
Published as a conference paper at ICLR 2025

MULTI-TURN CODE GENERATION THROUGH
SINGLE-STEP REWARDS

Arnav Kumar Jain∗1 2, Gonzalo Gonzalez-Pumariega∗3 , Wayne Chen3,
Alexander M Rush3, Wenting Zhao† 3, Sanjiban Choudhury† 3
1Mila- Quebec AI Institute, 2Université de Montréal, 3Cornell University

ABSTRACT

We address the problem of code generation from multi-turn execution feedback.
Existing methods either generate code without feedback or use complex, hierarchi-
cal reinforcement learning to optimize multi-turn rewards. We propose a simple
yet scalable approach, µCODE, that solves multi-turn code generation using only
single-step rewards. Our key insight is that code generation is a one-step recover-
able MDP, where the correct code can be recovered from any intermediate code
state in a single turn. µCODE iteratively trains both a generator to provide code
solutions conditioned on multi-turn execution feedback and a verifier to score the
newly generated code. Experimental evaluations show that our approach achieves
significant improvements over the state-of-the-art baselines. We provide analysis
of the design choices of the reward models and policy, and show the efficacy of
µCODE at utilizing the execution feedback. Our code is available here.

1 INTRODUCTION

Software engineers often iteratively refine their code based on execution errors. A common strategy
for machine code generation is thus to repair code using execution feedback at test time (Chen et al.,
2024; Wang et al., 2024b; Zhao et al., 2024). However, prompting alone is insufficient as it cannot
teach how to recover from all possible errors within a limited context.

We need to train models that can learn from execution feedback during training. Existing approaches
fall into either single-turn or multi-turn settings. In the single-turn setting, methods either train
without execution feedback (Zelikman et al., 2022) or perform one-step corrections (Welleck et al.,
2023; Ni et al., 2024). However, these struggle to iteratively correct errors over multiple turns.
Multi-turn approaches, on the other hand, rely on complex reinforcement learning (RL) (Gehring
et al., 2024a; Kumar et al., 2024b; Zhou et al., 2024) to optimize long-term rewards. While effective
in principle, these methods suffer from sparse learning signals which makes learning inefficient.

Our key insight is that code generation is a one-step recoverable Markov Decision Process (MDP),
implying that the correct code can be recovered from any intermediate state in a single step. This
allows us to greedily maximize a one-step reward instead of relying on complex multi-step reward
optimization. As a result, this reduces the problem from reinforcement learning, which requires
exploration and credit assignment, to imitation learning, where the model simply learns to mimic
correct code, leading to a more stable and efficient training process.

We propose µCODE, a simple and scalable approach for multi-turn code generation from execution
feedback. During training, µCODE follows an expert iteration (Anthony et al., 2017) framework
with a local search expert, enabling iterative improvement of both the generator and the expert. The
process begins by rolling out the current code generator to collect interaction data with execution
feedback. A single-step verifier is then trained on this data and utilized to guide a local search expert
in refining the code and generating training labels. Finally, the generator is fine-tuned using these
labels. Given recent trends of test-time scaling in generating high quality solutions (Brown et al.,
2024; Snell et al., 2024; Wu et al., 2024), µCODE also uses the learned verifier for inference-time

∗Equal contribution. Correspondence to: Arnav (arnav-kumar.jain@mila.quebec) and Gonzalo
(gg387@cornell.edu)

†Equal advising

1

https://github.com/portal-cornell/muCode

Published as a conference paper at ICLR 2025

Prompt (x)
“Check if the

given string is a
palindrome”

def is_palindrome(s):
 return s[0] == s[-1]

Turn 1

❌ is_palindrome(“abca”)==False
❌ is_palindrome(“test”)==False

Turn 2

def is_palindrome(s):
 return s[0] == s[::-1]

✅ is_palindrome(“a”)==True
❌ is_palindrome(“bob”)==True

Turn 3

def is_palindrome(s):
 return s == s[::-1]

✅ is_palindrome(“a”)==True
✅ is_palindrome(“bob”)==True

def is_palindrome(s):
 return s == s[::-1]

(y1)

(o1)
(y2)

(o2)
(y3)

(o3)

y⋆2 y⋆3 y⋆4

Train Verifier
Rϕ(x , y)

Expert

Local search
with

π⋆

Rϕ

Relabel with 𝒟 π⋆

y⋆2

Train Generator
πθ(y |s)

s1
s2 s3

y1
y2

s1
s2 s3

y⋆3

Rollout generator
Aggregate data

πθ
𝒟

Code generation is a
“one-step recoverable” MDP

(a)

(b)

s1

s2 s3 s4

y⋆1

y⋆1

Figure 1: (a) We define the task of multi-turn code generation where for an initial problem x,
the generator πθ provides a solution y1. This solution is evaluated with the public test to get
execution feedback o1. At a turn t, the generator is conditioned on the history to generate solution
yt ∼ πθ(.|x, y<t, o<t). The rollout ends when the turn limit is reached or the public tests pass upon
which the solution is executed on private tests. Since, the agents can generate the optimal solution
at any turn, this is a 1-step recoverable process. (b) Training loop of our method µCODE – which
comprises of a generator and a learned verifier. During each iteration, rollouts are collected using πθ

and we train a verifier Rϕ to rank candidate solutions for a prompt. The verifier Rϕ is then used to
construct a local expert and relabel the collected rollouts. Lastly, the generator is fine-tuned with this
expert dataset.

scaling. Here, µCODE samples N trajectories; at each step, µCODE picks the best code solution
ranked by the learned verifier.

The key contributions of this work are as follows:

1. A novel framework, µCODE, for training code generators and verifiers through multi-turn execu-
tion feedback. We add theoretical analysis of performance bounds using the property of one-step
recoverability for this task.

2. We propose a multi-turn Best-of-N (BoN) approach for inference-time scaling and present benefits
of a learned verifier to select the code solution at each turn.

3. Our approach µCODE outperforms leading multi-turn approaches on MBPP (Austin et al., 2021)
and HumanEval (Chen et al., 2021) benchmarks. Our ablations demonstrate that learned verifiers
aid in learning better generators and show promising scaling law trends with higher inference
budgets.

2 BACKGROUND

Multi-turn Code Generation as a MDP. In multi-turn code generation, an agent iteratively refines
a program to maximize its correctness on private test cases. Given an initial problem prompt x, at
each turn t, the agent generates a complete code snippet yt and executes it on a set of public tests.
The outcomes ot from these tests serve as observations that guide subsequent refinements. This
process continues until the agent generates a code snippet yt that passes all public tests, at which
point the episode terminates, or until the maximum number of turns T is reached without success.
The first successful code, yt, is then evaluated on private tests to compute the correctness score
C(x, yt) ∈ {0, 1}.
We model this as a Markov Decision Process (MDP), where the state is the interaction history
st = {x, y1, o1, . . . , yt−1, ot−1} where s1 = {x}, and the action is the code at = yt. The oracle

2

Published as a conference paper at ICLR 2025

Algorithm 1 µCODE: Training
input Initial generator π0, multi-turn code environment E , and max iterations M

1: for iteration i = 1 . . . M do
2: Rollout generator πθ in multi-turn environment E

to collect datapoints Di ← {(x, st, yt, ot))}
3: Aggregate data D ← D ∪Di

4: Train a verifier Ri
ϕ(x, y) on D

5: Construct a local search expert using verifier
πi
⋆(x) = argmaxy∈D(x) R

i
ϕ(x, y)

6: Relabel data D with πi
⋆(x) to get Di

⋆
7: Train πi

θ with fine-tuning (FT) on Di
⋆

8: end for
output Best generator πθ and verifier Rϕ

reward is defined as R(st, at) = R(x, at) = C(x, yt) if yt passes all public and private tests
(terminating the episode), or 0 otherwise.

During training, given a dataset of problem prompts D, the goal is to find a generator
πθ(yt|x, y1, o1, . . . , yt−1, ot−1), that maximizes the cumulative discounted reward R(x, yt):

max
πθ

Ex∼D,yt∼πθ(·|st)

[
T∑

t=1

γtR(x, yt)

]
. (1)

3 µCODE: MULTI-TURN CODE GENERATION

We propose µCODE, a simple and scalable algorithm for multi-turn code generation using execution
feedback. µCODE follows an expert iteration (Anthony et al., 2017) framework with a local search
expert. µCODE iteratively trains two components – a learned verifier Rϕ to score code snippets
(Section 3.2), and a generator πθ to imitate local search with the verifier (Section 3.3). This iterative
process allows the generator and expert to bootstrap off each other, leading to continuous improvement.
At inference time, both the generator and verifier are used as BoN search to select and execute code
(Section 3.4). Finally, we analyze the performance of µCODE in Section 3.5.

3.1 THE µCODE ALGORITHM

Algorithm 1 presents the iterative training procedure. At an iteration i, the current generator πθ is
rolled out in the multi-turn code environment E to generate interaction data Di ← {(x, st, yt, rt)}.
Every turn t in Di includes the prompt x, interaction history st, code generated yt and the correctness
score from the oracle verifier rt = R(x, yt). This data is then aggregated D ← D ∪Di. The learned
verifier Ri

ϕ is trained on the aggregated data D. An expert is created using Ri
ϕ to perform local

search to find the optimal action πi
⋆(x) = argmaxy∈D(x) R

i
ϕ(x, y), where D(x) are all the code

completions for a given prompt x. The expert πi
⋆(x) relabels the data D with the optimal action. The

generator πi
θ is then trained via fine-tuning (FT) on D. This process iterates M times, and the best

generator and verifier pair on the validation dataset are returned.

3.2 TRAINING VERIFIER

The learned verifier provides dense scores to code solutions for a given problem. At train time, this is
used by the expert to perform local search to obtain optimal code. At inference time, the verifier is
used for multi-turn BoN (3.4) for efficient search. The learned verifier has two distinct advantages
over process reward functions typically used in multi-turn RL: (1) It is conditioned only on the initial
prompt and the current solution, and is not dependent on previous states (2) It is trained via supervised
learning on oracle reward labels. We explore two different losses:

3

Published as a conference paper at ICLR 2025

Algorithm 2 µCODE: Inference loop
input Generator πθ, learned verifier Rϕ, turn limit T, number of rollouts N, public tests, and private

tests
1: Set s1 = {x}, t = 1
2: while true do
3: Generate N rollouts {ynt }Nn=1 ∼ πθ(.|st)
4: Choose best solution y∗t = argmaxn Rϕ(x, y

n
t)

5: Execute y∗t to get execution feedback ot
6: if y∗t passes public tests or t = T then
7: break;
8: end if
9: Update state st+1 = {st, y∗t , ot} and increment t

10: end while
output Return y∗ to execute on public and private tests

Binary Cross-Entropy loss (BCE): The nominal way to train the verifier is to directly predict the
oracle reward (Cobbe et al., 2021):

LBCE(ϕ) = −E(x,y,r)∼D[r logRϕ(x, y)

−(1− r) logRϕ(x, y)]
(2)

Bradley Terry Model (BT): Since the goal of the verifier is to relatively rank code solutions rather
than predict absolute reward, we create a preference dataset and then train with a Bradley Terry
loss (Ouyang et al., 2022). For every prompt x, we create pairs of correct y+ (where r = 1) and
incorrect y− (where r = 0) code and define the following loss:

LBT (ϕ) = −E(x,y+,y−)∼D[log σ(Rϕ(x, y
+)−Rϕ(x, y

−))]. (3)

where σ(.) is the sigmoid function. We hypothesize that BT is strictly easier to optimize as the
verifier has to only focus on relative performance. This is also consistent with observations made for
training process reward models, where the advantage function is easier to optimize than the absolute
Q function (Setlur et al., 2024).

3.3 TRAINING GENERATOR

µCODE comprises a generator πθ trained to produce code solutions conditioned on the initial problem
and execution observations from previous turns. Given a dataset D, µCODE iteratively trains the
generator to find the optimal code solution labeled using the local expert over the learned verifier.
For this step, µCODE extracts all code solutions from D for every problem x. An expert is then
created by picking the best solution, y⋆, which achieves the highest score using with the learned
verifier Rϕ(x, y) and is given by

y⋆ = π⋆(x) = arg max
y∈D(x)

Rϕ(x, y). (4)

Using this expert dataset, we relabel the dataset D with the optimal solutions for each prompt:

D⋆ = {(x, st, y⋆) | (x, st) ∼ D}, (5)

where D⋆ represents the expert dataset. The generator πθ is then trained via fine-tuning (FT) on this
expert dataset D⋆.

3.4 INFERENCE: MULTI-TURN BEST-OF-N

At inference time, the goal is to generate a code solution with a fixed inference budget – denoting the
number of times generators can provide one complete solution. In this work, we propose to leverage
the learned verifier to improve search and code generations over successive turns with multi-turn
Best-of-N (BoN). To achieve this, µCODE uses a natural extension of BoN to the multi-turn setting.
At each turn, the generator produces N one-step rollouts {ynt }Nn=1 ∼ πθ(.|st) and the learned verifier
picks the most promising code solution among these candidates using

y∗t = argmax
n

Rϕ(x, y
n
t). (6)

4

Published as a conference paper at ICLR 2025

The selected code y∗t is executed in the environment over public tests to obtain the execution feedback
ot. This solution and the feedback is provided as context to the generator at the next turn to repeat
this procedure. The search ends once y∗t passes all public tests or when the turn limit is reached.
Consequently, even if Rϕ(·) grants a high score to a code solution, inference continues until the
solution has successfully cleared all public tests, thus mitigating potential errors by Rϕ(·). The final
response y∗t is then passed through the oracle verifier to check its correctness. Algorithm 2 describes
a description of multi-turn BoN. We found it beneficial to use the reward model trained with samples
of the latest generator πθ (see Table 1).

3.5 ANALYSIS

µCODE effectively treats multi-turn code generation as an interactive imitation learning problem
by collecting rollouts from a learned policy and re-labeling them with an expert. It circumvents
the exploration burden of generic reinforcement learning which has exponentially higher sample
complexity (Sun et al., 2017). We briefly analyze why this problem is amenable to imitation learning
and prove performance bounds for µCODE.

Definition 3.1 (One-Step Recoverable MDP). A MDP M = (S,A, P,R, γ) with horizon T is
one-step recoverable if the advantage function of the optimal policy π∗, defined as A∗(s, a) =
Q∗(s, a)− V ∗(s), is uniformly bounded for all (s, a), i.e. A∗(s, a) ≤ 1.

Code generation is one-step recoverable MDP. Multi-turn code generation satisfies one-step
recoverability because the optimal policy π∗(yt|st) depends only on the problem prompt x and not the
interaction history st = (x, y1, o1, . . . , yt−1, ot−1). Since the correctness of a code snippet yt is fully
determined by x, the optimal Q-function satisfies Q∗(st, yt) = R(x, yt), where R(x, yt) ∈ {0, 1}.
The optimal value function is V ∗(st) = maxyt

R(x, yt), so the advantage function simplifies to
A∗(st, yt) = R(x, yt)−maxy′

t
R(x, y′t) ≤ 1.

Code generation enables efficient imitation learning. There are two challenges to applying
interactive imitation learning (Ross et al., 2011; Ross & Bagnell, 2014) – (1) Existence of expert
policies or value functions, and (2) Recoverability of expert from arbitrary states. First, for code
generation, the expert is simply the one-step reward maximizer argmaxy R(x, y). We can efficiently
estimate Rϕ(x, y) to compute the expert, without needing to compute value function backups. Second,
even if the learner fails to imitate the expert at any given state, the expert can perfectly recover from
the next state. This results in the best possible performance bounds for imitation learning, which we
formalize below.

Theorem 3.2 (Performance bound for µCODE). For a one-step recoverable MDPM with horizon T ,
running N iterations of µCODE yields at least one policy π such that

J(π∗)− J(π) ≤ O(T (ϵ+ γ(N))). (7)

where π∗ is the expert policy, ϵ is the realizability error, and γ(N) is the average regret.

Proof is in Appendix A.4. The bound O(ϵT) is much better than the worst-case scenario of O(ϵT 2)
for unrecoverable MDPs (Swamy et al., 2021). Thus, µCODE exploits the structure of multi-turn code
generation to enable imitation learning, bypassing the need for hierarchical credit assignment. More
generally, this analysis suggests that for any task where the optimal action is history-independent and
recoverable in one step, reinforcement learning can be reduced to efficient imitation learning without
loss of performance.

4 EXPERIMENTS

Through our experiments, we aim to analyze (1) How does µCODE compare to other state-of-the-art
methods? (2) Does the learned verifier help during training and inference-time? (3) Which loss
function works better for learning a verifier?

5

Published as a conference paper at ICLR 2025

4.1 SETUP

Models. The generator model in µCODE is initialized with Llama-3.2-1B-Instruct or Llama-3.1-8B-
Instruct (Dubey et al., 2024). The learned verifiers are initialized with the same models as generators
and have a randomly initialized linear layer to predict a scalar score (Stiennon et al., 2020).

Datasets. We conduct experiments on MBPP (Austin et al., 2021) and HumanEval (Chen et al.,
2021) where the agent needs to generate code solutions in Python given natural language descriptions.
We train the methods on the MBPP training set which comprises 374 problems and evaluate on the
MBPP test set and HumanEval (HE) dataset which have 500 and 164 problems. We further describe
the prompts and the split of public and private tests in Appendix A.6 and A.7.

Baselines. We compare µCODE with single and multi-turn baselines. For the single and multi-turn
settings, we report metrics by generating solutions from Llama models which we denote as Instruct.
We also compare with STaR (Zelikman et al., 2022) where the correct solutions of the Instruct model
are used for fine-tuning (FT). We also compare to a multi-turn version of STaR, called Multi-STaR.
Here, we collect multi-turn rollouts using the Instruct model and use trajectories terminating in a
correct code solution for FT. For multi-turn BoN search, we collect the solutions that pass public
tests, and then we select the best one judged by a learned verifier. Note that this verifier is specifically
trained for each generator.

Approach Llama-3.2-1B Llama-3.1-8B
N MBPP HE MBPP HE

Single-Turn

Instruct 1 36.5 28.0 52.1 59.8
STaR 1 35.7 34.1 53.7 54.9

Multi-Turn

Instruct 1 38.9 29.3 58.9 60.4
+BoN 5 48.5 34.3 68.1 61.2

Multi-STaR 1 36.7 33.5 57.7 59.8
+BoN 5 47.9 39.6 68.6 63.2

µCODE 1 37.9 35.4 62.3 57.9
+BoN 5 50.7 41.7 68.8 62.2

Table 1: Comparison of our method µCODE with base-
lines across MBPP and HumanEval datasets. N = 1 de-
notes generating solutions with 0 temperature. The Best-
of-N (BoN) accuracy is computed with N = 5 candi-
date solutions at each where the public tests and learned
verifier is used for selection. We observe that µCODE
outperforms competing methods based on Llama-3.2-
1B-Instruct and Llama-3.1-8B-Instruct models. The
best performance for each dataset and model-sized is
highlighted in bold and similar performances (within
1%) are underlined.

Metrics. We measure the performance
with the BoN accuracy, which quantifies
the accuracy of the solution chosen by a
verifier from N candidate solutions. The
generator is allowed T = 3 turns and the
final turn is used for evaluation over pri-
vate tests. At each turn, the verifier ranks
N = 5 solutions (unless stated otherwise)
provided by the generator. For the BoN
performance, we sample with a tempera-
ture of 0.7. We also report the accuracy
of generating correct solutions via greedy
decoding.

4.2 RESULTS

In Table 1, we compare the proposed al-
gorithm µCODE with the baselines. Here,
we first evaluate the generators using code
generated via greedy sampling for each
problem (N = 1). This measures the
accuracy of generating a correct solution
with a turn limit of T = 3. We ob-
serve that multi-turn methods (both In-
struct and Multi-STaR) perform better than
their single-turn variants showing the im-
portance of incorporating execution feed-
back. Our approach µCODE outperforms
Multi-STaR across both benchmarks with
1B-sized model demonstrating the efficacy
of training generators with data obtained
with a learned verifier. To highlight, our method µCODE with a 1B parameter model achieves 1.9%
performance gains compared to Multi-STaR on the HumanEval dataset. With an 8B-sized model,
µCODE outperforms baselines on MBPP whereas there is a drop when compared on HumanEval.

We further evaluate the effect of having a verifier for BoN search during inference, where a learned
verifier selects the most promising candidate solution at each turn. In Table 1, we observe that all
algorithms can benefit with BoN search. Remarkably, µCODE attains a performance gain of up

6

Published as a conference paper at ICLR 2025

to 12.8% with the multi-turn BoN approach compared to greedy. Moreover, µCODE outperforms
leading baselines with BoN search on MBPP and HumanEval datasets by 2.8% and 2.1% with 1B
sized-model and performs comparably on 8B-sized model.

4.3 ANALYSIS

To understand the improvements, we conduct a component-wise ablation study where we 1) check the
effect of oracle and learned verifiers for relabeling to train the generator (4.3.1), 2) evaluate different
generators trained with and without learned verifiers (4.3.2), 3) check which verifier performs better
multi-turn BoN search at test-time (4.3.3). Additionally, we assess scaling behaviors at inference
time with number of candidate generations (N) at each turn in Appendix A.2 and study the benefits
of learned verifiers during evaluation in Appendix A.3.

4.3.1 VERIFIER FOR RELABELING

Figure 2: Comparison of relabeling with learned
verifier (LV) and oracle verifier (OV) with the
1B model. The variant OV+LV aggregates a
dataset from both verifiers for fine-tuning the gen-
erator. Note that OV+LV performs better than
OV. However, relabeling with LV outperforms on
MBPP and performs comparably on HumanEval,
thereby demonstrating the benefits of leveraging
the learned verifier for training the generator.

We compare different verifiers for relabeling
data for training the generator. In contrast to
µCODE where the learned verifier is used to
relabel (LV), we compare with relabeling us-
ing a correct solution (attains an oracle reward
R = 1) for the corresponding prompt (OV). We
also compare with a variant where the generator
is fine-tuned over combinations of data relabeled
with both the oracle verifier and the learned ver-
ifier (OV+LV). Here, we concatenate the FT
dataset obtained using both LV and OV. In Fig-
ure 2, we present results with the 1B-sized mod-
els across benchmarks and observe that having
corrections with the oracle verifier outcome does
not perform well. However, relabeling with both
verifiers OV+LV outperforms the OV variant,
further demonstrating that gains in the generator
learned by µCODE are coming from relabeling
with a learned verifier. Lastly, the LV variant
performed best on MBPP and comparably on
HumanEval dataset when compared with LV+OV.

4.3.2 VARYING THE GENERATOR

Figure 3: Comparison of µCODE and baselines with
1B models on the ability of the learned generator to
incorporate execution feedback at each turn. We observe
that µCODE consistently improves the BoN accuracy
across turns on both datasets, whereas the baselines
show marginal improvements with turns.

In this section, we compare the multi-turn
agents where the generator is trained with
an oracle verifier (Multi-STaR) or a learned
verifier (µCODE). We evaluate the abil-
ity of the trained generator to utilize exe-
cution feedback and improve the code re-
sponse across turns. We report the BoN
accuracy till a turn t, which denotes the
BoN accuracy of obtaining a correct solu-
tion till turn t. In Figure 3, we present the
results with 1B-sized models. We observe
that BoN accuracy improves with turns
for µCODE whereas the baseline agents
show marginal improvements with succes-
sive turns. We believe that using a learned
verifier for relabeling improves the genera-
tor’s ability to generate solutions with high
reward values, and indeed recover better at
every turn by utilizing the execution feed-
back.

7

Published as a conference paper at ICLR 2025

4.3.3 VERIFIER AT TEST-TIME

Approach Llama-3.2-1B Llama-3.1-8B
MBPP HE MBPP HE

Base
Random 34.4 23.0 59.3 57.9
LV 40.3 27.0 61.1 61.2
PT 48.6 31.9 67.2 60.4
PT+LV 48.5 34.3 68.1 61.2

Multi-STaR
Random 35.6 30.5 59.2 57.7
LV 39.8 31.9 61.2 62.8
PT 46.7 37.6 67.6 60.0
PT+LV 47.9 39.6 68.6 63.2
µCODE
Random 37.9 31.5 60.5 59.1
LV 45.1 35.4 64.3 60.4
PT 49.8 39.0 68.7 59.1
PT+LV 50.7 41.7 68.8 62.2

Table 2: Comparing BoN with different ways
of picking solutions at each turn for multi-turn
BoN search using the 1B sized model. The hier-
archical approach of using public test and learned
verifier (PT+LV) outperforms only using either
public tests (PT) or the learned verifier (LV). The
best performance for each dataset and model-size
is highlighted in bold and similar performances
(within 1%) are underlined.

In our experiments with multi-turn BoN (Ta-
ble 2), we pick the best solution based on the
outcome of public tests and the scores of the
learned verifier. In this experiment, we study
different verifiers for ranking the candidate so-
lutions at each turn. We test with Random strat-
egy where the policy randomly picks from the
N solutions at each step. We compare to the
public tests (PT) outcome that picks any solu-
tion that passes the public test. Note that this
involves evaluating all generated solutions at ev-
ery turn with public tests. We also compare to
selecting a solution based on scores obtained
via the learned verifier only (LV). This is cru-
cial as in certain applications such privileged
information like public tests are not available
and the agents can benefit from learned verifiers
during inference. Lastly, we compare with the
combination of public tests and leveraging the
scores of the learned verifier to break ties at each
turn (PT+LV).

In Table 2, we compare Base, Multi-STaR and
µCODE with different verifiers at test-time. We
observe that LV outperforms Random strategy
which shows that a learned verifier indeed aids
in selecting better solutions among generations.
Given the benefits of learned verifiers for multi-
turn BoN search, they can be a good alternative
when public tests are not available. Further-
more, using the outcome of public tests (PT) per-
formed better than using learned verifiers (LV)
except on the HumanEval datset for 8B-sized
model. We believe that this gap can be further reduced by learning more powerful verifiers and
leave it for future research. Interestingly, the hierarchical approach (PT+LV) that uses the learned
verifier to break ties on the outcomes of public tests performed best across methods and datasets. We
hypothesize that using learned verifiers is beneficial in two scenarios. Firstly, if multiple solutions
pass the public tests, then the learned verifier can filter out incorrect solutions which may not pass
private tests. Secondly, if all candidate solutions are incorrect, then the learned verifier should choose
the most promising solution at each turn. This is crucial as picking a better solution with the learned
verifier can lead to more relevant feedback for recovering the true solution.

5 CONCLUSION

We present µCODE, a simple and scalable method for multi-turn code generation through single-step
rewards. µCODE models code generation as a one-step recoverable MDP and learns to iteratively
improve code with a learned verifier to guide the search. Experimental results demonstrate that
µCODE outperforms methods using oracle verifiers by a large margin. We acknowledge the following
limitations of this paper. Due to a limited budget, we were only able to train models with up to
eight-billion parameters. It is possible that the conclusions made in this paper do not generalize to
models of larger scales. Additionally, we train models on MBPP, whose training set has only 374
examples. However, we hypothesize that more training examples will lead to better performance.
Finally, our datasets are only in Python, and our findings might not generalize to other programming
languages.

8

Published as a conference paper at ICLR 2025

ACKNOWLEDGEMENTS

AJ is supported by Fonds de Recherche du Québec (FRQ), Calcul Québec, Canada CIFAR AI Chair
program, and Canada Excellence Research Chairs (CERC) program. The authors are also grateful to
Mila (mila.quebec) IDT and Digital Research Alliance of Canada for computing resources. AMR
is supported in part by NSF CAREER #2037519 and NSF #2242302. SC is supported in part by
Google Faculty Research Award, OpenAI SuperAlignment Grant, ONR Young Investigator Award,
NSF RI #2312956, and NSF FRR#2327973.

REFERENCES

Thomas Anthony, Zheng Tian, and David Barber. Thinking fast and slow with deep learning and tree
search, 2017. URL https://arxiv.org/abs/1705.08439.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
models. arXiv preprint arXiv:2108.07732, 2021.

Bradley Brown, Jordan Juravsky, Ryan Ehrlich, Ronald Clark, Quoc V Le, Christopher Ré, and
Azalia Mirhoseini. Large language monkeys: Scaling inference compute with repeated sampling.
arXiv preprint arXiv:2407.21787, 2024.

Thomas Carta, Clément Romac, Thomas Wolf, Sylvain Lamprier, Olivier Sigaud, and Pierre-Yves
Oudeyer. Grounding large language models in interactive environments with online reinforcement
learning, 2024. URL https://arxiv.org/abs/2302.02662.

Baian Chen, Chang Shu, Ehsan Shareghi, Nigel Collier, Karthik Narasimhan, and Shunyu Yao. Fireact:
Toward language agent fine-tuning, 2023a. URL https://arxiv.org/abs/2310.05915.

Bei Chen, Fengji Zhang, Anh Nguyen, Daoguang Zan, Zeqi Lin, Jian-Guang Lou, and Weizhu Chen.
Codet: Code generation with generated tests, 2022. URL https://arxiv.org/abs/2207.
10397.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios
Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex Paino,
Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders,
Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa,
Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob
McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating
large language models trained on code, 2021.

Xinyun Chen, Maxwell Lin, Nathanael Schärli, and Denny Zhou. Teaching large language models to
self-debug, 2023b. URL https://arxiv.org/abs/2304.05128.

Xinyun Chen, Maxwell Lin, Nathanael Schärli, and Denny Zhou. Teaching large language models to
self-debug. In The Twelfth International Conference on Learning Representations, 2024. URL
https://openreview.net/forum?id=KuPixIqPiq.

Sanjiban Choudhury and Paloma Sodhi. Better than your teacher: Llm agents that learn from
privileged ai feedback, 2024. URL https://arxiv.org/abs/2410.05434.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve
math word problems. arXiv preprint arXiv:2110.14168, 2021.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

9

https://arxiv.org/abs/1705.08439
https://arxiv.org/abs/2302.02662
https://arxiv.org/abs/2310.05915
https://arxiv.org/abs/2207.10397
https://arxiv.org/abs/2207.10397
https://arxiv.org/abs/2304.05128
https://openreview.net/forum?id=KuPixIqPiq
https://arxiv.org/abs/2410.05434

Published as a conference paper at ICLR 2025

Jonas Gehring, Kunhao Zheng, Jade Copet, Vegard Mella, Taco Cohen, and Gabriel Synnaeve.
Rlef: Grounding code llms in execution feedback with reinforcement learning. arXiv preprint
arXiv:2410.02089, 2024a.

Jonas Gehring, Kunhao Zheng, Jade Copet, Vegard Mella, Taco Cohen, and Gabriel Synnaeve.
Rlef: Grounding code llms in execution feedback with reinforcement learning, 2024b. URL
https://arxiv.org/abs/2410.02089.

Xinyu Guan, Li Lyna Zhang, Yifei Liu, Ning Shang, Youran Sun, Yi Zhu, Fan Yang, and Mao Yang.
rstar-math: Small llms can master math reasoning with self-evolved deep thinking, 2025. URL
https://arxiv.org/abs/2501.04519.

Md. Ashraful Islam, Mohammed Eunus Ali, and Md Rizwan Parvez. Mapcoder: Multi-agent code
generation for competitive problem solving, 2024. URL https://arxiv.org/abs/2405.
11403.

Sham Kakade and John Langford. Approximately optimal approximate reinforcement learning. In
Proceedings of the Nineteenth International Conference on Machine Learning, pp. 267–274, 2002.

Aviral Kumar, Vincent Zhuang, Rishabh Agarwal, Yi Su, John D Co-Reyes, Avi Singh, Kate
Baumli, Shariq Iqbal, Colton Bishop, Rebecca Roelofs, Lei M Zhang, Kay McKinney, Disha
Shrivastava, Cosmin Paduraru, George Tucker, Doina Precup, Feryal Behbahani, and Aleksandra
Faust. Training language models to self-correct via reinforcement learning, 2024a. URL https:
//arxiv.org/abs/2409.12917.

Aviral Kumar, Vincent Zhuang, Rishabh Agarwal, Yi Su, John D Co-Reyes, Avi Singh, Kate Baumli,
Shariq Iqbal, Colton Bishop, Rebecca Roelofs, et al. Training language models to self-correct via
reinforcement learning. arXiv preprint arXiv:2409.12917, 2024b.

Hung Le, Yue Wang, Akhilesh Deepak Gotmare, Silvio Savarese, and Steven C. H. Hoi. Coderl:
Mastering code generation through pretrained models and deep reinforcement learning, 2022. URL
https://arxiv.org/abs/2207.01780.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond, Tom
Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, Thomas Hubert, Peter Choy, Cyprien
de Masson d’Autume, Igor Babuschkin, Xinyun Chen, Po-Sen Huang, Johannes Welbl, Sven
Gowal, Alexey Cherepanov, James Molloy, Daniel J. Mankowitz, Esme Sutherland Robson,
Pushmeet Kohli, Nando de Freitas, Koray Kavukcuoglu, and Oriol Vinyals. Competition-level code
generation with alphacode. Science, 378(6624):1092–1097, December 2022. ISSN 1095-9203. doi:
10.1126/science.abq1158. URL http://dx.doi.org/10.1126/science.abq1158.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step, 2023. URL
https://arxiv.org/abs/2305.20050.

Niklas Muennighoff, Qian Liu, Armel Zebaze, Qinkai Zheng, Binyuan Hui, Terry Yue Zhuo, Swayam
Singh, Xiangru Tang, Leandro von Werra, and Shayne Longpre. Octopack: Instruction tuning code
large language models. arXiv preprint arXiv:2308.07124, 2023.

Ansong Ni, Miltiadis Allamanis, Arman Cohan, Yinlin Deng, Kensen Shi, Charles Sutton, and
Pengcheng Yin. NExt: Teaching large language models to reason about code execution. In
Forty-first International Conference on Machine Learning, 2024. URL https://openreview.
net/forum?id=B1W712hMBi.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kelton,
Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Christiano, Jan Leike, and
Ryan Lowe. Training language models to follow instructions with human feedback, 2022. URL
https://arxiv.org/abs/2203.02155.

Yuxiao Qu, Tianjun Zhang, Naman Garg, and Aviral Kumar. Recursive introspection: Teaching
language model agents how to self-improve, 2024. URL https://arxiv.org/abs/2407.
18219.

10

https://arxiv.org/abs/2410.02089
https://arxiv.org/abs/2501.04519
https://arxiv.org/abs/2405.11403
https://arxiv.org/abs/2405.11403
https://arxiv.org/abs/2409.12917
https://arxiv.org/abs/2409.12917
https://arxiv.org/abs/2207.01780
http://dx.doi.org/10.1126/science.abq1158
https://arxiv.org/abs/2305.20050
https://openreview.net/forum?id=B1W712hMBi
https://openreview.net/forum?id=B1W712hMBi
https://arxiv.org/abs/2203.02155
https://arxiv.org/abs/2407.18219
https://arxiv.org/abs/2407.18219

Published as a conference paper at ICLR 2025

Tal Ridnik, Dedy Kredo, and Itamar Friedman. Code generation with alphacodium: From prompt
engineering to flow engineering, 2024. URL https://arxiv.org/abs/2401.08500.

Stephane Ross and J Andrew Bagnell. Reinforcement and imitation learning via interactive no-regret
learning. arXiv preprint arXiv:1406.5979, 2014.

Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. A reduction of imitation learning and structured
prediction to no-regret online learning. In Proceedings of the fourteenth international conference
on artificial intelligence and statistics, pp. 627–635. JMLR Workshop and Conference Proceedings,
2011.

Amrith Setlur, Chirag Nagpal, Adam Fisch, Xinyang Geng, Jacob Eisenstein, Rishabh Agarwal,
Alekh Agarwal, Jonathan Berant, and Aviral Kumar. Rewarding progress: Scaling automated
process verifiers for llm reasoning. arXiv preprint arXiv:2410.08146, 2024.

Parshin Shojaee, Aneesh Jain, Sindhu Tipirneni, and Chandan K. Reddy. Execution-based code
generation using deep reinforcement learning, 2023. URL https://arxiv.org/abs/2301.
13816.

Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute optimally
can be more effective than scaling model parameters. arXiv preprint arXiv:2408.03314, 2024.

Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel Ziegler, Ryan Lowe, Chelsea Voss, Alec
Radford, Dario Amodei, and Paul F Christiano. Learning to summarize with human feed-
back. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Ad-
vances in Neural Information Processing Systems, volume 33, pp. 3008–3021. Curran Asso-
ciates, Inc., 2020. URL https://proceedings.neurips.cc/paper_files/paper/
2020/file/1f89885d556929e98d3ef9b86448f951-Paper.pdf.

Wen Sun, Arun Venkatraman, Geoffrey J Gordon, Byron Boots, and J Andrew Bagnell. Deeply
aggrevated: Differentiable imitation learning for sequential prediction. In International conference
on machine learning, pp. 3309–3318. PMLR, 2017.

Gokul Swamy, Sanjiban Choudhury, J Andrew Bagnell, and Steven Wu. Of moments and matching:
A game-theoretic framework for closing the imitation gap. In International Conference on Machine
Learning, pp. 10022–10032. PMLR, 2021.

Peiyi Wang, Lei Li, Zhihong Shao, R. X. Xu, Damai Dai, Yifei Li, Deli Chen, Y. Wu, and Zhifang
Sui. Math-shepherd: Verify and reinforce llms step-by-step without human annotations, 2024a.
URL https://arxiv.org/abs/2312.08935.

Xingyao Wang, Yangyi Chen, Lifan Yuan, Yizhe Zhang, Yunzhu Li, Hao Peng, and Heng Ji.
Executable code actions elicit better LLM agents. In Forty-first International Conference on
Machine Learning, 2024b. URL https://openreview.net/forum?id=jJ9BoXAfFa.

Sean Welleck, Ximing Lu, Peter West, Faeze Brahman, Tianxiao Shen, Daniel Khashabi, and
Yejin Choi. Generating sequences by learning to self-correct. In The Eleventh International
Conference on Learning Representations, 2023. URL https://openreview.net/forum?
id=hH36JeQZDaO.

Yangzhen Wu, Zhiqing Sun, Shanda Li, Sean Welleck, and Yiming Yang. Inference scaling laws: An
empirical analysis of compute-optimal inference for problem-solving with language models. arXiv
preprint arXiv:2408.00724, 2024.

Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah Goodman. Star: Bootstrapping reasoning with
reasoning. Advances in Neural Information Processing Systems, 35:15476–15488, 2022.

Yuexiang Zhai, Hao Bai, Zipeng Lin, Jiayi Pan, Shengbang Tong, Yifei Zhou, Alane Suhr, Saining
Xie, Yann LeCun, Yi Ma, and Sergey Levine. Fine-tuning large vision-language models as
decision-making agents via reinforcement learning, 2024. URL https://arxiv.org/abs/
2405.10292.

11

https://arxiv.org/abs/2401.08500
https://arxiv.org/abs/2301.13816
https://arxiv.org/abs/2301.13816
https://proceedings.neurips.cc/paper_files/paper/2020/file/1f89885d556929e98d3ef9b86448f951-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1f89885d556929e98d3ef9b86448f951-Paper.pdf
https://arxiv.org/abs/2312.08935
https://openreview.net/forum?id=jJ9BoXAfFa
https://openreview.net/forum?id=hH36JeQZDaO
https://openreview.net/forum?id=hH36JeQZDaO
https://arxiv.org/abs/2405.10292
https://arxiv.org/abs/2405.10292

Published as a conference paper at ICLR 2025

Dan Zhang, Sining Zhoubian, Ziniu Hu, Yisong Yue, Yuxiao Dong, and Jie Tang. Rest-mcts*: Llm
self-training via process reward guided tree search, 2024. URL https://arxiv.org/abs/
2406.03816.

Wenting Zhao, Nan Jiang, Celine Lee, Justin T Chiu, Claire Cardie, Matthias Gallé, and Alexander M
Rush. Commit0: Library generation from scratch. arXiv preprint arXiv:2412.01769, 2024.

Lianmin Zheng, Liangsheng Yin, Zhiqiang Xie, Chuyue Sun, Jeff Huang, Cody Hao Yu, Shiyi Cao,
Christos Kozyrakis, Ion Stoica, Joseph E. Gonzalez, Clark Barrett, and Ying Sheng. Sglang:
Efficient execution of structured language model programs, 2024. URL https://arxiv.org/
abs/2312.07104.

Yifei Zhou, Andrea Zanette, Jiayi Pan, Sergey Levine, and Aviral Kumar. Archer: Training language
model agents via hierarchical multi-turn rl. arXiv preprint arXiv:2402.19446, 2024.

12

https://arxiv.org/abs/2406.03816
https://arxiv.org/abs/2406.03816
https://arxiv.org/abs/2312.07104
https://arxiv.org/abs/2312.07104

Published as a conference paper at ICLR 2025

Figure 4: A qualitative example of multi-turn BoN search using dense rewards obtained via
the learned verifier in µCODE. Here, we show the top 3 ranked solutions at each turn t where
Rϕ(x, y

i
t) ≥ Rϕ(x, y

j
t) for i < j. We observe that the learned verifier selects the better solution (in

orange) at each turn. The selected solution is passed to public tests to retrieve execution feedback for
the generator to improve the next code solution. The selected solution at each turn is better than the
last (less errors highlighted in yellow), with the final solution passing all tests. Note that there are 2
correct solutions at the final turn.

A APPENDIX

IMPACT STATEMENT

The proposed method for training code agents has the potential to streamline software development
processes by automating routine coding tasks, thereby reducing human labor and accelerating
production timelines. However, these advances will also introduce bugs, which can propagate at scale
if no proper quality control is in place.

A.1 RELATED WORK

Prompting To Solve Multi Step Tasks A common framework for tackling multi-step tasks with
LLMs is prompting-based agentic systems. Self-Debugging (Chen et al., 2023b) asks the LLM to
iteratively improve code by providing execution feedback while CodeT (Chen et al., 2022) asks the
LLM to generate test cases. AlphaCodium (Ridnik et al., 2024) first reflects on input instructions,
generates and filters from multiple code generations, and finally iterates on public and self-generated
test cases. MapCoder (Islam et al., 2024) incorporates four agents to generate example problems,
plans and code, and then perform debugging. However, prompting-based agents yield limited
improvements.

Training LLMs for Multi Step Tasks Some work has explored explicitly training critics or
reward models for multi-step reasoning tasks. In the coding domain, CodeRL (Le et al., 2022)
trains a token-level critic to aid in code generation and to perform inference-time search. CodeRL’s
mechanics are similar to our method, but their generator is not trained for multi-step: CodeRL
trains a “code repairer” which conditions on one erroneous code completion while our generator
incorporates multiple. ARCHER (Zhou et al., 2024), which frames multi-step tasks via a two-level
hierarchical MDP, where the higher level MDP considers completions as actions and the lower
level MDP considers tokens as actions. Another line of work utilizes Monte Carlo Tree Search
(MCTS) methods for training: rStar-Math (Guan et al., 2025) trains a policy preference model to
boost small LMs’ math abilities to match or exceed large reasoning-based LMs and ReST-MCTS
(Zhang et al., 2024) trains a process reward model (PRM) similarly to Math-Shepherd (Wang et al.,
2024a). Although µCODE’s BoN search resembles a tree search, our key insight that multi-step
code generation resembles a one-step recoverable MDP allows us to collect training trajectories
much more efficiently. Finally, some work has explored using verifiers only during inference time.
In “Let’s Verify Step by Step” (Lightman et al., 2023), the authors demonstrate that PRMs trained
on erroneous math solutions annotated by humans outperform outcome reward models for filtering

13

Published as a conference paper at ICLR 2025

multiple inference time generations. Meanwhile, AlphaCode (Li et al., 2022) trains a test generator
to evaluate multiple code solutions.

Other works omit learning a critic or reward model altogether. In the coding domain, RLEF (Gehring
et al., 2024b) derives rewards only on the executor’s result on test cases and syntax checkers, and
PPOCoder (Shojaee et al., 2023) additionally considers semantic and syntactic alignment, generated
via data flow graphs and abstract syntax trees respectively, with a reference solution. The “oracle”
rewards in these methods may not be informative for training, and in the case of PPOCoder, require
complex constructs. We empirically show that having a reward model is beneficial by comparing
µCODE against the Multi-STaR baseline. Meanwhile, SCoRe (Kumar et al., 2024a) splits training
into a “generator” and “correction” phase, thus restricting the total number of turns to 2. RISE (Qu
et al., 2024) generates recovery steps via a more powerful LLM or by selecting a sampled completion
via the oracle rewards. Both methods are less efficient than µCODE, which doesn’t require generating
corrections beyond generating training trajectories. Finally, FireAct (Chen et al., 2023a) and LEAP
(Choudhury & Sodhi, 2024) FT ReAct style agents while RL4VLM (Zhai et al., 2024) and GLAM
(Carta et al., 2024) studies training LLMs with interactive environment feedback.

A.2 TEST-TIME SCALING

In the multi-turn setting, the number of candidate solutions can rise exponentially with the number of
turns. To avoid this, µCODE uses the learned verifier during inference to select the most promising
candidate among N candidates at each turn, leading to a linearly increasing number of calls to the
generator. We study the inference-time scaling behaviors of µCODE where we scale the number
of candidate generations N at each turn. Figure 5 plots the BoN with different values of N (1 ≤
N ≤ 11). The performance gains diminishes for larger N on both datasets. On the MBPP dataset,
the performance gains diminish with N ≥ 5, whereas on HumanEval dataset a dip is observed for
N > 7.

In this section, we further study the importance of training the verifier with on-policy rollouts from the
generator. We present a comparison of a verifier trained with samples from the Llama-3.2-1B-Instruct
model (Base Verifier) and a verifier learned with samples from the generator of µCODE. Note that we
use the generator of µCODE to obtain candidate solutions at each turn during evaluation. In Figure 5,
we also present the scaling behaviors of different learned verifiers. We observe that using a verifier
trained with on-policy samples obtained via the generator of µCODE performs better and showed
significant improvements of up to 4.3% for different values of candidate solutions N .

Figure 5: Test-time scaling with different values
of candidate solutions N at each turn and different
ways of learning verifiers. We compare with ver-
ifiers learned on samples from µCODE and base
policy. The candidate solutions are obtained from
the 1B generator of µCODE at each turn. We ob-
serve that the BoN performance improves with
larger values of N on both datasets. The verifier
learned with on-policy samples perform better.

Figure 4 presents a qualitative example of multi-
turn Best-of-N search with µCODE. Through
this example, we demonstrate the advantages of
dense scores from the learned verifier at facili-
tating efficient search across turns. We generate
N = 5 code solutions at each turn and show the
top 3 ranked solutions using the dense scores. At
the first turn, we observe that the last solution y31
is less accurate than the other 2 solutions y11 and
y21 . The top ranked solution is used to collect the
environment feedback, upon which the genera-
tor comes up with N new candidate solutions.
Upon the top 3 solutions, the last two snippets
are similar to the candidates from the previous
turn. However, the top ranked solution is a novel
solution and is more accurate as the generated
code learns to extract a single digit and multiply
it. With the execution feedback, µCODE gener-
ates 2 correct responses– y13 and y23 and learned
verifier chooses one of them compared to the
incorrect response y33 .

A.3 LOSS FUNCTION FOR VERIFIER

14

Published as a conference paper at ICLR 2025

Figure 6: Comparison between BCE and BT
loss function for training the verifier. We train
the verifiers on samples generated by the base
model (Llama-3.2-1B-Instruct). The learned veri-
fier then ranks the candidate solutions from base
model and the BoN performance of selected solu-
tion is reported. The verifier trained with BT loss
performs better increasing value of N.

As described in 3.2, we compare against differ-
ent loss functions for training the verifier. For
this experiment, we first generate multiple single
step rollouts and label them via oracle verifier.
Given oracle labels, we train verifiers with two
loss functions – BCE and BT. During inference,
the learned verifier picks the best ranked solu-
tion among the N solutions provided by the gen-
erator. Similar to (Cobbe et al., 2021), we report
the BoN plot with different values of N obtained
by first sampling N candidate solutions, choos-
ing the top-ranked solution using the learned
verifier, and then evaluating the solution against
public and private tests. We calculate this met-
ric over multiple samples for each value of N .
In Figure 6, we observe that the verifier trained
with BT loss consistently outperforms the ver-
ifier trained on BCE loss on both MBPP and
HumanEval.

A.4 PROOF OF THEOREM 3.2

The proof relies on two important results.

The first is the Performance Difference Lemma (PDL) (Kakade & Langford, 2002) which states that
the performance difference between any two policies can be expressed as the sum of advantages.

J(π)− J(π′) =

T∑
t=1

Est∼dπ
t

[∑
at

Aπ′
(st, at)π(at|st)

]
(8)

where st ∼ dπt is the induced state distribution by π, and Aπ′
(st, at) = Qπ′

(st, at)− V π′
(st) is the

advantage w.r.t. π′.

We apply the PDL between the expert π∗ and the learner π

J(π⋆)− J(π) =

T∑
t=1

Est∼dπ
t

[∑
at

A⋆(st, at) (π
⋆(at|st)− π(at|st))

]
(9)

where the result follows from
(∑

at
A⋆(st, at)π

⋆(at|st) = 0
)

According to the one-step recoverable MDP definition, A⋆(s, a) ≤ 1 for all (s, a). Hence we can
bound the performance difference as

J(π⋆)− J(π) =

T∑
t=1

Est∼dπ
t

[∑
at

A⋆(st, at) (π
⋆(a|st)− π(a|st))

]

≤ ||A⋆(., .)||∞
T∑

t=1

Est∼dπ
t
||π(.|ht)− π⋆(.|st)||1 (Holder’s Inequality)

≤
T∑

t=1

Est∼dπ
t
||π(.|st)− π⋆(.|st)||1 (One step recoverability)

The second result we use us from interactive imitation learning DAGGER (Ross et al., 2011) that
reduces imitation learning to no-regret online learning. DAGGER shows that with π⋆ as the expert
teacher guarantees that after N iterations, it will find at least one policy

Es∼dπ ||π(.|s)− π⋆(.|s)||1 ≤ Es∼dπ ||πclass(.|s)− π⋆(.|s)||1 + γ(N) (10)

15

Published as a conference paper at ICLR 2025

where γ(N) is the average regret, and dπ is the time average distribution of states induced by policy
π, πclass is the best policy in policy class.

Plugging this in we have

J(π⋆)− J(π) ≤
T∑

t=1

Est∼dπ
t
||π(.|st)− π⋆(.|st)||1

≤
T∑

t=1

Est∼dπ
t
||πclass(.|st)− π⋆(.|st)||1 + γ(N) From (10)

≤ T (ϵ+ γ(N))

16

Published as a conference paper at ICLR 2025

A.5 HYPERPARAMETERS

Model Generator Verifier
Training Epochs 2 2
Learning Rate 5× 10−7 1× 10−6

Batch Size 32 64
Max seq length 8192 2048

Table 3: Hyperparameters for SFT and RM training.

A.5.1 TRAINING PARAMETERS

Table 3 contains hyperparameters for training the generator and reward model on both models (Llama-
3.1-8B-Instruct and Llama-3.2-1B-Instruct) and datasets (MBPP and HumanEval). We perform 2
iterations of training with µCODE, starting from the base model each iteration. All training runs were
on machines with either 4 RTX 6000 Ada Generation GPUs for 1B models with 48 GB of memory
per GPU or 4 H100 GPUs for 8B models with 80 GB of memory per GPU.

A.5.2 INFERENCE PARAMETERS

We use SGLang (Zheng et al., 2024) to serve our models for inference. Greedy experiments use
temperature 0 with flags –disable-radix-cache –max-running-request 1 to ensure deterministic results
while BoN search experiments use a temperature of 0.7. All experiments are capped to 1000 tokens
per completion per turn.

A.6 PROMPTS

A.6.1 SINGLE STEP PROMPT

Immediately below is the prompt template to generate 1 code completion in a single-step method or
to generate the 1st step in a multi-step method. Below the prompt templates are examples of the code
prompt and public tests for HumanEval and MBPP.

Single Step Prompt

Write a Python function implementation for the following prompt:

\{prompt\}

Your code should satisfy these tests:

\{test\}

Return only the implementation code, no tests or explanations. Be
sure to include the relevant import statements:
‘‘‘python
code
‘‘‘

17

Published as a conference paper at ICLR 2025

HumanEval Prompt

from typing import List

def has_close_elements(numbers: List[float], threshold: float) ->
bool:

""" Check if in given list of numbers, are any two numbers
closer to each other than

given threshold.
>>> has_close_elements([1.0, 2.0, 3.0], 0.5)
False
>>> has_close_elements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3)
True
"""

HumanEval Test

def check(has_close_elements):
assert has_close_elements([1.0, 2.0, 3.0], 0.5) == False
assert has_close_elements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3)

== True
check(has_close_elements)

MBPP Prompt

Write a function to find the minimum cost path to reach (m, n) from
(0, 0) for the given cost matrix cost[][] and a position (m, n) in
cost[][].

MBPP Test

assert min_cost([[1, 2, 3], [4, 8, 2], [1, 5, 3]], 2, 2) == 8
assert min_cost([[2, 3, 4], [5, 9, 3], [2, 6, 4]], 2, 2) == 12
assert min_cost([[3, 4, 5], [6, 10, 4], [3, 7, 5]], 2, 2) == 16

A.6.2 FEEDBACK PROMPT

Immediately below is the prompt template for how we provide feedback in multi-step methods. The
feedback only consists of executor error traces, and we provide an example from HumanEval.

Multi-Step Feedback Prompt

Feedback:

\{feedback\}

HumanEval Multi-Step Feedback Prompt

Traceback (most recent call last):
File "test.py", line 18, in <module>
assert has_close_elements([1.0, 2.0, 3.0], 0.5) == False

ˆˆˆ
AssertionError

18

Published as a conference paper at ICLR 2025

A.7 PUBLIC PRIVATE TESTS

We choose a public-private test split for HumanEval and MBPP to ensure that naively passing the
public tests does not guarantee private test success. For HumanEval, we use a single test from the
code prompt’s docstring as the public test and the remaining tests along with the official test suite as
private tests. For ease of parsing, we utilize a processed version of HumanEval, HumanEvalPack
(Muennighoff et al., 2023). For MBPP, we use a single test from the official test suite as the public
test, and the remaining tests and any “challenge test list” tests as private tests.

19

https://huggingface.co/datasets/bigcode/humanevalpack

