

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 FROM SMALL TO LARGE LANGUAGE MODELS: HOW MUCH CONFIDENCE CAN WE HAVE?

Anonymous authors

Paper under double-blind review

ABSTRACT

In this paper, we provide novel insights into information-based, consistency-based and self-verbalized uncertainty quantification (UQ) for multi-label text classification across a range of recent language models on a new unsaturated benchmark of medical device adverse event reports with interdependent labels. We compare more than twenty encoder- and decoder-only language models across three paradigms: discriminative fine-tuning, generative fine-tuning, and few-shot in-context prompting (instruction-tuned and reasoning variants, local and API-accessible). UQ is performed using token-information measures, consistency under stochastic generation, and self-verbalized confidence, with utility assessed via selective prediction. We provide practical guidance on model selection, when fine-tuning is preferable to prompting, and which UQ signals are most effective for routing and human-in-the-loop triage. Our results reveal trade-offs across model types. Discriminatively fine-tuned decoders achieve the strongest head-tail accuracy while still offering solid uncertainty quantification (UQ). In contrast, generative fine-tuning provides the most reliable UQ overall. Reasoning models improve performance on extreme-tail labels but yield weak UQ. Finally, self-verbalized confidence proves unreliable as an indicator of model certainty.

1 INTRODUCTION

Large language models (LLMs) are increasingly being applied in domains such as education, academia, and industry. While their use is highly efficient and generally accessible to a broad audience, the development of these systems remains concentrated within a relatively small group of organizations. This imbalance has sparked interest in smaller language models, which offer users and developers more flexibility to adapt performance and to explore additional aspects of trustworthiness, such as uncertainty quantification (UQ). Although both small and large language models have already demonstrated remarkable levels of performance, accuracy alone is often not sufficient to ensure broad adoption. Trust-related criteria are equally important, especially in high-stakes contexts like healthcare, where the need for human oversight becomes paramount (Shneiderman, 2020). Nevertheless, despite their relevance, considerations of trustworthiness are still widely underexplored and often overlooked in the existing literature. Many of the aforementioned aspects depend further on the specific use case. Multi-label classification, though highly relevant in practice, remains both understudied and often overlooked in the literature. It is central to a wide range of applications, including document categorization, clinical coding, and email filtering. Language models could play an important role in tackling such tasks, provided they can be applied in a trustworthy manner. However, the rapid pace of model development and availability presents practitioners with challenging choices: which model (e.g., ModernBERT, LLaMA, etc.) is most suitable? If necessary, which learning paradigm should be adopted (e.g., fine-tuning, in-context learning, etc.)? And how reliable are the resulting predictions? Effective UQ can provide a pathway toward more reliable and trustworthy systems (Ojha et al., 2025; Liu et al., 2024). However, as methods differ substantially between discriminative and generative language models, it is essential to understand and select the appropriate approach for each model and learning paradigm. For smaller, discriminative models, entropy-based measures of uncertainty are relatively well studied and better understood (Baur et al., 2025). In contrast, for large generative models, uncertainty quantification becomes more challenging and complex: token-level uncertainty, consistency across multiple generations, and self-verbalized confidence all introduce new difficulties and might be miscalibrated. As a result, determining the

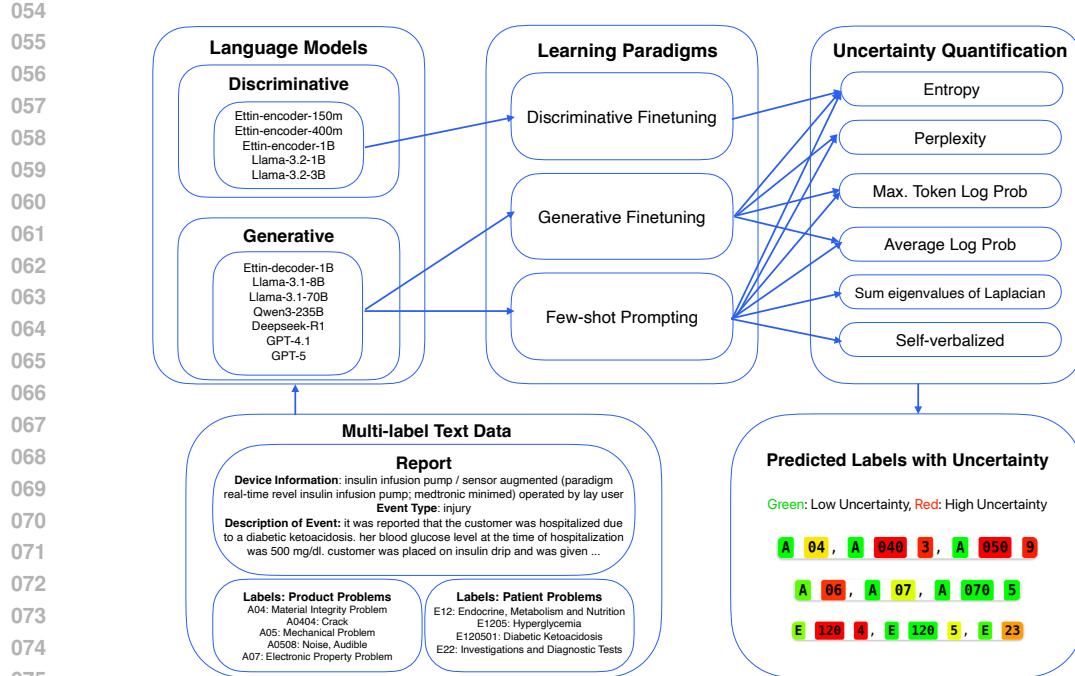


Figure 1: Schematic overview of the experimental setup, with an exemplary text report, hierarchical labels (product/patient problems; hierarchy indicated by the digits; e.g., label ‘A0404’ is a child of ‘A04’), models and learning paradigms, uncertainty quantification methods, and predicted labels with (color coded) uncertainty. We finally assess the predictive performance and quality of the uncertainty quantification (not depicted).

most effective UQ strategy – for purposes such as sample routing and efficient human-in-the-loop triage – remains an open research question.

Our contribution. To avoid reliance on saturated benchmarks and potential pre-training exposure, we constructed a new dataset of medical device event reports, serving as a prototypical use case for exploring multi-label classification not only in terms of predictive performance but also across various aspects of uncertainty quantification (Figure 1), offering insights into trustworthiness and reliability across over 20 popular language models and different UQ methods. In particular, we (1) create a new unsaturated multi-label text classification dataset with a skewed distribution of hierarchical and thus interdependent labels; (2) fine-tune over twenty encoder- and decoder-only models in discriminative and generative settings, and compare them with zero-/few-shot prompting of locally-hosted decoders and API-accessible models with the proposed dataset; (3) systematically study multiple UQ approaches tailored to these settings – including information-, consistency- and self-verbalized based uncertainty – and study their quality (and thus ultimately, their utility for sample routing or triage).

Overall, our results provide practical guidance on language model choice, on when fine-tuning is preferable to in-context learning, and on how to select and calibrate UQ methods, such that they are suited for routing ambiguous samples to stronger but more expensive models or flagging them for secondary human review.

2 RELATED WORK

2.1 MULTI-LABEL TEXT CLASSIFICATION

Early approaches to multi-label text classification relied on classical models such as Naïve Bayes, support vector machines (Wang & Manning, 2012), or recurrent neural networks with mixed results.

With the advent of transformer-based language models (Vaswani et al., 2017), both encoder-only (Huang et al., 2021) and decoder-only (Ma et al., 2025; Galke et al., 2025) architectures have been applied to this task. Encoder-only models are typically equipped with a linear classification head and discriminatively fine-tuned on multi-labeled text, usually with a variant of the binary cross-entropy loss. Decoder-only models are often fine-tuned generatively—by producing label tokens via a softmax decoder head — and can also be adapted for discriminative training with a classification head; however, controlled comparisons between generative and discriminative fine-tuning for decoder models remain scarce. Head-to-head comparisons between encoder- and decoder-only models under matched conditions are also rare, largely because publicly available suites have historically lacked paired models with comparable parameter counts and training data. Weller et al. (2025) address this by releasing a suite of matched encoder-only and decoder-only models ('Ettin') trained on the ModernBERT architecture (Warner et al., 2024b) across model sizes (from 17m parameters to 1b parameters), but they do not evaluate on multi-label classification, leaving this comparison open.

Decoder-only LLMs support zero-shot prompting – performing inference without using any labeled data – and few-shot prompting via in-context learning, i.e., conditioning on a small set of (random or carefully selected) labeled exemplars without updating model weights. This has been compared with fine-tuning on a variety of tasks where medical expertise is required, with differing results. Nori et al. (2023) and Maharjan et al. (2024) found that in-context learning outperforms fine-tuning on question-answering. In contrast, Labrak et al. (2024) found that fine-tuning surpassed few-shot prompting on question-answering. Across broader benchmarks, the relative advantage of fine-tuning versus prompting varies by task, data regime, and model (Chen et al., 2025; Wu et al., 2025). For multi-label classification specifically, performance is highly sensitive to prompt design, label semantics, output constraints, and thresholding strategies, motivating controlled comparisons.

Public benchmarks for multi-label text classification span diverse domains, including newswire ('Reuters-21578', Lewis, 1997), scientific literature (e.g., 'Arxiv Academic Paper Dataset', Yang et al., 2018; 'BioCreative LitCovid', Chen et al., 2022; 'ACL Anthology', Schopf et al., 2023; 'MFHAD2', Fallah et al., 2022), finance-related user posts ('Money.StackExchange', Maia et al., 2021), patents ('Patent_CIRCA_45k', Tang et al., 2020)), clinical notes for ICD coding ('MIMIC-III', Johnson et al., 2016; Mullenbach et al., 2018), legislative documents ('EuroVoc', Steinberger et al., 2012, Boella et al., 2013; 'EURLEX57K', Chalkidis et al., 2019; 'KEVLAR', Bocchi et al., 2024), and more. Most of these are scraped from online repositories and rely on distant or weak supervision (e.g., tags/metadata as labels), often with limited documentation, which introduces label noise and hampers reproducibility. Multiple sources, preprocessing choices, copyright limitations, and dataset versions further complicate fair comparisons. Heavy reuse has also lead to benchmark saturation via overfitting and implicit adaptation. In addition, overlap between benchmark content and LLM pre-training corpora raises contamination concerns that can inflate zero-/few-shot performance. These challenges motivate periodically introducing better-documented, decontaminated benchmarks with standardized splits to assess generalization.

2.2 UNCERTAINTY QUANTIFICATION

For quantifying uncertainty in machine learning models, numerous approaches have been proposed. Confidence calibration for imbalanced data has been reviewed by Dong et al. (2025). Token- or information-based uncertainty metrics, which in various forms rely on the log-probabilities of an LLM's outputs, have been surveyed and formalized by Shorinwa et al. (2025); Fomicheva et al. (2020). Among those of interest are: entropy of the top- n log-probabilities, perplexity, maximum token log-probability, and the average token log-probability. Consistency-based metrics, which estimate uncertainty by measuring the variability of a model's outputs under input perturbations, prompt variations, or model stochasticity, have been widely used for LLMs as a way to capture epistemic uncertainty Xiao et al. (2025). Lin et al. (2023) suggested an effective approach for deriving a consistency-based uncertainty score through the sum of eigenvalues of a Laplacian graph. Combining information-based and consistency-based metrics has been proposed by Vashurin et al. (2025) as an effective strategy to improve uncertainty estimation, motivating our approach of multiplicatively integrating token-level uncertainty with consistency measures. Finally, self-verbalized uncertainty, in which a model outputs a confidence score along with its prediction, has been explored by Tian et al. (2023) and Harsha Tanneru et al. (2024), offering a complementary approach to directly capture model-reported uncertainty, especially in cases where log-probabilities are not available.

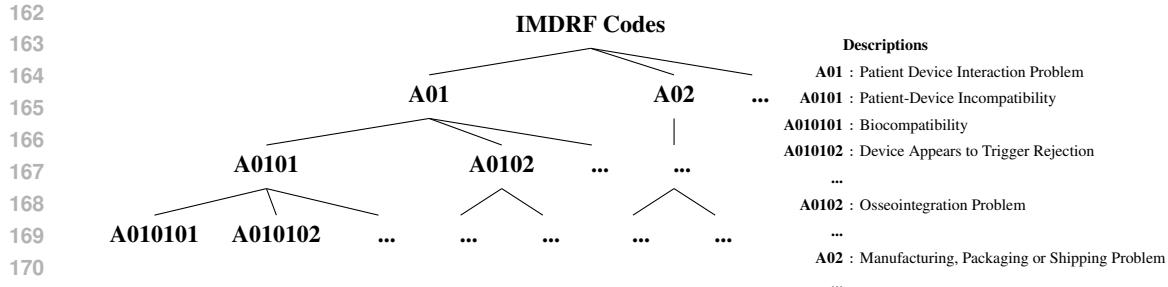


Figure 2: IMDRF codes refer to product (device) and patient problems (defined in the different annexes A, B, C, etc. of the IMDRF terminology) and comprise the hierarchical labels of the dataset. IMDRF code ‘A010101’ is a child of ‘A0101’ and grandchild of ‘A01’ in the code hierarchy (a graph not a tree).

3 DATA – FDA MEDICAL DEVICE ADVERSE EVENT REPORTS

The US Food and Drug Administration (FDA) publishes quarterly reports of medical device adverse events at <https://open.fda.gov> alongside expertly annotated codes capturing the associated problems. We used this to curate a large-scale text classification dataset comprising approximately 5.5 million medical device adverse event reports, each annotated with hierarchical multi-labels, cf. Figure 2. Each report contains a narrative description of the event, metadata, and human-assigned labels that detail relevant product and patient problems.

3.1 DATASET CREATION

We collect quarterly published (zipped JSON) files spanning 2015 through mid-2025, excluding reports before 2015 due to the absence of necessary product problem labels. Data from 2015–2023 are used for training, while test data comprises reports from July 2024 to June 2025, cf. Figure A.1 for a small overview of the topics addressed in the reports. Reports from the first half of 2024 form the validation split. For each report, we concatenate the narrative ‘description of event or problem’, harmonize all letter cases, and extract relevant metadata (including event type – for example, malfunction, injury or death – and device information such as generic name, brand name, manufacturer, and operator). Each sample is assigned a unique identifier and a timestamp denoting the report date.

3.2 DATASET LABELS

Labels are mapped from FDA product and patient problem terms to the International Medical Device Regulators terminology (IMDRF, 2025), which provides hierarchical codes for each product and patient problem (see Figure 2). Samples missing IMDRF codes for one or more terms are excluded. IMDRF adoption is nearly complete by 2021, but between 2015 and 2020 only about 16–20% of the samples can be assigned exclusively to IMDRF codes and are retained. To leverage the IMDRF hierarchy, we upward-propagate each code to include all ancestor codes, as determined from official IMDRF annexes. This approach recognizes that FDA annotators typically use the most specific (leaf) codes and ensures that models are not penalized for predicting valid parent codes.

Although the IMDRF label hierarchy is often tree-structured (e.g., ‘A010101’ is a child of ‘A0101’ and grandchild of ‘A01’), it is technically a graph due to occasional cross-links (e.g., ‘E172001’ is a descendant in multiple branches). Label mapping and upward propagation are performed separately for product and patient problems, yielding two sets of hierarchical labels per report. We flatten the resulting code sets and treat the union of upward-propagated IMDRF codes as target labels. Generative models can produce these sets directly, while discriminative models use a binary multi-label vector over the IMDRF codes present in the train split.

3.3 DATASET PRE-PROCESSING

IMDRF revises its label taxonomy annually, adding new terms and retiring others. To avoid introducing unseen labels into the test set, we freeze the label taxonomy as of December 2023 and discard

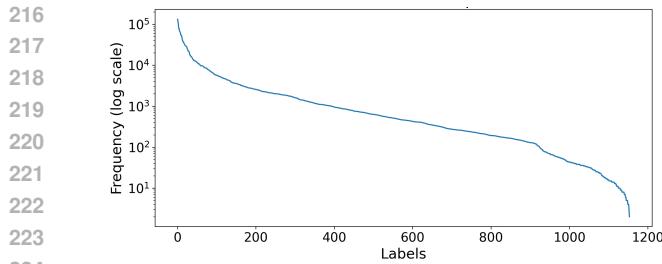


Figure 3: Distribution of label frequencies (in the combined train, validation, and truncated test set) on a logarithmic scale, showing that some labels occur very often in the dataset, while others are extremely rare.

226 labels introduced thereafter. We also remove extremely rare labels (fewer than 5 instances). These
227 steps yield a final label set of 1154 labels. To reduce redundancy, we deduplicate reports based on
228 the event description, retaining only the first occurrence, and thus reducing the dataset to 5.5 million
229 IMDRF-compliant samples (46.4% of the original 11.9 million).

230 We further downsample using HDBSCAN (McInnes et al., 2017) on event descriptions, selecting
231 cluster representatives and retaining a high proportion of rarer labels; all events labeled death are
232 included, yielding a dataset of 488,273 samples (train: 298,825; validation: 71,271; test: 118,177).
233 To limit inference costs, we further downsample the test set to a representative subset of 10288
234 samples. This ‘truncated test set’ set contains all of the 1154 labels at least 5 times. After tokenising
235 with the ‘c1100k_base’ tokenizer (OpenAI, 2022), samples in the truncated test set average around
236 370 tokens with an average of 8.79 labels. On all splits, labels follow a long tail distribution; certain
237 labels occur frequently, while others are rare (see Figure 3). In summary, our pre-processing pipeline
238 transforms raw FDA device event data into a IMDRF terminology compliant, hierarchically labeled,
239 deduplicated dataset tailored for a challenging multi-label classification task.

241 4 EXPERIMENTAL SETUP

243 4.1 FINE-TUNING AND IN-CONTEXT LEARNING

245 **Discriminative training.** We fine-tune the recent Ettin suite of models (150M, 400M, 1B; Weller
246 et al., 2025), which are based on the ModernBERT (Warner et al., 2024a) architecture. We also fine-
247 tune Llama 3.2-1B, 3.2-3B, and 3.1-8B (Grattafiori et al., 2024) with a classification head in the final
248 layer. All models are trained with a context length of 512 for 20 epochs each and hyperparameters
249 (mainly learning rate and max. gradient norm.), are tuned on the validation set

250 **Generative training.** We fine-tune Llama 3.2-1B, 3.2-3B, 3.1-8B and 3.1-70B and Ettin decoder
251 variants (400M, 1B), where the model is trained to generate class labels as tokens. Here, all models
252 are trained for 4 epochs. An improvement for a larger number of epochs was not observed. We
253 compare full fine-tuning with LoRA (Hu et al., 2022) for selected models.

254 Detailed hyperparameters for training are listed in the appendix section A.3.

255 **Few-shot prompting and in-context learning.** We host Llama 3.2-3B, 3.1-8B, and 3.1-70B,
256 DeepSeek-R1 (37B active, 671B total; DeepSeek-AI et al., 2025), Qwen3 (4B, 30B, 235B; Yang
257 et al., 2025), Kimi K2 (32B activated; 1T total; Kimi-Team et al., 2025), gpt-oss-120b (5.1B active,
258 117B total; OpenAI et al., 2025), GLM-4.5-Air (12B active, 106B total; GLM-4.5-Team
259 et al., 2025), and Llama-3.3-Nemotron-49B-v1.5 (Bercovich et al., 2025) locally. GPT-4.1 (Ope-
260 nAI, 2025b) and GPT-5 (OpenAI, 2025a) are accessed via API. Among API-based models, only
261 GPT-4.1 provides – unlike GPT-5 – log probabilities, which are required for our UQ investigations.
262 GPT-5 is run with medium reasoning effort and does not allow modifying temperature.

263 The prompt comprises the test sample, the task instructions including a list of all 1154 possible
264 labels, and the ten nearest labeled training examples in embedding space to the inference sam-
265 ple. For embedding the texts, we use a pre-trained text embedding model (‘bioclinical-modernbert-
266 base-embeddings’) (NeuML, 2025). Each retrieved example was truncated to 10000 characters
267 (around 2300 tokens). Unless otherwise stated, all outputs are generated in a greedy decoding setup
268 ($temperature = 0$, $top_p = 1$, $top_k = -1$). Prompts are available in the appendix A.5.

269 The knowledge cutoff dates for all the models are discussed in Section A.2 in the appendix.

270 4.2 METHODS FOR UNCERTAINTY QUANTIFICATION
271

272 **Uncertainty quantification for generative models.** To quantify uncertainty U , we derive two
273 complementary measures: an information-based uncertainty score U_{info} and a consistency-based
274 uncertainty score U_{cons} . Following Vashurin et al. (2025), we combine these scores by multiplication
275 to obtain the total uncertainty score: $U_{\text{total}} = U_{\text{info}} \cdot U_{\text{cons}}$. Here, U_{info} is computed using token-based
276 uncertainty metrics such as entropy, average log-probability, perplexity, maximum log-probability,
277 and response improbability (described below), while U_{cons} is computed using the Laplacian of a
278 graph derived from multiple stochastic forward passes (Lin et al., 2024). For large language models
279 (LLMs), we evaluate these token- and information-based uncertainty scores that serve as U_{info} :

- 280 • Entropy of Token Distribution: $H_{ij} = -\sum_{w \in D} \pi_{ij}(w) \log \pi_{ij}(w)$
- 281 • Average Token Log-Probability: $\text{Avg}(\pi) = -\frac{1}{L_i} \sum_j \log(\pi_{ij})$
- 282 • Perplexity: $\text{Perplexity}(\pi) = \exp\left(-\frac{1}{L_i} \sum_j \log(\pi_{ij})\right)$
- 283 • Maximum Token Log-Probability: $\text{Max}(\pi) = \max_j (-\log(\pi_{ij}))$
- 284 • Response Improbability: $\text{Improbability} = 1 - \prod_j \pi_{ij}$

285 The consistency-based score is computed by performing $n = 5$ stochastic forward passes with tem-
286 perature $t = 1$, calculating the pairwise Jaccard similarity W between predictions, and computing
287 the normalized Laplacian L as $L = I - D^{-1/2}WD^{-1/2}$, where I is the identity matrix and D is the
288 degree matrix ($D = \text{diag}(\sum_j W_{ij})$).

289 The consistency score is then $U_{\text{cons}} = \sum_k \max(0, 1 - \lambda_k)$, with λ_k denoting the eigenvalues of L .

290 We also evaluate self-verbalized uncertainty, for which we prompt the model to provide a confidence
291 score $C_i \in [0, 1]$ for each prediction. We then define the self-verbalized uncertainty score as $U_{\text{self}} =$
292 $1 - C_i$, which can also serve as an independent total uncertainty score for the prediction. This
293 formulation ensures that high confidence corresponds to low uncertainty, and vice versa.

294 **Uncertainty quantification for discriminative models.** For discriminative models in a multi-label
295 setting, uncertainty is derived from the model’s output probability vector. Since each label is binary
296 and independent of the others, we first compute the binary entropy for each predicted label:

$$302 \quad \mathbb{H}(\pi_c) = -[\pi_c \log(\pi_c) + (1 - \pi_c) \log(1 - \pi_c)],$$

303 where π_c is the predicted probability for the positive class (label 1) of class c . The information-based
304 uncertainty for a sample is then the vector of these entropies across all labels:

$$305 \quad U_{\text{info}} = (\mathbb{H}(\pi_1), \mathbb{H}(\pi_2), \dots, \mathbb{H}(\pi_C)).$$

307 4.3 EVALUATION OF UNCERTAINTY SCORES
308

309 To evaluate the quality of uncertainty scores (either U_{total} or U_{info}), we perform selective prediction.
310 In this setup, a model’s outputs are rejected based on their uncertainty scores. We then assess if
311 choosing to reject an output improves the overall prediction metric.

312 **Prediction rejection rate (PRR).** PRR quantifies how well an uncertainty score U identifies unre-
313 liable predictions. It is computed as:

$$315 \quad \text{PRR} = \frac{\text{AUC}_{\text{uncertainty}} - \text{AUC}_{\text{random}}}{\text{AUC}_{\text{oracle}} - \text{AUC}_{\text{random}}},$$

316 where $\text{AUC}_{\text{uncertainty}}$ is the area under the curve (AUC) obtained by sorting samples by U (highest
317 uncertainty first) and iteratively rejecting the top $N\%$ of samples, computing the average Jaccard
318 score after each rejection threshold. $\text{AUC}_{\text{oracle}}$ is the AUC obtained by sorting samples by the Jaccard
319 score (lowest score first) and rejecting iteratively – this gives us a clear upper-bound to compare
320 against for a given rejection threshold. $\text{AUC}_{\text{random}}$ is the AUC obtained by randomly rejecting $N\%$
321 of samples at each step. PRR evaluates the effectiveness of U in prioritizing uncertain predictions.
322 A value close to 1 indicates that the uncertainty score performs nearly as well as the oracle, while a
323 PRR near 0 indicates performance no better than random rejection.

324 **Spearman correlation (ρ) of U with correctness.** To further assess the quality of the total uncertainty score U , we correlate U with per-sample correctness. We evaluate binary correctness (0/1) for each example–label pair, compute Spearman’s ρ between correctness and uncertainty separately for each label, and then report the average ρ across labels. A large negative correlation indicates that higher uncertainty coincides with lower prediction accuracy, confirming that U effectively flags unreliable predictions.

331 5 RESULTS

333 We evaluate predictive performance (macro F1, Jaccard J) and uncertainty quantification (PRR, Spearman ρ) across three paradigms: (i) discriminative fine-tuning of encoders/decoders, (ii) generative fine-tuning of decoders, and (iii) 10-shot kNN-based in-context prompting with instruction-tuned or thinking/reasoning models. Labels are grouped by training-set frequency: head (>1%), medium (0.1–1%), tail (0.01–0.1%), and extreme tail (<0.01%). Table 1 summarizes all results.

339 5.1 MULTI-LABEL PREDICTIVE PERFORMANCE

341 **Fine-tuning.** Llama-3.1-8B-Base yields the highest macro F1 overall (0.54), and leads on head (0.74), medium (0.64), and tail (0.53) classes. Smaller Llamas (3.2-3B/1B) and encoders (Ettin-1B/400m/150m) trail slightly, consistent with model capacity, but Ettin-1B-Encoder remains competitive given its size. Llama-3.1-70B-Base, despite being significantly larger, achieves similar results to Llama-3.1-8B-Base in a generative setting. Notably, fine-tuning similarly-sized decoders in a discriminative setting outperforms fine-tuning in a generative setting. We include ablations on LoRA vs. full fine-tuning (Table A.1) and Base vs. Instruct training (Table A.2) in the appendix.

348 **Generative prompting.** For prompting setups with 10-shot in-context learning, Qwen3-235B-A22B-Instruct achieves the strongest macro F1 (overall 0.44, extreme tail 0.24), with only GPT-4.1 matching tail performance. Reasoning models excel on the extreme tail (ET): GPT-5 attains the highest ET macro F1 (0.34) and ties the best overall macro F1 (0.54) with Llama-3.1-8B-Base (discriminative). Among open-weight reasoning models, Qwen3-235B-A22B-Thinking is strongest (overall 0.49, tail 0.48, ET 0.33). Gain on rare labels for all prompt-based models comes with a trade-off: head-class performance is consistently below that of the best fine-tuned decoders.

354 **Overall.** Discriminative fine-tuning of decoders (Llama-3.1-8B-Base) remains best for head–tail accuracy – this approach consistently outperforms generative training. Prompt-based reasoning models (Qwen3-235B, DeepSeek-R1, GPT-5) dominate the extreme tail and can match overall F1 but lag on head classes. Within prompting, reasoning variants consistently outperform their instruct counterparts (see Qwen3 results).

360 5.2 UNCERTAINTY QUANTIFICATION

362 On PRR, across paradigms, generative fine-tuning yields the strongest UQ, followed by discriminative fine-tuning; prompting instruction models ranks third, and reasoning models are a distant last (Table 3). Figure 4 illustrates PRR curves and how PRR summarizes gating quality (shown for Llama-3.1-70B-Base). Overall, Llama-3.2-3B-Base (generative fine-tuning) achieves the highest PRR (0.70) and ρ (-0.46), while thinking models exhibit low PRR (≤ 0.36) and near-zero ρ .

367 For non-reasoning setups that also deliver strong predictive performance, UQ quality is generally good: Qwen3-235B-A22B-Instruct attains PRR 0.54 and Llama-3.1-70B-Instruct reaches PRR 0.61. Importantly, uncertainty quality does not scale monotonically with model size (e.g., within discriminative fine-tuning, Llama-3.2-1B-Base has the strongest PRR, 0.52, while the 8B variant is lower at 0.47), and the best overall PRR is achieved by a mid-sized generatively fine-tuned model rather than the largest models.

373 Methodologically, Table 2 shows that the choice of UQ method for a given model has only minor impact on PRR. Further, computing U_{total} yields marginal gains (≤ 0.03 PRR) relative to U_{info} alone, despite incurring roughly 6 \times compute due to multi-sample generation. Self-verbalized uncertainty performs near chance (PRR = 0), indicating that free-text confidence is not a reliable UQ signal for this task. Finally, closed models that do not expose token-level log-probabilities (e.g., GPT-5) impede UQ and are therefore unsuitable for PRR-based calibration.

378 **Table 1:** Predictive performance and uncertainty quantification capabilities of different models and learning
 379 paradigms on the truncated test set ($n = 10288$). Macro F1 serves as main predictive metric. Head, medium,
 380 tail and extreme tail (ET) classes were assessed separately. For discriminative training, thresholds were chosen
 381 for each label on the validation set. J refers to the Jaccard score. PRR is the main metric for assessing uncer-
 382 tainty. For generative models, we report PRR for the best uncertainty quantification method (see U_{info} in 4.3).
 383 ρ refers to the Spearman correlation between U and correctness. Up-/downward arrows indicate whether larger
 384 (\uparrow) or smaller (\downarrow) values are better. Bold font marks the best model per paradigm. Scores of the best model
 385 overall are underlined.

Paradigm/model	Overall	Head	Medium	Tail	ET	J \uparrow	PRR \uparrow	$\rho \downarrow$
<i>Number of classes \rightarrow</i>	1154	144	481	348	181			
Discriminative fine-tuning								
Ettin-150m-Encoder	0.46	0.68	0.56	0.44	0.07	0.55	0.38	-0.30
Ettin-400m-Encoder	0.51	0.72	0.61	0.50	0.12	0.58	0.44	-0.36
Ettin-1B-Encoder	0.53	0.73	0.63	0.51	0.13	0.61	0.46	-0.40
Llama-3.2-1B-Base	0.51	0.71	0.60	0.48	0.14	0.58	0.52	-0.42
Llama-3.2-3B-Base	0.51	0.72	0.62	0.49	0.11	0.59	0.46	-0.41
Llama-3.1-8B-Base	0.54	0.74	0.64	0.53	0.12	0.62	0.47	-0.40
Generative fine-tuning								
Ettin-400m-Decoder	0.44	0.66	0.54	0.42	0.07	0.54	0.56	-0.44
Ettin-1B-Decoder	0.47	0.67	0.56	0.46	0.10	0.57	0.55	-0.43
Llama-3.2-1B-Base	0.43	0.63	0.52	0.39	0.10	0.45	0.53	-0.44
Llama-3.2-3B-Base	0.48	0.67	0.57	0.46	0.12	0.58	0.70	-0.46
Llama-3.1-8B-Base	0.50	0.70	0.59	0.48	0.12	0.59	0.43	-0.30
Llama-3.1-70B-Base	0.53	0.73	0.62	0.51	0.16	0.61	0.39	-0.27
Generative prompting – instruct								
Llama-3.1-8B-Instruct	0.08	0.28	0.09	0.03	0.006	0.22	0.22	0.26
Llama-3.1-70B-Instruct	0.30	0.50	0.35	0.25	0.08	0.43	0.61	-0.15
Qwen3-4B-Instruct	0.29	0.49	0.35	0.25	0.09	0.41	0.50	-0.27
Qwen3-30B-A3B-Instruct	0.22	0.48	0.27	0.14	0.05	0.43	0.54	0.05
Qwen3-235B-A22B-Instruct	0.44	0.60	0.48	0.42	0.24	0.49	0.54	-0.34
Kimi-K2-Instruct	0.09	0.18	0.11	0.06	0.008	0.07	0.28	0.08
GPT-4.1	0.43	0.59	0.47	0.42	0.22	0.57	0.43	-0.31
Generative prompting – thinking								
Llama-3.3-Nemotron-49B-v1.5	0.42	0.57	0.46	0.38	0.19	0.46	0.23	-0.03
Qwen3-4B-Thinking	0.38	0.53	0.42	0.36	0.2	0.43	0.18	-0.02
Qwen3-30B-A3B-Thinking	0.45	0.58	0.49	0.44	0.28	0.47	0.09	-0.07
Qwen3-235B-A22B-Thinking	0.49	0.62	0.52	0.48	0.33	0.48	0.36	-0.09
GLM-4.5-Air	0.42	0.56	0.46	0.39	0.24	0.44	0.24	-0.09
DeepSeek-R1-0528	0.48	0.62	0.51	0.47	0.30	0.50	0.26	-0.09
GPT-OSS-120B	0.40	0.57	0.45	0.38	0.15	0.45	0.06	-0.0006
GPT-5	0.54	0.68	0.58	0.53	0.34	0.57	NA	NA

6 DISCUSSION

Discussion and conclusion. In this work, we evaluate a range of language models on a newly created unsaturated multi-label text dataset, including different-sized variations of Ettin, LLaMA, Qwen, as well as GLM, Kimi, DeepSeek, and GPT models. Our results show that smaller, task-specific encoder models can achieve state-of-the-art predictive performance while maintaining competitive UQ scores, and additionally offer practitioners flexibility and full control of all model aspects. Large generative fine-tuned models provide slight advantages for underrepresented classes and tend to produce better-calibrated uncertainties. Thinking models in contrast consistently fail to yield a reliable UQ across different model types. Self-verbalized uncertainty in LLMs is highly mis-calibrated and should not be used. Prompt-based non-thinking instruct models can produce good but also poor uncertainty scores depending on model type and size, highlighting that fine-tuning is

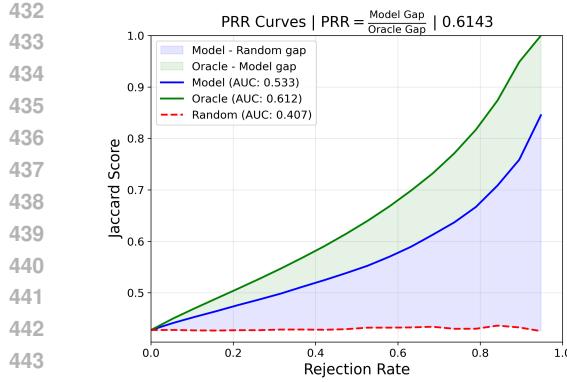


Figure 4: Prediction Rejection Rate (PRR) curves for the Jaccard score for Llama 70B. Three curves represent the model performance under different rejection strategies: oracle (green curve), uncertainty (blue curve), and random (red dashes). Shaded areas indicate the performance gaps between the rejection strategies (blue: ‘uncertainty gap’ between uncertainty and random; green: ‘oracle gap’ between oracle and uncertainty). The PRR norm is defined as the ratio of the random gap to the uncertainty gap and indicates the suitability of the uncertainty quantification method (and the model).

Table 2: Comparison of the different UQ methods: information-based (U_{info}), consistency-based (U_{cons}), and information-and-consistency-based ($U_{\text{total}} = U_{\text{info}} * U_{\text{cons}}$) for two of the best performing (non-thinking) generative models. To compute U_{cons} , the models were made to generate 5 outputs at temperature = 1.

Model	Method	PRR(U_{info})	PRR(U_{cons})	PRR(U_{total})
Llama-3.1-70B-Instruct	Entropy	0.60	-	0.61
	Perplexity	0.58	-	0.60
	Max. Token Log Prob.	0.57	-	0.60
	Avg. Logprob	0.59	-	0.60
	Improbability	0.58	-	0.61
	Σ EigV. Laplacian	-	0.57	-
	Self-Verbalized	0.00	-	0.36
Qwen3-235B-A22B-Instruct	Entropy	0.54	-	0.57
	Perplexity	0.53	-	0.56
	Max. Token Log Prob.	0.51	-	0.53
	Avg. Logprob	0.53	-	0.54
	Improbability	0.53	-	0.54
	Σ EigV. Laplacian	-	0.51	-
	Self-Verbalized	0.01	-	0.28

Table 3: Average PRR scores for different U_{info} methods for each generative paradigm from Table 1.

	Entropy	Perplexity	Max. Token Log Prob.	Avg. Logprob.	Improbability
Generative fine-tuning	0.58	0.57	0.56	0.57	0.56
Generative prompting – instruct	0.47	0.44	0.44	0.44	0.45
Generative prompting – thinking	0.20	0.18	0.18	0.18	0.18

generally crucial for obtaining trustworthy uncertainty estimates, for both small discriminative and large generative models. Future work aimed at improving UQ for smaller encoder models could make them the superior choice, combining top-tier predictive performance with trustworthy uncertainty estimates, practical flexibility, and significantly lower computational costs compared to large language models.

Limitations and outlook. Our thorough analysis is carried out on a single newly created dataset. In the future, we want to extend the research conducted in this work to other datasets to further solidify the results. Moreover, in future work, other dimensions of trustworthiness, such as explainability, shall be integrated and studied, to increase the benefits for end-users. Finally, based on our observations, training and developing new reasoning models is a promising direction of research. In fact, we will investigate improving UQ for these models while maintaining high predictive performance across both frequent and infrequent classes.

486 REFERENCES
487

488 Simon Baur, Wojciech Samek, and Jackie Ma. Benchmarking uncertainty and its disentanglement
489 in multi-label chest x-ray classification. *Proceedings of the MICCAI Workshop on Uncertainty*
490 *for Safe Utilization of Machine Learning in Medical Imaging*, 2025.

491 Akhiad Bercovich, Itay Levy, Izik Golan, Mohammad Dabbah, Ran El-Yaniv, Omri Puny, Ido Galil,
492 Zach Moshe, Tomer Ronen, Najeeb Nabwani, Ido Shahaf, Oren Tropp, Ehud Karpas, Ran Zil-
493 berstein, Jiaqi Zeng, Soumye Singh, Alexander Bukharin, Yian Zhang, Tugrul Konuk, Gerald
494 Shen, Ameya Sunil Mahabaleshwarkar, Bilal Kartal, Yoshi Suhara, Olivier Delalleau, Zijia Chen,
495 Zhilin Wang, David Mosallanezhad, Adi Renduchintala, Haifeng Qian, Dima Rekesh, Fei Jia,
496 Somshubra Majumdar, Vahid Noroozi, Wasi Uddin Ahmad, Sean Narenthiran, Aleksander Ficek,
497 Mehrzad Samadi, Jocelyn Huang, Siddhartha Jain, Igor Gitman, Ivan Moshkov, Wei Du, Shub-
498 ham Toshniwal, George Armstrong, Branislav Kisacanin, Matvei Novikov, Daria Gitman, Evelina
499 Bakhturina, Prasoon Varshney, Makesh Narsimhan, Jane Polak Scowcroft, John Kamalu, Dan Su,
500 Kezhi Kong, Markus Kliegl, Rabeeh Karimi Mahabadi, Ying Lin, Sanjeev Satheesh, Jupinder Par-
501 mar, Pritam Gundecha, Brandon Norick, Joseph Jennings, Shrimai Prabhumoye, Syeda Nahida
502 Akter, Mostofa Patwary, Abhinav Khattar, Deepak Narayanan, Roger Waleffe, Jimmy Zhang,
503 Bor-Yiing Su, Guyue Huang, Terry Kong, Parth Chadha, Sahil Jain, Christine Harvey, Elad
504 Segal, Jining Huang, Sergey Kashirsky, Robert McQueen, Izzy Putterman, George Lam, Arun
505 Venkatesan, Sherry Wu, Vinh Nguyen, Manoj Kilaru, Andrew Wang, Anna Warno, Abhilash
506 Somasamudramath, Sandip Bhaskar, Maka Dong, Nave Assaf, Shahar Mor, Omer Ullman Ar-
507 gov, Scot Junkin, Oleksandr Romanenko, Pedro Larroy, Monika Katariya, Marco Rovinelli, Viji
508 Balas, Nicholas Edelman, Anahita Bhiwandiwalla, Muthu Subramaniam, Smita Ithape, Karthik
509 Ramamoorthy, Yuting Wu, Suguna Varshini Velury, Omri Almog, Joyjit Daw, Denys Fridman,
510 Erick Galinkin, Michael Evans, Shaona Ghosh, Katherine Luna, Leon Derczynski, Nikki Pope,
511 Eileen Long, Seth Schneider, Guillermo Siman, Tomasz Grzegorzek, Pablo Ribalta, Monika
512 Katariya, Chris Alexiuk, Joey Conway, Trisha Saar, Ann Guan, Krzysztof Pawelec, Shyamala
513 Prayaga, Oleksii Kuchaiev, Boris Ginsburg, Oluwatobi Olabiyi, Kari Briski, Jonathan Cohen,
514 Bryan Catanzaro, Jonah Alben, Yonatan Geifman, and Eric Chung. Llama-nemotron: Efficient
515 reasoning models, 2025. URL <https://arxiv.org/abs/2505.00949>.

516 Lorenzo Bocchi, Camilla Casula, and Alessio Palmero Aprosio. KEVLAR: The complete resource
517 for EuroVoc classification of legal documents. In Felice Dell’Orletta, Alessandro Lenci, Simon-
518 etta Montemagni, and Rachele Sprugnoli (eds.), *Proceedings of the 10th Italian Conference on*
519 *Computational Linguistics (CLiC-it 2024)*, pp. 66–73, Pisa, Italy, December 2024. CEUR Work-
520 shop Proceedings. ISBN 979-12-210-7060-6. URL <https://aclanthology.org/2024.clicit-1.9/>.

521 Guido Boella, Luigi Di Caro, Daniele Rispoli, and Livio Robaldo. A system for classifying multi-
522 label text into EuroVoc. In *Proceedings of the Fourteenth International Conference on Artificial*
523 *Intelligence and Law*, ICAIL ’13, pp. 239–240, New York, NY, USA, 2013. Association for
524 Computing Machinery. ISBN 9781450320801. doi: 10.1145/2514601.2514635. URL <https://doi.org/10.1145/2514601.2514635>.

525 Ilias Chalkidis, Emmanouil Fergadiotis, Prodromos Malakasiotis, and Ion Androutsopoulos. Large-
526 scale multi-label text classification on EU legislation. In Anna Korhonen, David Traum, and Lluís
527 Márquez (eds.), *Proceedings of the 57th Annual Meeting of the Association for Computational*
528 *Linguistics*, pp. 6314–6322, Florence, Italy, July 2019. Association for Computational Linguis-
529 tics. doi: 10.18653/v1/P19-1636. URL <https://doi.org/10.18653/v1/P19-1636>.

530 Qingyu Chen, Alexis Allot, Robert Leaman, Rezarta Islamaj, Jingcheng Du, Li Fang, Kai Wang,
531 Shuo Xu, Yuefu Zhang, Parsa Bagherzadeh, Sabine Bergler, Aakash Bhatnagar, Nidhir Bhavsar,
532 Yung-Chun Chang, Sheng-Jie Lin, Wentai Tang, Hongtong Zhang, Ilija Tavchioski, Senja Pollak,
533 Shubo Tian, Jinfeng Zhang, Yulia Otmakhova, Antonio Jimeno Yepes, Hang Dong, Honghan
534 Wu, Richard Dufour, Yanis Labrak, Niladri Chatterjee, Kushagri Tandon, Fréjus A A Laleye,
535 Loïc Rakotoson, Emmanuele Chersoni, Jinghang Gu, Annemarie Friedrich, Subhash Chandra
536 Pujari, Mariia Chizhikova, Naveen Sivadasan, Saipradeep VG, and Zhiyong Lu. Multi-label
537 classification for biomedical literature: an overview of the BioCreative VII LitCovid track for
538 COVID-19 literature topic annotations. *Database*, 2022:baac069, 08 2022. ISSN 1758-0463. doi:
539 10.1093/database/baac069. URL <https://doi.org/10.1093/database/baac069>.

540 Qingyu Chen, Yan Hu, Xueqing Peng, Qianqian Xie, Qiao Jin, Aidan Gilson, Maxwell B Singer,
 541 Xuguang Ai, Po-Ting Lai, Zhizheng Wang, et al. Benchmarking large language models for
 542 biomedical natural language processing applications and recommendations. *Nature communications*,
 543 16(1):3280, 2025. doi: 10.1038/s41467-025-56989-2. URL <https://doi.org/10.1038/s41467-025-56989-2>.

545 DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
 546 Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu,
 547 Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao
 548 Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,
 549 Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao,
 550 Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding,
 551 Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang
 552 Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai
 553 Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang,
 554 Liang Zhao, Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang,
 555 Minghui Tang, Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang,
 556 Qiancheng Wang, Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang,
 557 R. J. Chen, R. L. Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhua Chen, Shengfeng
 558 Ye, Shiyu Wang, Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing
 559 Wu, Shengfeng Ye, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanjia Zhao, Wen
 560 Liu, Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong
 561 Liu, Xiaohan Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu,
 562 Xinyu Yang, Xinyuan Li, Xuecheng Su, Xueting Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xi-
 563 aoshua Chen, Xiaowen Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia
 564 Shan, Y. K. Li, Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng
 565 Sun, Yaohui Wang, Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong
 566 Wang, Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue Gong,
 567 Yuheng Zou, Yujia He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou,
 568 Y. X. Zhu, Yanhong Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying
 569 Tang, Yukun Zha, Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda
 570 Xie, Zhengyan Zhang, Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu,
 571 Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu
 572 Zhang, and Zhen Zhang. DeepSeek-R1: Incentivizing reasoning capability in LLMs via rein-
 573 forcement learning, 2025. URL <https://arxiv.org/abs/2501.12948>.

574 Jinzong Dong, Zhaohui Jiang, Dong Pan, Zhiwen Chen, Qingyi Guan, Hongbin Zhang, Gui Gui,
 575 and Weihua Gui. A survey on confidence calibration of deep learning-based classification models
 576 under class imbalance data. *IEEE Transactions on Neural Networks and Learning Systems*, 36
 577 (9):15664–15684, 2025. doi: 10.1109/TNNLS.2025.3565159. URL <https://dx.doi.org/10.1109/TNNLS.2025.3565159>.

578 Hayame Fallah, Patrice Bellot, Emmanuel Bruno, and Elisabeth Murisasco. Adapting transformers
 579 for multi-label text classification. In *CIRCLE (Joint Conference of the Information Retrieval Com-
 580 munities in Europe) 2022*, Jul 2022. URL <https://hal.science/hal-03727927v1>.

581 Marina Fomicheva, Shuo Sun, Lisa Yankovskaya, Frédéric Blain, Francisco Guzmán, Mark Fishel,
 582 Nikolaos Aletras, Vishrav Chaudhary, and Lucia Specia. Unsupervised quality estimation for
 583 neural machine translation. *Transactions of the Association for Computational Linguistics*, 8:
 584 539–555, 2020.

585 Lukas Galke, Ansgar Scherp, Andor Diera, Fabian Karl, Bao Xin Lin, Bhakti Khera, Tim Meuser,
 586 and Tushar Singhal. Are we really making much progress in text classification? a comparative
 587 review, 2025. URL <https://arxiv.org/abs/2204.03954>.

588 GLM-4.5-Team, Aohan Zeng, Xin Lv, Qinkai Zheng, Zhenyu Hou, Bin Chen, Chengxing Xie,
 589 Cunxiang Wang, Da Yin, Hao Zeng, Jiajie Zhang, Kedong Wang, Lucen Zhong, Mingdao Liu,
 590 Rui Lu, Shulin Cao, Xiaohan Zhang, Xuancheng Huang, Yao Wei, Yean Cheng, Yifan An, Yilin
 591 Niu, Yuanhao Wen, Yushi Bai, Zhengxiao Du, Zihan Wang, Zilin Zhu, Bohan Zhang, Bosi Wen,
 592 Bowen Wu, Bowen Xu, Can Huang, Casey Zhao, Changpeng Cai, Chao Yu, Chen Li, Chendi
 593 Ge, Chenghua Huang, Chenhui Zhang, Chenxi Xu, Chenzheng Zhu, Chuang Li, Congfeng Yin,

594 Daoyan Lin, Dayong Yang, Dazhi Jiang, Ding Ai, Erle Zhu, Fei Wang, Gengzheng Pan, Guo
 595 Wang, Hailong Sun, Haitao Li, Haiyang Li, Haiyi Hu, Hanyu Zhang, Hao Peng, Hao Tai, Haoke
 596 Zhang, Haoran Wang, Haoyu Yang, He Liu, He Zhao, Hongwei Liu, Hongxi Yan, Huan Liu,
 597 Hui long Chen, Ji Li, Jiajing Zhao, Jiamin Ren, Jian Jiao, Jiani Zhao, Jianyang Yan, Jiaqi Wang,
 598 Jiayi Gui, Jiayue Zhao, Jie Liu, Jijie Li, Jing Li, Jing Lu, Jingsen Wang, Jingwei Yuan, Jingxuan
 599 Li, Jingzhao Du, Jinhua Du, Jinxin Liu, Junkai Zhi, Junli Gao, Ke Wang, Lekang Yang, Liang Xu,
 600 Lin Fan, Lindong Wu, Lintao Ding, Lu Wang, Man Zhang, Minghao Li, Minghuan Xu, Mingming
 601 Zhao, Mingshu Zhai, Pengfan Du, Qian Dong, Shangde Lei, Shangqing Tu, Shangtong Yang,
 602 Shaoyou Lu, Shijie Li, Shuang Li, Shuxun Yang, Sibo Yi, Tianshu Yu, Wei Tian,
 603 Weihan Wang, Wenbo Yu, Weng Lam Tam, Wenjie Liang, Wentao Liu, Xiao Wang, Xiaohan Jia,
 604 Xiaotao Gu, Xiaoying Ling, Xin Wang, Xing Fan, Xingru Pan, Xinyuan Zhang, Xinze Zhang,
 605 Xiuqing Fu, Xunkai Zhang, Yabo Xu, Yandong Wu, Yida Lu, Yidong Wang, Yilin Zhou, Yiming
 606 Pan, Ying Zhang, Yingli Wang, Yingru Li, Yipeng Geng, Yitong Zhu, Yongkun Yang,
 607 Yuhang Li, Yuhao Wu, Yujiang Li, Yunan Liu, Yunqing Wang, Yuntao Li, Yuxuan Zhang, Zezhen
 608 Liu, Zhen Yang, Zhengda Zhou, Zhongpei Qiao, Zhuoer Feng, Zhuorui Liu, Zichen Zhang, Zihan
 609 Wang, Zijun Yao, Zikang Wang, Ziqiang Liu, Ziwei Chai, Zixuan Li, Zuodong Zhao, Wenguang
 610 Chen, Jidong Zhai, Bin Xu, Minlie Huang, Hongning Wang, Juanzi Li, Yuxiao Dong, and Jie
 611 Tang. Glm-4.5: Agentic, reasoning, and coding (arc) foundation models, 2025. URL <https://arxiv.org/abs/2508.06471>.
 612

613 Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
 614 Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, Amy Yang, Angela Fan,
 615 Anirudh Goyal, Anthony Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Ko-
 616 renev, Arthur Hinsvark, Arun Rao, Aston Zhang, Aurelien Rodriguez, Austen Gregerson, Ava
 617 Spataru, Baptiste Roziere, Bethany Biron, Binh Tang, Bobbie Chern, Charlotte Caucheteux,
 618 Chaya Nayak, Chloe Bi, Chris Marra, Chris McConnell, Christian Keller, Christophe Touret,
 619 Chunyang Wu, Corinne Wong, Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Allonsius,
 620 Daniel Song, Danielle Pintz, Danny Livshits, Danny Wyatt, David Esiobu, Dhruv Choudhary,
 621 Dhruv Mahajan, Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes, Egor Lakomkin, Ehab
 622 AlBadawy, Elina Lobanova, Emily Dinan, Eric Michael Smith, Filip Radenovic, Francisco
 623 Guzmán, Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis Anderson, Govind That-
 624 tai, Graeme Nail, Gregoire Mialon, Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah Kore-
 625 vaar, Hu Xu, Hugo Touvron, Iliyan Zarov, Imanol Arrieta Ibarra, Isabel Kloumann, Ishan Misra,
 626 Ivan Evtimov, Jack Zhang, Jade Copet, Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Ma-
 627 hadeokar, Jeet Shah, Jelmer van der Linde, Jennifer Billcock, Jenny Hong, Jenya Lee, Jeremy Fu,
 628 Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu, Joanna Bitton, Joe Spisak, Jong-
 629 so Park, Joseph Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia, Kalyan Vasuden Alwala,
 630 Karthik Prasad, Kartikeya Upasani, Kate Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, Khalid
 631 El-Arini, Kritthika Iyer, Kshitiz Malik, Kuenley Chiu, Kunal Bhalla, Kushal Lakhota, Lauren
 632 Rantala-Yearly, Laurens van der Maaten, Lawrence Chen, Liang Tan, Liz Jenkins, Louis Martin,
 633 Lovish Madaan, Lubo Malo, Lukas Blecher, Lukas Landzaat, Luke de Oliveira, Madeline Muzzi,
 634 Mahesh Pasupuleti, Mannat Singh, Manohar Paluri, Marcin Kardas, Maria Tsimpoukelli, Mathew
 635 Oldham, Mathieu Rita, Maya Pavlova, Melanie Kambadur, Mike Lewis, Min Si, Mitesh Ku-
 636 mar Singh, Mona Hassan, Naman Goyal, Narjes Torabi, Nikolay Bashlykov, Nikolay Bogoy-
 637 chev, Niladri Chatterji, Ning Zhang, Olivier Duchenne, Onur Çelebi, Patrick Alrassy, Pengchuan
 638 Zhang, Pengwei Li, Petar Vasic, Peter Weng, Prajjwal Bhargava, Pratik Dubal, Praveen Krishnan,
 639 Punit Singh Koura, Puxin Xu, Qing He, Qingxiao Dong, Ragavan Srinivasan, Raj Ganapathy, Ra-
 640 mon Calderer, Ricardo Silveira Cabral, Robert Stojnic, Roberta Raileanu, Rohan Maheswari, Ro-
 641 hit Girdhar, Rohit Patel, Romain Sauvestre, Ronnie Polidoro, Roshan Sumbaly, Ross Taylor, Ruan
 642 Silva, Rui Hou, Rui Wang, Saghar Hosseini, Sahana Chennabasappa, Sanjay Singh, Sean Bell,
 643 Seohyun Sonia Kim, Sergey Edunov, Shaoliang Nie, Sharan Narang, Sharath Raparth, Sheng
 644 Shen, Shengye Wan, Shruti Bhosale, Shun Zhang, Simon Vandenhende, Soumya Batra, Spencer
 645 Whitman, Sten Sootla, Stephane Collot, Suchin Gururangan, Sydney Borodinsky, Tamar Herman,
 646 Tara Fowler, Tarek Sheasha, Thomas Georgiou, Thomas Scialom, Tobias Speckbacher, Todor Mi-
 647 haylov, Tong Xiao, Ujjwal Karn, Vedanuj Goswami, Vibhor Gupta, Vignesh Ramanathan, Viktor
 648 Kerkez, Vincent Gonguet, Virginie Do, Vish Vogeti, Vítor Albiero, Vladan Petrovic, Weiwei
 649 Chu, Wenhan Xiong, Wenyin Fu, Whitney Meers, Xavier Martinet, Xiaodong Wang, Xiaofang
 650 Wang, Xiaoqing Ellen Tan, Xide Xia, Xinfeng Xie, Xuchao Jia, Xuewei Wang, Yaelle Gold-
 651 schlag, Yashesh Gaur, Yasmine Babaei, Yi Wen, Yiwen Song, Yuchen Zhang, Yue Li, Yuning

648 Mao, Zacharie Delpierre Coudert, Zheng Yan, Zhengxing Chen, Zoe Papakipos, Aaditya Singh,
 649 Aayushi Srivastava, Abha Jain, Adam Kelsey, Adam Shajnfeld, Adithya Gangidi, Adolfo Victoria,
 650 Ahuva Goldstand, Ajay Menon, Ajay Sharma, Alex Boesenberg, Alexei Baevski, Allie Feinstein,
 651 Amanda Kallet, Amit Sangani, Amos Teo, Anam Yunus, Andrei Lupu, Andres Alvarado, An-
 652 drew Caples, Andrew Gu, Andrew Ho, Andrew Poulton, Andrew Ryan, Ankit Ramchandani, An-
 653 nie Dong, Annie Franco, Anuj Goyal, Aparajita Saraf, Arkabandhu Chowdhury, Ashley Gabriel,
 654 Ashwin Bharambe, Assaf Eisenman, Azadeh Yazdan, Beau James, Ben Maurer, Benjamin Leon-
 655 hardi, Bernie Huang, Beth Loyd, Beto De Paola, Bhargavi Paranjape, Bing Liu, Bo Wu, Boyu
 656 Ni, Braden Hancock, Bram Wasti, Brandon Spence, Brani Stojkovic, Brian Gamido, Britt Mon-
 657 talvo, Carl Parker, Carly Burton, Catalina Mejia, Ce Liu, Changhan Wang, Changkyu Kim, Chao
 658 Zhou, Chester Hu, Ching-Hsiang Chu, Chris Cai, Chris Tindal, Christoph Feichtenhofer, Cynthia
 659 Gao, Damon Civin, Dana Beaty, Daniel Kreymer, Daniel Li, David Adkins, David Xu, Davide
 660 Testuggine, Delia David, Devi Parikh, Diana Liskovich, Didem Foss, Dingkang Wang, Duc Le,
 661 Dustin Holland, Edward Dowling, Eissa Jamil, Elaine Montgomery, Eleonora Presani, Emily
 662 Hahn, Emily Wood, Eric-Tuan Le, Erik Brinkman, Esteban Arcaute, Evan Dunbar, Evan Smo-
 663 thers, Fei Sun, Felix Kreuk, Feng Tian, Filippos Kokkinos, Firat Ozgenel, Francesco Caggioni,
 664 Frank Kanayet, Frank Seide, Gabriela Medina Florez, Gabriella Schwarz, Gada Badeer, Georgia
 665 Swee, Gil Halpern, Grant Herman, Grigory Sizov, Guangyi, Zhang, Guna Lakshminarayanan,
 666 Hakan Inan, Hamid Shojanazeri, Han Zou, Hannah Wang, Hanwen Zha, Haroun Habeeb, Harri-
 667 son Rudolph, Helen Suk, Henry Aspegen, Hunter Goldman, Hongyuan Zhan, Ibrahim Damlaj,
 668 Igor Molybog, Igor Tufanov, Ilias Leontiadis, Irina-Elena Veliche, Itai Gat, Jake Weissman, James
 669 Geboski, James Kohli, Janice Lam, Japhet Asher, Jean-Baptiste Gaya, Jeff Marcus, Jeff Tang, Jen-
 670 nifer Chan, Jenny Zhen, Jeremy Reizenstein, Jeremy Teboul, Jessica Zhong, Jian Jin, Jingyi Yang,
 671 Joe Cummings, Jon Carvill, Jon Shepard, Jonathan McPhie, Jonathan Torres, Josh Ginsburg, Jun-
 672 jie Wang, Kai Wu, Kam Hou U, Karan Saxena, Kartikay Khandelwal, Katayoun Zand, Kathy
 673 Matosich, Kaushik Veeraraghavan, Kelly Michelena, Keqian Li, Kiran Jagadeesh, Kun Huang,
 674 Kunal Chawla, Kyle Huang, Lailin Chen, Lakshya Garg, Lavender A, Leandro Silva, Lee Bell,
 675 Lei Zhang, Liangpeng Guo, Licheng Yu, Liron Moshkovich, Luca Wehrstedt, Madian Khabsa,
 676 Manav Avalani, Manish Bhatt, Martynas Mankus, Matan Hasson, Matthew Lennie, Matthias
 677 Reso, Maxim Groshev, Maxim Naumov, Maya Lathi, Meghan Keneally, Miao Liu, Michael L.
 678 Seltzer, Michal Valko, Michelle Restrepo, Mihir Patel, Mik Vyatskov, Mikayel Samvelyan, Mike
 679 Clark, Mike Macey, Mike Wang, Miquel Jubert Hermoso, Mo Metanat, Mohammad Rastegari,
 680 Munish Bansal, Nandhini Santhanam, Natascha Parks, Natasha White, Navyata Bawa, Nayan
 681 Singhal, Nick Egebo, Nicolas Usunier, Nikhil Mehta, Nikolay Pavlovich Laptev, Ning Dong,
 682 Norman Cheng, Oleg Chernoguz, Olivia Hart, Omkar Salpekar, Ozlem Kalinli, Parkin Kent,
 683 Parth Parekh, Paul Saab, Pavan Balaji, Pedro Rittner, Philip Bontrager, Pierre Roux, Piotr Dollar,
 684 Polina Zvyagina, Prashant Ratanchandani, Pritish Yuvraj, Qian Liang, Rachad Alao, Rachel Ro-
 685 driguez, Rafi Ayub, Raghotham Murthy, Raghu Nayani, Rahul Mitra, Rangaprabhu Parthasarathy,
 686 Raymond Li, Rebekkah Hogan, Robin Battey, Rocky Wang, Russ Howes, Ruty Rinott, Sachin
 687 Mehta, Sachin Siby, Sai Jayesh Bondu, Samyak Datta, Sara Chugh, Sara Hunt, Sargun Dhillon,
 688 Sasha Sidorov, Satadru Pan, Saurabh Mahajan, Saurabh Verma, Seiji Yamamoto, Sharadh Ra-
 689 maswamy, Shaun Lindsay, Shaun Lindsay, Sheng Feng, Shenghao Lin, Shengxin Cindy Zha,
 690 Shishir Patil, Shiva Shankar, Shuqiang Zhang, Shuqiang Zhang, Sinong Wang, Sneha Agarwal,
 691 Soji Sajuyigbe, Soumith Chintala, Stephanie Max, Stephen Chen, Steve Kehoe, Steve Satter-
 692 field, Sudarshan Govindaprasad, Sumit Gupta, Summer Deng, Sungmin Cho, Sunny Virk, Suraj
 693 Subramanian, Sy Choudhury, Sydney Goldman, Tal Remez, Tamar Glaser, Tamara Best, Thilo
 694 Koehler, Thomas Robinson, Tianhe Li, Tianjun Zhang, Tim Matthews, Timothy Chou, Tzook
 695 Shaked, Varun Vontimitta, Victoria Ajayi, Victoria Montanez, Vijai Mohan, Vinay Satish Ku-
 696 mar, Vishal Mangla, Vlad Ionescu, Vlad Poenaru, Vlad Tiberiu Mihaiescu, Vladimir Ivanov,
 697 Wei Li, Wencheng Wang, Wenwen Jiang, Wes Bouaziz, Will Constable, Xiaocheng Tang, Xiao-
 698 jian Wu, Xiaolan Wang, Xilun Wu, Xinbo Gao, Yaniv Kleinman, Yanjun Chen, Ye Hu, Ye Jia,
 699 Ye Qi, Yenda Li, Yilin Zhang, Ying Zhang, Yossi Adi, Youngjin Nam, Yu, Wang, Yu Zhao,
 700 Yuchen Hao, Yundi Qian, Yunlu Li, Yuzi He, Zach Rait, Zachary DeVito, Zef Rosnbrick, Zhao-
 701 duo Wen, Zhenyu Yang, Zhiwei Zhao, and Zhiyu Ma. The Llama 3 herd of models, 2024. URL
<https://arxiv.org/abs/2407.21783>.

Sree Harsha Tanneru, Chirag Agarwal, and Himabindu Lakkaraju. Quantifying uncertainty in
 natural language explanations of large language models. In Sanjoy Dasgupta, Stephan Mandt,
 and Yingzhen Li (eds.), *Proceedings of The 27th International Conference on Artificial Intel-*

702 *elligence and Statistics*, volume 238 of *Proceedings of Machine Learning Research*, pp. 1072–
 703 1080. PMLR, 02–04 May 2024. URL <https://proceedings.mlr.press/v238/harsha-tanneru24a.html>.

704

705 Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
 706 and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In *International Con-
 707 ference on Learning Representations*, 2022. URL <https://openreview.net/forum?id=nZeVKeFYf9>.

708

709 Yi Huang, Buse Giledereli, Abdullatif Köksal, Arzucan Özgür, and Elif Ozkirimli. Balanc-
 710 ing methods for multi-label text classification with long-tailed class distribution. In Marie-
 711 Francine Moens, Xuanjing Huang, Lucia Specia, and Scott Wen-tau Yih (eds.), *Proc. EMNLP
 712 2021*, pp. 8153–8161, Online and Punta Cana, Dominican Republic, November 2021. ACL.
 713 doi: 10.18653/v1/2021.emnlp-main.643. URL <https://doi.org/10.18653/v1/2021.emnlp-main.643>.

714

715 IMDRF. Adverse Event Terminology — imdrf.org. <https://www.imdrf.org/working-groups/adverse-event-terminology>, 2025. [Accessed 23-09-2025].

716

717 Alistair EW Johnson, Tom J Pollard, Lu Shen, Li-wei H Lehman, Mengling Feng, Mohammad
 718 Ghassemi, Benjamin Moody, Peter Szolovits, Leo Anthony Celi, and Roger G Mark. MIMIC-III,
 719 a freely accessible critical care database. *Scientific data*, 3(1):1–9, 2016. doi: 10.1038/sdata.
 720 2016.35. URL <https://doi.org/10.1038/sdata.2016.35>.

721

722 Kimi-Team, Yifan Bai, Yiping Bao, Guanduo Chen, Jiahao Chen, Ningxin Chen, Ruijue Chen,
 723 Yanru Chen, Yuankun Chen, Yutian Chen, Zhuofu Chen, Jialei Cui, Hao Ding, Mengnan Dong,
 724 Angang Du, Chenzhuang Du, Dikang Du, Yulun Du, Yu Fan, Yichen Feng, Kelin Fu, Bofei Gao,
 725 Hongcheng Gao, Peizhong Gao, Tong Gao, Xinran Gu, Longyu Guan, Haiqing Guo, Jianhang
 726 Guo, Hao Hu, Xiaoru Hao, Tianhong He, Weiran He, Wenyang He, Chao Hong, Yangyang Hu,
 727 Zhenxing Hu, Weixiao Huang, Zhiqi Huang, Zihao Huang, Tao Jiang, Zhejun Jiang, Xinyi Jin,
 728 Yongsheng Kang, Guokun Lai, Cheng Li, Fang Li, Haoyang Li, Ming Li, Wentao Li, Yanhao
 729 Li, Yiwei Li, Zhaowei Li, Zheming Li, Hongzhan Lin, Xiaohan Lin, Zongyu Lin, Chengyin
 730 Liu, Chenyu Liu, Hongzhang Liu, Jingyuan Liu, Junqi Liu, Liang Liu, Shaowei Liu, T. Y. Liu,
 731 Tianwei Liu, Weizhou Liu, Yangyang Liu, Yibo Liu, Yiping Liu, Yue Liu, Zhengying Liu, Enzhe
 732 Lu, Lijun Lu, Shengling Ma, Xinyu Ma, Yingwei Ma, Shaoguang Mao, Jie Mei, Xin Men, Yibo
 733 Miao, Siyuan Pan, Yebo Peng, Ruoyu Qin, Bowen Qu, Zeyu Shang, Lidong Shi, Shengyuan Shi,
 734 Feifan Song, Jianlin Su, Zhengyuan Su, Xinjie Sun, Flood Sung, Heyi Tang, Jiawen Tao, Qifeng
 735 Teng, Chensi Wang, Dinglu Wang, Feng Wang, Haiming Wang, Jianzhou Wang, Jiaxing Wang,
 736 Jinhong Wang, Shengjie Wang, Shuyi Wang, Yao Wang, Yejie Wang, Yiqin Wang, Yuxin Wang,
 737 Yuzhi Wang, Zhaoji Wang, Zhengtao Wang, Zhexu Wang, Chu Wei, Qianqian Wei, Wenhao Wu,
 738 Xingzhe Wu, Yuxin Wu, Chenjun Xiao, Xiaotong Xie, Weimin Xiong, Boyu Xu, Jing Xu, Jinjing
 739 Xu, L. H. Xu, Lin Xu, Suting Xu, Weixin Xu, Xinran Xu, Yangchuan Xu, Ziyao Xu, Junjie
 740 Yan, Yuzi Yan, Xiaofei Yang, Ying Yang, Zhen Yang, Zhilin Yang, Zonghan Yang, Haotian Yao,
 741 Xingcheng Yao, Wenjie Ye, Zhuorui Ye, Bohong Yin, Longhui Yu, Enming Yuan, Hongbang
 742 Yuan, Mengjie Yuan, Haobing Zhan, Dehao Zhang, Hao Zhang, Wanlu Zhang, Xiaobin Zhang,
 743 Yangkun Zhang, Yizhi Zhang, Yongting Zhang, Yu Zhang, Yutao Zhang, Yutong Zhang, Zheng
 744 Zhang, Haotian Zhao, Yikai Zhao, Huabin Zheng, Shaojie Zheng, Jianren Zhou, Xinyu Zhou,
 745 Zaida Zhou, Zhen Zhu, Weiyu Zhuang, and Xinxing Zu. Kimi k2: Open agentic intelligence,
 746 2025. URL <https://arxiv.org/abs/2507.20534>.

747

748 Yanis Labrak, Adrien Bazoge, Emmanuel Morin, Pierre-Antoine Gourraud, Mickael Rouvier, and
 749 Richard Dufour. BioMistral: A collection of open-source pretrained large language models for
 750 medical domains. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), *Findings of the As-
 751 sociation for Computational Linguistics: ACL 2024*, pp. 5848–5864, Bangkok, Thailand, August
 752 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.findings-acl.348. URL
 753 <https://doi.org/10.18653/v1/2024.findings-acl.348>.

754

755 David D. Lewis. Reuters-21578 text categorization test collection, distribution 1.0. <https://www.daviddlewis.com/resources/testcollections/reuters21578/>, 1997.
 756 [Accessed 23-09-2025].

756 Zhen Lin, Shubhendu Trivedi, and Jimeng Sun. Generating with confidence: Uncertainty quantifi-
 757 cation for black-box large language models. *arXiv preprint arXiv:2305.19187*, 2023.

758

759 Zhen Lin, Shubhendu Trivedi, and Jimeng Sun. Generating with confidence: Uncertainty quantifi-
 760 cation for black-box large language models. *Transactions on Machine Learning Research*, 2024.
 761 ISSN 2835-8856. URL <https://openreview.net/forum?id=DWkJCSxKU5>.

762 L Liu, X Yang, J Lei, X Liu, Y Shen, Z Zhang, P Wei, J Gu, Z Chu, Z Qin, et al. A survey on medical
 763 large language models: Technology, Application, Trustworthiness, and Future Directions. *arXiv*
 764 *preprint arXiv*, 240603712, 2024.

765 S. Lloyd. Least squares quantization in PCM. *IEEE Transactions on Information Theory*, 28(2):
 766 129–137, 1982. doi: 10.1109/TIT.1982.1056489. URL <https://doi.org/10.1109/TIT.1982.1056489>.

767

769 Ilya Loshchilov and Frank Hutter. SGDR: Stochastic gradient descent with warm restarts. *arXiv*
 770 *preprint arXiv:1608.03983*, 2016. URL <https://arxiv.org/abs/1608.03983>.

771 Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization, 2019. URL <https://arxiv.org/abs/1711.05101>.

773

774 Marcus Ma, Georgios Chochlakis, Niyantha Maruthu Pandiyan, Jesse Thomason, and Shrikanth
 775 Narayanan. Large language models do multi-label classification differently, 2025. URL <https://arxiv.org/abs/2505.17510>.

776

777 Jenish Maharjan, Anurag Garikipati, Navan Preet Singh, Leo Cyrus, Mayank Sharma, Madalina
 778 Ciobanu, Gina Barnes, Rahul Thapa, Qingqing Mao, and Ritankar Das. OpenMedLM: prompt
 779 engineering can out-perform fine-tuning in medical question-answering with open-source large
 780 language models. *Scientific Reports*, 14(1):14156, 2024. doi: 10.1038/s41598-024-64827-6.
 781 URL <https://doi.org/10.1038/s41598-024-64827-6>.

782 Macedo Maia, Juliano Efson Sales, André Freitas, Siegfried Handschuh, and Markus Endres. A
 783 comparative study of deep neural network models on multi-label text classification in finance. In
 784 *2021 IEEE 15th International Conference on Semantic Computing (ICSC)*, pp. 183–190, 2021.
 785 doi: 10.1109/ICSC50631.2021.00039. URL <https://doi.org/10.1109/ICSC50631.2021.00039>.

787 Leland McInnes, John Healy, and Steve Astels. hdbscan: Hierarchical density based clustering.
 788 *Journal of Open Source Software*, 2(11):205, 2017. doi: 10.21105/joss.00205. URL <https://doi.org/10.21105/joss.00205>.

790

791 Leland McInnes, John Healy, and James Melville. UMAP: Uniform manifold approximation and
 792 projection for dimension reduction, 2020. URL <https://arxiv.org/abs/1802.03426>.

793 James Mullenbach, Sarah Wiegreffe, Jon Duke, Jimeng Sun, and Jacob Eisenstein. Explainable
 794 prediction of medical codes from clinical text. In Marilyn Walker, Heng Ji, and Amanda Stent
 795 (eds.), *Proceedings of the 2018 Conference of the North American Chapter of the Association
 796 for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers)*, pp.
 797 1101–1111, New Orleans, Louisiana, June 2018. Association for Computational Linguistics. doi:
 798 10.18653/v1/N18-1100. URL <https://doi.org/10.18653/v1/N18-1100>.

799 NeuML. bioclinical-modernbert-base-embeddings. <https://huggingface.co/NeuML/bioclinical-modernbert-base-embeddings>, 2025. URL <https://huggingface.co/NeuML/bioclinical-modernbert-base-embeddings>.

800 Hugging Face model repository.

801

802 Harsha Nori, Yin Tat Lee, Sheng Zhang, Dean Carignan, Richard Edgar, Nicolo Fusi, Nicholas King,
 803 Jonathan Larson, Yuanzhi Li, Weishung Liu, et al. Can generalist foundation models outcompete
 804 special-purpose tuning? Case study in medicine. *arXiv preprint arXiv:2311.16452*, 2023. URL
 805 <https://arxiv.org/abs/2311.16452>.

806

807 Jaya Ojha, Oriana Presacan, Pedro G. Lind, Eric Monteiro, and Anis Yazidi. Navigating uncer-
 808 tainty: A user-perspective survey of trustworthiness of AI in healthcare. *ACM Transactions on*
 809 *Computing for Healthcare*, 6(3):1–32, 2025.

810 Team OLMo, Pete Walsh, Luca Soldaini, Dirk Groeneveld, Kyle Lo, Shane Arora, Akshita Bha-
 811 gia, Yuling Gu, Shengyi Huang, Matt Jordan, Nathan Lambert, Dustin Schwenk, Oyvind Tafjord,
 812 Taira Anderson, David Atkinson, Faeze Brahman, Christopher Clark, Pradeep Dasigi, Nouha
 813 Dziri, Michal Guerquin, Hamish Ivison, Pang Wei Koh, Jiacheng Liu, Saumya Malik, William
 814 Merrill, Lester James V. Miranda, Jacob Morrison, Tyler Murray, Crystal Nam, Valentina Py-
 815 atkin, Aman Rangapur, Michael Schmitz, Sam Skjonsberg, David Wadden, Christopher Wilhelm,
 816 Michael Wilson, Luke Zettlemoyer, Ali Farhadi, Noah A. Smith, and Hannaneh Hajishirzi. 2
 817 OLMo 2 furious, 2025. URL <https://arxiv.org/abs/2501.00656>.

818 OpenAI. tiktoken. <https://github.com/openai/tiktoken>, 2022. GitHub repository.

819

820 OpenAI. GPT-5 system card. <https://openai.com/index/gpt-5-system-card/>,
 821 2025a. [Accessed 23-09-2025].

822

823 OpenAI. Introducing GPT-4.1 in the API. <https://openai.com/index/gpt-4-1/>,
 824 2025b. [Accessed 23-09-2025].

825

826 OpenAI, :, Sandhini Agarwal, Lama Ahmad, Jason Ai, Sam Altman, Andy Applebaum, Edwin
 827 Arbus, Rahul K. Arora, Yu Bai, Bowen Baker, Haiming Bao, Boaz Barak, Ally Bennett, Tyler
 828 Bertao, Nivedita Brett, Eugene Brevdo, Greg Brockman, Sebastien Bubeck, Che Chang, Kai
 829 Chen, Mark Chen, Enoch Cheung, Aidan Clark, Dan Cook, Marat Dukhan, Casey Dvorak, Kevin
 830 Fives, Vlad Fomenko, Timur Garipov, Kristian Georgiev, Mia Glaese, Tarun Gogineni, Adam
 831 Goucher, Lukas Gross, Katia Gil Guzman, John Hallman, Jackie Hehir, Johannes Heidecke, Alec
 832 Helyar, Haitang Hu, Romain Huet, Jacob Huh, Saachi Jain, Zach Johnson, Chris Koch, Irina
 833 Kofman, Dominik Kundel, Jason Kwon, Volodymyr Kyrylov, Elaine Ya Le, Guillaume Leclerc,
 834 James Park Lennon, Scott Lessans, Mario Lezcano-Casado, Yuanzhi Li, Zhuohan Li, Ji Lin,
 835 Jordan Liss, Lily, Liu, Jiancheng Liu, Kevin Lu, Chris Lu, Zoran Martinovic, Lindsay McCal-
 836 lum, Josh McGrath, Scott McKinney, Aidan McLaughlin, Song Mei, Steve Mostovoy, Tong Mu,
 837 Gideon Myles, Alexander Neitz, Alex Nichol, Jakub Pachocki, Alex Paino, Dana Palmie, Ash-
 838 ley Pantuliano, Giambattista Parascandolo, Jongsoo Park, Leher Pathak, Carolina Paz, Ludovic
 839 Peran, Dmitry Pimenov, Michelle Pokrass, Elizabeth Proehl, Huida Qiu, Gaby Raila, Filippo
 840 Raso, Hongyu Ren, Kimmy Richardson, David Robinson, Bob Rotsted, Hadi Salman, Suvansh
 841 Sanjeev, Max Schwarzer, D. Sculley, Harshit Sikchi, Kendal Simon, Karan Singhal, Yang Song,
 842 Dane Stuckey, Zhiqing Sun, Philippe Tillet, Sam Toizer, Foivos Tsimpourlas, Nikhil Vyas, Eric
 843 Wallace, Xin Wang, Miles Wang, Olivia Watkins, Kevin Weil, Amy Wendling, Kevin Whinnery,
 844 Cedric Whitney, Hannah Wong, Lin Yang, Yu Yang, Michihiro Yasunaga, Kristen Ying, Wojciech
 845 Zaremba, Wenting Zhan, Cyril Zhang, Brian Zhang, Eddie Zhang, and Shengjia Zhao. gpt-oss-
 846 120b & gpt-oss-20b model card, 2025. URL <https://arxiv.org/abs/2508.10925>.

847

848 Tim Schopf, Karim Arabi, and Florian Matthes. Exploring the landscape of natural language
 849 processing research. In Ruslan Mitkov and Galia Angelova (eds.), *Proceedings of the 14th
 850 International Conference on Recent Advances in Natural Language Processing*, pp. 1034–
 851 1045, Varna, Bulgaria, September 2023. INCOMA Ltd., Shoumen, Bulgaria. URL <https://aclanthology.org/2023.ranlp-1.111>.

852

853 Ben Shneiderman. Human-centered artificial intelligence: Reliable, safe & trustworthy. *Inter-
 854 national Journal of Human–Computer Interaction*, 36(6):495–504, 2020. doi: 10.1080/10447318.
 855 2020.1741118. URL <https://doi.org/10.1080/10447318.2020.1741118>.

856

857 Ola Shorinwa, Zhiting Mei, Justin Lidard, Allen Z. Ren, and Anirudha Majumdar. A survey on
 858 uncertainty quantification of large language models: Taxonomy, open research challenges, and
 859 future directions. *ACM Comput. Surv.*, June 2025. ISSN 0360-0300. doi: 10.1145/3744238.
 860 URL <https://doi.org/10.1145/3744238>.

861

862 Ralf Steinberger, Mohamed Ebrahim, and Marco Turchi. JRC Eurovoc indexer JEX - a freely avail-
 863 able multi-label categorisation tool. In Nicoletta Calzolari, Khalid Choukri, Thierry Declerck,
 864 Mehmet Uğur Doğan, Bente Maegaard, Joseph Mariani, Asuncion Moreno, Jan Odijk, and Ste-
 865 lios Piperidis (eds.), *Proceedings of the Eighth International Conference on Language Resources
 866 and Evaluation (LREC'12)*, pp. 798–805, Istanbul, Turkey, May 2012. European Language Re-
 867 sources Association (ELRA). URL <https://aclanthology.org/L12-1519/>.

864 Pingjie Tang, Meng Jiang, Bryan (Ning) Xia, Jed W. Pitera, Jeffrey Welser, and Nitesh V.
 865 Chawla. Multi-label patent categorization with non-local attention-based graph convolutional
 866 network. *Proceedings of the AAAI Conference on Artificial Intelligence*, 34(05):9024–9031,
 867 Apr. 2020. doi: 10.1609/aaai.v34i05.6435. URL <https://ojs.aaai.org/index.php/AAAI/article/view/6435>.

868
 869 Katherine Tian, Eric Mitchell, Allan Zhou, Archit Sharma, Rafael Rafailev, Huaxiu Yao, Chelsea
 870 Finn, and Christopher Manning. Just ask for calibration: Strategies for eliciting calibrated
 871 confidence scores from language models fine-tuned with human feedback. In Houda Bouamor,
 872 Juan Pino, and Kalika Bali (eds.), *Proceedings of the 2023 Conference on Empirical Meth-
 873 ods in Natural Language Processing*, pp. 5433–5442, Singapore, December 2023. Associa-
 874 tion for Computational Linguistics. doi: 10.18653/v1/2023.emnlp-main.330. URL <https://aclanthology.org/2023.emnlp-main.330/>.

875
 876 Roman Vashurin, Maiya Goloburda, Albina Ilina, Aleksandr Rubashevskii, Preslav Nakov, Artem
 877 Shelmanov, and Maxim Panov. Uncertainty quantification for LLMs through minimum Bayes
 878 risk: Bridging confidence and consistency, 2025. URL <https://arxiv.org/abs/2502.04964>.

879
 880 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
 881 Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. Von
 882 Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), *Ad-
 883 vances in Neural Information Processing Systems*, volume 30. Curran Associates, Inc.,
 884 2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fb053c1c4a845aa-Paper.pdf.

885
 886 Sida Wang and Christopher Manning. Baselines and bigrams: Simple, good sentiment and topic
 887 classification. In Haizhou Li, Chin-Yew Lin, Miles Osborne, Gary Geunbae Lee, and Jong C.
 888 Park (eds.), *Proceedings of the 50th Annual Meeting of the Association for Computational Lin-
 889 guistics (Volume 2: Short Papers)*, pp. 90–94, Jeju Island, Korea, July 2012. Association for
 890 Computational Linguistics. URL <https://aclanthology.org/P12-2018/>.

891
 892 Benjamin Warner, Antoine Chaffin, Benjamin Clavié, Orion Weller, Oskar Hallström, Said
 893 Taghadouini, Alexis Gallagher, Raja Biswas, Faisal Ladzhak, Tom Aarsen, et al. Smarter, bet-
 894 ter, faster, longer: A modern bidirectional encoder for fast, memory efficient, and long context
 895 finetuning and inference, 2024a. URL <https://arxiv.org/abs/2412.13663>.

896
 897 Benjamin Warner, Antoine Chaffin, Benjamin Clavié, Orion Weller, Oskar Hallström, Said
 898 Taghadouini, Alexis Gallagher, Raja Biswas, Faisal Ladzhak, Tom Aarsen, Nathan Cooper, Griffin
 899 Adams, Jeremy Howard, and Iacopo Poli. Smarter, better, faster, longer: A modern bidirec-
 900 tional encoder for fast, memory efficient, and long context finetuning and inference, 2024b. URL
 901 <https://arxiv.org/abs/2412.13663>.

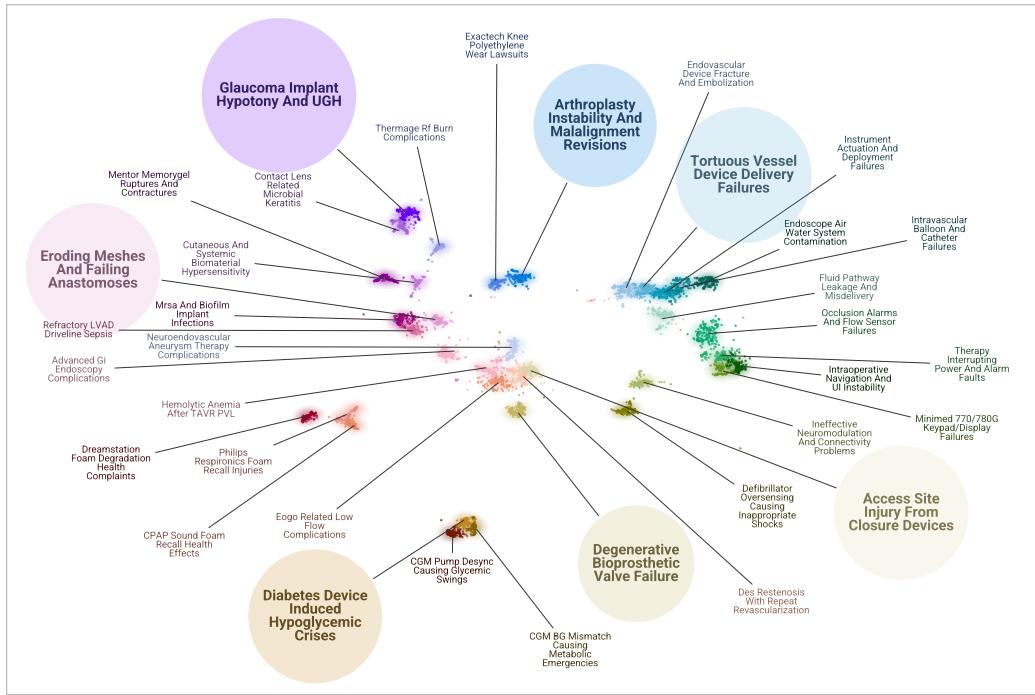
902
 903 Orion Weller, Kathryn Ricci, Marc Marone, Antoine Chaffin, Dawn Lawrie, and Benjamin
 904 Van Durme. Seq vs Seq: An open suite of paired encoders and decoders. *arXiv preprint
 905 arXiv:2507.11412*, 2025. URL <https://arxiv.org/abs/2507.11412>.

906
 907 Jiageng Wu, Bowen Gu, Ren Zhou, Kevin Xie, Doug Snyder, Yixing Jiang, Valentina Carducci,
 908 Richard Wyss, Rishi J Desai, Emily Alsentzer, Leo Anthony Celi, Adam Rodman, Sebastian
 909 Schneeweiss, Jonathan H. Chen, Santiago Romero-Brufau, Kueiyu Joshua Lin, and Jie Yang.
 910 Bridge: Benchmarking large language models for understanding real-world clinical practice text,
 911 2025. URL <https://arxiv.org/abs/2504.19467>.

912
 913 Quan Xiao, Debarun Bhattacharjya, Balaji Ganesan, Radu Marinescu, Katsiaryna Mirylenka,
 914 Nhan H Pham, Michael Glass, and Junkyu Lee. The consistency hypothesis in uncertainty quan-
 915 tification for large language models. *arXiv preprint arXiv:2506.21849*, 2025.

916
 917 An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
 918 Gao, Chengan Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng Hu,
 919 Hao Ge, Haoran Wei, Huan Lin, Jialong Tang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
 920 Yang, Jiaxi Yang, Jing Zhou, Jingren Zhou, Junyang Lin, Kai Dang, Kefin Bao, Kexin Yang,
 921 Le Yu, Lianghao Deng, Mei Li, Mingfeng Xue, Mingze Li, Pei Zhang, Peng Wang, Qin Zhu, Rui

918 Men, Ruize Gao, Shixuan Liu, Shuang Luo, Tianhao Li, Tianyi Tang, Wenbiao Yin, Xingzhang
919 Ren, Xinyu Wang, Xinyu Zhang, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yinger
920 Zhang, Yu Wan, Yuqiong Liu, Zekun Wang, Zeyu Cui, Zhenru Zhang, Zhipeng Zhou, and Zihan
921 Qiu. Qwen3 technical report, 2025. URL <https://arxiv.org/abs/2505.09388>.
922
923 Pengcheng Yang, Xu Sun, Wei Li, Shuming Ma, Wei Wu, and Houfeng Wang. SGM: Sequence gen-
924 eration model for multi-label classification, 2018. URL <https://arxiv.org/abs/1806.04822>.
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

972 **A APPENDIX**973 **A.1 DATASET TOPICS**974
975
976 Figure A.1 illustrates the topics addressed in the medical device adverse event reports used for
977 testing.
9781002 **Figure A.1:** Illustration of 35 most frequent topics in the (truncated) test set. Topics were modeled with UMAP
1003 (McInnes et al., 2020) and K-means clustering (Lloyd, 1982), and named with GPT-5.
1004
10051006 **A.2 KNOWLEDGE CUTOFF DATES**
10071008 Reports from July 2024 to June 2025 are our test data (see Section 3). This time span ensures
1009 that there are no overlaps with the models' pre-training knowledge cutoff dates for Llama 3.1-3
1010 (December 2023), GPT 4.1 (June 2024) and gpt-oss-120b (June 2024). Reports are published *after*
1011 each quarter (reports from July-September 2024 in October 2024 or later). Consequently, our test
1012 set should also contain only data released after the GPT-5 knowledge cutoff in September 2024.
1013 Ettin (Weller et al., 2025) was pre-trained including on the 'DOLMino mix 1124' dataset (OLMo
1014 et al., 2025, which also mention data from September 2024), among other data sources. Llama-
1015 3.3-Nemotron-49B-v1.5 used post-training data released in July 2025. We have not found publicly
1016 available official information on the knowledge cutoff dates of DeepSeek-R1, Qwen3, and Kimi K2
1017 (released in January, April, and July 2025, respectively).
10181019 **A.3 HYPERPARAMETERS**1020 For generative training, we use the AdamW optimizer Loshchilov & Hutter (2019) with cosine
1021 learning-rate decay Loshchilov & Hutter (2016), a warmup ratio of 0.1, and a batch size of 64. We
1022 tune the learning rate (from 3e-5 to 1e-4) and the maximum gradient norm on the validation set.
10231024 For discriminative training, we use AdamW with a cosine scheduler, a fixed batch size of 512, 20
1025 epochs, a warmup ratio of 0.1, and a fixed maximum gradient norm of 0.01; we tune the learning
rate in the range [2e-4, 5e-4] on the validation set.

1026

A.4 ADDITIONAL RESULTS

1027

1028

1029

In a generative setting, full fine-tuning is compared to parameter-efficient fine-tuning using LoRA in Table A.1. For Llama models (1B, 3B), full fine-tuning improves macro-F1 by 0.01. For Ettin models (400M, 1B), the gains are greater, at 0.12 and 0.09, respectively. Table A.2 compares base models with instruction-tuned models. Instruction-tuned Llama models (1B, 3B) achieve macro-F1 0.04–0.05 higher than the corresponding base variants.

1034

1035

1036

1037

Table A.1: LoRA vs. full fine-tuning: Performance and UQ capabilities for parameter-efficient (using low-rank adaptation; LoRA) vs. full fine-tuning of generative models (in a generative setting). Macro F1 serves as main predictive metric. Head, medium, tail and extreme tail (ET) classes are assessed separately. J refers to the Jaccard score. PRR is the main metric for assessing uncertainty. We report PRR for the best UQ method (see U_{info} in 4.3). ρ refers to the Spearman correlation coefficient.

1043

Model	Macro F1 ↑				J ↑	PRR ↑	$\rho \downarrow$
	Overall	Head	Medium	Tail			
<i>Number of classes →</i>	1154	144	481	348	181		
LoRA fine-tuning							
Ettin-400M-Decoder	0.32	0.59	0.41	0.24	0.005	0.48	0.57
Ettin-1B-Decoder	0.38	0.63	0.48	0.33	0.014	0.52	0.58
Llama-3.2-1B-Instruct	0.45	0.66	0.54	0.44	0.08	0.56	0.60
Llama-3.2-3B-Instruct	0.48	0.67	0.57	0.47	0.11	0.58	-0.46
Full fine-tuning							
Ettin-400M-Decoder	0.44	0.66	0.54	0.42	0.07	0.55	0.56
Ettin-1B-Decoder	0.47	0.67	0.56	0.46	0.10	0.57	0.56
Llama-3.2-1B-Instruct	0.47	0.67	0.56	0.45	0.12	0.57	0.58
Llama-3.2-3B-Instruct	0.49	0.68	0.57	0.48	0.14	0.58	0.59

1057

1058

1059

1060

1061

1062

1063

1064

Table A.2: Base vs. Instruct: Performance and UQ capabilities of base models vs. instruction-tuned models, both fine-tuned in a generative setting. Columns named as in Table A.1 above.

1065

1066

Model	Macro F1 ↑				J ↑	PRR ↑	$\rho \downarrow$
	Overall	Head	Medium	Tail			
<i>Number of classes →</i>	1154	144	481	348	181		
Base model							
Llama-3.2-1B-Base	0.43	0.63	0.52	0.39	0.10	0.45	0.53
Llama-3.2-3B-Base	0.48	0.67	0.57	0.46	0.12	0.58	0.70
Instruct model							
Llama-3.2-1B-Instruct	0.47	0.67	0.56	0.45	0.12	0.57	0.58
Llama-3.2-3B-Instruct	0.49	0.68	0.57	0.48	0.14	0.58	0.59

1077

1078

1079

1080 **A.5 PROMPTING SETUP**
 1081
 1082 **A.5.1 SYSTEM PROMPT**
 1083
 1084 `SYSTEM_PROMPT = ""`
 1085 You are an AI assistant tasked with classifying a medical device adverse
 1086 event report into one or more categories according to the FDA
 1087 taxonomy. Your goal is to assign all relevant labels to the given
 1088 report.
 1089 The report that needs classifying is provided within the `<classification-`
 1090 `text>` tag. Along with the report, the label definitions are provided
 1091 within the `<labels>` tag. To assist you with the task, we also include
 1092 10 "few-shot" examples in the `<few-shot-examples>` tag. These are
 1093 past reports similar to the one you are classifying - the past
 1094 reports are accompanied by their corresponding labels which were
 1095 tagged by a human expert.
 1096 # RULES:
 1097 1. The taxonomy of labels is provided within the `<labels>` tag.
 1098 - Labels are separated by newlines; a definition for the label is
 1099 provided.
 1100 - We are in a 3-level hierarchical multi-label classification setting
 1101 - this means that when a child label (such as A040507) is
 1102 selected, the parent label (A0405) and grandparent label (A04)
 1103 must also be selected. Similarly, if a parent label (A0405) is
 1104 selected, the grandparent label (A04) must also be selected.
 1105 - The converse is not always true - selecting a parent (A0405) or
 1106 grandparent (A04) doesn't necessarily mean selecting all its
 1107 children (A040507).
 1108 - Labels that start with "A" are Medical Device Problems.
 1109 - Labels that start with "E" are Health Effects - Clinical Signs and
 1110 Symptoms or Conditions.
 1111 - The grandparent label (eg. A01) is the most general label, the
 1112 parent label (eg. A0101) is the next most specific, and the child
 1113 label (eg. A010101) is the most specific.
 1114 - The grandparent label always has the letter "A" or "E" followed by
 1115 2 numbers, eg. A01, E01, A02, E02, etc.
 1116 - The parent label always has the letter "A" or "E" followed by 4
 1117 numbers, eg. A0101, E0101, A0201, E0201, etc.
 1118 - The child label always has the letter "A" or "E" followed by 6
 1119 numbers, eg. A010101, E010101, A020101, E020101, etc.
 1120 2. There are 10 "few-shot" examples included in the `<few-shot-examples>`
 1121 tag.
 1122 - Each example includes a report and its corresponding labels.
 1123 - The examples included in the `<few-shot-examples>` tag were chosen
 1124 using a K-Nearest Neighbours algorithm which picked reports
 1125 similar in content to the text which needs classifying. The
 1126 labels shown for these examples may or may not overlap with the
 1127 labels for the report inside the `<classification-text>` tag. Use
 1128 them as contextual guidance.
 1129 3. Your goal is to classify the text provided within the `<classification-`
 1130 `text>` tag.
 1131 - Assign all labels that are relevant.
 1132 - You can choose multiple labels, a single label, or no labels if
 1133 none apply.
 1134 - Always use the exact label names from the label list provided in
 1135 the taxonomy under the `<labels>` tag. Do not invent new labels or
 1136 modify existing ones.
 1137 - Return your output as a list of labels, separated by newlines.
 1138 - Do not include any explanations, text, or formatting outside the
 1139 label list.

```

1134     - If no label applies, return an empty list.
1135     - Do not invent new labels.
1136
1137 4. Provide your output as a list of labels, each on a new line. For
1138  example:
1139
1140 A04
1141 A0405
1142 A040507
1143 E01
1144 E0101
1145
1146 # IMPORTANT
1147 *In your final output, you must not include any extra text, explanations,
1148     or formatting outside the label list. Only return the list of labels
1149     separated by newlines.*
1150
1151
1152 A.5.2 USER PROMPT
1153
1154 USER_PROMPT = """
1155 You are an AI assistant tasked with classifying a medical device adverse
1156     event report into one or more categories according to the FDA
1157     taxonomy. Your goal is to assign all relevant labels to the given
1158     report. The rules were provided in the system prompt. For the sake of
1159     clarity, we are repeating them here:
1160     - Assign all the labels that are relevant to the report, but only if you
1161     are sure about it.
1162     - You can choose multiple labels, a single label, or no labels if none
1163     apply.
1164     - Use exact label names from the provided taxonomy. Do not invent or
1165     modify labels.
1166     - Include parent and grandparent labels when selecting a child label.
1167     - Do not include any explanations, text, or formatting outside the label
1168     list.
1169     - If no labels apply, return an empty list.
1170     - Your output should contain only the list of applicable labels, with
1171     each label on a new line. You must not include any extra text,
1172     explanations, or formatting outside the label list.
1173     - Provide your output as a list of labels, each on a new line.
1174 Example output:
1175
1176 A04
1177 A0405
1178 A040507
1179 E01
1180 E0101
1181
1182 Here's how to proceed:
1183
1184
1185 1. First, familiarize yourself with the label definitions:
1186
1187 <labels>
1188 A01: Patient Device Interaction Problem - Problem related to the
1189     interaction between the patient and the device.
1190 A0101: Patient-Device Incompatibility - Problem associated with the
1191     interaction between the patient's physiology or anatomy and the
1192     device that affects the patient and/or the device.
1193
1194
1195 2. Review these few-shot examples of similar reports and their
1196     corresponding labels:

```

```
1188
1189 <few-shot-examples>
1190 {EXAMPLES}
1191 </few-shot-examples>
1192 3. Now, carefully classify the following report:
1193
1194 <classification-text>
1195 {CLASSIFICATION_TEXT}
1196 </classification-text>"""
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
```