1

∣∣∣〈η · n(t)
y,r,ui,j

〉∣∣∣− 1

m

m∑
r=1

σ
(〈

w(t)
y,r,ui,j

〉)
≥Ω

(
ηC

B
√
m(∥ui,j∥2 + σp

√
d)

) ∑
(xk,yk)∈S(t)

i,j

(
1−proby

(
W(t),xk

))
∥ui,j∥22−O

(
ησn

√
d ∥ui,j∥2

)
,

(59)
The second inequality is by using the bound of the clipping multiplier.

Therefore, by Lemmas G.3 and G.6, with probability at least 1− exp (−Ω(d))− exp (−Ω(n)), we
have

C ≥Ω

(
ηγi,jC ∥ui,j∥22√

m(∥ui,j∥2 + σp

√
d)

)
E(xk,yk)∼Di,j

[
1− probyk

(
W(t),xk

)]
−O

( η

m
∥ui,j∥22

)
−O

(
ησn

√
d ∥ui,j∥2

)
.

(60)
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In the following, we prove the bound of D. Similar to the proof of bound of B, we have that with
probability at least 1− exp

(
−Ω̃(d)

)
− exp (−Ω(n)), we have

D =
1

m

m∑
r=1

σ
〈w(t)

y,r −
η

mB

∑
(xk,yk)∈S(t)

3−y

σ′
(〈

w(t)
y,r, ξk

〉)
h(C,xk, yk)proby

(
W(t),xk

)
ξk

+
η

mB

∑
(xk,yk)∈S(t)

y

σ′
(〈

w(t)
y,r, ξk

〉)
h(C,xk, yk)

(
1− proby

(
W(t),xk

))
ξk + n(t)

y,r, ξ

〉


− 1

m

m∑
r=1

σ
(〈

w(t)
y,r, ξ

〉)

≥− 1

m

m∑
r=1

∣∣∣∣∣∣
〈

η

mB

∑
(xk,yk)∈S(t)

ξk, ξ

〉∣∣∣∣∣∣+
∣∣∣〈ηn(t)

y,r, ξ
〉∣∣∣


≥−O
(

η

m
√
n
dσ2

p + ηdσnσp

)
.

(61)

Substituting bounds of A,B,C,D to (53), we obtain the upper bound of ∆(t)
3−y (x)−∆

(t)
y (x). With

probability at least 1− exp
(
−Ω̃(d)

)
,

∆
(t)
3−y (x)−∆(t)

y (x)

≤− Ω

(
ηγi,jC ∥ui,j∥22√

m(∥ui,j∥2 + σp

√
d)

)
·
[
E(xk,yk)∼Di,j

[
1− probyk

(
W(t),xk

)]]
︸ ︷︷ ︸

Φ1

+O

(
η

m

√
d

n
∥ui,j∥22

)
+O

(
ησn

√
d ∥ui,j∥2

)
+O

(
η

m
√
n
dσ2

p + ηdσnσp

)
︸ ︷︷ ︸

Φ2

.

(62)

Armed with the loss increment bound (62), we prove the test loss bound of each data (x, y) ∼ D in
the next sub section.

G.2.4 TEST LOSS BOUND

Under Assumption 3.2, for any (x, y) ∼ D, we have

1− proby
(
W(t),x

)
≥ 1− exp(−s). (63)

By (52) and Lemma G.7, with probability at least 1 − exp(−Ω̃(d)), we can upper bound the loss
increment by a piece-wise linear function,

LDi,j

(
W(t+1)

)
− LDi,j

(
W(t)

)
=E(x,y)∼Di,j

[
log
(
1 +

(
1− proby

(
W(t),x

))
·
(
exp

(
∆

(t)
3−y (x)−∆(t)

y (x)
)
− 1
))]

(a)

≤ − E(x,y)∼Di,j

[
Γ
(
∆

(t)
3−y (x)−∆(t)

y (x)
)
· Φ1

]
+ E(x,y)∼Di,j

[
Γ
(
∆

(t)
3−y (x)−∆(t)

y (x)
)
· Φ2

]
(64)
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where (a) is by Lemma G.7 and Lemma (62). Then, substituting (62) to the above inequality yields

LDi,j

(
W(t+1)

)
−LDi,j

(
W(t)

) (a)

≤−Ω

(
ηγi,jΛi,j ∥ui,j∥22√

m

)
· LDi,j

(
W(t)

)
+O

(
η

m

√
d

n
∥ui,j∥22

)

+O
(
ησn

√
d ∥ui,j∥2

)
+O

(
η

m
√
n
dσ2

p + ηdσnσp

)
,

(65)
where (a) is obtain by Lemma G.8. Γ = − log(1 + (1 − exp(−s)) · (exp(−a) − 1))/a, γ =

− exp(−s)/ ln(1−exp(−s)) and a is the lower bound of ∆(t)
3−y−∆

(t)
y (By Lemma G.14, ∆(t)

3−y−∆
(t)
y

is lower bounded by a constant). Therefore, we have

LDi,j

(
W(t+1)

)
≤

(
1− Ω

(
ηγi,jΛi,j ∥ui,j∥22√

m

))
· LDi,j

(
W(t)

)
+O

(
η

m

√
d

n
∥ui,j∥22

)

+O
(
ησn

√
d ∥ui,j∥2

)
+O

(
η

m
√
n
dσ2

p + ηdσnσp

)
.

(66)
Then, combining all T iterations and using Lemma G.9, we have

LDi,j

(
W(T )

)
≤

(
1− Ω

(
ηγi,jΛi,j ∥ui,j∥22√

m

))T

LDi,j

(
W(0)

)
+

(
O

(
η

m

√
d

n
∥ui,j∥22

)
+O

(
ησn

√
d ∥ui,j∥2

)
+ O

(
η

m
√
n
dσ2

p + ηdσnσp

))
· O

( √
m

ηγi,jΛi,j ∥ui,j∥22

)

≤ exp

(
−Ω

(
Tηγi,jΛi,j√

m
∥ui,j∥22

))
LDi,j

(
W(0)

)
+O

(√
d

mn

1

γi,jΛi,j

)

+O

( √
mσn

√
d

γi,jΛi,j ∥ui,j∥2
+

1√
mn

dσ2
p

γi,jΛi,j ∥ui,j∥22
+

√
mdσnσp

γi,jΛi,j ∥ui,j∥22

)
.

(67)
Setting the parameters with Condition 3.1 yields the conclusion. This completes the proof.

G.3 PROOF OF THEOREM 3.6

Proof. Recall that in (52), we have

L(W(t+1),x, y)− L(W(t),x, y)

= log
(
1 +

(
1− proby

(
W(t),x

))(
exp

(
∆

(t)
3−y (x)−∆(t)

y (x)
)
− 1
))

(a)

≥ c
(t)
0 ·

(
1− proby

(
W(t),x

))(
exp

(
∆

(t)
3−y (x)−∆(t)

y (x)
)
− 1
)

(b)
=Ω

(
exp

(
∆

(t)
3−y (x)−∆(t)

y (x)
)
− 1
)
,

(68)

where c(t)0 > 0 for any t ∈ {0}∪ [T − 1] are constants. Here (a) is obtained from Lemma G.12 Then,
we bound ∆

(t)
3−y (x)−∆

(t)
y (x); (b) is by 1− exp(−s) ≤ 1− proby(W,x) ≤ 1 with Assumption
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3.2. Next, we will prove a lower bound of ∆(t)
3−y (x)−∆

(t)
y (x). Recall that in (53), we have

∆
(t)
3−y (x)−∆(t)

y (x)

=
1

m

m∑
r=1

[
σ
(〈

w
(t+1)
3−y,r,ui,j

〉)
−σ
(〈

w
(t)
3−y,r,ui,j

〉)]
︸ ︷︷ ︸

A

+
1

m

m∑
r=1

[
σ
(〈

w
(t+1)
3−y,r, ξ

〉)
−σ
(〈

w
(t)
3−y,r, ξ

〉)]
︸ ︷︷ ︸

B

− 1

m

m∑
r=1

[
σ
(〈

w(t+1)
y,r ,ui,j

〉)
−σ
(〈

w(t)
y,r,ui,j

〉)]
︸ ︷︷ ︸

C

− 1

m

m∑
r=1

[
σ
(〈

w(t+1)
y,r , ξ

〉)
−σ
(〈

w(t)
y,r, ξ

〉)]
︸ ︷︷ ︸

D

,

(69)
We then find the lower bounds of A,B and upper bounds of C,D to obtain the lower bound of
∆

(t)
3−y (x)−∆

(t)
y (x).

For the term A, with probability at least 1− exp
(
−Ω̃(d)

)
, we have

A=
1

m

m∑
r=1

σ
〈w(t)

3−y,r−
η

mB
·
∑

(xk,yk)∈S(t)
i,j

σ′
(〈
w

(t)
3−y,r,ui,j

〉)
·h(C,xk, yk)·prob3−y

(
W(t),xk

)
·ui,j

+ η · n(t)
3−y,r,ui,j

〉)]
− 1

m

m∑
r=1

[
σ
(〈

w
(t)
3−y,r,ui,j

〉)]
(a)

≥ − η

mB
·
∑

(xk,yk)∈S(t)
i,j

σ′
(〈
w

(t)
3−y,r,ui,j

〉)
· h(C,xk, yk) · prob3−y

(
W(t),xk

)
· ∥ui,j∥22

+
1

m

m∑
r=1

⟨η · n(t)
3−y,r,ui,j⟩,

(b)

≥ − η

mB

∑
(xk,yk)∈S(t)

i,j

(
1− proby

(
W(t),xk

))
· ∥ui,j∥22 + ⟨η · n(t)

3−y,r,ui,j⟩

(c)

≥ − ηγi,j
m

E(xk,yk)∼Di,j

(
1−proby

(
W(t),xk

))
·∥ui,j∥22−

η

m

√
d

B
∥ui,j∥22+

η

m

m∑
r=1

⟨n(t)
3−y,r,ui,j⟩,

(70)
where (a) is due to the Condition 3.1. As ∥ui,j∥2 = Θ(

√
dσp) and σp = Ω(σn), we have that

∥ui,j∥2 = Ω(
√
dσn). (b) is by the fact that σ′(·), h(C,xk, yk) ≤ 1; (c) is by Lemma G.6.
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For the term B, with probability at least 1− exp
(
−Ω̃(d)

)
, we have

B =
1

m

m∑
r=1

σ
〈w(t)

3−y,r−
η

mB
·

∑
(xk,yk)∈S(t)

y

σ′
(〈
w

(t)
3−y,r, ξk

〉)
·h(C,xk, yk) · prob3−y

(
W(t),xk

)
·ξk

+
η

mB
·

∑
(xk,yk)∈S(t)

3−y

σ′
(〈
w

(t)
3−y,r, ξk

〉)
·h(C,x, y) ·

(
1−prob3−y

(
W(t),xk

))
·ξk+ηn

(t)
3−y,r, ξ

〉


− 1

m

m∑
r=1

[
σ
(〈

w
(t)
3−y,r, ξ

〉)]
≥− η

mB

∑
(xk,yk)∈S(t)

y

σ′
(〈
w

(t)
3−y,r, ξk

〉)
·h(C,xk, yk) · prob3−y

(
W(t),xk

)
·|⟨ξk, ξ⟩|+⟨ηn(t)

3−y,r, ξ⟩

≥ − O
(

η

m
√
B
dσ2

p

)
+

1

m

m∑
r=1

η⟨n(t)
3−y,r, ξ⟩,

(71)

For the term C, with probability at least 1− exp
(
−Ω̃(d)

)
, we have

C =
1

m

m∑
r=1

σ

〈w(t)
y,r+

η

mB
·

∑
(xk,yk)∈S(t)

i,j

σ′
(〈

w(t)
y,r,ui,j

〉)
·h(C,xk, yk)·

(
1−proby

(
W(t),xk

))
·ui,j

+η · n(t)
y,r,ui,j

〉)
− 1

m

m∑
r=1

σ
(〈

w(t)
y,r,ui,j

〉)
≤0,

(72)
where the inequality is by Condition 3.1, which implies ∥ui,j∥2 = Ω(

√
dσn).

For the term D, with probability at least 1− exp
(
−Ω̃(d)

)
, we have

D =
1

m

m∑
r=1

σ
〈w(t)

y,r −
η

mB

∑
(xk,yk)∈S(t)

3−y

σ′
(〈

w(t)
y,r, ξk

〉)
h(C,xk, yk)proby

(
W(t),xk

)
ξk

+
η

mB

∑
(xk,yk)∈S(t)

y

σ′
(〈

w(t)
y,r, ξk

〉)
h(C,xk, yk)

(
1− proby

(
W(t),xk

))
ξk + n(t)

y,r, ξ

〉


− 1

m

m∑
r=1

σ
(〈

w(t)
y,r, ξ

〉)
≤O

(
η

m
√
n
dσ2

p

)
+

1

m

m∑
r=1

η⟨n(t)
y,r, ξ⟩,

(73)
where the inequality is by Condition 3.1 that σn = O(σp), h(C,xk, yk) < 1.
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Combining the bounds together, we have

∆
(t)
3−y (x)−∆(t)

y (x) ≥ −ηγi,j
m

E(xk,yk)∼Di,j

(
1− proby

(
W(t),xk

))
· ∥ui,j∥22

+
1

m

m∑
r=1

⟨η · n(t)
3−y,r,ui,j⟩ − O

(
η

m
√
B
dσ2

p

)
+

1

m

m∑
r=1

⟨ηn(t)
3−y,r, ξ⟩ − O

(
η

m
√
n
dσ2

p

)

− 1

m

m∑
r=1

η⟨n(t)
y,t, ξ⟩ − O

(
η

m

√
d

n
∥ui,j∥22

)
,

(74)

with probability at least 1− exp
(
−Ω̃(d)

)
. Substituting (74) into (68), we have

E[L(W(t+1),x, y)]− L(W(t),x, y)

≥E
[
Ω
(
exp

(
∆

(t)
3−y (x)−∆(t)

y (x)
)
− 1
)]

≥Ω

(
E

[
exp

(
−ηγi,j

m
E(xk,yk)∼Di,j

(
1− proby

(
W(t),xk

))
· ∥ui,j∥22 +

1

m

m∑
r=1

⟨ηn(t)
3−y,r, ξ⟩

+
1

m

m∑
r=1

⟨η · n(t)
3−y,r,ui,j⟩ −

1

m

m∑
r=1

η⟨n(t)
y,t, ξ⟩ − O

(
η

m
√
n
dσ2

p +
η

m

√
d

n
∥ui,j∥22

))
− 1

])
.

(75)
Here with a probability at least 1− 1/d, we have

E

[
exp

(
1

m

m∑
r=1

⟨ηn(t)
3−y,r,ui,j⟩+

1

m

m∑
r=1

⟨ηn(t)
3−y,r, ξ⟩ −

1

m

m∑
r=1

η⟨n(t)
y,t, ξ⟩

)]

=exp

(
η2

∥ui,j∥22 σ
2
n + 2 ∥ξ∥22 σ2

n

2m

)

=exp

(
Θ

(
η2

∥ui,j∥22 σ
2
n + σ2

pdσ
2
n

2m

))
,

(76)

where the least equality is by Lemma G.13. With a probability at least 1− Õ (1/d), we have

E[L(W(t+1),x, y)]− L(W(t),x, y)

≥Ω
(
−ηγi,j

m
E(xk,yk)∼Di,j

(
1− proby

(
W(t),xk

)
· ∥ui,j∥22

+Ω

(
η2σ2

n ∥ui,j∥22
2m

)
+Ω

(
η2dσ2

nσ
2
p

2m

)
−O

(
η

m
√
n
dσ2

p

)
−O

(
η

m

√
d

n
∥ui,j∥22

)))

≥−O
(ηγi,j

m
∥ui,j∥22

)
LDi,j

(
W(t)

)
−O

(
η

m

√
d

n
∥ui,j∥22

)

+Ω

(
η2σ2

n ∥ui,j∥22
2m

)
+Ω

(
η2dσ2

nσ
2
p

2m

)
−O

(
η

m
√
n
dσ2

p

)
.

,

(77)
where the second equality is by Lemma G.8 (the (1 − proby(W

(t),x)) is almost surely lower
bounded). Then, with a probability at least 1− Õ (1/d), we have
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Combining all the iterations, with a probability at least 1− Õ (1/d) we have

En(0),··· ,n(T−1) [LDi,j
(W(T ))]
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(79)

With the number of iterations T ≥ Ω
(
−1/ log

(
1− Ω

(
ηγi,j ∥ui,j∥22 /m

)))
and a probability at

least 1− Õ (1/d), we have

En(0),··· ,n(T−1) [LDi,j
(W(T ))]

≥

(
1−O

(
ηγi,j ∥ui,j∥22

m

))T

LDi,j
(W(0)) + Ω

(
m

ηγi,j ∥ui,j∥22

)
[
Ω

(
η2σ2

n ∥ui,j∥22
m

)
+Ω

(
η2dσ2

nσ
2
p

m

)
−O

(
η

m
√
n
dσ2

p +
η

m

√
d

n
∥ui,j∥22

)]

≥

(
1−O

(
ηγi,j ∥ui,j∥22

m

))T

LDi,j
(W(0))

+

[
Ω

(
ησ2

n

γi,j

)
+Ω

(
ηdσ2

nσ
2
p

γi,j ∥ui,j∥22

)
−O

(
dσ2

p√
nγi,j ∥ui,j∥22

+
1

γi,j

√
d

n

)]

≥

(
1−O

(
ηγi,j ∥ui,j∥22

m

))T

LDi,j
(W(0)) + Ω

(
ηdσ2

nσ
2
p

γi,j ∥ui,j∥22

)
−O

(
1

γi,j

√
d

n

)
.

(80)

This completes the proof.

G.4 PROOF OF THEOREM 3.9

Proof. Based on (52), for any (x, y) ∼ Di,j , we have

L
(
W(t+1),x+ ζ(t+1) (x) , y
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,
(81)

where

ζ(t+1) (x) = arg max
∥ζ∥p≤ζ̄

L
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)
, (82)

and
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(83)

Then, we bound E and F .
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For the term E, with probability at least 1− exp (−Ω(d)), we have
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(84)

where (a) is because ReLU(·) is 1-Lipschitz continuous; (b) is due to the Cauchy-Schwarz inequality;
(c) is because of the Hölder’s inequality; (d) is due to Lemma G.2.

Similarly, for the term F , with probability at least 1− exp (−Ω(d)), we have we have
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Combing with the bounds of E,F , with probability at least 1− exp(−Ω̃(d)), we have
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Then, with probability at least 1− exp(−Ω̃(d)), we have
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(87)

Combining with Theorem 3.5 and setting parameters with Condition 3.1, with probability at least
1− exp(−Ω̃(d)), we have
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This completes the proof.
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H PROOF OF PROPOSITION 4.4

Proof. We have
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′
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Using the above inequalities (equalities), we have
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(95)

Based on Theorem 3.5 and ∥u1∥2 = ∥u1∥2 = ∥u′
1∥2 = ∥u′

2∥2, we have

LDft(W
(T )) ≤ exp

(
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This completes the proof.

I EXPERIMENTS COMPUTE RESOURCES

The simulations are conducted on a commodity machine with Intel® Core i7-9700 CPU with a
NVidia® 3090Ti GPU.

J BROADER IMPACTS

Our work studies side effects in DP-SGD trained models. One important side effect is unfairness.
Our work identifies data imbalance as one source of unfairness, indicating that collecting balanced
data is significant for maintaining fairness. Our work also shows the potential of design algorithms to
adjust group weights to improve model fairness.
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