
Language Arithmetics: Towards Systematic Language Neuron
Identification and Manipulation

Anonymous ACL submission

Abstract001

Large language models (LLMs) exhibit strong002
multilingual abilities, yet the neural mecha-003
nisms behind language-specific processing re-004
main unclear. We analyze language-specific005
neurons in Llama-3.1-8B, Mistral-Nemo-12B,006
and Aya-Expanse-8B & 32B across 21 typolog-007
ically diverse languages, identifying neurons008
that control language behavior. Using the Lan-009
guage Activation Probability Entropy (LAPE)010
method, we show that these neurons cluster in011
deeper layers, with non-Latin scripts showing012
greater specialization. Related languages share013
overlapping neurons, reflecting internal repre-014
sentations of linguistic proximity.015

Through language arithmetics, i.e. system-016
atic activation addition and multiplication, we017
steer models to deactivate unwanted languages018
and activate desired ones, outperforming sim-019
pler replacement approaches. These interven-020
tions effectively guide behavior across five mul-021
tilingual tasks: language forcing, translation,022
QA, comprehension, and NLI. Manipulation is023
more successful for high-resource languages,024
while typological similarity improves effective-025
ness. We also demonstrate that cross-lingual026
neuron steering enhances downstream perfor-027
mance and reveal internal "fallback" mecha-028
nisms for language selection when neurons are029
progressively deactivated.030

1 Introduction031

The emergence of large language models (LLMs)032

with impressive multilingual capabilities has raised033

fundamental questions about how these systems in-034

ternally represent and process different languages035

(Wendler et al., 2024; Zhao et al., 2024). While036

models like Llama-3 (Grattafiori et al., 2024)037

and Gemma-3 (Team et al., 2024) perform well038

across dozens of languages despite limited multi-039

lingual training data, the neural mechanisms un-040

derlying this competence, such as the emergence041

of language-specific spaces, cross-lingual feature042

Figure 1: Success rates of language forcing when deac-
tivating neurons for the input language and activating
those of a target language for Llama-3.1-8B.

sharing, and internal language routing, are not fully 043

understood. Understanding these mechanisms is 044

crucial not only for advancing theoretical insights 045

into multilingual representation learning, but also 046

for building more controllable and interpretable lan- 047

guage technologies (Amodei et al., 2016; Gabriel, 048

2020; Singh et al., 2024). 049

Recent studies have begun to explore how multi- 050

lingual LLMs process language internally, showing 051

that specific neurons may specialize in particular 052

languages (Tang et al., 2024; Kojima et al., 2024; 053

Zhao et al., 2024; Mondal et al., 2025). However, 054

these works often focus on narrow language sets or 055

specific architectures, leaving open questions about 056

how language-specific processing scales across ty- 057

pologically diverse languages and how these in- 058

sights can support model control and enhancement. 059

In this work, we present the first large-scale 060

investigation of language-specific neuron iden- 061

tification and manipulation in the Llama-3.1- 062

8B (Grattafiori et al., 2024), Mistral-Nemo-12B 063

(AI, 2024), and Aya-Expanse-8B & 32B (Dang 064
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et al., 2024) models across 21 typologically di-065

verse languages. We examine the distribution of066

language-sensitive neurons, their cross-linguistic067

overlap, and the evolution of output language dis-068

tributions across layers. Using the Language Acti-069

vation Probability Entropy (LAPE) method (Tang070

et al., 2024), we identify neurons with strong lan-071

guage preferences and report several key findings.072

Unlike previously tested models such as Llama-2073

(Touvron et al., 2023), BLOOM (Le Scao et al.,074

2023), and Phi-2 (Javaheripi et al., 2023), the mod-075

els we study exhibit concentrated language-specific076

activity in their deeper layers. Analyzing output077

language distributions with logit lens (Wendler078

et al., 2024) across layers reveals that language079

generation predominantly occurs in the final lay-080

ers, aligning with the concentration of language-081

sensitive neurons. Non-Latin script languages show082

both a higher number of specialized neurons and083

less cross-language overlap, while typologically084

related Germanic and Romance languages share085

more neurons–reflecting linguistic proximity and086

possibly orthographic similarities in their internal087

representations.088

Building on these findings, we establish sim-089

ple additive and multiplicative neuron intervention090

techniques, which we call language arithmetics1,091

to test the causal role of language-specific neu-092

rons in controlling language use while preserving093

internal representations. Unlike prior approaches094

that rely on activation replacement (Tang et al.,095

2024; Kojima et al., 2024), our approach adds096

target-language patterns to hidden states, while si-097

multaneously multiplying unwanted language pat-098

terns with 0. We demonstrate that language arith-099

metics outperforms both replacement-based meth-100

ods (Tang et al., 2024; Kojima et al., 2024) and101

the widely used DiffMean (Marks and Tegmark,102

2023) approach on a novel language forcing task,103

where models are expected to answer questions104

in a specific target language without being explic-105

itly prompted, with especially strong results for106

languages better represented in pretraining. We107

further evaluate additive language arithmetic on108

four downstream tasks–machine translation, ques-109

tion answering, natural language inference, and110

machine comprehension–and show that targeted111

neuron activation improves performance without112

any task-specific fine-tuning, contrasting with the113

1The naming follows conceptually similar works on task
and prompt arithmetics (Ilharco et al., 2023; Belanec et al.,
2024).

findings of Mondal et al. (2025). For example, our 114

intervention improves translation scores by up to 115

10% and enables precise cross-lingual transfer. Ad- 116

ditionally, we find that when dominant language 117

signals are suppressed, models fall back to the next 118

most probable language, suggesting the presence 119

of internal "fallback" mechanisms for language 120

selection. 121

Overall, our work (1) reveals new patterns of 122

language-specific neuron specialization and layer- 123

wise processing, (2) applies a minimally invasive 124

steering technique to test their causal influence, and 125

(3) demonstrates practical benefits for multilingual 126

model control and performance. 127

2 Related Work 128

Recent research has focused on uncovering 129

language-specific mechanisms in LLMs. Several 130

works have proposed methods to identify and in- 131

tervene on neurons specialized for particular lan- 132

guages. 133

Tang et al. (2024) introduce the Language Acti- 134

vation Probability Entropy (LAPE) method, demon- 135

strating that certain neurons are critical to multi- 136

lingual capacity and can be manipulated to control 137

language behavior via activation (setting neurons to 138

their average values) or deactivation (zeroing them 139

out). Kojima et al. (2024), building on Cuadros 140

et al. (2022), similarly identify neurons selectively 141

active for one language and inactive for others, and 142

show that setting these to their median activation 143

can shift generation language. Tan et al. (2024) 144

further propose a frequency-based method to rank 145

FFN neurons by activation counts on language- 146

specific inputs, and show that fine-tuning these neu- 147

rons improves downstream tasks such as machine 148

translation. Expanding beyond FFNs, Zhao et al. 149

(2024) introduce Parallel Language-specific Neu- 150

ron Detection (PLND), which identifies language 151

neurons in both attention and FFN modules. They 152

show that deactivating these neurons reduces per- 153

formance in the corresponding language, and that 154

fine-tuning them on limited language data enhances 155

multilingual ability. 156

Meanwhile, Deng et al. (2025) highlight the 157

problem of superposition–where neurons encode 158

multiple concepts (Elhage et al., 2022)–and instead 159

use sparse autoencoders (SAE) (Cunningham et al., 160

2023) to extract latent dimensions linked to lan- 161

guage identity. Ablating these features degrades 162

performance, and they use them to guide steering 163
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vector construction for better control. Following164

this, Chou et al. (2025) show that modifying a165

single SAE feature can steer generation language166

with high accuracy and semantic preservation, es-167

pecially in mid-to-late layers. Similarly, Andrylie168

et al. (2025) introduce SAE-LAPE to identify in-169

terpretable language-specific features in the sparse170

weight space, enabling both language identification171

and control.172

Our work extends this line of research in two173

dimensions: (1) We analyze the internal structure174

of LLMs without relying on auxiliary models such175

as SAEs, and (2) we look at a wider range of more176

diverse languages. We conduct a comprehensive177

study of language-specific neurons in LLaMA-3.1-178

8B (Grattafiori et al., 2024), Mistral-Nemo-12B179

(AI, 2024), and Aya-Expanse-8B & 32B (Dang180

et al., 2024) across 21 languages using the LAPE181

method (Tang et al., 2024), systematically investi-182

gating both neuron identification and manipulation183

to assess their effectiveness for multilingual control184

and downstream performance improvement.185

3 Language Neuron Identification186

3.1 Identification Method187

Language Activation Probability Entropy (LAPE)188

(Tang et al., 2024) identifies language-specific neu-189

rons within LLMs by analyzing activation patterns190

across different languages in the FFN modules of191

a transformer-based language model. For each192

neuron, it measures how often that neuron acti-193

vates when processing inputs in various languages.194

These activation frequencies are normalized into a195

probability distribution over languages, and entropy196

(Shannon, 2001) is used to quantify how language-197

specific each neuron’s behavior is.198

Intuitively, neurons with low LAPE values are199

considered language-specific since their activation200

probabilities are concentrated on one or two lan-201

guages, showing minimal activity for others. We202

select the bottom K% (K={1..5}) of neurons by203

LAPE score after filtering out neurons with weak204

overall activity: neurons are excluded if none of205

their language activations exceed the 95th per-206

centile of all activations (filter rate). To ensure207

neurons exhibit clear language preferences, they208

further get refined by verifying that their activation209

probability for a given language surpasses the 95th210

percentile (activation threshold). These thresholds211

help eliminate noisy or non-informative neurons212

and retain only those with high, selective activation213

characteristics. 214

3.2 Per-layer Output Language 215

We additionally analyze how language identity 216

emerges across layers by computing three key 217

statistics, using a method referred to as logit lens 218

(Nostalgebraist, 2020), similar to Wendler et al. 219

(2024). Specifically, we apply a FastText classi- 220

fier (Joulin et al., 2016) to determine the language 221

of the model’s output at each layer. First, we 222

track the probability of generating the correct target 223

language, revealing the depth at which language- 224

specific behavior becomes prominent on the output 225

level. Second, we measure the probability assigned 226

to English regardless of the input, assessing the 227

extent of English interference across layers. Third, 228

we compute the entropy of the output language dis- 229

tribution to quantify the diversity and confidence 230

of the model’s predictions. 231

3.3 Models and Data 232

We use the Llama-3.1-8B base model (Grattafiori 233

et al., 2024) for all experiments. Notably, Llama- 234

3.1 is a decoder-only model that was neither explic- 235

itly trained for multilingual tasks nor instruction- 236

tuned. Its pre-training data includes approxi- 237

mately 5% non-English content spanning over 238

30 languages. We also include Mistral-Nemo 239

(Mistral AI Team, 2024), a slightly larger 12- 240

B-parameter base model, featuring strong multi- 241

lingual, reasoning, and coding performance in its 242

size class. Finally, we evaluate the Aya Expanse 243

family (Dang et al., 2024): Aya-Expanse-8B, an 244

open-weight, instruction-tuned multilingual model 245

optimized via data arbitrage, preference training, 246

and model-merging; and its larger sibling, Aya- 247

Expanse-32B–both supporting 23 languages and 248

offering state-of-the-art multilingual performance. 249

For neuron identification, we use the CulturaX 250

corpus (Nguyen et al., 2023), a large-scale mul- 251

tilingual dataset comprising over 6.3 trillion to- 252

kens across 167 languages. The data is sourced 253

from Common Crawl (Wenzek et al., 2019) and 254

Wikipedia (Foundation) and has undergone exten- 255

sive cleaning and language identification to ensure 256

high quality. To compute language-specific acti- 257

vations and obtain LAPE values, we truncate the 258

dataset for each language to 500MB due to effi- 259

ciency reasons. For per-layer output experiments, 260

we use 6 questions that are available in all lan- 261

guages, as described in Section 4.2. 262
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Figure 2: Neuron overlap between languages and lan-
guage families in Llama-3.1, based on the top 1% of
neurons identified as language-specific. Diagonals show
counts per language; off-diagonals show overlaps. As-
terisks mark non-Latin script languages.

3.4 Results263

Language Neuron Distribution: Figure 3 and Ap-264

pendix E show total neuron activation distributions265

with minimal early-layer activity and pronounced266

peaks in later layers across all 21 languages. In-267

terestingly, language-specific processing in Llama-268

3.1, as well as the other tested models, demon-269

strates a strong concentration in layers 17-28, peak-270

ing at layers 27-28. Earlier Layers 0-15 show rela-271

tively minimal language-specific activity, with only272

modest peaks around layers 3-4 and 8-9. This con-273

trasts with previous findings by Tang et al. (2024),274

Kojima et al. (2024), and Zhao et al. (2024), who275

report both early- and late-layer language neuron276

specialization.277

Individual language distribution analysis (see278

Appendices E and F) reveals typologically coherent279

clustering, with Germanic languages (German (de),280

Dutch (nl), Afrikaans (af), Danish (da), Norwe-281

gian (no), Swedish (sv)) showing similar language282

neuron distribution patterns concentrated around283

layers 24-26. Tibetan (bo) and Chinese (zh) (the284

only Sino-Tibetan languages we tested) demon-285

strate the most concentrated deep-layer activation,286

while Romance languages display more varied pat-287

terns. These patterns are observed across all tested288

models.289

Language Neuron Overlap: The language neu-290

ron overlap matrices in Figure 2 and Appendices291

Figure 3: Layer-wise distribution of language-specific
neurons in Llama-3.1 across 21 languages. Similar pat-
terns for individual languages and other models are
shown in Appendix E.

E and F show that language families exhibit inter- 292

nal cohesion with substantial neuron overlap, as 293

also observed by Tan et al. (2024). In LLama-3.1, 294

for instance, Germanic languages show particularly 295

high overlap values (e.g., Swedish (sv) and Danish 296

(da): 290 neurons representing 76.3% and 74.7% of 297

their respective language-specific neurons; Dutch 298

(nl) and Afrikaans (af): 250 neurons representing 299

76.5% and 59.0% respectively), possibly confirm- 300

ing that the similar activation patterns observed in 301

Figure 13 reflect shared neurons rather than coinci- 302

dental distributions. 303

Non-Latin script languages display notably 304

higher neuron counts, with Chinese (zh*: 681), 305

Tibetan (bo*: 1492), and Hindi (hi*: 781) having 306

substantially more language-specific neurons than 307

their Latin-script counterparts. Interestingly, these 308

languages show minimal overlap with Latin-script 309

languages, suggesting that orthographic complexity 310

requires dedicated, non-transferable neural special- 311

ization. This is consistent across all models. 312

Per-layer Language Analysis: For more 313

English-centric models (see Appendix G) such as 314

Llama-3.1 and Mistral-Nemo, we observe that the 315

target language tokens predominantly emerge in 316

the final layers (25–30), aligning with the concen- 317

tration of language-specific neurons in those layers. 318

English tokens slightly begin to appear in the ini- 319

tial layers and persist through to the output. This 320

pattern partly aligns with findings by Wendler et al. 321

(2024) and Schut et al. (2025). Language entropy 322

in these models increases across layers: the model 323

appears confident in its language prediction in early 324

layers, but entropy rises from around layer 20 on- 325

ward, suggesting that the decision about which lan- 326

guage to generate is made in the final layers. 327

In contrast, more multilingual models such as 328

Aya-Expanse-8B and 32B exhibit English token 329
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Figure 4: Predicted probabilities of target languages for
Llama-3.1 using logit lens outputs from each layer and
FastText for language identification. Results for other
models are shown in Appendix G.

presence across nearly all layers, while the target330

language is also weakly activated throughout and331

peaks near the end. These models show an oppo-332

site entropy trend: entropy starts high, indicating333

early uncertainty about the generation language,334

and gradually decreases toward the final layers,335

where the model settles on a specific language.336

4 Language Neuron Manipulation337

4.1 Method338

We adopt a manipulation approach inspired by339

Tang et al. (2024), but instead of replacing neuron340

activations with fixed values, as done in Tang et al.341

(2024) (using mean activations) and Kojima et al.342

(2024) (using median activations), we perform an343

additive intervention. This additive strategy is344

less destructive and allows the model to retain more345

of its original contextual dynamics while still shift-346

ing its behavior toward the target language.347

Let a ∈ RL×D be the post-activation tensor after348

the gated projection layer for a single sequence,349

where L is the sequence length, and D is the hidden350

size. Let I ⊂ {1, . . . , D} be the set of neuron351

indices identified as language-specific. For each352

i ∈ I, we define a boost value bi corresponding to353

the average activation of neuron i when processing354

that language.355

We apply the following update to the activation356

tensor:357

a:,i ← a:,i + bi for all i ∈ I358

This additive manipulation shifts the activation359

patterns toward those typical of the desired lan-360

guage, while preserving the original contextual in-361

formation encoded in the activations.362

4.2 Tasks and Data 363

We evaluate our neuron selection and manipulation 364

method across five multilingual tasks to test its 365

effectiveness in both generative and classification 366

settings. For each task, we experiment with five 367

different fractions of language-specific neurons. 368

First, we design a novel controlled language- 369

forcing task using six simple questions ("How are 370

you today?", "What is your name?", "What year is 371

it now?", "What is your favorite color?", "What is 372

the weather like?", "Where are you from?") trans- 373

lated into 21 languages using Google Translate (Wu 374

et al., 2016). For each input question, we deactivate 375

the neurons associated with the source language by 376

setting their activations to zero or a small negative 377

value (see Appendix H) and activate the neurons 378

associated with a desired target language. We then 379

use FastText (Joulin et al., 2016) to identify the lan- 380

guage of the generated output. This setup evaluates 381

the model’s ability to override the input language 382

and generate responses in the specified target lan- 383

guage. 384

We further evaluate our neuron manipulation 385

method across four multilingual downstream tasks 386

covering both generation and classification out- 387

puts. For generation, we use FLORES-200 (Costa- 388

Jussà et al., 2022) for machine translation, activat- 389

ing only target-language neurons during decoding 390

to test whether neuron-level steering can enforce 391

correct-language outputs, and XQuAD (Artetxe 392

et al., 2020) for extractive question answering. For 393

classification, we use XNLI (Conneau et al., 2018b) 394

for natural language inference and Belebele (Ban- 395

darkar et al., 2024) for multiple-choice reading 396

comprehension. We vary the ratio of manipulated 397

neurons to assess how language-specific activation 398

impacts multilingual performance. All evaluations 399

are performed in a zero-shot setting, with prompts 400

and generation hyperparameters detailed in Ap- 401

pendix A. 402

Additionally, we investigate whether models ex- 403

hibit a "fallback" mechanism in language selec- 404

tion during generation. To this end, we use a set of 405

70 English questions from Vicuna (Chiang et al., 406

2023) and progressively deactivate neurons associ- 407

ated with high-resource languages one by one. 408

4.3 Results 409

Language Forcing: For the language forcing task, 410

we compare two neuron manipulation strategies: 411

(1) deactivating neurons associated with the source 412
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Model Intervention Strategy Top 1% Top 2% Top 3% Top 4% Top 5%

Llama-3.1

Additive Activate 12.81% 16.44% 19.43% 21.62% 22.07%
Additive Deactivate + Activate 19.88% 25.13% 27.25% 28.04% 28.12%
Replacement Activate 9.67% 11.56% 12.69% 12.74% 13.53%
Replacement Deactivate + Activate 13.68% 15.91% 16.09% 15.04% 16.21%
DiffMean Activate 9.71% 10.09% 10.54% 11.11% 11.0%
DiffMean Deactivate + Activate 13.98% 16.48% 17.49% 18.71% 19.05%

Table 1: Overall success rates (%) of language forcing for Llama-3.1-8B using three intervention types and two
manipulation strategies across different top-k% neuron thresholds.

language and simultaneously activating neurons413

for the target language, and (2) only activating the414

neurons corresponding to the desired target lan-415

guage. Our results show that the first approach416

more reliably steers the model to generate output in417

the target language (Table 1 and Appendix H). We418

additionally compare our additive language arith-419

metic intervention with the simple replacement420

methods (Tang et al., 2024; Kojima et al., 2024)421

and the widely used DiffMean approach (Marks422

and Tegmark, 2023; Panickssery et al., 2023)2 (see423

Table 1 and Appendix 8). We find that the addi-424

tive method performs best, likely because it is less425

disruptive to the model’s internal representations.426

Figure 1 illustrates the effects of this manipula-427

tion across 21 typologically diverse languages in428

Llama-3.1-8B with the top 5% neuron ratio. The re-429

sults indicate that higher-resourced languages such430

as Chinese (zh), Korean (ko), Japanese (ja), Ger-431

man (de), etc. are more susceptible to successful432

language forcing. In contrast, languages with likely433

lower representation in the pretraining corpus are434

more difficult to control, showing inconsistent out-435

put.436

Below, we provide qualitative examples demon-437

strating successful language forcing, where the438

model generates output in a specified target lan-439

guage despite the input being in a different source440

language:441

Forcing Japanese

Input: Q: Wie geht es dir heute? A:
Output: 今日は元気です。

442

Forcing German

Input: Q: Откуда ты? A:
Output: Ich komme aus Deutschland.

443

2For DiffMean, we construct the steering vector as the
difference between the mean activation for the target language
(positive class) and that of all 20 other languages (negative
class).

Forcing Korean

Input: Q: Comment tu t’appelles? A:
Output: 저는김민수입니다..

444

Downstream Tasks: We evaluate the impact of 445

activating language-specific neurons during infer- 446

ence on four multilingual benchmarks: FLORES- 447

200 and Belebele using all languages covered in 448

our study, XNLI and XQuAD using all available 449

languages. We conduct systematic evaluations on 450

Llama-3.1 and Mistral-Nemo across five neuron ra- 451

tios. Selected heatmap results are shown in Figures 452

5, 7, 8, and 6. 453

Overall, we observe modest improvements (up 454

to 10–20%) or neutral effects for most language 455

pairs when activating neurons from various lan- 456

guages, particularly within the same language fam- 457

ily, in contrast to the negative transfer effects re- 458

ported by Mondal et al. (2025). For instance, 459

activating Romance or Germanic language neu- 460

rons consistently benefits other languages from 461

the same families across all tasks. Task type in- 462

fluences cross-linguistic effects: translation and 463

question answering show more consistent positive 464

transfer, while machine comprehension and natural 465

language inference exhibit mixed results, including 466

occasional negative transfer from distant languages. 467

Activating the actual target language typically im- 468

proves performance across all tasks and languages. 469

Interestingly, some Romance and Germanic lan- 470

guages benefit even from activating Sino-Tibetan 471

and Other language neurons–likely due to the larger 472

number of neurons in those groups and their partial 473

overlap with the other families at current activation 474

ratios. Finally, Hindi and Urdu show dispropor- 475

tionate gains from nearly all language activations, 476

possibly due to polysemantic neurons–units encod- 477

ing multiple concepts (Elhage et al., 2022). 478

Language "Fallbacks": By progressively 479

deactivating high-resource language neurons in 480

Llama-3.1-8B (see Appendix I), we observe that 481
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Figure 5: FLORES performance changes over the
baseline (measured by BLEU score) when activating
language-specific neurons for Mistral-Nemo (5%).

Figure 6: QXuAD performance changes over the base-
line (measured by F1-score) when activating language-
specific neurons for Mistral-Nemo (5%).

Figure 7: BELEBELE changes over the baseline (mea-
sured by accuracy score) when activating language-
specific neurons for Mistral-Nemo (5%).

Figure 8: XNLI changes over the baseline (measured
by accuracy score) when activating language-specific
neurons for LLama-3.1 (4%).

the model exhibits internal "fallback" strategies482

for language generation. When English (en) neu-483

rons are deactivated, the model defaults to Span-484

ish (es), French (fr), and Russian (ru) in a few485

cases. Deactivating English and French shifts re-486

sponses primarily to Russian (ru), with some in487

Italian (it), Spanish (es), and Arabic (ar). Further488

removal of Latin-script languages–Spanish, Italian,489

and Portuguese (pt)–promotes generation in Rus-490

sian, Arabic, and Chinese. Deactivating German,491

Russian, and Arabic leads to "fallback" responses492

in Thai, Vietnamese, and Chinese. Notably, some493

English, Spanish, and French responses persist de-494

spite deactivation, reflecting the model’s strong495

priors for these languages. Similar patterns are ob- 496

served for Mistral-Nemo, but with a slightly differ- 497

ent language hierarchy. We leave a more detailed 498

investigation of these dynamics to future work. 499

5 Discussion 500

5.1 Identification Insights 501

The layer-wise distribution of language-specific 502

neurons in Llama-3.1, Mistral Nemo, and Aya- 503

Expanse partially aligns with prior findings (Tang 504

et al., 2024; Kojima et al., 2024; Zhao et al., 2024). 505

We observe that these neurons are predominantly 506

concentrated in the later layers, whereas Tang et al. 507

(2024) and Kojima et al. (2024) report a dual- 508
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peaked distribution in older models, with concen-509

trations in both early and late layers. Notably,510

Tang et al. (2024) also show that the more mul-511

tilingual BLOOM model (Le Scao et al., 2023)512

exhibits a similar late-layer concentration, a trend513

further supported by Mondal et al. (2025) with re-514

cent multilingual models. This divergence likely515

reflects architectural differences, or variations in516

training data composition. Interestingly, Chou et al.517

(2025) demonstrate that modifying a small num-518

ber of SAE features from mid-to-late layers en-519

ables high-accuracy language steering for high-520

resource languages, while Andrylie et al. (2025)521

similarly find that their SAE-LAPE method identi-522

fies language-specific features concentrated in the523

same layers. These converging results, obtained524

through entirely different methodologies, reinforce525

our observation that language-specific representa-526

tions are predominantly localized in the mid-to-late527

transformer layers of modern multilingual LLMs.528

Layer-wise logit lens analysis complements529

these findings: in all tested models, English token530

probabilities emerge early on and persist, while531

target language tokens appear more sharply in the532

very final layers, which is in line with Wendler et al.533

(2024) and Schut et al. (2025). Entropy trends in534

more English-centric models rise toward the end,535

suggesting that language generation decisions are536

finalized in the later layers. In terms of cross-537

linguistic neuron overlap, we observe clear clus-538

tering patterns based on language families. This539

supports findings from Tan et al. (2024), who re-540

port that related languages share substantial neural541

components while maintaining distinct processing542

features.543

5.2 Manipulation Insights544

Our findings show that neuron-level interventions545

can reliably steer multilingual model behavior,546

with our additive language arithmetic method out-547

performing activation replacement (Tang et al.,548

2024; Kojima et al., 2024) and DiffMean-based ap-549

proaches (Marks and Tegmark, 2023). Activating550

language-specific neurons improves performance551

across both generative and discriminative tasks,552

with the strongest gains observed when the acti-553

vated language matches the target or is typologi-554

cally related, yielding positive transfer within lan-555

guage families, but more limited benefits for struc-556

turally distant languages. Interestingly, Hindi and557

Urdu show disproportionate improvements across558

many interventions, potentially due to neurons559

encoding multiple overlapping functions (Elhage 560

et al., 2022). Moreover, compared to Mondal et al. 561

(2025), who report limited improvements from acti- 562

vation replacement or language neuron fine-tuning 563

on tasks like XNLI (Conneau et al., 2018a) and 564

XQuAD (Artetxe et al., 2019), our method achieves 565

consistent gains due to three key differences. First, 566

we evaluate across a broader and more typologi- 567

cally diverse set of languages. Second, our additive 568

interventions using mean activation vectors pre- 569

serve more of the original representational context. 570

Third, all evaluations are conducted in a strict zero- 571

shot setting, without fine-tuning on downstream 572

tasks in any source language. 573

The effects are especially pronounced in our lan- 574

guage forcing experiments. Deactivating neurons 575

for the input language while simultaneously acti- 576

vating neurons for a desired target language signifi- 577

cantly increases the likelihood of generating output 578

in the target language–even when the input and 579

output languages are typologically distant. These 580

results suggest that target-language neurons con- 581

tain sufficient signal to override source-language 582

priors, especially for languages better represented 583

in pre-training. In contrast, low-resource languages 584

are harder to control, likely due to weaker or less 585

distinct neural representations resulting from lim- 586

ited pretraining exposure. Importantly, manipula- 587

tion also reveals internal "fallback" mechanisms: 588

when dominant language neurons like English or 589

French are deactivated, the model switches to sec- 590

ondary high-resource languages such as Russian 591

or Arabic. This "fallback" hierarchy varies slightly 592

across models but consistently exposes the model’s 593

internal language preferences. The persistence of 594

certain languages despite deactivation–particularly 595

English–highlights the robustness of high-priority 596

language priors in LLMs. 597

6 Conclusion 598

Our large-scale study demonstrates that language- 599

specific neurons encode meaningful linguistic fea- 600

tures that can be identified, analyzed, and manipu- 601

lated to steer model behavior across languages. By 602

employing a novel additive intervention method, 603

we show that activating these neurons allows for 604

generation language control and improves perfor- 605

mance on various multilingual tasks. These find- 606

ings underscore the potential of neuron-level con- 607

trol as an interpretable mechanism for guiding mul- 608

tilingual model outputs. 609
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Limitations610

Our study has several limitations. First, while we611

demonstrate the effectiveness of neuron-level inter-612

ventions across multiple tasks, a broader evaluation613

spanning more diverse downstream settings–such614

as dialogue, summarization, or code generation–615

is needed to assess the generality and robustness616

of our approach. Second, although our interven-617

tions often produce outputs in the desired lan-618

guage, the quality and fluency of these forced out-619

puts across different languages–especially lower-620

resourced ones–remain underexplored and require621

more rigorous evaluation. Third, our current analy-622

sis primarily focuses on isolated neurons with high623

language specificity. This overlooks the possibility624

that language representations may be distributed625

across larger sub-networks or circuits; future work626

should investigate the interactions and dependen-627

cies between such neurons to better understand the628

network-level mechanisms supporting multilingual629

processing.630

Additionally, due to computational constraints,631

not all experiments were run across every model in632

our study. In particular, some analyses (large-scale633

downstream evaluation) were limited to smaller634

models–LLama-3.1-8B and Mistral-Nemo-14B.635

Expanding these evaluations to include larger mod-636

els could reveal further insights but requires signif-637

icantly more resources.638
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Appendix 848

A Prompt Templates 849

A.1 FLORES-200 Machine Translation 850

For the machine translation task, we use the follow- 851

ing prompt format to instruct the model to translate 852

from a source language into a target language: 853

Translate this {source_name} 854

sentence into {target_name}: 855

{source_text}. Translation: 856

Here, {source_name} and {target_name} are 857

replaced by the names of the source and target lan- 858

guages (e.g., French, Hindi), and {source_text} 859

is the input sentence. 860

A.2 XQuAD Question Answering 861

For extractive question answering, we prompt the 862

model to find an answer span in a given context: 863

Answer the question based on the 864

{language_name} context provided. 865

Extract the exact answer from the 866

context. 867

Context: {context} 868

Question: {question} 869

Answer: 870

Here, {language_name} is the name of the lan- 871

guage (e.g., Hindi), and {context}, {question} 872

are the inputs. 873

A.3 Belebele Machine Comprehension 874

For the multiple-choice machine comprehension 875

task, we use: 876

Read the following 877

{language_name} passage and 878

answer the question. 879

Passage: {passage} 880

Question: {question} 881

A. {option_A} 882

B. {option_B} 883

C. {option_C} 884

D. {option_D} 885

Answer: 886

Each {option_X} is a possible answer choice, 887

and the model is expected to return one of A, B, C, 888

or D. 889
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A.4 XNLI Natural Language Inference890

To classify the relationship between a premise and891

hypothesis, we use:892

Given the following893

{language_name} premise and894

hypothesis, determine the895

relationship between them.896

Premise: {premise}897

Hypothesis: {hypothesis}898

Options:899

1. Entailment900

2. Neutral901

3. Contradiction902

Answer:903

The model is expected to return one of the listed904

option numbers or labels.905

A.5 Generation Settings906

We use the same decoding configuration across all907

tasks unless specified otherwise. The generation is908

performed using the following sampling parame-909

ters:910

SamplingParams( temperature=0,911

repetition_penalty=1.1,912

stop_token_ids=[eos_token_id]913

if eos_token_id is not None else914

[], skip_special_tokens=True )915

We vary the max_tokens parameter depending916

on the task:917

• FLORES-200 (Machine Translation):918

max_tokens = 128919

• XQUAD (Question Answering):920

max_tokens = 64921

• XNLI (Natural Language Inference):922

max_tokens = 32923

• BELEBELE (Machine Comprehension):924

max_tokens = 32925

• Language Forcing Experiments:926

max_tokens = 256927

These settings ensure deterministic generation928

(due to temperature=0) while reducing repetition929

and enabling flexible truncation across task types.930
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B Selected Languages

Language Code Language Name

bo Tibetan
mt Maltese
it Italian
es Spanish
de German
ja Japanese
ar Arabic
zh Chinese
af Afrikaans
nl Dutch
fr French
pt Portuguese
ru Russian
ko Korean
hi Hindi
tr Turkish
pl Polish
sv Swedish
da Danish
no Norwegian
en English

Table 2: Language codes and corresponding full names
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C Neuron Counts931

Lang. 1% 2% 3% 4% 5%

bo 1492 2687 3723 4708 5687
mt 617 1578 2687 3853 5043
it 337 761 1198 1653 2104
es 298 667 1007 1358 1717
de 284 651 1065 1509 1965
ja 638 1084 1503 1887 2286
ar 400 708 1093 1472 1913
zh 681 1150 1564 1929 2286
af 455 1174 1966 2852 3803
nl 363 901 1432 2040 2680
fr 269 615 988 1376 1786
pt 310 698 1072 1449 1844
ru 394 717 985 1248 1546
ko 556 830 1054 1264 1484
hi 781 1456 2071 2644 3199
tr 476 1031 1681 2307 2916
pl 378 900 1455 2065 2744
sv 420 990 1614 2358 3089
da 431 1055 1771 2557 3344
no 433 1041 1743 2499 3268
en 61 88 116 140 151

Table 3: Number of language-specific neurons at differ-
ent top-k thresholds in Llama-3.1.

Lang. 1% 2% 3% 4% 5%

bo 1153 1941 2547 3059 3554
mt 250 717 1283 1913 2552
it 155 343 539 766 969
es 154 343 528 730 907
de 130 291 460 656 859
ja 384 770 1113 1446 1808
ar 275 499 703 912 1131
zh 346 717 1076 1380 1723
af 219 567 1012 1549 2115
nl 184 458 791 1207 1646
fr 156 323 475 650 812
pt 175 388 589 799 1001
ru 213 387 520 653 764
ko 335 623 852 1079 1299
hi 310 619 924 1193 1443
tr 213 586 1027 1510 1982
pl 186 436 752 1106 1472
sv 160 451 807 1211 1637
da 171 486 886 1335 1812
no 148 464 836 1237 1643
en 32 55 78 100 117

Table 4: Number of language-specific neurons at differ-
ent top-k thresholds in Mistral-Nemo-Base-2407.

Lang. 1% 2% 3% 4% 5%

bo 1636 3343 4947 6551 8085
mt 433 1169 2108 3079 4150
it 231 591 981 1393 1850
es 277 621 1016 1388 1745
de 211 509 874 1245 1674
ja 636 1171 1580 1983 2393
ar 383 662 962 1251 1566
zh 702 1348 1933 2512 3030
af 296 781 1440 2181 2925
nl 181 485 859 1243 1633
fr 211 489 842 1229 1636
pt 280 621 1007 1408 1811
ru 381 708 1052 1356 1671
ko 597 1051 1405 1763 2110
hi 459 880 1269 1668 2063
tr 322 734 1126 1512 1927
pl 260 633 1003 1364 1746
sv 282 837 1595 2437 3331
da 303 886 1688 2628 3569
no 290 866 1672 2576 3496
en 55 80 115 141 169

Table 5: Number of language-specific neurons at differ-
ent top-k thresholds in Aya-Expanse-8B.

Lang. 1% 2% 3% 4% 5%

bo 1107 2241 3314 4403 5541
mt 568 1431 2403 3427 4461
it 353 758 1192 1629 2076
es 344 711 1100 1483 1805
de 240 631 1105 1557 1986
ja 676 1249 1703 2152 2563
ar 361 643 902 1163 1436
zh 656 1306 1920 2507 3032
af 364 978 1672 2368 3021
nl 235 607 990 1371 1691
fr 280 593 943 1332 1717
pt 362 709 1134 1548 1940
ru 355 757 1138 1514 1860
ko 549 1000 1383 1746 2091
hi 498 956 1296 1604 1899
tr 331 728 1138 1524 1902
pl 276 656 1036 1467 1823
sv 322 897 1585 2273 2925
da 343 980 1739 2488 3162
no 329 968 1705 2448 3102
en 51 85 122 148 171

Table 6: Number of language-specific neurons at differ-
ent top-k thresholds in Aya-Expanse-32B.
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D Downstream Baseline Results
Model af ar bo da de es fr hi it ja ko mt nl no pl pt ru sv tr zh
Llama-3.1 0.227 0.049 0.172 0.233 0.176 0.154 0.276 0.113 0.155 0.024 0.040 0.086 0.136 0.163 0.100 0.311 0.166 0.217 0.096 0.102
Mistral-Nemo 0.114 0.022 0.176 0.109 0.140 0.144 0.215 0.023 0.123 0.140 0.022 0.030 0.088 0.076 0.039 0.190 0.104 0.069 0.041 0.136

(a) Machine translation (BLEU scores).

Model af ar bo da de en es fr hi it ja ko mt nl no pl pt ru sv tr zh
Llama-3.1 0.690 0.760 0.316 0.742 0.764 0.847 0.751 0.764 0.670 0.766 0.729 0.767 0.542 0.750 0.744 0.714 0.777 0.799 0.787 0.727 0.779
Mistral-Nemo 0.689 0.751 0.284 0.706 0.792 0.841 0.823 0.790 0.357 0.806 0.749 0.798 0.408 0.733 0.697 0.659 0.783 0.840 0.714 0.734 0.808

(b) Machine comprehension (accuracy).

Model ar bg de el en es fr hi ru sw th tr ur vi zh
Llama-3.1 0.382 0.361 0.365 0.356 0.429 0.358 0.377 0.289 0.375 0.350 0.386 0.397 0.130 0.358 0.379
Mistral-Nemo 0.332 0.333 0.335 0.335 0.338 0.333 0.349 0.331 0.335 0.332 0.334 0.335 0.327 0.334 0.334

(c) Natural language inference (accuracy).

Model ar de el en es hi ro ru th tr vi zh
Llama-3.1 0.410 0.462 0.422 0.616 0.515 0.460 0.542 0.416 0.459 0.511 0.606 0.355
Mistral-Nemo 0.281 0.443 0.258 0.585 0.556 0.387 0.451 0.362 0.379 0.452 0.444 0.276

(d) Question answering (F1 score).

Table 7: Baseline multilingual evaluation results for translation, comprehension, NLI, and QA.
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E Language Neuron Distributions

Figure 9: Distribution of identified language-specific
neurons across Mistral-Nemo layers for all 21 evalu-
ated languages. The neuron distributions for individual
languages are further in the Appendix.

Figure 10: Distribution of individual language-specific
neurons across Llama-3.1 layers for all 21 languages.

Figure 11: Distribution of individual language-specific
neurons across Mistral-Nemo layers for all 21 lan-
guages.
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Figure 12: Overlap of language-specific neurons between individual languages and language families in Mistral-
Nemo when considering top 1% of neurons as potentially language-specific. Diagonal values indicate the number
of language-specific neurons for each language; off-diagonal values indicate the number of overlapping neurons.
Asterisks denote languages with non-Latin scripts.
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Figure 13: Distribution of individual language-specific neurons across Llama-3.1-8B layers for all 21 languages.

Figure 14: Distribution of individual language-specific neurons across Mistral-Nemo layers for all 21 languages.
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F Additional Results for Aya Models

Figure 15: Distribution of identified language-specific
neurons across Aya-Expanse-8B layers for all 21 evalu-
ated languages.

Figure 16: Distribution of individual language-specific
neurons across Aya-Expanse-8B layers for all 21 lan-
guages.

Figure 17: Distribution of identified language-specific
neurons across Aya-Expanse-32B layers for all 21 eval-
uated languages. The neuron distributions for individual
languages are further in the Appendix.

Figure 18: Distribution of individual language-specific
neurons across Aya-Expanse-32B layers for all 21 lan-
guages.
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Figure 19: Distribution of individual language-specific neurons across Aya-Expanse–8B layers for all 21 languages.

Figure 20: Distribution of individual language-specific neurons across Aya-Expanse-32B layers for all 21 lan-
guages.
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Figure 21: Overlap of language-specific neurons between individual languages and language families in Aya-
Expanse-8B and 32B when considering top 1% of neurons as potentially language-specific. Diagonal values indicate
the number of language-specific neurons for each language; off-diagonal values indicate the number of overlapping
neurons. Asterisks denote languages with non-Latin scripts.
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G Output Analysis with Logit Lens

(a) Probabilities of the target languages. (b) Probabilities of English.

(c) Evolution of target language probability. (d) Heatmap of English probabilities.

Figure 22: Peeking into language prediction across layers using the logit lens for Llama-3.1-8B.
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(a) Probabilities of the target languages. (b) Probabilities of English.

(c) Evolution of target language probability. (d) Heatmap of English probabilities.

Figure 23: Peeking into language prediction across layers using the logit lens for Mistral-Nemo.
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(a) Probabilities of the target languages. (b) Probabilities of English.

(c) Evolution of target language probability. (d) Heatmap of English probabilities.

Figure 24: Peeking into language prediction across layers using the logit lens for Aya-Expanse-8B.

(a) Probabilities of the target languages. (b) Probabilities of English.

(c) Evolution of target language probability. (d) Heatmap of English probabilities.

Figure 25: Peeking into language prediction across layers using the logit lens for Aya-Expanse-32B.
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H Language Forcing

(a) Activate-only - Top 1%

(b) Activate-only - Top 2%

(c) Activate-only - Top 3%

(d) Deactivate-Activate - Top 1%

(e) Deactivate-Activate - Top 2%

(f) Deactivate-Activate - Top 3%

Figure 26: Page 1 - Language forcing results across 5 neuron ratios for two manipulation strategies - activate-only
and deactivate-activate for Llama-3.1-8B. For deactivation, we set the neurons to 0.
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(a) Activate-only - Top 4%

(b) Activate-only - Top 5%

(c) Deactivate-Activate - Top 4%

(d) Deactivate-Activate - Top 5%

Figure 27: Page 2 - Language forcing results across 5 neuron ratios for two manipulation strategies - activate-only
and deactivate-activate for Llama-3.1-8B. For deactivation, we set the neurons to 0.
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(a) Activate-only - Top 1%

(b) Activate-only - Top 2%

(c) Activate-only - Top 3%

(d) Deactivate-Activate - Top 1%

(e) Deactivate-Activate - Top 2%

(f) Deactivate-Activate - Top 3%

Figure 28: Page 1 - Language forcing results across 5 neuron ratios for two manipulation strategies - activate-only
and deactivate-activate for Mistral-Nemo. For deactivation, we set the neurons to -2.5. The results with 0 were
slightly less effective
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(a) Activate-only - Top 4%

(b) Activate-only - Top 5%

(c) Deactivate-Activate - Top 4%

(d) Deactivate-Activate - Top 5%

Figure 29: Page 2 - Language forcing results across 5 neuron ratios for two manipulation strategies - activate-only
and deactivate-activate for Mistral-Nemo. For deactivation, we set the neurons to -2.5. The results with 0 were
slightly less effective
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Model Intervention Strategy Top 1% Top 2% Top 3% Top 4% Top 5%

Mistral-Nemo

Additive Activate 8.05% 8.35% 8.31% 8.28% 8.31%
Additive Deactivate + Activate 8.28% 9.18% 10.36% 11.07% 11.41%
Replacement Activate 7.14% 6.92% 6.8% 6.61% 7.03%
Replacement Deactivate + Activate 9.94% 10.24% 11.11% 11.64% 11.83%
DiffMean Activate 7.82% 8.01% 8.01% 8.05% 8.13%
DiffMean Deactivate + Activate 7.45% 7.94% 8.62% 8.5% 8.99%

Table 8: Overall success rates (%) of language forcing for Mistral-Nemo using three intervention types and two
manipulation strategies across different top-k% neuron thresholds. Among the methods, replacement performs the
worst, while additive and DiffMean interventions achieve comparable results.
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I Language "Fallbacks"

(a) Top 4% neurons

(b) Top 5% neurons

Figure 30: Progressive deactivation of language-specific neurons for high-resource languages for Llama-3.1-8B.
We set the language neurons to -1 for deactivation in this scenario; 0 does not produce the required effects.
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(a) Top 4% neurons

(b) Top 5% neurons

Figure 31: Progressive deactivation of language-specific neurons for high-resource languages for Mistral-Nemo.
We set the language neurons to -2.5 for deactivation in this scenario; values from 0 to -2 do not produce the required
effects.
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