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ABSTRACT

Multi-agent imitation learning (MA-IL) aims to learn optimal policies from expert
demonstrations in multi-agent interactive domains. Despite existing guarantees
on the performance of the extracted policy, characterizations of its distance to a
Nash equilibrium are missing for offline MA-IL. In this paper, we demonstrate
impossibility and hardness results of learning low-exploitable policies in general
n-player Markov Games. We do so by providing examples where even exact
measure matching fails, and present challenges associated with the practical case
of approximation errors. We then show how these challenges can be overcome
using strategic dominance assumptions on the expert equilibrium, assuming BC
error egc. Specifically, for the case of dominant strategy expert equilibria, this
provides a Nash imitation gap of O (negc/(1 — v)?) for a discount factor . We
generalize this result with a new notion of best-response continuity, and argue that
this is implicitly encouraged by standard regularization techniques.

1 INTRODUCTION

Learning from expert demonstrations via imitation learning (IL) has recently seen growing adoption
in the Machine Learning and Robotics communities (Finn et al.,|2016b; Shih et al., |2022; [Pearce et al.,
2023} [Yang et al.| [2023)). Given a demonstration dataset, IL is traditionally done by either regressing
a policy (Behavioral Cloning (Pomerleaul |1991)), fitting a plausible reward function and extracting a
policy via Reinforcement Learning (Inverse Reinforcement Learning (Ng et al., |2000; |/Abbeel & Ng,
2004)), or implicitly matching expert occupancy measures (Finn et al.l 2016a; Ho & Ermon, [2016).
Crucially, imitation learning bypasses the need of designing a reward function, a common limitation
for Reinforcement Learning in practice, that often requires domain expertise or extensive iterative
refinements. Instead, it directly leverages demonstrations from optimal agents. This advantage
becomes even more compelling when learning tasks requiring collaboration or competition between
multiple agents, where reward assignment constitutes an extra ambiguity (Sunehag et al.,[2017)).

While many works successfully tackle single agent IL (SA-IL,Ho & Ermon| (2016); Ng et al.[(2000);
Ross & Bagnell (2010)), their extensions to multi-agent settings (Song et al., 2018} Zhan et al.l 2018)
inherit fundamental limitations. In particular, they produce policies that remain exploitable: at run
time, a strategic action can improve by unilaterally deviating from its policy (Tang et al., 2024).

In this work, we study the question of learning a Nash equilibrium using demonstrations from an
expert Nash equilibrium, provided classical guarantees from BC or Adversarial IL methods that
directly regress on the imitation dataset. More precisely, we measure the exploitability of the learned
policy as its distance to a Nash equilibrium, by characterizing situations where we can derive both
consistent and tractable bounds on the Nash gap (see Section [3|for a formal definition), where

* A consistent bound vanishes with the imitation error. This ensures the pertinence of conver-
gence losses to quantify exploitability with no imitation error.

* A tractable bound is efficient to compute based on the game assumptions. It can be computed
in polynomial time to measure exploitability during IL training.

Intuitively, a consistent bound ensures that a Nash equilibrium is learned from an imitation error of
zero. Consistency can be implicitly assumed by SA-IL extensions to multi-agent domains, but we
show that this is a strong assumption that doesn’t hold in general games. Specifically, we prove how
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not assuming full-state support of the expert or only matching its state distribution can lead to bound
inconsistencies. Then, we present continuity conditions under which both consistent and tractable
upper bounds on the Nash gap can be computed. In summary, we make the following contributions:

* In Section[d] we show the impossibility of deriving consistent Nash gap bounds in general
Markov Games, providing concrete examples where even exactly matching expert occupancy
measures can result in highly exploitable policies.

* We further demonstrate in Section[5|the impossibility of deriving tight rractable exploitability
lower bounds in general games, even if we know both the rewards and transition dynamics.

* Finally, Section [6] presents a new notion of best-response continuity not observed in SA-IL
and shows how assumptions on this continuity property can be used to construct tractable
upper bounds. As a special case, we prove that a “good” approximate Nash equilibrium can
be learned from Behavioral Cloning with a dominant strategy expert.

To keep the arguments straightforward, we present our results for infinite-horizon games in the main
document. These results also extend to finite-horizon games, as demonstrated in Appendix [E]

2 PREVIOUS WORK

Single-agent Imitation Learning. Given a dataset of demonstrations produced by an expert, SA-IL
aims to extract a near-optimal policy from the data. The expert is considered optimal in maximizing a
reward function over time, as in the reinforcement learning framework. Without requiring access
to the environment or expert oracles, imitation learning is done through Behavioral Cloning (BC,
Pomerleau| (1991)), Inverse Reinforcement Learning (IRL, Ng et al.| (2000); |Abbeel & Ng| (2004))
or Adversarial Imitation Learning (Ho & Ermon, [2016). These methods essentially fit one of: the
expert policy function, the reward function, or the expert occupancy measures (Finn et al.,|2016a; Ho
& Ermonl |2016)). In the single-agent setting, performance of such approaches are well-understood,
measured by the sub-optimality gap of the learned policy with respect to the expert.

Multi-agent Imitation Learning. A growing body of work focuses on imitation learning in multi-
agent domains (Song et al.l [2018; [Lin et al.| 2018; Wang et al.| 2021; [Shih et al.| 2022), with
applications such as autonomous driving (Bhattacharyya et al., |2018) or robotic interactions (Bogert
& Doshil 2018). MA-ILR inherits the ambiguity of reward design from the reinforcement learning
framework (Sunehag et al.|2017; [Freihaut & Ramponil 2025)). More simple methods (BC, Adversarial
IL) are therefore tempting and have been extended from their single-agent counterpart (Song et al.,
2018; Zhan et al.| [2018). However, they do not carry guarantees on the extracted policy in terms of
robustness to the presence of strategic interactions.

Theoretical Barriers for MA-IL. Indeed, previous work showed that BC and GAIL policies are
exploitable in general games (Cui & Du, [2022; [Freihaut et al., [2025; Tang et al.,|2024). Among those
works, [Freihaut et al.| (2025)) introduces the first regret upper bound for behavioral cloning, guarantee-
ing maximal sub-optimality from individual player deviations. They rely on a new concentrability
coefficient related to broader concentrability assumptions (Cui & Dul 2022} |Yin et al.,|2021; |Cai
et al., |2023). This coefficient is intractable in general games and can become unbounded, making
their bound both inconsistent and hard to use in practice.

There remains a gap in the literature in identifying the phenomena behind impossibility results from
prior work, and conditions to make offline MA-IL well-behaved are still unclear. We reduce this gap
by characterizing such issues and deriving conditions for consistent and tractable Nash gap bounds.

3 PRELIMINARIES

Markov Games We use the tuple G = (S, A, P, {r;}!'_,,v0,7) to define an n-player Markov
Game. Playersin [n] := {1,...,n} take joint actions in A = A; x - - - X A,, while navigating a shared
state space S. The dynamics of the system are described by the transition function P : S x A — Ag
and the initial state distribution vy € Ag, where Ay denotes the probability simplex over a space
U. Lastly, we define the reward functions for all players i € [n] asr; : S x A — [—1,1], and the
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discount factor vy € [0, 1). Every player ¢ € [n] simultaneously takes actions by sampling from its
individual policy 7; : S — A 4,. The resulting joint policy is 7 := 7 X - - - X 7y, also denoted by
m; X m_; where m_; represents the joint policy of all players but :. We will use 11 to denote the set of
possible policies of all agents 7.

Sampling trajectories from 7, players induce the following state-only and state-action occupancy
measures for every s € S, respectively:

a(s) = (1 =) S A'B(s: = s), pr(s,a) = pn(s)m(als),
t=0

where P(s; = s) is the probability of reaching state s after rolling out the policy 7 for ¢ steps.

Intuitively, 1. (s) is the discounted visitation frequency of state s after infinitely many steps. Similarly,

pr(8,a) is the discounted frequency of the state-action pair (s, a). This allows us to define for every

state s € S, the state-value functions as the expected discounted cumulative rewards of the players:
1

V?(S) = ﬁ : E(SVG)NPw [ri(& a)] Vi € [TL},

where E(, )~ [-] samples state-action pairs from the density function p, similarly for Es.,, [-].
By extension we also define V" (v) = E,,..,[V;"(s0)] for any distribution v € Ag.

Markov Games extend Markov Decision Processes (MDPs, when n = 1 (Puterman, 2014)) to
multi-agent games, where each agent has its own reward function. While in MDPs an optimal policy
is clearly defined as one maximizing V’T(VO)D the distinct individual rewards of a Markov Game
necessitate the introduction of the solution concept of a game equilibrium.

Nash equilibrium Fixing other players’ policies as 7_;, the performance of a player ¢ is measured
with V™ (). Therefore, we can denote the set of optimal policies for player 7 as the optimal policies
in the MDP induced by 7_; using the concept of best-response mapping.

Definition 1 (Best-response mapping). For an agent i € [n], its best-response to w_; is defined as

BR;(7_;) := arg max Vf’li’ﬂ_i (v0).-

i

Intuitively, when playing a best-response 7w} € BR;(7_;), player ¢ cannot improve by unilaterally
deviating from 7. From this definition, a Nash equilibrium is defined as a combination of independent
policies where no player would be better off by unilaterally deviating.

Definition 2 (Nash equilibrium). A policy 7 is a Nash equilibrium of the game if 7 is a product
policy and each individual policy is a best-response to the other policies, i.e.

T € BRi(ﬂ'_i) Vi € [’I’L]
As is common in multi-agent games, we use Nash equilibria as solution concepts to model interaction

outcomes throughout this paper. Specifically, our goal is to learn (approximate) Nash equilibriaﬂ from
a dataset of trajectories sampled from a Nash equilibrium policy 7 termed the expert policy.

Offline Imitation learning Given a dataset of finite-length trajectoriesﬂ produced by rolling-out
7 in a given Markov Game G, an imitation learning procedure aims to recover a “good” joint policy
« without access to the environment.

Following the above discussion, we measure the performance of 7 with the following metric.

Definition 3 (Value gap). Given an expert policy 7% of G, the Value gap of a policy T is:
ValueGap(7) := max (‘/iﬂE(l/o) Az (1/0)) .
7

'Or Vi (1) using the notation above

2An (approximate) e-Nash equilibrium is a product policy where for all i € [n], 7 € BR;(w—;) and
VT (w) = Vi () < e

3While we consider stationary policies maximizing cumulated rewards over an infinite horizon, IL usually
assumes a set of N trajectories {75 }h_; of length | 74| ~ Geometric(1 — ).
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This is essentially the maximum sub-optimality gap among the agents for playing 7 instead of the
optimal expert 7. In the multi-agent case, however, the performance of individual players is usually
not a sufficient guarantee as we use the imitation policy in an environment with strategic agents. We
will therefore evaluate the exploitability of 7, as a measure of its gap to a Nash equilibrium.

Definition 4 (Nash gap, see Ramponi et al.|(2023)). We define the Nash (imitation) gap of a product
policy 7 of the game G as

NashGap(w) := max (X/iﬂf’w”‘(l/o) - Vf(z@)) (1)
with any 7} € BR;(7_;).

The Nash gap is a notion of maximal regret (Tang et al.| 2024)) for the individual players. It directly
links to Nash equilibria as an e-Nash equilibrium is any 7. € II satisfying NashGap(r.) < €. Hence,
we measure Nash gap on product policies, enforced by learning individual policies independently.

In the general case, both ValueGap(w) and NashGap(7) are upper bounded by % as differences

of cumulative normalized rewards. The goal of an imitation learning procedure would be to leverage
the expert data so as to reduce this bound with training error assumptions.

Regressing on the training data, BC and Adversarial IL bring one of the following error assumptions:
a BC Error, from matching the empirical distribution of the independent individual players, or a
Measure Matching Error measuring a discrepancy in occupancy measures (state-only or state-
action). They are respectively defined as:

€BC = m?XESN/Lﬂ.E [[|mi(:]s) — ﬂ'zE(|5)H1] @
eu = |lptx = pirm | )
¢ = lox = pre @

While general consistent and tractable upper bounds are known on the Value gap assuming either
4 .. . . . .

€Bc Orf e deriving similar bounds for the Nash gap remains an open problem. Assuming fixed error

assumptions, we therefore lack an understanding of the distance to an equilibrium.

More information about the connection between adversarial imitation learning and occupancy measure
matching can be found in Appendix [A]

4  IMPOSSIBILITY RESULTS FOR EXACT MEASURE MATCHING

As a first step to understand the difficulty of extracting Nash equilibria from expert demonstrations,
we focus in this section on the idealized case of exact occupancy measure matching. This is a crucial
step for determining when a bound can be consistent, while the assumption is relaxed in later sections.
Specifically, this section addresses the following question:

When is exact occupancy measure matching learning a Nash equilibrium?

We start by motivating the approach by showing that under the strong assumption of full-state support,
exact state-action occupancy measure matching (shortened state-action matching below) recovers
an exact Nash equilibrium. Then, we show how weakening any of these two aspects can lead to
catastrophic errors. Note that assuming state-action matching (i.e. €, = 0) is equivalent to assuming
state-only matching (i.e. €, = 0) and exact Behavioral Cloning (i.e. egc = 0).

To make our statement more precise, note that any policy 7 of a Markov Game partitions the state
space S into a visited region S;7 = {s : u,(s) > 0} and an unvisited region S; = {s : i (s) = 0}.
We prove that state-action matching (¢, = 0) and full-state support (S:E = &) recovers the Nash
expert, i.e. m = wF. When the state-support is incomplete (S:E # §) or only state-matching
(e, = 0) holds, we can only guarantee the trivial bound NashGap(m) < O (1/(1 —7)).

*ValueGap(m) < nepc/(1 — 7)? from the Performance Difference Lemma (see e.g. Xiao| (2022)) and
ValueGap(m) < €,/(1 — ) by Holder’s inequality.
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4.1 SUFFICIENCY OF STATE-ACTION MATCHING UNDER FULL-STATE SUPPORT

Under full-state support (S, = S), we show how state-action matching is sufficient to learn a Nash
equilibrium. This is the direct consequence of the following fact: a policy 7 is uniquely characterized
by its state-action occupancy measure p, on the visited region S,;". We formalize this idea in the
following theorem, and explain its implications for measure matching.

Theorem 1. Let w, 7' € II be such that p, = pnr. Then, S} = ST, and 7(-|s) = 7'(-|s) for every
seS;t.

The proof can be found in Appendix [B.1]

This shows that in the limit of infinite data where state-action matching is attainable, the empirical
state-action occupancy measure is a sufficient statistic for learning 7 on its state support S;'E.
Assuming full-state support, we can then derive the following corollary for state-action matching.

Corollary 1. Let 7%, 7 € Il be such that S, = S and pr = py; then, NashGap(m) = 0.

Matching state-action occupancy measure under full-state support is therefore a sufficient condition
for learning the expert Nash equilibrium. In the next section, we show that only assuming state-only
matching p.= = p, becomes insufficient to learn a Nash equilibrium.

4.2 INSUFFICIENCY OF STATE-ONLY MATCHING WITH FULL-STATE SUPPORT

In this section, we show that even with full-state support, state-only matching doesn’t provide
exploitability guarantees in general Markov Games. This is because rewards are functions of state-
action pairs but state distributions are not tied to specific transitions. We can therefore construct
examples of games where a given state distribution can be realized by distinct transitions and very
different rewards.

To prove that state-only matching with full-state support cannot extract Nash equilibria (Nash gap of
zero) in general games, we demonstrate below that it can even incur a Nash gap linear in the effective
horizon 1/(1 — 7).

Lemma 1. There exists a game and a corresponding expert policy ©F such that S:_'E = S. Moreover,
there exists a policy m such that |15 = p, and NashGap(m) > Q (1/(1 — ~)).

Proof. We prove this lemma by constructing an example of such a game. Let G be a cooperative
two-player game with action sets A; = Az = {a1, as}, state space S = {so, s1, s2}, discount term
~, and uniform initial state distribution vy;. The rewards and transition dynamics of G are shown in
Figure[l] By definition, . (s) > (1 —~)vy(s) > Oforall s € S and 7’ € II. Therefore, all policies
have full-state support.

else (ar,a1) else -1 1 —1
e else e -1
(a1,a1) (a1, a1) 1/3 2/3

(a) Description of the game transition dynamics. Note  (b) Description of the reward function. The number
that a tuple (a;, a;) corresponds to player 1 playing  on each arrow is the reward associated with the cor-
a; and player 2 playing a;. Arrows represent deter-  responding transition. The rewards are the same for
ministic transitions from a state to another. both players.

Figure 1: Cooperative two-player game GG

A Nash equilibrium of G is the constant policy 7% ((ay,a;)|s) = 1 forall s € SE], with uniform
occupancy measure (i, = (-) = 1/3. Let the learned policy be the constant 7((a1, az2)|s) = 1 such

5This is a Nash equilibrium because mixed actions in this game always incur the worst possible value. A
formal argument can be found in Appendix [B.2}
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that p, = pe and Vi (vy) = —ﬁ. Noting that V2"E (vv) = %, this concludes the proof as:

B 1
NashGap(w) > V§ (vy) = V5 (vy) = —— > <1) .
-

O

Lemma [T emphasizes that state-based occupancy approaches as in[Wu et al| (2025) cannot guarantee
convergence to equilibria in general games where policies may not provide full state coverage.

4.3 INSUFFICIENCY OF STATE-ACTION MEASURE MATCHING WITH UNVISITED STATES

Assuming again state-action matching, we show that full-state support is essential for learning a Nash
equilibrium in general games. We draw on the example given by [Tang et al.| (2024} Figure 2) to point
out issues from a non-visited region S_; # ) and derive the following theorem.

Theorem 2. (Adapted from|Tang et al.|(2024, Theorem 4.3)) There exists a Markov Game with expert
policy % and a learned policy m such that even if p.r = px, the Nash gap scales linearly with the
discounted horizon; i.e., NashGap(mw) > Q (1/(1 —7)).

The key idea and intuition behind this theorem is that the imitation dataset misses information about
the unvisited region S_. An illustrative example of when this is undesirable is shown in Figure

We can design reward functions for
————— > . .
the transitions of Figure [2] such that
i the expert would always take the solid

’

’ arrows.

’

start —’@—’@—’ s The dataset missing information about
7P (-|sh), a best-response can lead to

states s5 then seyp. This last state Sexp
can be designed to incur high rewards
for one player, while the expert region
ST incurs linearly less.

Figure 2: Transitions of a two-player Markov Game.
The unique initial state is s;. The rest of the chain (- - -)
and reward functions can be designed to induce linear
Nash gap for state-action matching.

For completeness, we adapt the proof of Tang et al|(2024) for infinite horizon games in Appendix[B.3]

5 ON THE INFEASIBILITY OF TRACTABLE LOWER BOUNDS FOR
EXPLOITABILITY

The analysis of Section[d]reveals that even under the idealized assumption of exact occupancy measure
matching, MA-IL can still fail drastically. This prevents us from deriving consistent exploitability
bounds in the general case. For practical settings, focusing on the idealized case of no learning error
is however not sufficient, as most IL procedures will incur an approximation error. First, because
of the finite number of samples in the dataset, matching empirical statistics being different from
matching the expert ones. Second, because of function approximations in the non-tabular setting
(Song et al 2018} [Wu et al.| |2025), which can only approximate the desired distributions.

This shift from an exact to an approximate matching regime introduces new challenges. The value
gap always enjoys a consistent and tractable upper bound of rate O (egc/(1 — 7)?) (Ross & Bagnell,
2010) or O(e,/(1 — )). However, we will demonstrate in the current and the next sections that even
small approximation errors can make exploitability bounds intractable.

A natural step in assessing the exploitability of the imitated policies is to quantify the best-case
Nash gap they might induce under approximation errors. Given an approximation error, this quantity
corresponds to the smallest achievable Nash gap among all the possible imitation policies 7. Formally,
we define it as follows:
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Definition 5 (Tight Nash gap lower bound). Let G be a Markov Game and let T1F the set of Nash
equilibria of G. We define the tight Nash gap lower bound for (G, €,) as

mp(G, ep) = TrlIinellr‘IlE we./\IxﬁlﬁwE) NashGap(r),

where M, () = {m € I1: ||px — prell; =€}

For a game G, given only the approximation error assumption €,, m,(G, €,) corresponds to the best
possible achievable Nash gap.

This quantity is in general intractable to compute, as we show below in Theorem [3|for the case of
bimatrix games (see Appendix [A|for more formal details on the PPAD class).

Theorem 3. Evaluating m,(Gyi, €,) for any bimatrix game Gy; and any €, € Ry is PPAD-hard.

Proof outline. If computing this lower bound can be done efficiently, then it is also efficient to
compute the support of a Nash equilibrium in a general bimatrix game. As we prove, the latter is
PPAD-hard, so is our problem.

In the proof, we provide a polynomial reduction to the problem of computing a support of an
approximate Nash equilibrium. Then we show that this can be polynomially reduced to the problem
of computing a Nash equilibrium itself.

This concludes the proof as finding an e-Nash equilibrium is a PPAD-complete problem (Chen et al.,
2007). See Appendix for the formal proof. O

This theorem tells us that evaluating the best-case Nash gap for a given ¢, is not a tractable problem
even when the game is fully known. This observation on the specific case of bimatrix games naturally
extends to (infinite) repeated games and allows us to derive the following corollary on a larger class
of Markov games.

Corollary 2. Evaluating m,(G, €) for any Markov game G and any € € Ry is PPAD-hard.

We further note that the hardness results do not imply the impossibility of deriving analytical bounds,
for example involving min-max optimization problems (that are known to be hard to compute
(Daskalakis et al.,[2020)). However, they imply that finding bounds with polynomial computation
time is no easier than finding the Nash equilibria themselves, even if the game is known. This makes
any potential tight lower bound on the Nash gap intractable.

6 TRACTABLE AND CONSISTENT EXPLOITABILITY UPPER BOUNDS FROM
BEST-RESPONSE CONTINUITY

In the previous section, we worked on a lower bound to understand the best possible Nash gap that
we can hope to achieve from given approximation errors. In this section, we study the worst possible
case and characterize tractability of upper bounds with a new notion of best-response continuity.

For general n-player Markov Games, the worst-case Value gap for a given BC error (Equation [2)) is
given by a consistent and tractable uniform bound: ValueGap() < nepc/(1 — 7)2. However, the
exploitation nature of the Nash gap makes it impossible to derive such a bound for a fixed error term.
We reveal how this phenomenon, not present in SA-IL, is characterized by a form of best-response
continuity, leading to game-dependent bounds.

6.1 CHARACTERIZATION OF MARKOV GAMES VIA BEST-RESPONSE DELTA-CONTINUITY

We introduce below a notion of continuity of the best-response mapping of Markov Games that will
allow us to derive new general upper bounds on the Nash gap in the next subsections.

Definition 6 (§-continuity of the best-response correspondence). For a given game G, the best-
response mapping is said to be S-continuous at equilibrium 7% for some § : Rt — [0, 2] if for all
i € [n], and € > 0, we have:

B (i) = 7B G, S € = mox B [ (ls) =P (ls)lh] < o)
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This is a notion related to the maximal change over all i € [n] of the optimal policy 7 in the
modified MDP induced by 7_; instead of w%;. This continuity will be used below to reduce the
complexity of computing Nash gap upper bounds to computing a valid §. This definition is naturally
extended for class of games as follows.

Definition 7 (d-continuity of a class of games). A class C of Markov Games is §-continuous if every
game G € C is §-continuous at all its Nash equilibria.

Provided with a class of game and a corresponding §, we will therefore be able to derive bounds
without assuming a specific game. However, we note that even for the class of games with a consistent
bound as presented in Section@, we cannot guarantee more than the trivial §(e) = 2 for € > 0.

Lemma 2. Let C be the class of games with consistent bounds. This class is §-continuous only for
trivial § such that 6(€) = 2 for all € > 0.

Proof. Suppose C is §-continuous. For every € > 0, v € (0, 1), we show that there exists a two-player
game G € C with Nash equilibrium ¥ where egc > € can incur Eqy,_ [||75(-[s) — 7 (]s)]],] =
2 for some 7} € BRq(m2).

. . .. . . log(&(1— .
Flguredescrlbes the transitions of G, with M}, a chain of k = [%@m-‘ consecutive states.

We define the rewards r1, 5 of G as:
For any a1, as, s,

° rl(a17a(];7sexp) =1

. L. .. . ¢ T2<a17agvsexp):1

Figure 3: Deterministic transition dynamics of a two-

player game with states sg, Sexp and sub-Markov chain * ri(ay,as, Sexp) =-1
Mj.. Player 1 has action space A; = {af,a}} and .
player 2 has action space A = {a$§, a$}. 0 otherwise
A Nash equilibrium of this game is the constant policy 7% ((a}, a$)|s) = 1 for all s € S. The expert
is such that (i, & (Sexp) < €/2. Therefore, the policy m((a1,a2)|s) = 7 ((a1,a2)|s) if s # sexp and
m((a7, af)|sexp) = 1 has BC error at most €.

A Dbest-response to 7o is the constant policy 7} (ah|s) = 1 for all s € S which incurs
Eep_p [||77(ls) — 7 (|s)||,] = 2. Note that G has a consistent bound for any error assumption
(gc=0&¢,=0&¢,=0forG,and S7, = S). O

6.2 PROVABLE CONVERGENCE UNDER STRATEGIC DOMINANCE

The previous section showed that even for the class of games with consistent bounds, we cannot
do better than the trivial §-continuity where J(¢) = 2 for € > 0. We study in this section the other
extreme for §: the constant §(-) = 0, before studying the general case in the next section.

In fact, we show that this special case corresponds to the class of Dominant Strategy Equilibria, for
which we can thus derive consistent and tractable exploitability upper bounds. Formally, a dominant
strategy equilibrium is defined as follows:

Definition 8 (Dominant Strategy Equilibrium (DSE)). A policy 7 is a (weak) dominant strategy
equilibrium if for every player i, ©F is a weak dominant strategy, i.e.:

i

Yo (Vo) > ‘/;ﬂ-“ﬂ'it(yo) Ve I

Note that the key property induced by the DSE assumption is that 7 is a best-response policy to any
deviations w_; for every player ¢, which corresponds to J-continuity of the best-response for §(-) = 0.

This allows us to derive the following consistent and tractable upper bound on the Nash gap.

Lemma 3. Suppose 7 is a (weak) Dominant Strategy Equilibrium. Then, any learned policy T with

BC error epc satisfies NashGap(m) < 2nepc/(1 — )2
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Proof outline. We leverage the fact that the Dominant Strategy Equilibrium assumption removes the
ambiguity in how far the best-response of any player is from its individual expert policy, i.e. we have:

NashGap(w) = max [Vf"'E’Li(VO) — Vim’ﬂ’i(uo)} . Q)

Using equation we can add and subtract the expert value VfE (vp) for every i € [n] and apply the
performance difference lemma (see e.g. Xiao| (2022, Lemma 1)) twice to get:

1
NashGap(m) < e ~mlaxEs~#ﬂE [lm=iCls) = 72 Cl9)||, + (|7 (-ls) = 7= Cls)|,] -
We conclude by the definition of the Behavioral Cloning error and the fact that both 7 and 7% are
product policies. The formal proof is deferred to Appendix [

Note that when n = 2, this recovers the upper bound of [Freihaut et al.| (2025) with a fixed BC error.

Providing such an upper bound allows assessing an imitation policy a posteriori, given a specific BC
error. As a bound polynomial in the game parameters, we consider it to be tractable. Alternatively,
we can interpret the bound as a criterion on the BC error to ensure a fixed Nash approximation error.

Corollary 3. Suppose % is a (weak) Dominant Strategy Equilibrium; then, the recovered behavioral

. . . .y . . 5(1—7)2
cloning policy m is an e-Nash equilibrium if epc < == .

Proof. This is a direct consequence of Lemma [3|derived by inverting the Nash gap bound. O

6.3 WEAKENING THE DOMINANCE ASSUMPTION

Using a similar proof technique, we extend Lemma 3| by assuming general best-response J-continuity.
This is demonstrated in the following lemma which we prove in Appendix[C.2]

Lemma 4. Suppose the equilibrium expert is wF and the game is §-continuous at . Then,

NashGap(m) < 27“(‘16%5)(26“).

This is a generalization of Lemma [3] where the DSE case is recovered by setting §(-) = 0.

We don’t claim that the above bound is tight. A constant §(-) = ¢ might also lead to a small Nash
gap, while our bound introduces the bias ¢/(1 — ~)?2. This lemma offers a consistent bound if applied
with a § such that 6(0) = 0. It is also fractable if ¢ itself is tractable. Lemma 4] provides the key
insight that deriving exploitability upper bounds reduces to characterizing § for the considered game.

Intuitively, a well-behaving § can be imposed by regularizing the game, essentially smoothing the
best-response map by promoting exploration (Ahmed et al., 2019; |Geist et al., 2019). Further, note
that large discontinuities in ¢ are favored by high variance in the expert rewards. Similarly, these high
variations at the equilibrium can be penalized by risk-aversion (Mazumdar et al., 2024).

7 CONCLUSION

In this work, we consider the problem of learning a Nash equilibrium from a given dataset of expert
demonstrations in a multi-agent system. Assuming a Nash equilibrium expert and a given imitation
learning error (BC or measure matching), we study the derivation of both consistent and tractable
guarantees on the Nash gap of the learned policy. In the idealized case of exact measure matching,
we demonstrate that only full-state support and state-action matching can guarantee non-trivial Nash
gaps. Moving to practical settings, we show how approximation errors introduce challenges that
are not present in the single-agent case. For behavioral cloning, we then introduce the notion of
delta-continuity related to strategy dominance, and show how this can be used to bound exploitability
of the learned policy.

Looking forward, we see reachability assumptions and policy distribution-norms (Wei et al.| 2017}
Maillard et al.,|2014) as good candidates for tighter game-dependent bounds. A potential improvement
might also be achieved from the data part, by augmenting expert demonstrations with suboptimal
trajectories (e.g. in SA-IL (Kim et al.| [2021)), inspired by online IL (Ross et al., 2011} |[Freihaut et al.|
20235)) and unilateral deviations assumptions (Cui & Du, [2022)).
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A ADDITIONAL BACKGROUND

A.1 PPAD COMPLEXITY CLASS

In computational complexity theory, problems are categorized into classes to formally reason about
their inherent difficulty and whether they are likely to be tractable. In game theory, the NP and
PPAD classes are of crucial importance, as it has been shown that computing Nash equilibria is
PPAD-complete (Daskalakis et al.| 2009} (Chen et al.||2007)) and many decision problems around Nash
equilibria are NP-hard (Conitzer & Sandholm) 2002). These key results also reinforce the arguments
under which finding expert policies without demonstrations can be computationally intractable.

We define below the PPAD class introduced by |Papadimitriou| (1994) and related to some of our
negative results.

Definition 9 (PPAD class). A search problem 11 belongs to the complexity class PPAD (Polynomial
Parity Arguments on Directed graphs) if and only if it is polynomial-time reducible to the End-of-the-
Line problem defined as follows:

End-of-the-Line Problem

INPUT:

* A directed graph G = (V, E) implicitly represented by two polynomial-time
computation mutually inverse functions P and S:
— P :V — V maps every vertex v € V to its unique predecessor, or itself.
- S :V — V maps every vertex v € V to its unique successor, or itself.
* A source vertex s € V such that P(s) = s and S(s) # s.

OUTPUT: Either a sink vertex or another source vertex.

PPAD problems belong to the larger TENP class (Total Function NP), containing search problems for
which a solution is guaranteed to exist (the problems are said to be total). The fundamental property
that makes PPAD problems total (guaranteed to have a solution) is based on the parity argument: in
any directed graph where each vertex has at most one incoming and one outgoing edge, if there exists
a source, there must exist either another source or a sink. Therefore, the End-of-the-Line problem
always has a solution.

It is believed that PPAD is not part of P, and hence PPAD-hard problems are believed intractable.

A.2 GAIL AND OCCUPANCY-MEASURE MATCHING

Generative Adversarial Imitation Learning introduced by Ho & Ermon|(2016) equivalently solves the
following Inverse Reinforcement Learning (IRL) problem

IRLy (1) = arg max —(c) + (ETHGIII_II —H(m) 4+ E.[e(s, a)}) —E, =c(s,a)]

for a cost ¢ € C followed by standard Reinforcement Learning (RL) for policy extraction
RL(c) = argmin —H () + Ex[c(s, a)],

with sets C, T constrained by modelization expressivity, 1) : RS*A — R U {oo} a convex cost
function regularizer, and H(w) = E,.[—logm(a|s)] the causal entropy of policy 7. Their key
innovation is to show that for a particular instance of v, both problems can be solved simultaneously
by training a discriminative classifier D : S x A — (0,1) and a generator policy 7 € II in a
GAN-like (Goodfellow et al., [2020) manner. For a non-restricted C = RS*4, we can exchange
the max-min for a min-max (Ho & Ermon, 2016; Garg et al.,[2021) and end up with the following
practical optimization formulation:

min | max  Ec[log(D(s,0))] + Erelog(1 - D(s.a))] - M ()

where ) is a regularization factor.

13
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This problem in particular is shown to be equivalent to the following regularized state-action occu-
pancy matching objective: min, Djs(px, pre) — AH (), with Djg denoting the Jensen-Shannon
divergence.

In the more general case, Ho & Ermon| (2016) propose that imitation learning can be done by
state-action occupancy measure matching problems of the form:

min " (pr — pre) — H(r)

where the entropy regularization makes the optimal BC policy unique and * denotes the convex
conjugate of .
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B PROOFS OF HARDNESS RESULTS

B.1 PROOF OF THEOREM/[I]

Theorem 1. Let w, 7' € Il be such that p, = pnr. Then, S;7 = ST, and 7(-|s) = 7'(-|s) for every
seS;t.

Proof. Let 7, 7’ be two policies such that p; = pr.

We will first prove that S = S:rr, then prove that the policies are equal on the visited region S;F.

1) The policies 7, 7’ visit the same region of the space state.

Suppose towards contradiction that there exists some s € S such that s € S, and s ¢ S;r,.
Since 7(-|s) is a probability distribution, there must be an action a € A such that 7w(a|s) > 0.
Hence p,(a,s) > 0but p,/(a,s) = pr(s)n'(als) = 0 by assumption.

This is a contraction since p, = p,/, hence S = S;r,.

2) The policies 7, 7’ are equal on their shared visited region.
We again proceed with a proof by contradiction.

Suppose there exists a € A and s € S such that 7(a|s) # 7'(als). Since px(a,s) = pa(a,s),
tr(8) >0, pr(s) > 0and 7(a|s) # 7' (als), we must therefore have i (8) # pa($).

Without loss of generality, assume i (s) > pq(s); thus, forall o’ € A, w(a’|s) < 7’(a’|s) by the
equality of the state-action occupancy measures.

This is a contradiction since that would mean
dowdls) < > w(d]s) =
a’€eA a’€A

but 7(+|s) is a probability distribution. O

B.2 PROOF OF NASH EQUILIBRIA FOR THE GAME IN FIGUREE]

We want to show that 7% ((ay, a1)|s) = 1 forall s € S is indeed a Nash equilibrium of the two-player
game described in figure Figure

Suppose towards contradiction that 7% is not a Nash equilibrium, as some player i € {1, 2} is better
off from unilaterally deviating. By the performance difference lemma (Lemma[D.T), there must exists
a state s € S with positive advantage

A:E (ai7 5) = Q:E (S’ ai’ afi) - ViﬂE (8), with @~ = a1

when the player i chooses a’ = ay and QT (s,a’,a™®) = ri(s,al,a”?) +
E
Yo wes P(s'|s,a) Vi ().

This is a contradiction since, when fixing a' = aq, for all s € S we have

AT (@, s) = ria* #£ a7 s) = VI (5) +4QF (s,a%,a7)
=1 (1 =)V (5) +7AT (d', s)
< YAT (al, s)

E

Which is a contradiction as we assumed AT (a’, s) > 0. Hence 7 is a Nash equilibrium.

15



Under review as a conference paper at ICLR 2026

B.3 PROOF OF THEOREM[Z]

Theorem 2. (Adapted from[lang et al.| (2024, Theorem 4.3)) There exists a Markov Game with
expert policy ™% and a learned policy m such that even if p,= = px, the Nash gap scales linearly
with the discounted horizon; i.e., NashGap(m) > Q (1/(1 — ).

The proof below has been extracted from Tang et al.|(2024) and only slightly adapted for infinite
horizon games.

Proof. We explicitly construct a two-player common payoff Markov Game with infinite horizon and
a common action space A; = {a1, as, a3} for each agent i = 1,2. The state space S is countably
infinite and ordered.

The action-independent (shared) reward function is defined as r(s;) = 1 if i is odd, and r(s;) = 1 if
i is even. The transition dynamics are described in Figure ]

a27a1)@ all @ Sox_1
(az,a1) \_/
all @ all @ - @

Figure 4: Transition dynamics for the two-player game. sy is the initial state. The top branch contains
all odd states and the bottom branch all even states.

We define the expert as the Nash policy 7% such that 7% ((a1, a1)|so) = 1, 7% ((a3,as)|s1) = 1 and
the actions for the other states are arbitrary.

Similarly, we define the trained policy 7 such that w((a1,a1)|so) = 1 and 7((a1, a1)|s1) = 1, and
plays the same as the expert on the other states.

In this case p, = p,= but

! T 1 1
NashGap(w) > V"V (sg) — V" (s0) = T 2>0Q <1>

-7 -7
where
1 ifal = ap and s € {s0, 51}
mh(at|s) =<0 if al # az and s € {s, 51}

m1(at|s) otherwise

B.4 PROOF OF THEOREM 3]
Theorem 3. Evaluating m,(Gyi, €,) for any bimatrix game Gy; and any €, € R is PPAD-hard.

Before proving Theorem 3] let us prove the following intermediary lemma. This will allow us to
conclude by doing a reduction to the problem of finding an e-Nash equilibrium.

Lemma 5. Finding an e-Nash equilibrium support in a general bimatrix game is PPAD-complete.

B.4.1 PROOF oF LEMMA[3

Before proving Theorem [5] we introduce below a simpler version for exact Nash equilibria.

Theorem 4. Finding the support of any Nash equilibrium in a bimatrix game is PPAD-complete.
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Proof. We prove this by a polynomial reduction from the problem of finding the equilibrium in a
bimatrix game to the problem of finding its support. The other direction is trivial.

Let G = (A1, A2) be a bimatrix game with payoff matrices A; for each player ¢ € {1,2}. For
simplicity we further assume that A;, As € R"*" (i.e. both players have the same number of actions
n).

Let 71, w5 the unknown policies at equilibrium of our game, with respective supports vy, v, C
{1,...,n}. Using our support finding oracle, we compute v, v from the payoff matrices.

We note that from the definition of a Nash equilibrium, 7; is a best-response of player 1 to player 2
having policy 5. This means:

T T T .
WIAlT(-Q = maxAlﬂ» Ty —> Al’j Ty = Al,k ) Vj,k €,
3

and a similar argument holds for 7o, this is known as the indifference principle.
Using this, we can rewrite the problem of finding a Nash equilibrium as follows:

Find z e R™I y e R

v |v2|

domi=) yi=1
i=1 i—1

(Ag,j — Agyk)—r(ﬂ =0 VJ, ke 1)
(Alvj — ALk)Ty =0 VJ,]C [SEZ]
;>0 Viewn
y; >0 Vi € vy

This is a linear program that can be solved in polynomial time. By solving this optimization problem
we recover m; = x and me = y (see also Algorithm 3.4 invon Stengel), which is valid with our
assumptions of equilibrium supports v1, vs.

However, as shown in |Chen et al.| (2007), finding an equilibrium of a bimatrix game is PPAD-
complete. This concludes our proof by showing that finding the support of a Nash equilibrium in
general bimatrix games is PPAD-complete. O

Using similar arguments, we argue that the theorem also holds for epsilon Nash equilibria with the
following proof.

Proof of Lemma[3] The proof follows by adapting the linear program used in the proof of Theorem[4]
replacing the equality constraints due to the indifference principle by two inequality constraints
allowing some slackness of magnitude less € as follows

Find z e R"I yec R

1] |v2|

S.t. lezzylzl

(AZj_AQk) r<e Vjkeuw
(A1 Al,k) <e Vjkeuwy
(AQk*AQJ) r<e Vjkeuw
(A1 — A1) y<e Vjkewn

x; >0 Vien
yzZO Vi € vy

This allows finding an e-Nash equilibrium which is also known to be PPAD-complete (Chen et al.,
2007)). The other direction is trivial. ]
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B.4.2 REDUCTION FOR THE PROOF OF THEOREM [3]

Recall the statement to prove

Theorem 3. Evaluating m,(Gyi, €,) for any bimatrix game Gy; and any €, € R is PPAD-hard.

Proof. We prove the result by a polynomial reduction from the problem of finding the support of
an e-Nash equilibrium in a general bimatrix game to the problem of computing m,(Gy;, €,) for any
Ghi, €. Note that in this one-state game, the state-action occupancy measure is equal to the policy
distribution. We assume max; ; max{| A1, ;|, |42, ;|} < 1. Ifit’s not the case, it suffices to divide
the payoff matrices by 2 and apply the same argument for €, /2.

Assume access to an oracle L(Gy;, €) for m,, for any Gy, = (A1, A2), €, € R4. We will show that
polynomially many calls to this oracle are sufficient to find the support of any e-Nash equilibrium of
Ghi. The following algorithm is sufficient for this task.

Algorithm 1 Lower bound reduction

Given a game A;, As and a target Nash precision e.
Define AY = Ay, A = As.
Define K such that —1 < K < —max; j max{|Ay; ;|,|A2; ]}
Define 1y = 15 = ).
Define § = ||¢/K - e1]|1 such that s = L((A1, A3),d) < ¢, for a canonical vector e;.
foric {1,...,n}do
Define Aj such that
¢ {Aiap = {AV}as Yarb € 1]\ i} % [1]
Use the oracle to compute I} = L((A%, A3), ).
if [{ > s then
‘ vy <11 U {Z}
else 4
| AY « AL
foric {1,...,n}do
Define A% such that
¢ {Abap = {AY}as Yarb € 1]\ i} x [1]
Use the oracle to compute l5 = L((Aq, A3), ).
if I3 > s then
‘ Vo < 1o U {Z}
else '
| A%« AL

Return vy, v

To prove this fact, it suffices to note that replacing A% by Ai for any k € {1,2},i € [n] changes the
value of the lower bound only if 7, ; > O for every s-Nash equilibrium 7 with supports supersets of
V1, U3.

Formally, let 1T ;|

be the set of policies minimizing the Nash gap with the imitation error e:

S — 1
IT;,, = arg M ] —r BB

Tlh=s NashGap(my, 72),

and arrange the set in lexicographic order of the concatenated indicator vector encodings of the
supports of the two players. We show that (11, v2) is equal to the first element of IT? .  which we
denote (19, 19).

Let j € {1, 2} be a fixed player, then for every i € [n]:
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» Case i € v;: then there doesn’t exist any element with a smaller lexicographic index in
, 0
113, Hence, v; C v;.
* Case i ¢ v;: then there must be an equilibrium such that player j takes action ¢ with null
probability. Hence, 1/ C v

Thus, v; = VJQ and (1, vo) are valid supports for an e-Nash equilibrium.

Applying Lemma 5|allows us to conclude that finding L is a PPAD-hard problem. O
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C PROOFS OF UPPER BOUNDS

C.1 PRrROOF OF LEMMA[3]

Lemma 3. Suppose 7 is a (weak) Dominant Strategy Equilibrium. Then, any learned policy T with

BC error epc satisfies NashGap(w) < 2nepc/(1 — )2

Proof. Following the proof outline from the main text, we use the Dominant Strategy Equilibrium
assumption to simplify the Nash gap as follows:

NaShGap(’n’) = max {Viﬂfm_,:(yo) . V,”“"’T*i(VO)} = mlax [V;‘friE,Tr—i(yO) — Vﬂ'i,ﬂ'fi(l/o)

i %
@I

We can then add and subtract the expert value for every player, and apply the performance difference
lemma (Lemma [D.T)) twice:

K2

NashGap(7) = max [ViﬂiE’Li(yo) - V-m’ﬂ’i(uo)}

P P P Ty T —i
= max [V (vo) = VI (o) + V7™ (v0) = VI ()]

K2

< —— -maxE,.
_1_7 p S,U,WE

> Q(s,a) (7% (als) — 7T(aIS))]

-1 i ’yﬁ .miaX]ESNM”E [Zﬂ: Qﬂf,ﬂ_i(&a) (wfi(a_i|s) — W_i(a_i|8)) FiE(ai|S)‘|

where the Q-functions are defined as in Lemma|D.1

Now upper bounding the Q-functions using ||Q™ ||oo < 1/(1 — ) for any policy 7’ € II:

NashGap(m) < 5 ‘m?X]EquE [l (|s) — 7rE(~|s)H1 + ||m=ils) = 7rﬂ(|s)||1]

1
(1-7)
Using Lemma[D.2] we conclude,

(2n — 1)€BC ZneBC
(I1=v2 7 (1=9)?

NashGap(m) <

C.2 PROOF OF LEMMA [

Lemma 4. Suppose the equilibrium expert is ©F and the game is 5-continuous at ©°. Then,
2negc+96(epc)

NashGap(m) < o

The key is to use a very similar construction as for the proof of Lemma 3] leveraging the triangle

inequality to introduce the slackness d(epc).

Proof. Using similar arguments, we apply Lemma [D.T|and get:

NashGap(m) < 'm?XEMu,,E [|w(|s) — 7TE(-|S)H1 + || i) (cls) — 7TE(|S)H1]

1
(1—79)?
Them we conclude using Lemma[D.2]and our assumption:

(2n — 1)epc + d(epc) < 2nepc + d(epc)
(1—7)? T (1=9)?

NashGap(w) <
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D ADDITIONAL LEMMAS

Lemma D.1 (Performance Difference Lemma, see e.g. Theorem IX.5 in|Alatur et al.| (2024)). For
any w,w' € Il,i € [n],
1

VT ) = VT () = ﬁEs,mpw;,M [QF (s,0) = V" (s)],

where Q7 (s,a) == ri(s,a) +7>_,cs P(s'|s,a) V().

And more generally,

Vi (vo) = Vi (v9) =

3

1 - -
ﬁEs,a~pﬂr Q7 (s,a) = V" (s)],

Proof. See proof of Theorem IX.5 in|Alatur et al.|(2024). O

Lemma D.2. Letn € N, and let p;, q; € A, —1 be probability distributions over a discrete set of
size m; isomorphic to [m;]. Further, note p = X7 1p;,q = X, q;. Then,

S b)) <3S nl) - 4
FE[MA]X X [mn] i=1 j=1

Proof. We proceed with a proof by induction.

The statement trivially holds for n = 1. Assume it holds for n, we show that it also holds for n + 1.
For simplicity, note .S,, = x!_;[m;] and p" = x?_p;,¢" = X, q;.

Yoo —ail= D> D PGP () — ¢ () an (5]

JESH X [Mpn11] jresy, 32 E[mn+1]
Z Z pn+1(] ) - qn<j1)pn+1(j2)
jreSn J2€[mn+1]

+q" ( )Pn+1(J ) = 4" ()41
Z Z pn+1(] ) — qn(jl)pn+1(j2)|

J ESnJ E[ n+1]

+ ) > G e (G?) = € G ana (5]

jrtes, ]ZG[mw+1]

= > Ip"0 ANF Y PG = @ (7))

IN

Jres, J2E[Mmn41]
n m;
< ZZH)Z —qi(j)| + Z |pn+1(j2) - Q7l+1(j2)|
=1 j=1 j2€[mmnqa]
n+1 m;
=" Ipil) — @i
=1 j=1
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E FINITE HORIZON CASE

The main content of the paper focuses on the infinite horizon case for notation simplicity. We show
in this section how the results also translate to the finite horizon case. The statements are usually
the same, but replacing the effective horizon ﬁ by a finite horizon H. We formalize this intuition

below by first providing alternative definitions for the finite agent case, and then reproving our main
results.

E.1 DEFINITIONS

E.1.1 FINITE HORIZON MARKOV GAMES

A finite horizon n-player Markov Game is defined similarly to its infinite horizon equivalent with a
tuple (S, A, P, {r;}_,, v, H). The discount factor -y has been replaced by a finite horizon H € N.
Further, rewards and policies of this game are now time-dependent: for all £, rewards are now denoted
rt: 8 x A — [—1,1] and policies become non-stationary 7! : S — A 4. The transition dynamics
remain Markovian and P is unchanged.

Because of introduced time dependence, occupancy measures are usually not generalized but denote
the visitation frequencies at time t of a state and state-action pair, respectively.

i (s) = B(s; = s) pl(s,a) = pt(s)" (als)

This allows the definition of time-dependent value functions as follows

H-1
V7i(s) = Z Es,a)~pt [ri(s,a)] Vi€ [n],
h=t

For ease of notation we define V" (s) = V/(s) for all s € S and policy 7. Again, the definition of
value functions is extended to V7, (v) for any distribution v € As.

E.1.2 ASSUMPTIONS ON MATCHING ERRORS

The assumptions on errors at convergence are adapted as follows.

BC Error: Error from directly matching the empirical distribution of the independent individual
players enc = mai o Eonye  [|[mis(15) = 75(15)],

Measure Matching Error: Error on matching occupancy measures.

- State-only occupancy measure: €, = maxy ||k — pl 5 ||1

- State-action occupancy measure: €, = max; ||p% — p' 5 ||1

E.2 PERFORMANCE DIFFERENCE LEMMA FOR FINITE HORIZON

In this section we adapt the previously stated Lemma [D.I]to finite horizon Markov games. This will
allow us to generalize the results of the paper in Appendix [E.3]
Lemma E.1 (Finite horizon version of Lemmal[D.1). Forany w, " € I1,i € [n],

H-1

’ . . .
Viﬂ“ﬂpﬂ(VO) - Vim’ﬂﬂ(yo) = ES;U/NPEW’ ) [Qf,t(sv a) - ‘/17;(8)] ’
t=0 L

where QT (s, a) = r{(s,a) + 3 cs P(s'|s,a) V7, 1 (s).

And more generally,

V;Tr,(yo) - Vviﬂ’(yo) = Es,aNp’éﬂ, [ta(sa a) - th(S)] )
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Proof. We only prove the first version. The generalization can be proven by the exact same construc-
tion.

To simplify, given a policy m we overload the notations of the Q functions as follows. For every
player ¢ € [N] we denote the state-actions values of ¢ in the MDP induced by 7_; as:

Q7 i(s,0:) =Eq_ i, (1) [ri(s,a) + Bo [V 1 ()], 0<t<H-1

Now, let 0 < ¢t < H — 1. Developing Vzﬂt:ﬂ_ (v¢) for any distribution v, € Ag we have

Viﬁ’mi(’/t) = Viirt;’mi(’/t) — B aimmt  (1s) [QF¢(8:00)] + By aimnt ,(1s) [QT4(5, )]
=Eonviainnl, (15) {Qf;ﬂ (s, ai)]
— Esviainnl, (1s) [QT1(5,00)] + Esnyainmt , (15) [@F4(5, 1))
= VZ,?ﬂ” (ve1) = Vi wes1) + Bovpaimmt (1s) QT (s, a:)]
where 1411 € Ag is the distribution over the next state after following policy (7}, 7_;).

Subtracting V;™ (1) on both sides and applying the recursion we get for the initial distribution v,

H-1
VI 00) = Vi) = Y Bagr,  [Basent 10 [QF(5,00)] = Vi3(9)]

t=0 T

t
’ .
T T —i

where we recognized vy ~ i
Rearranging the terms gives the final result

H-1
VI ) = VT ) = D By, [QTals,0) — V()]

t=0

E.3 RESULTS

For completeness, we reprove below our results now considering finite horizon games. The counter-
examples remain largely the same, as well as the proof structures.

E.3.1 SEcTIONH]

Lemma E.2 (Finite version of Lemmal[I). There exists a game and a corresponding expert policy
2 such that SJE = 8. Moreover, there exists a policy 7 such that ji e = i and NashGap(r) >

Proof. The example provided in the main text is also valid to prove this lemma, by assuming an
arbitrary horizon H.

Theorem E.1 (Finite horizon version of Theorem[2). There exists a Markov Game with expert policy
¥ and a learner policy T such that even ifpfrE = pt forall 0 <t < H — 1, the Nash gap scales
linearly with the horizon; i.e., NashGap(w) > Q (H).

Proof. The proof is exactly the same as in Appendix except the state space which is finite
(therefore still countable). O]

E.3.2 SEecTION[E

Lemma E.3 (Finite horizon version of Lemmal[2). Let C be the class of games with consistent bounds.
This class is 0-continuous only for trivial § such that §(e) = 2 for all € > 0.
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Proof. A similar proof to the one provided in the main text is valid for the finite horizon case. It
suffices to adapt the & for the finite horizon, ensuring we keep the property fi,. & (Sexp) < €/2. O

Lemma E.4 (Finite horizon version of Lemma ' Suppose % is a (weak) Dominant Strategy

Equilibrium. Then, any learned policy T with BC error epc satisfies NashGap(w) < 2negc H>.
Proof. The Dominant Strategy Equilibrium assumption gives:
NashGap(7) = max [V ST (yg) — V;m’ﬂ’i(l/o)}

= rnax [V - “(vo) — ViﬂE(VO) + ViﬁE(VO) V ; Li( 0)}

Fixing i, we apply the Performance Difference Lemma (Lemma [E) to get:

VI o) = VT o) = 3 B, [QFi(s,@) = Vi (s)]
t=0
H-1
= > B, [Z QFi(s,a) (nf (als) - m<a|s>)]
t=0 a
H-1
<H Y Eovpe, [[7ECls) = mll9)]],]
t=0
<H?: max B ([78Cl) = mlls)]]]

where the Q-functions are defined as in Lemmal[E.1]

Similarly, applying the PDL in the reverse order,

H-1
ol mF Lo e
VT ) =V ) = 3 B, Vi () = QT (s,0)]
=0

Sk [zwf 0 (s Z,t<a|s>—wEi,t<a|s>>w5t<ai|s>]

t=0

H-1
<HY Eyont [Hwﬂ»’t“ penil }
t=0
< H? 'ogﬁ%ﬂ){(—lEswiE |:H7T7i,t( 1s) = 72, . (19)) }

We conclude using Lemma[D.2}
NashGap(n) < (2n — 1)egc H? < 2negcH?
O

Lemma E.5 (Finite horizon version of Lemmafd). Let 7 be the learned policy, and assume for all
i€njand0 <t < H—1thatE,. . 75, (-Is) = 7E, (1)) < O(6(esc)) for some function 6,

where 7} € BR; (7). Then, NashGap(m) < (2nepc + §(epc)) H>.

Proof. Using similar arguments, applying Lemma|[E.T|and Lemma
NashGap(7) < max ( max K, [||7Tf — (- || )]

i \0<t<H-1 °~Him

E * 2
b B [ Cls) - <m,m_i,t><~|s>»|1}) i

< ((2n — 1)enc + 6(epc)) H?
< (2nepc + d(epc)) H?
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