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ABSTRACT

In this paper, we introduce OmniEval, a benchmark for evaluating omni-modality
models like Qwen2.5-Omni and MiniCPM-O 2.6, which encompasses visual, au-
ditory, and textual inputs. Compared with existing benchmarks, our OmniEval
has several distinctive features: (i) Full-modal collaboration: We design evalua-
tion tasks that highlight the strong coupling between audio and video, requiring
models to effectively leverage the collaborative perception of all modalities; (ii)
Diversity of videos: OmniEval includes 780 audio-visual synchronized videos,
255 Chinese videos and 525 English videos; (iii) Diversity and granularity of
tasks: OmniEval contains 2411 question-answer pairs, comprising 1278 open-
ended questions and 1133 multiple-choice questions. These questions are divided
into 3 major task types and 12 sub-task types to achieve comprehensive evalu-
ation. Notably, we introduce a refined video localization task (i.e., Grounding)
designed to test precise spatio-temporal understanding. We evaluate several rep-
resentative omni-modal models on OmniEval to demonstrate its utility. We hope
that our OmniEval can provide a platform for evaluating the ability to construct
and understand coherence from the context of all modalities.

1 INTRODUCTION

The pursuit of Artificial Intelligence (Al) systems capable of emulating human-like understanding
of the world has catalyzed significant advancements in models that process information from mul-
tiple modalities (Radford et al.l 2021} |Alayrac et al., [2022; [Li et al.| |2023a). These Multimodal
Large Language Models (MLLMs) have demonstrated remarkable potential in tasks like image cap-
tioning, visual question answering, and text-to-image generation (Team, 2024} 2025b). However,
a prevailing trend is the development of “omni-modal models” capable of concurrently processing
and understanding information from all three modalities: visual, auditory, and textual (Xu et al.,
20255 |[Fu et al., [2025} |Cheng et al.l 2024; |(OpenBMB Team, 2025)). Such models aim to more com-
prehensively simulate human perception and cognition of the world, laying the foundation for more
complex and realistic application scenarios, including intelligent assistants, robotic interaction, and
content creation.

Despite the promising application prospects of omni-modal models, comprehensively and effec-
tively evaluating their integrated capabilities remains a critical unresolved issue. Existing multi-
modal benchmarks predominantly focus on combinations of one or two modalities (e.g., vision-text
or audio-text) or fail to adequately reflect the deep coupling and synergistic effects among multi-
modal information in their task design (L1 et al., |2025b; Hong et al., 2025b). For instance, some
existing benchmarks may focus on static visual content paired with audio, thereby inadequately as-
sessing the understanding of dynamic visual events crucial for real-world scenarios (Li et al.| 2025b).
Others, while offering a broader range of tasks, might be limited to a single language, thus failing to
evaluate a model’s multilingual capabilities (Hong et al., [2025b)). Consequently, these benchmarks
often fall short in evaluating the deep, synergistic understanding that arises from the concurrent
integration of dynamic visual, auditory, and textual cues across diverse linguistic contexts. They
may also lack the task diversity or the fine-grained evaluation mechanisms, such as precise temporal
grounding, necessary to truly probe how omni-modal models interpret and fuse these distinct infor-
mation streams to achieve a holistic understanding. Particularly for questions requiring models to
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simultaneously integrate visual dynamics, sound events, and associated text (such as subtitles or dia-
logue) for accurate answers, current evaluation methods often prove inadequate. Moreover, existing
models still face substantial challenges in real-world understanding, which further underscores the
necessity of constructing a more comprehensive and challenging evaluation benchmark.

Question: PP XEEI IR Z FRE SN FFEEE T XANE, FEFMNEERENEHAEBNERRZLD? BHREINATREFR
B A5 3R AT[E] .  (In the video, when the commentary states 'the gap had already widened right from the start', what is the exact time
duration between this point and when the swimmers reach the opposite end of the pool? Please specify the precise start and end timestamps.)
Answer: 00:00:19 - 00:00:40

Figure 1: A grounding example in OmniEval. OmniEval requires integrating both visual and audi-
tory signals to provide accurate answers for certain questions, while also incorporating fine-grained
understanding tasks such as grounding.

To address this critical evaluation gap, we introduce OmniEval, a novel benchmark specifically de-
signed to rigorously evaluate omni-modal models that jointly process and reason across visual, au-
ditory, and textual inputs, supporting both Chinese and English languages. OmniEval possesses sev-
eral distinctive features: 1) Full-modal Collaborative Evaluation: We have meticulously designed
evaluation tasks that emphasize the strong coupling between audio and video, requiring models to
effectively leverage the collaborative perception of all modalities for correct answers (Figure [I).
This transcends evaluation approaches that merely sum individual unimodal understanding capabil-
ities. 2) Diverse Videos and Task Scenarios: OmniEval comprises 780 audio-visual synchronized
video clips, including 255 Chinese videos and 525 English videos. These videos ensuring broad
coverage of evaluation scenarios. 3) Diverse and Fine-grained Task Design: OmniEval contains
2411 question-answer pairs, consisting of 1278 open-ended questions and 1133 multiple-choice
questions. These questions are divided into 3 major task types and 12 sub-task types, aiming for a
comprehensive assessment of model capabilities. Notably, we introduce a more fine-grained video
localization task, termed Grounding (Figure [I), to precisely evaluate the model’s ability to locate
information in the temporal dimension.

Based on OmniEval, we have conducted extensive evaluations of various state-of-the-art omni-
modal models. The experimental results indicate that existing models face significant challenges
in understanding real-world information. This clearly demonstrates the challenging nature of Om-
niEval and the urgent need to enhance the capabilities of current models.

The main contributions of this paper are as follows:

* We construct and release OmniEval, a novel and comprehensive omni-modal evaluation
benchmark suite, that focuses on assessing models’ synergistic understanding and process-
ing of visual, auditory, and textual information, with bilingual support including Chinese
and English.

* OmniEval introduces diverse video content and fine-grained task types, particularly estab-
lishing tasks that emphasize strong audio-visual coupling and precise temporal localization
(i.e., Grounding), offering a new perspective for a more comprehensive measurement of
model capabilities.

* We conduct extensive testing and analysis of current mainstream omni-modal models on
OmniEval, providing valuable baselines, revealing the deficiencies of existing models in
real-world understanding, and offering insights for future research directions.

We hope that OmniEval will serve as an important benchmark to drive the development of omni-
modal models, encouraging researchers to build more powerful models capable of understanding
and constructing coherence from the context of all modalities. Our dataset and evaluation code are
publicly available to foster further research in the community.
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2 RELATED WORK

2.1 MULTIMODAL LARGE LANGUAGE MODELS

Recent advancements in large language models (LLMs) have demonstrated significant improve-
ments across a wide range of natural language processing (NLP) tasks (Team), [2025a} 2024; 2020;
2025b). These models, characterized by their deep architectures and extensive pretraining on mas-
sive corpora, have consistently outperformed traditional methods in benchmarks such as question
answering (Bonfigli et al., 2024)), machine translation (Zhang & Shafiq|[2024), summarization (Bon-
figli et al.,|2024), and text generation (Teaml 2024} 2020). There has been an increasing interest in
incorporating multiple modalities into large language models (LLMs), with the goal of enhanc-
ing their capabilities beyond textual processing alone. (Li et al. [2023a; [Liu et al., 2023} Xu et al.,
2025; [Fu et al., 2025) In the visual domain, raw images are processed through specialized visual
encoders to obtain high-level features, while in the audio domain, raw waveforms are first sam-
pled and then encoded using dedicated audio encoders. These modality-specific representations
are subsequently aligned with textual tokens using intermediate modules such as Querying Trans-
formers (Q-Former) (Li et al., [2023a), Multi-Layer Perceptrons (MLPs) (Liu et al., [2023)), or other
alignment techniques (Wang et al., 2024a). This semantic alignment enables the fusion of hetero-
geneous inputs into a unified representation space. Leveraging the generative capabilities of LLMs,
the resulting multimodal architecture achieves strong performance across a range of tasks, including
image captioning (Liu et al.; 2023;|Wang et al., 2024a), visual and spoken question answering, audio
captioning (Chu et al., 2023)), and multimodal dialogue (Fu et al., 2025). In addition, some models
have attempted to integrate both visual and auditory understanding into a single, unified frame-
work, thereby creating omni-modality models (Xu et al., [2025} [Fu et al.| 2025} |Cheng et al.| 2024;
OpenBMB Team), 2025). However, evaluating the performance of such models presents a significant
challenge, as it requires designing tasks that simultaneously involve multiple modalities. The lack
of standardized evaluation metrics and benchmarks for these models remains an open problem, and
addressing this issue is critical for advancing the development and comparison of multimodal Al
systems.

Table 1: The comparison of various benchmarks encompasses several key aspects: modality in-
volved (Modality), languages involved (Language), format of Q&A pair (QA Format), whether
including event grounding task (Grounding), the source of videos (Video Sources), the method of
generating questions and answers (QA Generation) and the number of Q&A pairs (No. of QA
Pairs). A, V and I for modality represent audio, video and image, respectively. OE indicates open-
ended questions, MC indicates multiple-choice questions.

Feature \ Modality Language QA Format Grounding 'Video Sources QA Generation  No. of QA Pairs
OmniBench (Li et al.}{2024) I+A EN MC No No Manual 1143
MMbench-Video (Fang et al.|2024) v EN OE No YouTube Manual 1998
DeVE-QA (Qin et al.{|2024 v EN Limited OE  Yes (Grounding required) ActivityNet LLM + Manual 78000
Video-MME (Fu et al.|2024] V+A EN MC No YouTube Manual 2700
WorldSense (Hong et al.|/2025a V+A EN MC Yes (Coarse-grained) YouTube, MusicAVQA Manual 3172
LongVALE (Geng et al.|[2024) V+A EN No QA Yes YouTube LLM + Manual 0
StreamingBench (Lin et al.{2024} V+A EN OE No YouTube LLM + Manual 4500
CG-Bench (Chen et al.|[2024] V+A EN MC No YouTube, BiliBili Manual Curation 12129
OmniEval \ V+A EN & CN MC & OE Yes (Fine-grained) YouTube, Youku LLM + Manual 2411

2.2 MULTIMODAL BENCHMARKS

Recently, a wide range of benchmarks exist to evaluate the understanding and reasoning capabilities
of large language models (Zellers et al., 2019; Wang et al., [2024b; [Hendrycks et al.l [2021}; |Cobbe
et al., 2021). In the visual domain, prior works assess model performance across multiple dimen-
sions, including object recognition (Young et al., 2014} Plummer et al., [2017; [Li et al., 2023b) and
localization (Kazemzadeh et all 2014} [Yu et al., 2016)), image-based question answering (Goyal
et al., 2017; |Antol et al.} 2015} Zhang et al., 2016; |L1u et al., 2024; |Gurari et al., 2018), and visual
commonsense reasoning (Masry et al.,|2022;|Lu et al.}[2024; |Singh et al.; 2019). Similarly, in the au-
ditory domain, existing benchmarks focus on tasks such as automatic speech recognition (Hernandez
et al.,|2018}; Conneau et al., [2022} |Panayotov et al.,|2015; Bu et al.| 2017; Zhang et al., [2022; |Chen
et al.| 2021)), audio-based question answering (Joshi et al., 2017} [Lipping et al.l 2022} Nachmani
et al.| [2024; Yang et al.,|2024), and audio scene understanding (Poria et al.} 2019} |Chen et al., 2018;
Nagrani et al, 2017; |Yang et al.,2024). These benchmarks serve as essential tools for measuring
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Figure 2: The left diagram depicts task question quantity grouped by functional categories in Om-
niEval. Blue bars represent perception-related tasks, green indicates information processing tasks,
and orange denotes higher-order reasoning tasks. The right diagram depicts video duration distri-
bution. The unit of the number is second. OmniEval covers videos of various lengths. The average
video length in the dataset is 214 seconds.

the effectiveness of multimodal models in real-world applications, enabling systematic comparisons
across different modalities and model architectures. For omni-modality models, the number of avail-
able benchmarks is limited, and most of them exhibit certain shortcomings. Some studies
provide static images along with speech to test models’ abilities in speech understanding and
static scene perception, yet they overlook the model’s capacity to process dynamic visual informa-
tion. Other work (Hong et al.| [2025b)) focuses on testing models’ understanding of both audio and
video by providing video and audio inputs, but these benchmarks often lack diversity in testing sce-
narios, tasks, and languages. As a result, there is a need for more comprehensive and standardized
evaluation frameworks that can better assess the full range of capabilities in omni-modality models,
including their ability to handle dynamic multimodal inputs across varied real-world conditions. To
address these issues, we propose OmniEval, a comprehensive benchmark designed specifically for
evaluating the full range of capabilities in omni-modality models.

3 OMNIEvAL

To foster more comprehensive evaluation for omni-modal MLLMs, we introduce a new benchmark
dataset specifically designed with multilingual support and a balanced mix of question formats. This
chapter details the systematic pipeline developed for its construction, emphasizing methodological
rigor and quality control. Our pipeline integrates automated data processing using large models with
essential manual curation, aiming to create a challenging and reliable resource for evaluating Omni
models across diverse cognitive tasks, including fine-grained event understanding inspired by the
need for temporal localization.

3.1 DATA COLLECTION AND PREPROCESSING PIPELINE

This phase focused on assembling a diverse video collection and extracting the necessary textual
modalities (captions and speech transcripts) to serve as the foundation for Q&A generation.

For the first step, we initiated the process by aggregating video information from established video
benchmarks such as FineVideo (Farre et al.,[2024) and Youku-mplug (Xu et al.,[2023) in compliance
with the license regulations. This hybrid sourcing strategy aimed to ensure broad coverage of topics,
styles, and real-world scenarios, moving beyond the confines of specific dataset domains. The goal
was to create a varied collection challenging models on multiple fronts.

For the second step, we acquired corresponding captions and subtitles for each identified video.
When available from source benchmarks, existing high-quality caption tracks were utilized. For
other videos, captions were obtained with MLLMs like Qwen2.5-VL-72B 2025) or gen-
erated using appropriate methods, ensuring a textual description accompanied each video.
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To capture the linguistic content within the audio track, we employed the Volcano Engine large
model for Automated Speech Recognition (ASR). Accurate ASR was performed for all videos,
configured for the primary languages present (Chinese and English), yielding transcripts of spoken
content.

Then for the third step, Videos containing little or no spoken content (identified via metrics like
word count or speech duration) were excluded based on the ASR transcripts. Specifically, as with
FineVideo (Farre et al., |[2024), we calculate the word sensitivity for each video and exclude those
with subdensity less than 0.5. This ensures that the remaining videos possess meaningful linguistic
information in the audio modality, complementing the visual stream. This step is vital as our subse-
quent Q&A generation leverages both captions and transcripts (Section 3.3), aiming to probe deeper
audio-visual understanding rather than purely visual recognition.

3.2 Q&A PAIR GENERATION AND ANNOTATION PIPELINE

Leveraging the curated videos and their associated text, we implemented a multi-stage pipeline for
generating and categorizing QA pairs.

3.2.1 AUTOMATED Q&A GENERATION

We employed large models for automated Q&A generation, capitalizing on their ability to process
multimodal context and formulate relevant questions. The process involved three stages:

(i) Open-Ended (OE) Generation: Models were prompted with both video captions and audio
subtitles to generate OE questions and corresponding answers. This approach provides rich
context, combining descriptive text with spoken dialogue/narration. Generating OE questions
first allows for capturing more complex and nuanced aspects of the video content without the
initial constraint of predefined answer choices.

(i) Multiple-Choice (MC) Derivation: Subsequently, the generated OE pairs were used as input for
another large model task: converting the OE question into an MC format. This involved gen-
erating plausible distractors alongside the correct answer derived from the OE pair. Including
MC questions facilitates standardized evaluation protocols common in the field.

(iii) Removing those overly simple samples: To ensure the complexity and robustness of the bench-
mark, we rigorously evaluated the Q&A pairs using multiple large models, and systematically
removed questions that could be answered correctly by all models. This process helps to main-
tain a high level of challenge within the benchmark.

Specifically, we have meticulously crafted two distinct categories of Q&A pairs tailored for
Grounding: moment-based and time span-based. Moment questions zero in on pinpointing the
precise instant when fleeting events unfold within the video, exemplified by queries like, “At what
exact moment does the girl in red commence her speech within the frame?”” Conversely, time span
questions delve into the broader temporal context, seeking to identify the specific duration during
which a particular event transpires, such as, “Over which interval in the video does the girl in red en-
gage in delivering her speech?”. Each grounding Q&A pair is categorized into either moment-based
or the time span-based category and is assessed using different methods accordingly.

3.2.2 Q&A CLASSIFICATION

Each generated Q&A pair (both OE and MC) was automatically classified into one of 12 prede-
fined categories reflecting different cognitive skills: Grounding, Object Counting, Action Counting,
Prospective Reasoning, Text-Rich Understanding, Event Understanding, Attribute Perception, Ac-
tion Perception, Spatial Understanding, Causal Reasoning, Object Perception, and Emotion Recog-
nition. This fine-grained classification enables nuanced analysis of model strengths and weaknesses
across different facets of multimodal understanding. The inclusion of a grounding category specifi-
cally targets the model’s ability to link answers to specific temporal moments in the video.

3.2.3 MANUAL CURATION AND QUALITY ASSURANCE

Recognizing the potential limitations of fully automated generation, we involved meticulous manual
review and revision of all Q&A pairs by human annotators to guarantee:
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Table 2: Format Distribution of Q&A Table 3: Language distribution of videos and Q&A pairs

pairs in OmniEval. in OmniEval.
Question Format Num. Language Videos Num. Q&A Pairs Num.
Open-Ended (OE) 1278 Chinese (CN) 255 898
Multiple-Choice (MC) 1133 English (EN) 525 1513
Total 2411 Total 780 2411

* Clarity: Refining question and answer wording for unambiguity.

* Relevance and Grounding: Confirming questions are pertinent and answerable from the video,
not just based on model biases.

* Accuracy: Ensuring answers are factually correct based on video content.

* Judgement: To determine the number of modalities of information required to answer a question
correctly and refine the task type of questions.

* Distribution: Given that the Q&A pair directly generated by large language models are unevenly
distributed in terms of capability items, such as Grounding, Action Counting, Object Counting,
we asked five people to watch the videos and write corresponding question-answer pairs.

3.2.4 BENCHMARK STATISTICS

The construction pipeline yielded a benchmark with a significant number of Q&A pairs distributed
across different formats, task types, and languages.

As shown in Tables 2] and B} our benchmark features a well-balanced distribution of OE and MC
question formats, accommodating diverse evaluation criteria. This design enables performance anal-
ysis on both OE and MC questions when an LLM is available for OE evaluation. Conversely, with-
out an LLM for OE assistance, the benchmark still facilitates a thorough analysis of MC question
performance alone.

As shown in Figure?] the question—answer pairs are classified into 12 distinct types, enabling a fine-
grained analysis of model performance across various cognitive skills. Special attention is given
to the inclusion of a grounding task (208 pairs), which addresses the need for models to precisely
localize information in the temporal dimension.

A key characteristic of our benchmark is its bilingual nature, encompassing both Chinese and En-
glish videos and Q&A pairs. This facilitates research in multilingual MLLM capabilities.

3.3 COMPARISON WITH EXISTING BENCHMARKS

Our benchmark introduces several distinguishing features compared to existing video understanding
benchmarks, aiming to provide a more comprehensive evaluation tool for omni models. Table [T]
provides a comparative overview.

Key differentiators of our benchmark include:

* Bilingual Support: Unlike many prominent benchmarks that are predominantly English-based
(e.g., WorldSense, LongVALE, StreamingBench), our benchmark incorporates a significant vol-
ume of both English and Chinese videos and Q&A pairs. This facilitates direct evaluation and
development of omni models for these two major languages.

* Emphasis on Open-Ended Questions: Many existing benchmarks heavily rely on MCQs for eval-
uation (e.g. WorldSense, DeVE-QA). Our benchmark provides a substantial number of OE ques-
tions (1278 pairs), allowing for a more in-depth assessment of omni models’ generative capabili-
ties, their ability to formulate detailed explanations, and their performance in scenarios that mimic
natural human interaction more closely than restricted choice formats.

¢ Integrated Event Grounding: While benchmarks like LongVALE and DeVE-QA emphasize tem-
poral understanding and event localization, our benchmark uniquely includes grounding as one of
its 12 Q&A categories. This enables targeted evaluation of a model’s ability to connect answers
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to specific video segments, demonstrating comprehension beyond mere pattern matching. Al-
though WorldSense features coarse-grained “Temporal Localization” multiple-choice questions
(e.g., event at beginning/middle/end), our grounding questions offer both multiple-choice and
open-ended formats, targeting exact video moments with greater granularity and an adaptive eval-
uation strategy.

By addressing these aspects, our benchmark aims to complement existing resources and provide a
more nuanced and comprehensive platform for advancing MLLLM research in video understanding.

Table 4: Overall performance on OmniEval. MNT indicates max new tokens. OE indicates open-
ended QAs, MC indicates multiple-choice QAs.

Methods \ Params Frames MNT Perception Understanding Reasoning Avg Overall
OE MC OE MC OE MC OE MC
Qwen2.5-Omni-7B {Xu et al.[[2025] 7B 1fps 1024 4348 7140 4870 6620 6566 8890 48385 71.67 59.57
Qwen2.5-Omni-3B (Xu et al.|[2025) 3B 1fps 1024 3780 6830 42.09 5850 60.55 8830 42.85 66.81  54.11
Baichuan-Omni-1.5 (L1 et al.|[2025a) 7B 64 1024 3158 66.20 35.14 6120 4874 8540 3553 66.81 50.23
MiniCPM-O 2.6 (OpenBMB Team|[2025] 8B 64 1024 1820 28.80 26.87 3420 2033 2510 22.16 30.71  26.18
VITA-1.5 (Fu et al.|[2025] 8B 64 1024 572 1293 9.72 7.49 429 877 720 9.80 8.42
gemini-2.5-pro-preview-05-06 (Google & DeepMind][2025] - 1fps - 5642 69.40 6395 6830 8132 6020 63.15 67.52 65.20

4 EXPERIMENTS AND FINDINGS

In this section, we conduct a comprehensive evaluation of existing open-source multimodal MLLMs
and Gemini 2.5 (Google & DeepMind, 2025) based on the proposed OmniEval benchmark. We
begin by outlining the experimental setup and evaluation methodology, detailing the tasks, metrics
and data used in our analysis. We then present an in-depth examination of the quantitative results,
highlighting the strengths and weaknesses of different models across various modalities and tasks.
Furthermore, we investigate several key factors that influence model performance, offering insights
into the challenges and opportunities in multimodal understanding.

4.1 SETTINGS

To comprehensively evaluate the multimodal understanding capabilities of current models, we assess
6 fully multimodal models that integrate visual, textual, and auditory information. The evaluation
configuration parameters are shown in Table 4]

For evaluation, we adopt different strategies for MC and OE Q&A pairs. For MC Q&A pairs, we di-
rectly determine whether the option output by the model is consistent with the ground truth. For OE
questions, we leverage a powerful proprietary language model to assist in assessment. Specifically,
we categorize Q&A pairs into grounding, counting and other tasks and utilize different assessment
methods for different categories.

4.1.1 EVALUATION FOR GROUNDING OE Q&AS

For grounding open-ended tasks, we first leverage LLMs to extract temporal information from the
model’s output. Subsequently, we employ distinct strategies to evaluate various data types.

Specifically, for moment-based Q&A pairs, we’ve developed an adaptive evaluation method based
on video frame extraction. When the number of extracted frames is low, the time intervals be-
tween adjacent frames become significantly larger. In such scenarios, precise alignment between

Table 5: Performance of the model on different language dimensions on OmniEval.

Methods ‘ Params Frames MNT English Chinese

OE MC ALL OE MC ALL
Qwen2.5-Omni-7B (Xu et al.[[2025) 7B 1fps 1024 4454 70.88 58.05 54.70 7339 62.13
Qwen2.5-Omni-3B (Xu et al.|{2025) 3B 1fps 1024  40.21 6598 5343 4644 68.63 55.26
Baichuan-Omni-1.5 (L1 et al.|[2025a) 7B 64 1024 3697 6443 51.06 33.57 7199 48.84
MiniCPM-O 2.6 (OpenBMB Team|[2025) 8B 64 1024 791 1495 11.52 4155 6499 50.87
VITA-1.5 (Fu et al.|[2025) 8B 64 1024 222 039 128 13.99 3035 20.50
gemini-2.5-pro-preview-05-06 (Google & DeepMind][2025) - 1fps - 61.30 68.56 65.02 6566 6527 6550
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the model’s prediction and the true value may not be achievable. Therefore, we use a larger thresh-
old to evaluate the model’s output, allowing for a more lenient assessment of correctness. As shown
in Eq[T] an answer is considered correct if the difference falls within this predefined threshold, which
is determined by either the frames per second (FPS) or a combination of the maximum frame number
and video duration.

(D

FPS’ max_frame

_ [True, if|[f —tg| < 7
| False, otherwise

. 1 video_duration
, where 7., = min _—

where R indicated the discriminant result, ¢ indicates the time stamp extracted from the model
output, ¢4 indicates the ground truth time stamp and 7, indicates the threshold.

Similar to LongVALE (Geng et al., [2024])), for time span-based open-ended Grounding Q&A pairs,
we evaluate correctness using the Intersection over Union (IoU) between the predicted and ground-
truth time intervals, as detailed in Equation @ For our evaluation, T¢jme_span Was set to 0.5.

R = True, if IOU(I, Igt) 2 Ttime_span )
False, otherwise

where I indicates the time span extracted from the model output, I indicates the ground truth time

span and T¢ime_span indicates the threshold.

4.1.2 EVALUATION FOR COUNTING AND OTHER OE Q&AS

For counting open-ended tasks, like object or action counting, LLMs are used to precisely extract
numerical values from the model outputs. These extracted values are then directly compared to the
ground truth: a match indicates a correct response, while any mismatch is considered incorrect.

For other open-ended tasks, we leverage LLMs to compute the similarity between the model outputs
and the ground truth. Answers are then assigned a score, a floating-point number between 0 and 1,
where 1 signifies a completely correct answer and 0 denotes a completely incorrect one.

4.2 MAIN RESULTS ON OMNIEVAL

The comprehensive evaluation results on OmniEval are presented in Table 4] and [5] Table [] de-
tails MLLM performance across three target categories (perception, comprehension, and reasoning),
whereas Table [5] highlights language-specific performance (English and Chinese). Both tables fur-
ther delineate MLLM performance on open-ended (OE) and multiple-choice (MC) question formats.

As Table [d] shows, gemini-2.5-pro-preview-05-06 achieved the highest overall score of 65.20, lead-
ing particularly in OE Q&As. Qwen2.5-Omni-7B followed with an overall score of 59.57, generally
outperforming its 3B counterpart (specifically, Qwen2.5-Omni-3B with 1fps achieved 54.11 over-
all, and Baichuan-Omni 1.5 with 64 frames achieved 50.29 overall). MiniCPM-O 2.6 scored 26.18
overall, and ViTA-1.5 scored 8.42 overall, showing comparatively lower performance. It is worth
noting that ViTA-1.5 encounters tensor size out of range issues when receiving video and audio in-
formation with a sample length of over about 200 seconds simultaneously. In addition, Minicpm-o
also encounters size mismatch issues on some test cases.

Gemini-2.5-pro-preview-05-06 demonstrates robust bilingual capabilities, achieving 65.02 (EN) and
65.50 (CN) overall scores. MiniCPM-O 2.6 uniquely excels in Chinese (50.87 overall, driven by
64.99 MC) compared to English (11.52). Qwen2.5-Omni models perform strongly in both lan-
guages (7B: 58.05 EN, 62.13 CN; 3B: 53.43 EN, 55.26 CN). Baichuan-Omni-1.5 shows moderate
performance (51.06 EN, 48.84 CN), while ViTA-1.5 lags significantly (1.28 EN, 20.50 CN).

These results underscore the advanced capabilities of models like Gemini 2.5 Pro on complex multi-
modal tasks, highlighting their superior performance and robust bilingual support on OmniEval.

4.3 IMPACT OF VISUAL INFORMATION AND AUDIO INFORMATION

In light of the significant performance disparities observed in the preceding evaluation, we further
investigate how different types of modality-specific data contribute to the overall performance of
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open-source MLLMs. Specifically, we analyze the impact of visual, auditory, and multimodal inputs
on task outcomes, aiming to understand the relative importance and interplay of each modality. This
exploration provides valuable insights into the data composition and modality balance required for
effective multimodal understanding.

Table 6: Impact of visual information for MLLMs.

Methods \ Perception Understanding Reasoning Overall

Audio +Caption +Video Audio +Caption +Video Audio +Caption +Video Audio +Caption +Video
Qwen2.5-Omni-7B (Xu et al.|[2025} 4558 68.49 56.60  40.76 5379 5692 7381 7537 76.58  47.77 63.08 59.57
Qwen2.5-Omni-3B (Xu et al.|2025} 44.02 68.01 52,13 3935 51.26 49.80 7239 75.55 73.59 4599 61.67 54.11
Baichuan-Omni-1.5 (L1 et al.||2025a] 42.20 50.95 47.85  38.09 42.75 47.39  69.01 53.54 65.97 4425 47.70 50.23
MiniCPM-O 2.6 (OpenBMB Team[2025) | 39.88 61.03 2318  36.72 48.06 3031 59.97 59.05 2257  41.24 54.90 26.18
VITA-1.5 (Fu et al.[[2025] 17.97 29.26 9.11 14.88 24.80 8.67 22.51 24.63 6.39 17.16 26.60 8.42

4.3.1 VISUAL INFORMATION.

To assess the contribution of visual information, experiments were conducted across three input
modalities: audio-only, audio augmented with captions, and audio augmented with visual frames.
As presented in Table[f] the incorporation of captions consistently yields a substantial enhancement
in model performance across all evaluated methods. For example, Qwen2.5-Omni-7B exhibited
an increase in overall score from 47.77 (audio-only) to 63.08 (audio with captions). Conversely,
the subsequent addition of raw video frames generally did not lead to further improvements; in
several instances, it resulted in performance degradation, which indicates weakness in aligning video
with audio information. This phenomenon, notably observed with MiniCPM-O 2.6 (overall score
decreasing from 54.90 to 26.18 with video addition), suggests that under the current evaluation
paradigm, these MLLMs more effectively leverage textual captions than raw video content.

4.3.2 AUDIO INFORMATION.

To assess audio information’s impact, we evaluated three input configurations: video-only,
video+subtitles, and video+audio. Table [/|demonstrates that subtitles consistently enhance perfor-
mance (e.g., Qwen2.5-Omni-7B’s overall score increased from 47.49 to 59.57). Conversely, adding
raw audio yields mixed results; some models improve (e.g., Baichuan-Omni-1.5 overall: 41.78 to
50.23), while others degrade (e.g., MiniCPM-O 2.6 overall: 38.67 to 26.18). It is worth mentioning
that both MiniCPM-o0 and VITA-1.5 are affected by the engineering problems when merging video
information and audio information for inference. This indicates that the multimodal understanding
of raw audio by current MLLMs still requires significant advancement.

Table 7: Impact of audio information for MLLMs.

Methods \ Perception Understanding Reasoning Overall

‘ Video +Subtitle +Audio Video +Subtitle +Audio Video +Subtitle +Audio Video +Subtitle +Audio
Qwen2.5-Omni-7B (Xu et al.|[2025} 46.93 59.83 56.60  47.00 60.37 56.92  50.90 81.71 76.58  47.49 63.19 59.57
Qwen2.5-Omni-3B (Xu et al.|[2025} 40.70 57.37 5213 41.21 57.73 49.80 4543 79.19 7359 4153 60.65 54.11
Baichuan-Omni-1.5 (Li et al./[2025a} 39.62 48.11 47.85  42.29 46.90 47.39  46.50 66.03 6597  41.78 50.11 50.23
MiniCPM-O 2.6 (OpenBMB “Team[2025] | 38.54 51.60 23.18  39.05 50.97 3031 38.61 66.37 2257  38.67 53.39 26.18
VITA-1.5 (Fu et al.[2025] 11.54 12.47 9.11 10.34 12.44 8.67 6.57 6.66 6.39 10.19 11.50 8.42

5 CONCLUSION

In this paper, we introduced OmniEval, a refined video understanding benchmark meticulously de-
signed to address the significant limitations of current evaluation methodologies. OmniEval distin-
guishes itself through several key contributions: its inherent bilingual support (English and Chinese)
enables the crucial direct evaluation of multilingual omni-modal models, a capability largely absent
in predominantly English-centric benchmarks. Furthermore, the benchmark’s substantial inclusion
of open-ended questions facilitates a more comprehensive and nuanced assessment of Omni-modal
Large Models’ generative capabilities, moving beyond the constraints of benchmarks heavily reliant
on multiple-choice formats. Finally, the explicit and granular integration of event grounding pro-
vides a targeted evaluation of these models’ ability to precisely connect answers to specific video
moments, thereby advancing beyond coarser temporal localization approaches. Collectively, Om-
niEval offers a valuable and complementary resource for the research community, fostering more
nuanced and holistic progress in the challenging domain of video understanding.



Under review as a conference paper at ICLR 2026

REFERENCES

Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, Iain Barr, Yana Hasson, Karel
Lenc, Arthur Mensch, Katherine Millican, Malcolm Reynolds, et al. Flamingo: a visual language
model for few-shot learning. Advances in neural information processing systems, 35:23716—
23736, 2022.

Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Margaret Mitchell, Dhruv Batra, C. Lawrence
Zitnick, and Devi Parikh. VQA: Visual Question Answering. In International Conference on
Computer Vision (ICCV), 2015.

Agnese Bonfigli, Luca Bacco, Mario Merone, and Felice Dell’Orletta. From pre-training to fine-
tuning: An in-depth analysis of large language models in the biomedical domain. Artificial
Intelligence in Medicine, 157:103003, 2024. ISSN 0933-3657. doi: https://doi.org/10.1016/].
artmed.2024.103003. URL https://www.sciencedirect.com/science/article/
©1i/50933365724002458.

Hui Bu, Jiayu Du, Xingyu Na, Bengu Wu, and Hao Zheng. Aishell-1: An open-source mandarin
speech corpus and a speech recognition baseline, 2017. URL https://arxiv.org/abs/
1709.05522,

Guo Chen, Yicheng Liu, Yifei Huang, Yuping He, Baoqi Pei, Jilan Xu, Yali Wang, Tong Lu, and
Limin Wang. Cg-bench: Clue-grounded question answering benchmark for long video under-
standing. arXiv preprint arXiv:2412.12075, 2024.

Guoguo Chen, Shuzhou Chai, Guanbo Wang, Jiayu Du, Wei-Qiang Zhang, Chao Weng, Dan Su,
Daniel Povey, Jan Trmal, Junbo Zhang, et al. Gigaspeech: An evolving, multi-domain asr corpus
with 10,000 hours of transcribed audio. arXiv preprint arXiv:2106.06909, 2021.

Shao-Yen Chen, Chung-Chi Hsu, Chien-Chung Kuo, and Lun-Wei Ku. Emotionlines: An emotion
corpus of multi-party conversations. arXiv preprint arXiv:1802.08379, 2018.

Zesen Cheng, Sicong Leng, Hang Zhang, Yifei Xin, Xin Li, Guanzheng Chen, Yongxin Zhu, Wenqi
Zhang, Ziyang Luo, Deli Zhao, and Lidong Bing. VideoLLaMA 2: Advancing Spatial-Temporal
Modeling and Audio Understanding in Video-LLMs. arXiv preprint arXiv:2406.07476, 2024.
doi: 10.48550/arXiv.2406.07476. URL https://arxiv.org/abs/2406.07476.

Yunfei Chu, Jin Xu, Xiaohuan Zhou, Qian Yang, Shiliang Zhang, Zhijie Yan, Chang Zhou, and
Jingren Zhou. Qwen-Audio: Advancing Universal Audio Understanding via Unified Large-Scale
Audio-Language Models. arXiv preprint arXiv:2311.07919, 2023. doi: 10.48550/arXiv.2311.
07919. URLhttps://arxiv.org/abs/2311.07919.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training Verifiers to Solve Math Word Problems. arXiv preprint arXiv:2110.14168,
2021. doi: 10.48550/arXiv.2110.14168. URL https://arxiv.org/abs/2110.14168.

Alexis Conneau, Min Ma, Simran Khanuja, Yu Zhang, Vera Axelrod, Siddharth Dalmia, Jason
Riesa, Clara Rivera, and Ankur Bapna. Fleurs: Few-shot learning evaluation of universal repre-
sentations of speech, 2022. URL https://arxiv.org/abs/2205.12446.

Xinyu Fang, Kangrui Mao, Haodong Duan, Xiangyu Zhao, Yining Li, Dahua Lin, and Kai Chen.
Mmbench-video: A long-form multi-shot benchmark for holistic video understanding. Advances
in Neural Information Processing Systems, 37:89098-89124, 2024.

Miquel Farre, Andi Marafioti, Lewis Tunstall, Leandro Von Werra, and Thomas Wolf. Finevideo.
https://huggingface.co/datasets/HuggingFaceFV/finevideo, 2024.

Chaoyou Fu, Yuhan Dai, Yongdong Luo, Lei Li, Shuhuai Ren, Renrui Zhang, Zihan Wang, Chenyu

Zhou, Yunhang Shen, Mengdan Zhang, et al. Video-mme: The first-ever comprehensive evalua-
tion benchmark of multi-modal 1lms in video analysis. arXiv preprint arXiv:2405.21075, 2024.

10


https://www.sciencedirect.com/science/article/pii/S0933365724002458
https://www.sciencedirect.com/science/article/pii/S0933365724002458
https://arxiv.org/abs/1709.05522
https://arxiv.org/abs/1709.05522
https://arxiv.org/abs/2406.07476
https://arxiv.org/abs/2311.07919
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2205.12446
https://huggingface.co/datasets/HuggingFaceFV/finevideo

Under review as a conference paper at ICLR 2026

Chaoyou Fu, Haojia Lin, Xiong Wang, Yi-Fan Zhang, Yunhang Shen, Xiaoyu Liu, Haoyu Cao,
Zuwei Long, Heting Gao, Ke Li, Long Ma, Xiawu Zheng, Rongrong Ji, Xing Sun, Caifeng Shan,
and Ran He. VITA-1.5: Towards GPT-40 Level Real-Time Vision and Speech Interaction. arXiv
preprint arXiv:2501.01957, 2025.

Tiantian Geng, Jinrui Zhang, Qingni Wang, Teng Wang, Jinming Duan, and Feng Zheng. Long-
vale: Vision-audio-language-event benchmark towards time-aware omni-modal perception of
long videos. arXiv preprint arXiv:2411.19772, 2024.

Google and DeepMind. Gemini 2.5: Our most intelligent ai model, 2025.

Yash Goyal, Tejas Khot, Douglas Summers-Stay, Dhruv Batra, and Devi Parikh. Making the V
in VQA matter: Elevating the role of image understanding in Visual Question Answering. In
Conference on Computer Vision and Pattern Recognition (CVPR), 2017.

Danna Gurari, Qing Li, Abigale J. Stangl, Anhong Guo, Chi Lin, Kristen Grauman, Jiebo Luo, and
Jeffrey P. Bigham. VizWiz Grand Challenge: Answering Visual Questions from Blind People.
arXiv preprint arXiv:1802.08218, 2018. doi: 10.48550/arXiv.1802.08218. URL https://
arxiv.org/abs/1802.08218.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring Massive Multitask Language Understanding. arXiv preprint
arXiv:2009.03300, 2021. doi: 10.48550/arXiv.2009.03300. URL https://arxiv.org/
abs/2009.03300.

Francois Hernandez, Vincent Nguyen, Sahar Ghannay, Natalia Tomashenko, and Yannick Esteve.
TED-LIUM 3: Twice as Much Data and Corpus Repartition for Experiments on Speaker Adapta-
tion, pp. 198-208. Springer International Publishing, 2018. ISBN 9783319995793. doi: 10.1007/
978-3-319-99579-3 21. URL|http://dx.doi.org/10.1007/978-3-319-99579-3_
21,

Jack Hong, Shilin Yan, Jiayin Cai, Xiaolong Jiang, Yao Hu, and Weidi Xie. Worldsense: Evaluating
real-world omnimodal understanding for multimodal llms. arXiv preprint arXiv:2502.04326,
2025a.

Jack Hong, Shilin Yan, Jiayin Cai, Xiaolong Jiang, Yao Hu, and Weidi Xie. Worldsense: Evaluating
real-world omnimodal understanding for multimodal 1lms, 2025b. URL jhttps://arxiv.
org/abs/2502.04326.

Mandar Joshi, Eunsol Choi, Daniel S. Weld, and Luke Zettlemoyer. Triviaga: A large scale distantly
supervised challenge dataset for reading comprehension, 2017. URL https://arxiv.org/
abs/1705.03551.

Sahar Kazemzadeh, Vicente Ordonez, Mark Matten, and Tamara L. Berg. Referitgame: Referring
to objects in photographs of natural scenes. In Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing (EMNLP), pp. 787-798. Association for Computa-
tional Linguistics, 2014. doi: 10.3115/v1/D14-1086. URL https://aclanthology.org/
D14-1086/.

Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language-image
pre-training with frozen image encoders and large language models. In The Tenth International
Conference on Learning Representations (ICLR),2023a. URL https://openreview.net/
forum?id=Jmwt TzBvW1.

Yadong Li, Jun Liu, Tao Zhang, Song Chen, Tianpeng Li, Zehuan Li, Lijun Liu, Lingfeng
Ming, Guosheng Dong, Da Pan, et al. Baichuan-omni-1.5 technical report. arXiv preprint
arXiv:2501.15368, 2025a.

Yifan Li, Yifan Du, Kun Zhou, Jinpeng Wang, Wayne Xin Zhao, and Ji-Rong Wen. Evaluating
object hallucination in large vision-language models. In Proceedings of the 2023 Conference
on Empirical Methods in Natural Language Processing (EMNLP), 2023b. URL https://
openreview.net/forum?id=xo0zJw0OkZXF.

11


https://arxiv.org/abs/1802.08218
https://arxiv.org/abs/1802.08218
https://arxiv.org/abs/2009.03300
https://arxiv.org/abs/2009.03300
http://dx.doi.org/10.1007/978-3-319-99579-3_21
http://dx.doi.org/10.1007/978-3-319-99579-3_21
https://arxiv.org/abs/2502.04326
https://arxiv.org/abs/2502.04326
https://arxiv.org/abs/1705.03551
https://arxiv.org/abs/1705.03551
https://aclanthology.org/D14-1086/
https://aclanthology.org/D14-1086/
https://openreview.net/forum?id=JmwtTzBvW1
https://openreview.net/forum?id=JmwtTzBvW1
https://openreview.net/forum?id=xozJw0kZXF
https://openreview.net/forum?id=xozJw0kZXF

Under review as a conference paper at ICLR 2026

Yizhi Li, Ge Zhang, Yinghao Ma, Ruibin Yuan, Kang Zhu, Hangyu Guo, Yiming Liang, Jiaheng
Liu, Zekun Wang, Jian Yang, et al. Omnibench: Towards the future of universal omni-language
models. arXiv preprint arXiv:2409.15272, 2024.

Yizhi Li, Ge Zhang, Yinghao Ma, Ruibin Yuan, Kang Zhu, Hangyu Guo, Yiming Liang, Jiaheng
Liu, Zekun Wang, Jian Yang, Siwei Wu, Xingwei Qu, Jinjie Shi, Xinyue Zhang, Zhenzhu Yang,
Xiangzhou Wang, Zhaoxiang Zhang, Zachary Liu, Emmanouil Benetos, Wenhao Huang, and
Chenghua Lin. Omnibench: Towards the future of universal omni-language models, 2025b. URL
https://arxiv.org/abs/2409.15272.

Junming Lin, Zheng Fang, Chi Chen, Zihao Wan, Fuwen Luo, Peng Li, Yang Liu, and Maosong
Sun. Streamingbench: Assessing the gap for mllms to achieve streaming video understanding.
arXiv preprint arXiv:2411.03628, 2024.

Samuel Lipping, Parthasaarathy Sudarsanam, Konstantinos Drossos, and Tuomas Virtanen. Clotho-
aqa: A crowdsourced dataset for audio question answering, 2022. URL https://arxiv.
org/abs/2204.09634.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. arXiv
preprint arXiv:2304.08485, 2023. doi: 10.48550/arXiv.2304.08485. URL https://arxiv.
org/abs/2304.08485.

Yuan Liu, Haodong Duan, Yuanhan Zhang, Bo Li, Songyang Zhang, Wangbo Zhao, Yike Yuan, Jiaqi
Wang, Conghui He, Ziwei Liu, Kai Chen, and Dahua Lin. MMBench: Is Your Multi-modal Model
an All-around Player? arXiv preprint arXiv:2307.06281,2024. doi: 10.48550/arXiv.2307.06281.
URLhttps://arxiv.org/abs/2307.06281.

Pan Lu, Hritik Bansal, Tony Xia, Jiacheng Liu, Chunyuan Li, Hannaneh Hajishirzi, Hao Cheng, Kai-
Wei Chang, Michel Galley, and Jianfeng Gao. MathVista: Evaluating Mathematical Reasoning of
Foundation Models in Visual Contexts. arXiv preprint arXiv:2310.02255, 2024. doi: 10.48550/
arXiv.2310.02255. URL https://arxiv.org/abs/2310.02255.

Ahmed Masry, Xuan Long Do, Jia Qing Tan, Shafiq Joty, and Enamul Hoque. ChartQA: A bench-
mark for question answering about charts with visual and logical reasoning. In Smaranda Mure-
san, Preslav Nakov, and Aline Villavicencio (eds.), Findings of the Association for Computational
Linguistics: ACL 2022, pp. 2263-2279, Dublin, Ireland, May 2022. Association for Computa-
tional Linguistics. doi: 10.18653/v1/2022.findings-acl.177. URL https://aclanthology.
org/2022.findings—-acl.177/.

Eliya Nachmani, Alon Levkovitch, Roy Hirsch, Julian Salazar, Chulayuth Asawaroengchai, Soroosh
Mariooryad, Ehud Rivlin, RJ Skerry-Ryan, and Michelle Tadmor Ramanovich. Spoken question
answering and speech continuation using spectrogram-powered LLM. In The Twelfth Interna-
tional Conference on Learning Representations, 2024. URL https://openreview.net/
forum?id=izrOLJov5y.

Arsha Nagrani, Joon Son Chung, and Andrew Zisserman. Voxceleb: a large-scale speaker identifi-
cation dataset. arXiv preprint arXiv:1706.08612, 2017.

OpenBMB Team. Minicpm-o 2.6: A gpt-4o-level mllm for vision, speech, and multimodal
live streaming on your phone. Online; OpenBMB Notion Page, 2025. Available at:
https://github.com/OpenBMB/MiniCPM-o.

Vassil Panayotov, Guoguo Chen, Daniel Povey, and Sanjeev Khudanpur. Librispeech: An asr corpus
based on public domain audio books. In Proceedings of the 2015 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), pp. 5206-5210, 2015. doi: 10.1109/
ICASSP.2015.7178964.

Bryan A. Plummer, Liwei Wang, Christopher M. Cervantes, Juan C. Caicedo, Julia Hockenmaier,

and Svetlana Lazebnik. Flickr30k entities: Collecting region-to-phrase correspondences for richer
image-to-sentence models. IJCV, 123(1):74-93, 2017.

12


https://arxiv.org/abs/2409.15272
https://arxiv.org/abs/2204.09634
https://arxiv.org/abs/2204.09634
https://arxiv.org/abs/2304.08485
https://arxiv.org/abs/2304.08485
https://arxiv.org/abs/2307.06281
https://arxiv.org/abs/2310.02255
https://aclanthology.org/2022.findings-acl.177/
https://aclanthology.org/2022.findings-acl.177/
https://openreview.net/forum?id=izrOLJov5y
https://openreview.net/forum?id=izrOLJov5y

Under review as a conference paper at ICLR 2026

Soujanya Poria, Devamanyu Hazarika, Navonil Majumder, Gaurav Naik, Rada Mihalcea, and Erik
Cambria. MELD: A multimodal multi-party dataset for emotion recognition in conversation.
In Proceedings of the AAAI Conference on Artificial Intelligence: Workshop on Explainable Al
(xAl), number 1 in AAAI Workshops, pp. 66—73, 2019. doi: 10.1609/aaaiw.v33i01.330166.

Hangyu Qin, Junbin Xiao, and Angela Yao. Question-answering dense video events. arXiv preprint
arXiv:2409.04388, 2024.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748-8763. PmLR, 2021.

Amanpreet Singh, Vivek Natarajan, Meet Shah, Yu Jiang, Xinlei Chen, Dhruv Batra, Devi Parikh,
and Marcus Rohrbach. Towards VQA Models That Can Read. arXiv preprint arXiv:1904.08920,
2019. doi: 10.48550/arXiv.1904.08920. URL https://arxiv.org/abs/1904.08920.

DeepSeek Al Team. Deepseek v3: Scaling large language models with sparse mixture-of-experts.
Technical Report arXiv:2505.14283, DeepSeek Inc., 2025a.

Open Al Team. Language models are few-shot learners. Technical Report arXiv:2005.14165, arXiv
preprint arXiv:2005.14165, jul 2020. URL https://arxiv.org/abs/2005.14165.
Preprint.

Open Al Team. Gpt-4 technical report. Technical Report arXiv:2303.08774, OpenAl, 2024.

Qwen Al Team. Qwen2.5: Technical Report. Technical Report arXiv:2412.15115, Alibaba Cloud,
January 2025b. URL https://arxiv.org/abs/2412.15115. Preprint.

Weihan Wang, Qingsong Lv, Wenmeng Yu, Wenyi Hong, Ji Qi, Yan Wang, Junhui Ji, Zhuoyi Yang,
Lei Zhao, Xixuan Song, Jiazheng Xu, Bin Xu, Juanzi Li, Yuxiao Dong, Ming Ding, and Jie Tang.
CogVLM: Visual Expert for Pretrained Language Models. arXiv preprint arXiv:2311.03079,
2024a. doi: 10.48550/arXiv.2311.03079. URL |https://arxiv.org/abs/2311.03079.

Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni, Abhranil Chandra, Shiguang Guo, Weiming
Ren, Aaran Arulraj, Xuan He, Ziyan Jiang, Tianle Li, Max Ku, Kai Wang, Alex Zhuang, Rongqi
Fan, Xiang Yue, and Wenhu Chen. MMLU-Pro: A More Robust and Challenging Multi-Task
Language Understanding Benchmark. arXiv preprint arXiv:2406.01574, 2024b. doi: 10.48550/
arXiv.2406.01574. URL https://arxiv.org/abs/2406.01574.

Haiyang Xu, Qinghao Ye, Xuan Wu, Ming Yan, Yuan Miao, Jiabo Ye, Guohai Xu, Anwen Hu, Yaya
Shi, Guangwei Xu, et al. Youku-mplug: A 10 million large-scale chinese video-language dataset
for pre-training and benchmarks. arXiv preprint arXiv:2306.04362, 2023.

Jin Xu, Zhifang Guo, Jinzheng He, Hangrui Hu, Ting He, Shuai Bai, Keqin Chen, Jialin Wang,
Yang Fan, Kai Dang, Bin Zhang, Xiong Wang, Yunfei Chu, and Junyang Lin. Qwen2.5-Omni
Technical Report. arXiv preprint arXiv:2503.20215, 2025.

Qian Yang, Jin Xu, Wenrui Liu, Yunfei Chu, Ziyue Jiang, Xiaohuan Zhou, Yichong Leng, Yuan-
jun Lv, Zhou Zhao, Chang Zhou, and Jingren Zhou. Air-bench: Benchmarking large audio-
language models via generative comprehension, 2024. URL https://arxiv.org/abs/
2402.07729.

Peter Young, Alice Lai, Micah Hodosh, and Julia Hockenmaier. From image descriptions to visual
denotations: New similarity metrics for semantic inference over event descriptions. TACL, 2:
67-78, 2014.

Licheng Yu, Mark Barrow, Tamara L. Berg, and Yuandong Tian. Modeling context in re-
ferring expressions. In Proceedings of the 14th European Conference on Computer Vision
(ECCV), volume 9908 of Lecture Notes in Computer Science, pp. 3—19. Springer, 2016.
doi: 10.1007/978-3-319-46493-0_1. URL https://link.springer.com/chapter/
10.1007/978-3-319-46493-0_1.

13


https://arxiv.org/abs/1904.08920
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2412.15115
https://arxiv.org/abs/2311.03079
https://arxiv.org/abs/2406.01574
https://arxiv.org/abs/2402.07729
https://arxiv.org/abs/2402.07729
https://link.springer.com/chapter/10.1007/978-3-319-46493-0_1
https://link.springer.com/chapter/10.1007/978-3-319-46493-0_1

Under review as a conference paper at ICLR 2026

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. HellaSwag: Can a
Machine Really Finish Your Sentence? arXiv preprint arXiv:1905.07830, 2019. doi: 10.48550/
arXiv.1905.07830. URL https://arxiv.org/abs/1905.07830.

Binbin Zhang, Hang Lv, Pengcheng Guo, Qijie Shao, Chao Yang, Lei Xie, Xin Xu, Hui Bu, Xiaoyu
Chen, Chenchen Zeng, Di Wu, and Zhendong Peng. Wenetspeech: A 10000+ hours multi-domain
mandarin corpus for speech recognition, 2022. URL https://arxiv.org/abs/2110.
03370

H. Zhang and M. O. Shafiq. Survey of transformers and towards ensemble learning using trans-
formers for natural language processing. Journal of Big Data, 11:25, 2024. doi: 10.1186/
s40537-023-00842-0.

Peng Zhang, Yash Goyal, Douglas Summers-Stay, Dhruv Batra, and Devi Parikh. Yin and Yang:
Balancing and answering binary visual questions. In Conference on Computer Vision and Pattern
Recognition (CVPR), 2016.

14


https://arxiv.org/abs/1905.07830
https://arxiv.org/abs/2110.03370
https://arxiv.org/abs/2110.03370

	Introduction
	Related Work
	Multimodal Large Language Models
	Multimodal Benchmarks

	OmniEval
	Data Collection and Preprocessing Pipeline
	Q&A Pair Generation and Annotation Pipeline
	Automated Q&A Generation
	Q&A Classification
	Manual Curation and Quality Assurance
	Benchmark Statistics

	Comparison with Existing Benchmarks

	Experiments and Findings
	Settings
	Evaluation for Grounding OE Q&As
	Evaluation for Counting and other OE Q&As

	Main Results on OmniEval
	Impact of Visual Information and Audio Information
	Visual Information.
	Audio Information.


	Conclusion

