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ABSTRACT

Despite their remarkable achievements, modern Large Language Models (LLMs)
face exorbitant computational and memory footprints. Recently, several works
have shown significant success in training-free and data-free compression (prun-
ing and quantization) of LLMs that achieve 50 - 60% sparsity and reduce the
bit width to 3 or 4 bits per weight, with negligible degradation of perplexity
over the uncompressed baseline. As recent research efforts are focused on de-
veloping increasingly sophisticated compression methods, our work takes a step
back and re-evaluates the effectiveness of existing SoTA compression methods,
which rely on a fairly simple and widely questioned metric, perplexity (even
for dense LLMs). We introduce Knowledge-Intensive Compressed LLM Bench-
marK (LLM-KICK), a collection of carefully curated tasks to redefine the eval-
uation protocol for compressed LLMs, which have significant alignment with
their dense counterparts and perplexity fail to capture subtle change in their
true capabilities. LLM-KICK unveils many favorable merits and unfortunate
plights of current SoTA compression methods: all pruning methods suffer sig-
nificant performance degradation, sometimes at trivial sparsity ratios (e.g., 25-
30%), and fail for N:M sparsity in knowledge-intensive tasks; current quanti-
zation methods are more successful than pruning; yet, pruned LLMs even at
≥ 50% sparsity are robust in-context retrieval and summarization systems; among
others. LLM-KICK is designed to holistically access compressed LLMs’ abil-
ity for language understanding, reasoning, generation, in-context retrieval, in-
context summarization, etc. We hope our study can foster the development
of better LLM compression methods. The reproduced codes are available at
https://github.com/VITA-Group/llm-kick.

1 INTRODUCTION

Large Language Models (LLMs) are omnipresent, profoundly influencing not only the landscape
of NLP (Ram et al., 2023; Liu et al., 2023a; Sawada et al., 2023; Qin et al., 2023; Zhuo, 2023;
Lee et al., 2023), but also recently buttressing numerous computer vision (Lian et al., 2023; Wang
et al., 2023; Lai et al., 2023; Lu et al., 2023) and graph neural networks (Ye et al., 2023; Chen
et al., 2023; Qian et al., 2023; Duan et al., 2023) algorithms; achieving steller performance across
various task leaderboards. Despite their numerous unprecedented capabilities, their democratization
is primarily restricted by the presence of billions of parameters, which depends on astonishingly
high computational and memory requirements. For example, GPT-175B requires 325 GB of GPU
memory simply to load its model weights, and at least five A100 (80GB) GPUs with sophisticated
parallelism techniques (Sheng et al., 2023).

To democratize LLMs, considerable efforts have been taking to mitigate their high computational
cost, mainly divided into two research directions: network pruning, and weight quantization. The
former shrinks network sizes by removing specific weights from the model – essentially setting
them to zero, while the latter aims to quantize parameters into lower bit-level representations. Sev-
eral recent success in network pruning (Sun et al., 2023; Frantar & Alistarh, 2023; Jaiswal et al.,
2023a; Ma et al., 2023; Ji et al., 2023) and quantization (Liu et al., 2023c; Kim et al., 2023; Dettmers
et al., 2023a; Frantar et al., 2022; Lin et al., 2023a; Dettmers et al., 2023c) (detailed related work
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PROMPT >> Please provide answer to the following. Question:  Which 1959 Alfred Hitchcock film had the tagline ``Its a deadly game of tag and Cary
Grant is it!``? The answer is 

The answer is "Dial M for
Murder" (1954)

The answer is Rear Window. The answer is 1. To Catch A
Thief.

The answer is Cary Grant,
who played the character of

Oland in the film.

The answer is North by
Northwest.

UncompressedVicuna-7B Magnitude 50% Compressed
Vicuna-7B

SparseGPT 50% Compressed
Vicuna-7B

Wanda 50% Compressed
Vicuna-7B

4-bit GPTQ Compressed
Vicuna-7B

PROMPT >> Please provide answer to the following. Question:  By what name is Allen Konigsberg better known? The answer is 

The answer is Allen
Konigsberg is better known

as Al Koenig.
The answer is 100% correct. The answer is 100%.The answer is 1963, 1973,

and Ronald Reagan.
The answer is: Woody Allen.

UncompressedVicuna-7B Magnitude 50% Compressed
Vicuna-7B

SparseGPT 50% Compressed
Vicuna-7B

Wanda 50% Compressed
Vicuna-7B

4-bit GPTQ Compressed
Vicuna-7B

Figure 1: True Merits of SoTA Compression. Top row indicates marginal increase in perplexity via
using SoTA compression methods, when compared with simple magnitude-based pruning. Bottom
row indicates the failure of compressed Vicuna-7B (Chiang et al., 2023) (via Magnitude, Wanda,
SparseGPT, GPTQ) to respond correctly to knowledge-intensive factoid-based questions.

discussion in Appendix A.1) claim to retain the uncompressed LLM’s performance while achieving
50-60% sparsity or up to extreme 2-3 bit quantization. Although these advancements look fascinat-
ing, in most (if not all) cases, they heavily rely on perplexity as their primary metric to evaluate
the performance claims. Such relatively restricted evaluations limit the scope for developing new
compression methods, and are potentially ill-suited to identifying new and unexpected capabili-
ties/limitations of compressed LLMs.

Perplexity, even in the case of dense LLMs, has been questioned as an unsatisfactory measure for
comparing the true potential of LLMs, despite significant variations in model scales, training strate-
gies, and architecture choices (Muhlgay et al., 2023). It is important to note that all compressed
models are derived from the same dense counterpart with high similarity, and aforementioned dif-
ferences don’t exist, making their evaluation more challenging. In this work, we revisit a widely
known yet under-explored question: How well does perplexity capture the change in capabilities of
compressed LLMs that have significant alignment with their dense counterpart? We focus on the
case of compressed LLMs, because we observe comparatively more serious failure of perplexity to
capture the delicate performance variations incurred across varying compression stages of LLMs,
demanding a more fine-grained investigation.

In this work, we attempt to investigate the true promises and limitations of state-of-the-art com-
pression algorithms for LLMs. We assemble the first comprehensive and diverse collection of tasks
with varying difficulty levels to thoroughly study compressed LLMs under quantization and network
pruning (structured and unstructured sparsity patterns). More specifically, we consider a broad range
of tasks to evaluate subtle changes in pruned and quantized LLMs’ ability for language understand-
ing, reasoning, generation, in-context retrieval, long-context summarization, etc. Note that none of
the datasets in our multi-dimensional study of compressed LLMs was created from scratch, but we
rely on existing datasets as they have been widely accepted by researchers, but unfortunately yet not
been adopted to study the effect of compression. We rigorously measure the performance of SoTA
quantization and pruning approaches (in their most common, default settings), to understand their
potential for our challenging and interesting tasks with high practical value.

Our key observations and contributions can be unfolded as:

• We present Knowledge-Intensive Compressed LLM BenchmarK (LLM-KICK), to re-define the
evaluation protocols for compressed LLMs and facilitate a comprehensive assessment of SoTA
compression algorithms. The premise of our work is to develop a suite of challenging, realistic,
and diverse tasks of high practical importance and datasets that can empower a systematic un-
derstanding of how existing LLM compression strategies truly perform in preserving performance
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despite their similar perplexities, how they differ from each other, and how they compare against
smaller LLMs of comparable parameter counts.

• LLM-KICK unveils many interesting and critical observations, that perplexity-based evaluations
overlook. 1 Most SoTA pruning methods suffer significant performance degradation, sometimes
at trivial sparsity ratios (e.g., 25-30%), despite negligible changes in perplexity. 2 All SoTA
pruning methods do not work satisfactorily for structured N:M sparsity patterns on LLM-KICK.
3 Current SoTA LLM quantization methods are more successful in perpetuating performance in

comparison to SoTA LLM pruning methods. 4 Compressed LLMs fail to generate knowledge-
enriched and factually correct answers, despite the generated text is fluent, consistent, and coher-
ent. 5 Compressed LLMs with larger architectures but same parameter counts perform poorer,
which favors smaller dense models.

• We further investigate compressed LLMs’ ability for in-context settings, via adopting in-context
retrieval augmented question answering (ICRA-QA) (Ram et al., 2023), and text summarization
with in-context learning (IC-Sum) (Jain et al., 2023). To our surprise, pruned LLMs, even at non-
trivial sparsity ratios (e.g., ≥50%), are robust retrieval systems, and can perform text summariza-
tion while maintaining similar performance as their dense counterpart. However, with increasing
compression degrees, their ability to digest longer context is affected more than smaller context.

2 SOTA LLM COMPRESSION: PERPLEXITY, OR WHAT’S MORE?

Scaling neural networks, now LLMs, have achieved astonishing performance benefits on a wide
array of tasks, but at the cost of gigantic computational and memory footprints. Network pruning
and weight quantization are two popular remedies to mitigate these overheads due to billions of
parameter counts in current LLMs. Despite numerous existing algorithms for pruning (Singh &
Alistarh, 2020; Zhu & Gupta, 2017; Gale et al., 2019; Jaiswal et al., 2022; Lin et al., 2020; Liu et al.,
2021a; Mostafa & Wang, 2019; Dettmers & Zettlemoyer, 2019; Evci et al., 2020) and quantization
(Dong et al., 2022; Cardinaux et al., 2020; Kim et al., 2021; Liu et al., 2021b; Martinez et al., 2020),
their ad-hoc adaptation for LLMs is restricted, due to the lack of luxury to perform iterative re-
training to regain any performance drop during compression. Recently, several works have shown
significant success in training-free and data-free compression of LLMs achieving 50-60% sparsity
and reducing the bit-width down to 3 or 4 bits per weight, with negligible perplexity degradation
relative to the uncompressed baseline.

Perplexity is a statistical measure of how confident a language model predicts a text sample and
quantifies the “surprise” encoded within language models (the lower the perplexity, the better the
model). Despite its popularity, perplexity has been widely questioned as an unsatisfactory measure
to compare the true merits of two different LLMs (Muhlgay et al., 2023), even for dense models
although they significantly vary in model scale, training strategies, and design choices (encoder
only, decoder only, etc.). To address this issue, several works (Li et al., 2023; Kaddour et al., 2023;
Muhlgay et al., 2023; Zhang et al., 2023; Valmeekam et al., 2022; Liu et al., 2023a; Sawada et al.,
2023; Qin et al., 2023; Zhuo, 2023; Lee et al., 2023) attempt to go beyond perplexity, and evaluate
the capabilities of dense LLMs across commonsense reasoning, language understanding, reading
comprehension, programming, etc. However, it is critically important to note that all compressed
models are derived from the same dense counterpart with high similarity sharing exactly the same
scale, training strategies, design choices, etc. Surprisingly, unlike dense LLMs, no such effort has
been carried out to understand subtle changes in the capabilities of compressed LLMs with varying
compression strength. Orthogonal to the recent trend to develop new compression algorithms, our
work provides the first attempt to assess the true merits and limitations of existing SoTA LLM
compression algorithms, to provide a fair and detailed playground to develop better compression
algorithms. We focus on the case of compressed LLMs because we observe the profound failure of
perplexity in capturing the delicate performance variations across varying LLM compressions.

Figure 1(Top) illustrates the change in perplexity of SoTA compression methods (pruning and quan-
tization), such as SparseGPT, Wanda, GPTQ and baseline one-shot magnitude-based pruning on
Vicuna-7B, 13B, and 33B (Chiang et al., 2023). Clearly, the perplexity (↓) of all models does not
show any significant variation up to 45-60%, with a complete failure to capture subtle changes in the
abilities of LLMs when compressed. It is also interesting to observe that to a certain degree of spar-
sity (∼ 30%), all SoTA pruning methods have almost similar performance as the simple baseline of
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one-shot magnitude-based pruning, which raises questions about their true merits within this sparsity
range. Figure 1(Bottom) show the response of Vicuna-7B model when compressed with Magnitude,
SparseGPT, and Wanda by 50% and quantized up to 4-bit. The uncompressed Vicuna-7B was suc-
cessfully able to generate the correct answer, but all compressed versions failed to respond correctly,
hallucinating with either wrong facts or irrelevant responses.

3 LLM-KICK: UNVEILING TRUE MERITS OF LLM COMPRESSION

LLM-KICK, short for Knowledge-Instensive Compressed LLM BenchmarK, is crafted to bring the
attention of LLM compression community towards incompetence of perplexity to correctly reflect
subtle changes in the ability of LLMs derived from dense counterparts with varying compression
strength. LLM-KICK consists of a suite of challenging, realistic, and diverse task settings of high
practical importance and datasets that can empower a systematic understanding of how existing LLM
compression strategies truly perform in preserving performance despite having similar perplexity.
Our work thoroughly investigates proclaimed merits/limitations of pruned and quantized LLMs for
language understanding, reasoning, generation, in-context retrieval, in-context summarization, etc.

Specifically, LLM-KICK consists of 3 broad task settings to study how compression impacts knowl-
edge encoded during pre-training, how compressed LLMs perform tasks when required knowledge
is augmented in-context, and how well compressed LLMs perform instruction following. To com-
partmentalize task difficulty and diversity, we include factoid-based QA, multiple-choice reasoning-
based QA, in-context retrieval augmented QA, in-context text summarization, and instruction-based
free-form text generation. Instead of creating new datasets, we carefully curate LLM-KICK from
prior works and open-source GitHub repositories which have been widely accepted by researchers,
but yet not explored by the LLM compression researchers. Our detailed prompt design strategies for
different task settings can be found in Appendix A.2.

To reduce the expense of redundant experiments and clutter in results, our work primarily focuses on
the top-2 existing training-free and data-free LLM pruning techniques (i.e., SparseGPT (Frantar &
Alistarh, 2023) and Wanda (Sun et al., 2023)), along with the baseline of One-shot Magnitude-based
Pruning (Han et al., 2016), plus a popular quantization technique (GPTQ) among recently available
choices (Lin et al., 2023a; Frantar et al., 2022; Dettmers et al., 2023c). We consider two types
of sparsities: (i) Unstructured Sparsity: individual model weights are zeroed out independently,
leading to irregular zero patterns (LeCun et al., 1990; Han et al., 2016); and (ii) Structured N:M
Sparsity: a fine-grained sparsity pattern in which only N weights are non-zero for every continuous
M weights (Nvidia, 2020; Zhou et al., 2021). We use Vicuna models for experiments, which are
open-source chatbot models trained by fine-tuning LLaMA (Chiang et al., 2023) on user-shared
conversations collected from ShareGPT, and have demonstrated impressive 90% quality of OpenAI
ChatGPT and Google Bard. Note that the aim of this work is not limited to identifying the failure
cases of SoTA pruning methods, but instead provides an in-depth lookup of LLM’s ability under
compression, and bring new insights which include highlighting observations that work in favor of
current SoTA compression methods.

Formally, we study the performance drop of LLMs after compression (without fine-tuning) with
respect to their dense counterparts using a compression algorithm C. For a pre-trained LLM f(x; θ),
a compressed LLM is a network fcomp(x; θC), which is a copy of f(x; θ) with some weights fixed to
0 indicated by the pruning mask mC in the case of pruning, or quantized to kC-bit using a quantization
algorithm. Next, we define matching compressed LLM.

Matching Compressed LLM: A compressed LLM fcomp(x; θC) is matching for a com-
pression algorithm C on task T, if it results in performance no less than ϵ0 (compression
tolerance regime) in comparison with f(x; θ,T). In this work, we consider ϵ0 to be ≤ 5%
of the performance of f(x; θ,T).

Note that ϵ0 is a simple indicator of the tolerance level of performance drop when we start com-
pressing any LLM. Many prior works (Chen et al., 2020b; Jaiswal et al., 2023a) consider matching
thresholds to be the same as the dense subnetwork performance or within the margins of 1%. How-
ever, in our work, we carefully relaxed it to 5% performance drop as an acceptable tolerance (before
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Figure 2: Compressed LLMs for Factoid-based QA. Performance comparison of compressed
LLMs on Factoid-QA task using FreebaseQA (Jiang et al., 2019). Results (average across 3 inde-
pendent runs) presented are for structured (N:M sparsity), unstructured sparsity, and quantization.

calling the compressed model useless) keeping in mind that the performance of compressed LLM
on any of our task categories/disciplines remains above the random guess.

3.1 SETTING 1: HOW WELL COMPRESSED LLMS ACCESS REMAINING KNOWLEDGE?

1 Factoid-based Question Answering

Task Definition and Rationale. Factoid-based Question Answering (Factoid-QA) (Iyyer et al.,
2014), which asks precise facts about entities, is a long-standing problem in NLP. A typical Factoid-
QA task aims to search for entities or entity attributes from a knowledge graph, and it is widely used
as a tool in academia, commercial search engines, and conversational assistants. Modern LLMs are
trained on gigantic text corpora ingesting a large amount of world knowledge about entities and their
relationships during pre-training, and have unique abilities to generate factually correct responses to
user queries. In this task setting, we aim to investigate how compression impacts LLMs’ ability to
answer natural language questions using facts, i.e., entities or attributes knowledge ingested within
them during pre-training.

Dataset Details. We use FreebaseQA (Jiang et al., 2019) which is a dataset for open-domain QA
over the Freebase knowledge graph. The QA pairs are collected from various sources, including the
TriviaQA dataset (Joshi et al., 2017) and other trivia websites (QuizBalls, QuizZone, KnowQuiz),
and are matched against Freebase to generate relevant subject-predicate-object triples that were fur-
ther verified by human annotators. TriviaQA dataset shows rich linguistic variation and complexity,
making it a good testbed for evaluating knowledge ingested within LLMs.

Results and Analysis. The results of various LLM compression methods are demonstrated in Figure
2. Our primary observations include: 1 All SoTA LLM pruning methods seemingly fail to find
matching sparse LLMs, even at trivial sparsities such as 30-35%. While several methods maintain
the matching performance at 20-25% sparsity, their performance starts to drop significantly after
that undergoing a catastrophic failure as sparsity ratio increases. This is in contrast with the claim
made by SoTA pruning methods that pruning up to 50-60% of LLMs doesn’t have any significant
degradation on performance. 2 All pruning methods doesn’t work for fine-grained structured N:M
sparsity patterns with performance drop as severe as ≥50%. 3 ∼8-10% drop in performance for
non-aggressive 8-bit quantization indicates that along with chasing for aggressive quantization levels
(1-2 bits), it is also important to focus on yet unsolved 8-bit quantization.

2 Multiple-Choice Reasoning based Question Answering

Task Formulation and Rationale. Multiple-Choice Reasoning based QA (MCR-QA) uses a natural
prompting approach to present the question and answer options to the LLMs jointly, and have it
output the symbol (e.g., “A”) associated with its chosen answer option. It allows the model to
explicitly compare answer options. In this setting, we aim to investigate compressed LLMs’ ability to
understand natural language questions, effectively reason using knowledge remaining within them,
and successfully associate the correct answer among the given answer options with the symbols that
represent them; potentially minimizing the effect of tokenization and exact answer generation.

Dataset Details. We use the popular MMLU (Massive Multitask Language Understanding) bench-
mark which covers 50+ subjects across STEM, Humanities, Social Sciences, and more (Hendrycks
et al., 2020). It ranges in difficulty from an elementary level to an advanced professional level, and
it tests both world knowledge and problem-solving ability of LLMs. The granularity and breadth of
subjects make it ideal for fine-grained evaluation of compressed LLMs’ blind spots.
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Figure 3: Compressed LLMs for Multiple-Choice Reasoning based QA. Performance compari-
son of compressed LLMs on MCR-QA tasks using the MMLU benchmark (Hendrycks et al., 2020).
Results (average across 3 independent runs) presented are for structured (N:M sparsity), unstruc-
tured sparsity, and quantization.

Results and Analysis. The results of various LLM compression methods are demonstrated in Figure
3. Our primary observations include: 1 Despite a similar matching compression regime (∼ 20-
40%) to Factoid-QA, the abrupt performance drop of all SoTA pruning methods for MMLU is
comparatively subtle due to relaxing the task setting from exact answer generation to correct answer
selection. 2 No matching compressed LLMs are found for N:M structured sparsity. 3 SoTA LLM
quantization is seemingly more successful than SoTA pruning methods: we found 8-bit and 4-bit
compressed LLM to be matching for Vicuna-7B and Vicuna-13B, respectively. 4 Interestingly, both
quantization and pruning have comparatively higher performance drop for Humanities and Social
Science wrt. STEM, which indicates compression impacts some disciplines more than others. 5
Surprisingly, within the compression tolerance regime, simple one-shot magnitude pruning seems
to perform quite well in comparison with SoTA pruning method, illustrating its high effectiveness.

3.2 SETTING 2: HOW WELL COMPRESSED LLMS SYNTHESIZE AUGMENTED KNOWLEDGE?

1 In-context Retrieval Augmented Question Answering

Task Formulation and Rationale. In-context Retrieval-Augmented Question Answering (ICRA-
QA) (Ram et al., 2023) grounds the LLM answer generation by conditioning on relevant documents
retrieved from an external knowledge source using retrieval algorithms like BM25. Our ICRA-QA
evaluation system includes two high-level components: a document selection, selecting the set of
documents upon which to condition; and b document reading, determining how to incorporate
the selected documents into the LLM answer process, which requires extracting correct answer
phrases from conditioned documents. To discount the impact of the lost encoded knowledge during
compression, ICRA-QA augments the required relevant knowledge for QA task directly within the
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Figure 4: Compressed LLMs for In-context Retrieval Augmented QA. Performance compari-
son of compressed LLMs on ICRA-QA task. We present head-to-head comparison of closed-book
evaluation (no external knowledge is augmented in-context) with open-book evaluation (external
knowledge is augmented in-context). Results (average across 3 independent runs) presented are for
structured N:M sparsity, unstructured sparsity, and quantization.

prompt context. In this task setting, we aim to evaluate compressed LLMs’ ability to synthesize long
in-context knowledge provided within input prompts, and locate and retrieve correct answers within
it. We also present a head-to-head comparison of how augmented knowledge can work as a remedy
to supplement the lost knowledge under compression.

Dataset Details. We use TriviaQA (Joshi et al., 2017) for evaluation, a popular reading comprehen-
sion dataset which includes 95K question-answer pairs authored by trivia enthusiasts and indepen-
dently gathered evidence documents, six per question on average, that provide high-quality distant
supervision for answering the questions.

Results and Analysis. The results of various LLM compression methods are demonstrated in Figure
17. The closed-book setting differs from ICRA-QA (i.e., using the open-book setting) only in terms
of whether conditioning on relevant documents retrieved from an external knowledge source. Our
key findings are: 1 When compressed LLMs are conditioned on external knowledge (open book)
and assigned the task of in-context retrievers, i.e., extracting correct answer phrases from in-context
knowledge, they perform significantly well even in extremely high compression regime. Vicuna-
7B can remain matching till ∼40% sparsity and 8-bit quantization, while Vicuna-13B can remain
matching up to ∼50% sparsity and 4-bit quantization. Our experimental results send a positive signal
that even if high compression leads to significant knowledge loss, it doesn’t leave LLMs completely
useless, and they still work as robust in-context retrievers. 2 Despite we observe a significant
benefit while conditioning external knowledge, no matching compressed LLM can be identified for
N:M sparsity. 3 Again, we observe surprisingly good performance of simple one-shot unstructured
magnitude pruning wrt. SparseGPT (second-order pruning) and Wanda (activation-based pruning)
that rely on calibration data.

2 In-Context Text Summarization

Task Formulation and Details. Modern LLMs have shown astonishing success in summarizing
long-context documents in both abstractive and extractive settings. However, it is yet not explored
how compression impacts LLMs’ capability for summarization. In this task setting, we aim to
investigate compressed LLMs’ ability to hold onto consistency, coherence, fluency, and relevance
when prompted to summarize textual information of varying length (small, medium, and large) in
abstractive setting (Jain et al., 2023). For evaluation, similar to Zheng et al. (2023), we propose
to use GPT-4 as a judge, which compares the compressed LLM generated summaries wrt. GPT-3.5
(text-davinci-003) generated summaries. Detailed evaluation settings can be found in Appendix A.3.

Dataset Details. We use a popular summarization dataset CNN/DailyMail (Chen et al., 2016) for
evaluation, which is an English-language dataset containing just over 300k unique news articles
written by journalists at CNN and DailyMail. We created 3 subset categories {small (≤470 words),
medium (≥470 and ≤ 790 words), and large (≥ 790 words)} of stories, each with 100 articles
reflecting word distribution of CNN/DailyMail to minimize OpenAI API costs.
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Figure 5: Compressed LLMs for In-Context Summarization. Performance comparison of com-
pressed Vicuna-7B for in-context summarization of small, medium, and large stories while preserv-
ing coherence, consistency, fluency, and relevance. Results (average across 3 independent runs)
presented are for structured (2:4 sparsity - Row 3), unstructured sparsity, and quantization.
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Figure 6: Compressed LLMs for Instruction Following. LLM-as-a-Judge: GPT-4 based evalua-
tion of compressed Vicuna-7B response wrt. ChatGPT (davici-003). (Left) unstructured spar-
sity; (middle) structured N:M sparsity; (c) comparison of average unique token counts generated by
compressed Vicuna-7B for 80 prompts across 10 different categories.

Results and Analysis. Results are summarized in Figure 5. We summarize our main observations
as: 1 All pruning and quantization methods tend to perform surprisingly well for in-context sum-
marization, preserving high consistency, coherence, fluency, and relevance in generated summaries,
which is an encouraging observation in favor compression. 2 With increasing context length (i.e.,
long stories), we observe a sharper performance drop for compressed LLMs, which highlights that
compression impacts LLMs’ ability to synthesize and summarize longer context lengths. 3 Quan-
tization again seems to perform better than SoTA pruning methods, and surprisingly benefiting pos-
itively over the dense model performance. 4 No matching compressed LLM can be identified for
2:4 structured sparsity.

3.3 SETTING 3: HOW WELL COMPRESSED LLMS PERFORM INSTRUCTION FOLLOWING?

Task Formulation and Rationale. In this task setting, we investigate compressed LLMs’ ability to
answer open-ended questions and evaluate their multi-turn conversational and instruction-following
ability – two critical elements for human preference. Evaluating AI chatbots is a challenging task,
as it requires examining language understanding, reasoning, and context awareness. To compare
the performance of compressed LLMs’ responses, we closely follow the prompt design setting in
MT-Bench (Zheng et al., 2023) using GPT-4 as a judge. We prompt GPT-4 to rate the answers gen-
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erated by compressed LLMs wrt. GPT-3.5 (text-davinci-003) model based on varying metrics (e.g.,
correctness, helpfulness, logic, accuracy, etc.) on a scale of [0-10] with detailed explanations.

Dataset Details. We rely on the 80 high quality multi-turn questions identified in MT-Bench (Zheng
et al., 2023). This setting covers common-use human-centric interaction with LLMs, and focuses
on challenging questions to differentiate models. We used 8 common categories of user prompts to
guide the prompt construction to interact with compressed LLMs: writing, roleplay, extraction, rea-
soning, math, coding, etc. For each category, we adopted manually designed 10 multi-turn questions
from MT-Bench to evaluate our compressed models. Details can be found in Appendix A.4.

Results and Analysis. Results are summarized in Figure 6. Our primary observations are: 1
Unlike in-context text summarization, in this task setting, compressed LLMs have to access the
knowledge to respond to conversations maintaining high helpfulness, relevance, accuracy, and detail.
We again observe that compressed LLMs with various pruning methods are matching only up to
sparsity ratio of ∼ 25%. 2 Surprisingly, in the matching regime, the simple baseline of one-shot
magnitude pruning performs comparable or slightly better than SoTA pruning methods. 3 No
matching subnetwork can be identified for N:M sparsity. 4 Interestingly, our average generated
unique token analysis in Figure 6(c) illustrates that compressed LLMs lose the ability to generate
distinct unique content, instead, they can only produce more repetitive texts.

4 ADDITIONAL RESULTS AND DISCUSSIONS

Small-Dense vs. Large-Sparse: which is favorable? We attempt to understand an interesting
question: if pruned LLMs with larger architecture (Large-Sparse) is better than smaller dense mod-
els with similar parameter count (Small-Dense)? Pruning large LLMs doesn’t come for free, and it
is important to investigate if the cost of pruning can be reflected in the performance benefit of Large-
Sparse models. To our surprise, in comparison with dense Vicuna-7B (MMLU accuracy 46.7%), we
found compressed Vicuna-13B with exactly similar parameter count (46.16% sparsity) of 7 billion
using one-shot magnitude, Wanda, SparseGPT can only achieve MMLU accuracy of 31.7%, 45.3%,
and 46.3%, respectively. This is a clear indication that current sparsity algorithms are not yet up to a
stage where the cost of pruning can be justified by performance benefits obtained from large-sparse
compressed models.
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Figure 7: Zero-shot performance
of 50% & 70% pruned Vicuna-7B
wrt. calibration sample counts.

How many calibration data samples are needed? We at-
tempt to analyze how calibration dependent pruning methods
(Wanda and SparseGPT) perform with varying amount of cali-
bration samples. Figure 7 illustrates the zero-shot performance
of 50% & 70% pruned Vicuna-7B using Wanda and SparseGPT
on knowledge-intensive MMLU benchmark. It is interesting to
observe that calibration sample count plays a vital role in pre-
serving the performance of SparseGPT unlike Wanda. Note
that at high sparsity ratio (70%), Wanda cannot recover any
performance; SparseGPT surprisingly benefits noticeably from
calibration. This suggests that carefully selected calibration
samples can play a vital role in designing better pruning algo-
rithms to compress LLMs even up to significantly high sparsity.

5 CONCLUSION AND LIMITATIONS

In this paper, we propose to explore the effectiveness of SoTA compression methods beyond per-
plexity to address the inability of perplexity to capture the subtle variations incurred during the
derivation of compressed LLMs from their dense counterparts. Our work introduces Knowledge-
Intensive Compressed LLM BenchmarK (LLM-KICK) to facilitate a fair and holistic evaluation by
unveiling many merits and pitfalls of SoTA compression methods. Our study reveals that compres-
sion significantly impacts the knowledge encoded in LLMs during pre-training, compressed LLMs
perform quite well with knowledge augmented in-context settings. We primarily restrict our eval-
uation to Vicuna (decoder-only architecture) due to its open-source license, high performance, and
instruction-following ability. For future work, we aim to investigate how the lost knowledge due to
compression can be recovered using parameter-efficient fine-tuning methods, e.g., LoRA (Hu et al.,
2021) and QLoRA (Dettmers et al., 2023b).
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A APPENDIX

A.1 RELATED WORKS

A.1.1 SPARSITY IN LARGE LANGUAGE MODELS

The advent of large-scale pre-trained models has led to the development of advanced post-training
pruning methods, aiming to enhance the cost-effectiveness of these expansive models (Sanh et al.,
2020; Chen et al., 2020a; Jaiswal et al., 2023b; Zafrir et al., 2021; Kurtic et al., 2022; Xu et al.,
2021; Lagunas et al., 2021; Zhang et al., 2022; Frantar et al., 2021; Jaiswal et al., 2023a; Ma et al.,
2023; Ji et al., 2023). Among them, Frantar et al. (2021) extend second-order pruning to the BERT-
level scale, enabling the pruning of blocks of weights and achieving state-of-the-art results for sparse
BERT. Frantar & Alistarh (2023) introduce SparseGPT for pruning large language models (LLMs) in
a single shot without requiring re-training or fine-tuning. They leverage column-wise second-order
pruning, and successfully remove 100B weights from OPT-175B without a significant increase in
perplexity. More recently, Sun et al. (2023) propose a straightforward pruning method that takes both
weights and activations into account, demonstrating comparable performance to Frantar & Alistarh
(2023). Li et al. (2022) reveal that activation sparsity is a prevalent phenomenon in Transformers
(90% of intermediate output), yielding another opportunity for acceleration. Liu et al. (2023b) in-
troduce a large-scale SMC-Bench, indicating that state-of-the-art magnitude- and/or gradient-based
sparse algorithms fall short when applied out-of-the-box to larger-scale models and a selected of
complex downstream tasks.

A.1.2 QUANTIZATION IN LARGE LANGUAGE MODELS

With the recent open-source releases of language models like BLOOM, Vicuna, LLaMa, OPT, etc.,
quantization has emerged as a widely embraced technique to alleviate the storage and computa-
tional overhead of deep learning models. Recent research endeavors have harnessed quantization
to compress LLMs and they can be classified into the two mentioned approaches: Quantization-
Aware Training (QAT), and Post-Training Quantization (PTQ). In QAT, the quantization objective
is embedded into the LLM training process, enabling them to adapt to low-precision representa-
tions and handle precision loss caused by quantization. LLM-QAT (Liu et al., 2023c) proposes
a data-free distillation method that leverages generations produced by the pre-trained model, pre-
serving the original output distribution and allows quantizing LLaMa models independent of its
training data. PEQA (Kim et al., 2023) operates through a dual-stage process: initially, the param-
eter matrix of each fully-connected layer undergoes quantization into a matrix of low-bit integers
and a scalar vector; subsequently, fine-tuning occurs on the scalar vector for each downstream task.
QLoRA (Dettmers et al., 2023a) proposes an efficient finetuning approach that reduces memory us-
age enough to finetune a 65B parameter model on a single 48GB GPU while preserving full 16-bit
finetuning task performance by backpropagating gradients through a frozen, 4-bit quantized pre-
trained language model into Low Rank Adapters (LoRA). PTQ involves quantizing the parameters
of LLMs after the completion of the LLM’s training phase. GPTQ (Frantar et al., 2022) proposes
a novel layer-wise quantization technique based on approximate second-order information resulting
a bitwidth reduction to 3 or 4 bits per weight, with minimal accuracy loss compared to the uncom-
pressed version. AWQ (Lin et al., 2023a) based on the observation that weights are not equally
important: protecting only 1% of salient weights can greatly reduce quantization error, employs
an activation-aware approach by considering the significance of weight channels corresponding to
larger activation magnitudes. SpQR (Dettmers et al., 2023c) works by identifying and isolating out-
lier weights, which cause particularly-large quantization errors, and storing them in higher precision,
while compressing all other weights to 3-4 bits, and achieves relative accuracy losses of less than
1% in perplexity for highly-accurate LLaMA and Falcon LLMs.

A.1.3 LARGE LANGUAGE MODELS AND EVALUATION

Large language models (LLMs) are gaining increasing popularity in both academia and industry
playing vital role in both research and daily use. With increasing popularity, several works (Li et al.,
2023; Kaddour et al., 2023; Muhlgay et al., 2023; Zhang et al., 2023; Valmeekam et al., 2022; Liu
et al., 2023a; Sawada et al., 2023; Qin et al., 2023; Zhuo, 2023; Lee et al., 2023) attempt to go
beyond conventional perplexity to evaluate performance of LLMs across factuality, commonsense
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reasoning, language understanding, reading comprehension, programming, instruction following
abilities, etc. Muhlgay et al. (2023) propose a new metric FACTOR to understand factuality correct
information in the LLM generated text. It found that although FACTOR accuracy and LMM per-
plexity tend to be highly correlated but sometimes induce different orderings between LMMs. They
reported that pairs of models can share similar perplexity but differ significantly in terms of FAC-
TOR accuracy. Lee et al. (2023) evaluate the performance and alignment of LLM distribution with
humans using two different techniques: Monte Carlo Reconstruction (MCR) and Log Probability
Reconstruction (LPR); and found LLMs exhibit limited ability in solving NLI tasks and simulta-
neously fail to capture human disagreement distribution. Zhang et al. (2023) attempt to investigate
promise for automatic summarization with respect to human summary writers and found that LMM
summaries are judged to be on par with human written summaries. Valmeekam et al. (2022) propose
an extensible assessment framework to test the capabilities of LLMs on reasoning about actions and
change, a central aspect of human intelligence and found that GPT-3 and BLOOM have dismal per-
formance on these benchmarks. Despite these efforts to investigate the performance of dense LLMs
comprehensively, it is surprising that no such efforts have been yet carried out for a more daunting
case of compressed LLMs, which are derived from dense counterparts sharing significantly high
similarity with them. Our work is first attempt to address this gap and encourage sparse commu-
nity researchers to go beyond perplexity to evaluate the true merits and drawbacks of compression
methods.

A.2 PROMPT DESIGN AND EXAMPLES FOR DIFFERENT TASK SETTINGS IN LLM-KICK

A.2.1 FACTOID-BASED QA

Prompt Design: Please give answer to this question: <QUESTION> The answer is
Example: Please give answer to this question: The film ‘10 things I
hate about you’ is based on which Shakespeare play? The an-
swer is
Model Response: Please give answer to this question: The film ‘10 things
I hate about you’ is based on which Shakespeare play? The
answer is the taming of the shrew.

A.2.2 MULTIPLE-CHOICE REASONING-BASED QA

Prompt Design: The following are multiple choice questions (with answers) about
<SUBJECT NAME>.\n\n<QUESTION> \nA. <OPTION 1>\nB. <OPTION
2>\nC. <OPTION 3>\nD. <OPTION 4>\n Answer:
Example: The following are multiple choice questions (with answers) about
algebra.\n\n Find the degree for the given field extension
Q(sqrt(2), sqrt(3), sqrt(18)) over Q. \nA. 0\nB. 4\nC. 2\nD.6\n
Answer:
Model Response: The following are multiple choice questions (with answers) about
algebra.\n\n Find the degree for the given field extension
Q(sqrt(2), sqrt(3), sqrt(18)) over Q. \nA. 0\nB. 4\nC. 2\nD.6\n
Answer: B

A.2.3 IN-CONTEXT RETRIEVAL AUGMENTED QUESTION ANSWERING

1 Closed Book Setting: For closed-book setting, we adopted the prompt from Touvron et al. (2023)
as follows.
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Prompt Design: Answer these questions:\n\nQ: <QUESTION>\n A:
Example: Answer these questions:\n\nQ: Who was the man behind The
Chipmunks?\n A:
Model Response: Answer these questions:\n\nQ: Who was the man behind
The Chipmunks?\n A: The man behind The Chipmunks was David
Sarge, who was the founder of the Alphaville Virtual Real
Estate Company.

2 Open Book Setting: For open-book setting, we extend the above prompt as follows.

Prompt Design: <EVIDENCE>\n Answer these questions:\nQ: <QUESTION>\n
A:
Example: ‘‘Alvin and the Chipmunks (2007) - IMDb IMDb 17
January 2017 4:34 PM, UTC NEWS. A struggling songwriter
named Dave Seville finds success ..."\n Answer these questions:\n
Q: Who was the man behind The Chipmunks?\n A:
Model Response: ‘‘Alvin and the Chipmunks (2007) - IMDb
IMDb 17 January 2017 4:34 PM, UTC NEWS. A struggling
songwriter named Dave Seville finds success ..."\n Answer
these questions:\n Q: Who was the man behind The Chipmunks?\n A:
Dave Seville.

A.2.4 IN-CONTEXT TEXT SUMMARIZATION

Prompt Design: A chat between a curious user and an artificial intelligence
assistant. The assistant gives helpful, detailed, and polite answers to the user’s ques-
tions. USER: Summarize the given story in less than 150 words
while preserving high coherence, consistency, fluency,
and relevance.\n\n <STORY>. ASSISTANT:
Example: A chat between a curious user and an artificial intelligence assistant.
The assistant gives helpful, detailed, and polite answers to the user’s questions.
USER: Summarize the given story in less than 150 words
while preserving high coherence, consistency, fluency,
and relevance.\n\nLibyan and U.S. officials say the two
governments held face-to-face talks in Tunisia ...have
denied previous reports of talks with the government. AS-
SISTANT:

Model Response: The model response of one-shot magnitude pruned Vicuna-7B ASSISTANT is
shown in Figure 8.

Figure 8: Output response of 10% compressed (unstructured one-shot) Vicuna-7b ASSISTANT.
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A.2.5 MULTI-TURN CONVERSATION AND INSTRUCTION FOLLOWING

Prompt Design: A chat between a curious user and an artificial intelligence assistant.
The assistant gives helpful, detailed, and polite answers to the user’s questions. USER:
<QUESTION> ASSISTANT:
Example: A chat between a curious user and an artificial intelligence assistant. The as-
sistant gives helpful, detailed, and polite answers to the user’s questions. USER: How can
I improve my time management skills? ASSISTANT:

Model Response: The model response of one-shot magnitude pruned Vicuna-7B ASSISTANT is
shown in Figure 9.

Figure 9: Output response of 10% compressed (unstructured one-shot) Vicuna-7b ASSISTANT.

A.3 IN-CONTEXT SUMMARIZATION EVALUATION SETTINGS

For evaluating the performance of LLMs to generate high-quality in-context summarization, we fo-
cus on consistency, coherence, fluency, and relevance metrics. We prompt GPT-4 which has been
recently identified to be highly effective as an automated evaluation framework for benchmark gen-
eration and performance assessments, to evaluate these metrics in comparison to the summaries
generated by GPT-3.5. Examples of our prompts used for evaluating with GPT-4 Judge are shown
in Figure 10. We also provide an example of GPT-4 Judge output in Figure 11.

IN-CONTEXT SUMMARIZATION EVALUATION PROMPT >>  "You are a helpful and precise assistant for checking the quality of the summarization of two stories within 150 words.",
"prompt_template": "[STORY]\n{story}\n\n[The Start of Assistant 1's Summary]\n{summary_1}\n\n[The End of Assistant 1's Summary]\n\n[The Start
of Assistant 2's Summary]\n{summary_2}\n\n[The End of Assistant 2's Summary]\n\n[System]\n{prompt}\n\n", "defaults": {"prompt": "We
would like to request your feedback on the performance of two AI assistants in response to the user requested summary above.\nPlease
rate the coherence, consistency, fluency, and relevance of summary generated. Each assistant receives a score on a scale of 1 to 10 for
coherence, consistency, fluency and relevance, where a higher score indicates better overall performance.\nPlease first output four
lines containing only two values indicating the scores for Assistant 1 and 2, respectively for each four metrices. The two scores are
separated by a space. In the subsequent line, please provide a comprehensive explanation of your evaluation, avoiding any potential bias
and ensuring that the order in which the responses were presented does not affect your judgment."}

Figure 10: Example of prompt used to evaluate the compressed LLM ASSISTANT wrt. GPT-3.5
ASSISTANT using GPT-4 as Judge on consistency, coherence, fluency, and relevance of generated
summaries.

Figure 11: GPT-4 Judge Evaluation of responses generated by GPT-3 (ASSISTANT 1) wrt. 10%
compressed (unstructured one-shot) Vicuna-7b (ASSISTANT 2).

A.4 INSTRUCTION FOLLOWING ABILITY EVALUATION SETTING

For evaluating the responses generated by compressed LLMs, we closely follow the prompt design
settings of MT-Bench (Zheng et al., 2023) using GPT-4 as judge. We prompt GPT-4 to rate the
answers generated by compressed LLMs wrt. GPT-3.5 (text-davinci-003) model based on varying
metrics (eg. correctness, helpfulness, logic, accuracy, etc.) on a scale of [0-10] and provides a
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detailed explanation behind the score. Examples of our prompts used during evaluation for questions
as well as GPT-4 Judge response are as shown in Figure 12, and 13, respectively.

GENERAL QUESTION PROMPT >>  You are a helpful and precise assistant for checking the quality of the answer.", "prompt_template": "
[Question]\n{question}\n\n[The Start of Assistant 1's Answer]\n{answer_1}\n\n[The End of Assistant 1's Answer]\n\n[The Start of
Assistant 2's Answer]\n{answer_2}\n\n[The End of Assistant 2's Answer]\n\n[System]\n{prompt}\n\n", "defaults": {"prompt": "We would
like to request your feedback on the performance of two AI assistants in response to the user question displayed above.\nPlease
rate the helpfulness, relevance, accuracy, level of details, factual information, and length of their responses. Each assistant
receives an overall score on a scale of 1 to 10, where a higher score indicates better overall performance.\nPlease first output a
single line containing only two values indicating the scores for Assistant 1 and 2, respectively. The two scores are separated by a
space. In the subsequent line, please provide a comprehensive explanation of your evaluation, avoiding any potential bias and
ensuring that the order in which the responses were presented does not affect your judgment."}

CODING QUESTION PROMPT >>  You are a helpful and precise assistant for checking the quality of the answer.", "prompt_template": "[Question]\n{question}\n\n[The
Start of Assistant 1's Answer]\n{answer_1}\n\n[The End of Assistant 1's Answer]\n\n[The Start of Assistant 2's
Answer]\n{answer_2}\n\n[The End of Assistant 2's Answer]\n\n[System]\n{prompt}\n\n", "defaults": {"prompt": "Your task is to
evaluate the coding abilities of the above two assistants. They have been asked to implement a program to solve a given problem.
Please review their code submissions, paying close attention to their problem-solving approach, code structure, readability, and
the inclusion of helpful comments.\n\nPlease ensure that the assistants' submissions:\n\n1. Correctly implement the given problem
statement.\n2. Contain accurate and efficient code.\n3. Include clear and concise comments that explain the code's logic and
functionality.\n4. Adhere to proper coding standards and best practices.\n\nOnce you have carefully reviewed both submissions,
provide detailed feedback on their strengths and weaknesses, along with any suggestions for improvement. You should first output a
single line containing two scores on the scale of 1-10 (1: no code/no sense; 10: perfect) for Assistant 1 and 2, respectively. Then
give extra comments starting from the next line."}

MATHS QUESTION PROMPT >>  You are a helpful and precise assistant for checking the quality of the answer.", "prompt_template": "[Question]\n{question}\n\n[The
Start of Assistant 1's Answer]\n{answer_1}\n\n[The End of Assistant 1's Answer]\n\n[The Start of Assistant 2's
Answer]\n{answer_2}\n\n[The End of Assistant 2's Answer]\n\n[System]\n{prompt}\n\n", "defaults": {"prompt": "We would like to
request your feedback on the mathematical proficiency of two AI assistants regarding the given user question displayed
above.\nFirst, please solve the problem independently, without referring to the answers provided by Assistant 1 and Assistant
2.\nAfterward, please examine the problem-solving process of Assistant 1 and Assistant 2 step-by-step to ensure their correctness,
identifying any incorrect steps if present. Your evaluation should take into account not only the answer but also the problem-
solving steps.\nFinally, please output a Python tuple containing two numerical scores for Assistant 1 and Assistant 2, ranging from
1 to 10, respectively. If applicable, explain the reasons for any variations in their scores and determine which assistant
performed better."}

Figure 12: Examples of prompts used for different categories to evaluate the compressed LLM
ASSISTANT wrt. GPT-3.5 ASSISTANT using GPT-4 as a Judge.

Figure 13: GPT4-as-a-Judge evaluation of responses generated by GPT-3 (ASSISTANT 1) wrt. 10%
compressed (unstructured one-shot) Vicuna-7b (ASSISTANT 2).

A.5 USEFUL LINKS FOR LLM-KICK

Table 1: Dataset and code link used in our work.
Method / Dataset Download URL

FreebaseQA (Jiang et al., 2019) https://huggingface.co/datasets/freebase_qa
MMLU Benchmark (Hendrycks et al., 2020) https://huggingface.co/datasets/freebase_qa
TriviaQA (Joshi et al., 2017) https://huggingface.co/datasets/trivia_qa
MT-Bench (Zheng et al., 2023) https://huggingface.co/datasets/HuggingFaceH4/mt_bench_prompts
CNN/DailyMail Summarization (Nallapati et al., 2016) https://cs.nyu.edu/˜kcho/DMQA/
WikiText (Merity et al., 2016) https://huggingface.co/datasets/HuggingFaceH4/mt_bench_prompts
Wanda (Sun et al., 2023) https://github.com/locuslab/wanda
SparseGPT (Frantar & Alistarh, 2023) https://github.com/IST-DASLab/sparsegpt
LLM-Judge (Zheng et al., 2023) https://github.com/lm-sys/FastChat/tree/main/fastchat/llm_judge
GPTQ (Frantar et al., 2022) https://github.com/qwopqwop200/GPTQ-for-LLaMa

A.6 COMPARSION WITH AWQ AND LLM-INT8

In this section, we considered evaluating AWQ (Lin et al., 2023b) and LLM.int8() (Dettmers et al.,
2022) across our different task settings and we summarize our results on Vicuna-7B as in the follow-
ing table. We observe that LLM.int8() despite its simplicity and ease-of-use, achieves better results
than AWQ (8-bit), and GPTQ (8-bit) across all listed tasks.
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Task GPTQ AWQ LLM-int8()

Factoid-QA 60.14% 60.31% 61.02%
MCR-QA (MMLU) 47.10% 47.18% 47.82%

Retrieval Augmented QA 75.55% 75.89% 75.91%
Instruction Following (GPT4-Score) 9.74 9.72 9.81

Table 2: Performance comparison of AWQ and LLM-int8() on LLM-KICK.

A.7 UNDERSTANDING THE IMPACT OF K-SHOT FOR COMPRESSED LLMS
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Figure 14: k-shot results of
Vicuna-7B pruned with Wanda.

In this section, we aim to investigate how few-shot in-context
learning examples can benefit SoTA pruning methods to pre-
serve performance across various sparsity levels. Figure 14
illustrates the performance comparison of Vicuna-7B at vary-
ing sparsity ratios when augmented with k-shot in-context ex-
amples on MMLU benchmark. It is interesting to observe
that k-shot in-context learning examples have marginal im-
pact on dense network performance, while they significantly
help in preserving the performance at high sparsity. More-
over, we found 2-3 examples are sufficient to retain the perfor-
mance, and supplementing additional examples doesn’t neces-
sarily provide further noticeable benefits.

A.8 SUMMARY OF VARIOUS PRUNING METHODS ON LLM-KICK

Task Pruning Method 0% 10% 20% 30% 40% 50%

Factoid-QA Magnitude 65.44 61.74 66.53 60.84 42.06 13.99
SparseGPT 65.44 63.84 62.44 58.54 55.54 42.86

Wanda 65.44 63.34 65.23 61.24 58.24 44.66

MCR-QA (MMLU) Magnitude 0.471 0.466 0.455 0.422 0.339 0.050
SparseGPT 0.471 0.470 0.460 0.437 0.395 0.308

Wanda 0.471 0.469 0.460 0.455 0.425 0.386

In-context Retrieval Magnitude 5.883 6.112 5.855 5.567 4.329 1.233
(Long Story: Coherence) SparseGPT 5.883 6.033 5.533 6.067 5.567 5.067

Wanda 5.883 6.0 5.783 5.933 5.267 5.033

Instruction Following Magnitude 7.763 7.567 7.621 7.201 6.208 3.308
(GPT-4 Score) SparseGPT 7.763 7.645 7.50 7.188 6.905 6.206

Wanda 7.763 7.731 7.546 7.202 7.071 6.838

Table 3: Performance comparison of various pruning methods on Vicuna-7B with LLM-KICK.

A.9 ADDITIONAL RESULTS ON LLAMA-2
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Figure 15: Compressed LLMs for Factoid-based QA. Performance comparison of compressed
LLMs (LLaMa 1 & 2) on Factoid-QA task using FreebaseQA (Jiang et al., 2019). Results presented
are for structured (N:M sparsity) and unstructured sparsity.
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Figure 16: Compressed LLMs for Multiple-Choice Reasoning based QA. Performance compari-
son of compressed LLaMa-2 7B on MCR-QA tasks using the MMLU benchmark (Hendrycks et al.,
2020). Results presented are for structured (N:M sparsity) and unstructured sparsity.
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Figure 17: Compressed LLMs for In-context Retrieval Augmented QA. Performance compari-
son of compressed LLaMa-2 7B on ICRA-QA task. We present head-to-head comparison of closed-
book evaluation (no external knowledge is augmented in-context) with open-book evaluation (ex-
ternal knowledge is augmented in-context). Results presented are for structured N:M sparsity and
unstructured sparsity.
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