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Abstract

Both conventional and machine learning-based
density functional approximations (DFAs) have
emerged as versatile approaches for virtual high-
throughput screening and chemical discovery. To
date, however, no single DFA is universally accu-
rate for different chemical spaces. This DFA sensi-
tivity is particularly high for open-shell transition-
metal-containing systems, where strong static cor-
relation may dominate. With electron density fit-
ting and transfer learning, we build a DFA rec-
ommender that selects the DFA with the lowest
expected error in a system-dependent manner. We
demonstrate this recommender approach on the
prediction of vertical spin-splitting energies (i.e.,
the electronic energy difference between the high-
spin and low-spin state) of challenging transition
metal complexes. This recommender yields rela-
tively small errors (i.e., 2.1 kcal/mol) for transi-
tion metal chemistry and captures the distributions
of the DFAs that are most likely to be accurate.

1. Introduction
Virtual high-throughput screening (Coley et al., 2020; Cur-
tarolo et al., 2013) and machine learning (ML)-accelerated
chemical discovery (Nandy et al., 2021; Keith et al., 2021)
with approximate density functional theory (DFT) have
started to address the combinatorial challenges in discov-
ering and designing functional molecules and materials
(Rosen et al., 2021). A density functional approximation
(DFA), that works well on certain systems, however, may
fail prominently on other systems due to the approximations
made in the exchange-correlation functional (Cohen et al.,
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2012; Mardirossian & Head-Gordon, 2017). This DFA de-
pendence is especially strong in open-shell transition metal
chemistry, where strong static electron correlation may dom-
inate (Janesko, 2021). To ensure high fidelity in chemical
discovery, it is vital to maintain a rather uniform accuracy
within data sets so that surrogate ML models are not biased
(Duan et al., 2021).

Despite recent advances in using ML to improve the cost–
accuracy trade-off for first-principles calculations (Dick &
Fernandez-Serra, 2020; Qiao et al., 2020; Chen et al., 2021;
Kirkpatrick et al., 2021), current ML density functionals
still have severe limitations that curtail their practical use
(Unke et al., 2021; Pederson et al., 2022). These DFAs
have mostly been developed for and applied on narrow sets
of closed-shell organic molecules and are often less trans-
ferable compared to conventional DFAs developed in the
theoretical chemistry community over the past few decades.
More importantly, these ML functionals only target the elec-
tronic energy of a geometry rather than other properties
of chemical interest, such as those involving multiple elec-
tronic states.

Here, we take an alternate route. Instead of developing a
new DFA, we leverage transfer learning (TL) to develop a
recommender (McAnanama-Brereton & Waller, 2018) to
select the best conventional DFA for a given system and a
property of interest. Specifically, we aim to recommend a
DFA that accurately evaluates the vertical spin splitting of
transition metal complexes (TMCs). Our recommender has
a mean absolute error (MAE) of 2.1 kcal/mol and identifies
DFAs that are likely to be accurate and successfully selects
a top-5 DFA two-thirds of the time.

2. Methods
2.1. Density fitting procedure

In Kohn–Sham (KS) DFT, it is known that the ground state
energy of any interacting system is captured by a universal
functional of the electron density (Hohenberg & Kohn, 1964;
Kohn & Sham, 1965). In practice, the electron density (ρ(r))
is obtained from the occupied KS orbitals ψi(r), expanded
as a linear combination of the products of one-electron basis
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Figure 1. Workflow for the DFA recommender. a) B3LYP/def2-TZVP single-point energy calculations are performed on both the high-spin
(HS) and low-spin (LS) states to obtain their electron density at B3LYP level. b) The difference of the electron densities between the HS
and LS states is decomposed to each atom with a density fitting procedure. c) These coefficients are passed to a Behler–Parrinello-type
neural network as a TL model to predict |∆∆EH−L[f ]| for each DFA f in our pool of 48 DFAs. Coefficients of different atoms but the
same group in the periodic table share the same local network and weights (e.g., WO for O (red) and WH for H (gray)). The latent vector
of each element are lastly concatenated and passed to a fully-connect network (WL) for predicting |∆∆EH−L[f ]|. d) The predicted
|∆∆EH−L[f ]| are sorted, where the DFA that yields the lowest predicted |∆∆EH−L[f ]| is recommended.

functions χµ(r),

ρ(r) =
∑
i

|ψi(r)|2 =
∑
µν

Dµνχµ(r)χν(r) (1)

where D is the density matrix and µ and ν are indices for
one-electron basis functions. The electron density in Eq.
1, however, is not expressed in an atom-centered basis and
thus cannot be directly used as features in neural networks.
It is thus common to use density-fitting (DF) basis functions
to re-write the electron density as an expansion of atom-
centered densities,

ρ(r) =
∑
A

∑
Q

CA
QϕQ(r − rA) =

∑
A

ρA(r) (2)

where ϕQ(r − rA) is the Qth DF basis function for atom
A (Margraf & Reuter, 2021; Grisafi et al., 2019). However,
CA

Q contains elements resulting from DF basis sets where
the angular momentum is nonzero (L ̸= 0) and is thus
not rotationally invariant. To obtain a rotationally invariant
representation, we calculated the power spectrum of CA

Q as
the norm for each angular momentum L in the DF basis set.

pAL =
∑
Q∈L

||CA
Q ||2 (3)

Therefore, the pAL can be used as features to represent the
chemical environment of atomA (Figure 1 (b)). For this pro-
cedure, we employ only the density obtained from B3LYP
regardless of which functional is being studied in the TL
models.

Here we considered the vertical spin-splitting energy
(∆EH−L) as our property of interest, which is the elec-
tronic energy difference between the high-spin (HS) and
low-spin (LS) states of open-shell TMCs. We focus on the
spin-splitting energy because it identifies the quantum me-
chanical ground state, which is an essential property of an
open-shell system (Nandy et al., 2021). Because our target
property involves two distinct spin states in open-shell sys-
tems, we decomposed the difference between the HS and
LS electron densities for both the majority spin and minority
spin separately (Figure 1 (a)).

ραHS(r)− ραLS(r) =
∑
A

∑
Q

CA
Q

α
ϕQ(r − rA)

ρβHS(r)− ρβLS(r) =
∑
A

∑
Q

CA
Q

β
ϕQ(r − rA)

(4)

For an atom A, we obtained and concatenated the power
spectra of CA

Q
α and CA

Q
β as its features using Eq. 3. We
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used the def2-universal-jkfit (Pritchard et al., 2019) as our
DF basis set throughout in this work. The number of DF
features for different atoms can vary due to their difference
in the auxiliary basis functions used. Here, we zero-padded
the DF features for all atoms to the maximum dimension of
116, which is the number of the DF basis set of the largest
transition metal atom in a TMC.

2.2. Behler–Parrinello-type networks as transfer
learning models

We built Behler–Parrinello-type networks upon the DF rep-
resentation of the TMCs in this work (Behler & Parrinello,
2007). This fully-connected neural network used the DF
representation of each atom as input,

X l
A = σ(W l

A∈gX
l−1
A ) (5)

where X l
A is the representation of atom A at layer l, W l

A∈g

is the lth-layer weights for the network of elements in group
g, and σ is the activation function. Specifically, X0

A is the
set of concatenated DF features of atom A (see Section 2.1).
The last layer of the network outputs, Xn

A, are summed for
each chemical element (e), Xn

e =
∑

A∈eX
n
A. These Xn

e

of different elements are then concatenated and passed to
a fully-connected neural network to obtain the final output
(Figure 1 (c)).

The main differences between our model and the original
Behler–Parrinello neural network are: 1) we replace the
symmetry functions that describe the local geometric envi-
ronment of an atom therein by the DF representation, which
is derived from the electron density and is thus a more trans-
ferable representation; 2) we use the same local network for
chemical elements that are in the same group of the periodic
table (e.g., O and S) to promote inter-row learning; 3) we
keep the latent vector Xn

e for each element and use a neural
network to obtain the final output because our final target is
not an electronic energy of the ground state.

We adopted TL strategies and chose our target to be the
absolute difference of vertical spin-splitting energies be-
tween the result from each DFA and a reference calculation
(|∆∆EH−L[f ]|, see Section 3.3). For each fully-connected
neural network, we used three hidden layers and 96 neu-
rons per layer. The shifted softplus activation function (i.e.,
σ(x) = softplus(x)− log(2)) is used throughout.

2.3. Recommender

One may expect that the best approach to build a recom-
mender is to treat it as a multi-class classification problem,
where the classes are different DFAs. We find, however, that
many DFAs can perform similarly well in some cases, lead-
ing to noise in the labeling process of determining the “best”
DFA (Appendix A). Therefore, we constructed separate TL

models for each DFA (f ) to predict |∆∆EH−L[f ]| from
a pre-selected pool of DFAs (F ). For a given system, we
recommend the DFA, frec, that yields the lowest predicted
|∆∆EH−L[f ]|,

frec = argminf∈F |∆∆EH−L[f ]| (6)

When we evaluate the practical performance of the DFA
recommender, we focus on the absolute error intro-
duced by using frec relative to the reference method (i.e.,
|∆∆EH−L[frec]|) and the actual ranking of frec among the
pool of DFAs F .

3. Data sets
3.1. Data set construction

Mononuclear octahedral TMCs with Cr, Mn, Fe, and Co
in oxidation states II and III were studied in their HS and
LS states: quintet and singlet for d6 Co(III)/Fe(II) and d4

Mn(III)/Cr(II); sextet and doublet for d5 Fe(III)/ Mn(II),
and quartet and doublet for d3 Cr(III) and d7 Co(II). We
used 20 monodentate ligands from both the spectrochemical
series and common organic ligands to obtain properties of
complexes with ligand fields ranging from weak to strong
(Appendix B). We allowed up to two unique ligands in a
TMC and did not pose any constraints on ligand symmetry,
leading to a hypothetical space of 24,480 TMCs. We ran-
domly sampled 750 TMCs in this space as our starting data
set.

3.2. DFT geometry optimization

Because we are interested in vertical spin splitting, only
one structure needs to be geometry optimized. In this case,
we optimize only the HS state. For each HS complex, a
DFT geometry optimization with the B3LYP (Becke, 1993;
Stephens et al., 1994; Lee et al., 1988) global hybrid func-
tional was carried out using a developer version of graphical
processing unit (GPU)-accelerated electronic structure code
TeraChem (Ufimtsev & Martinez, 2009; Seritan et al., 2021).
The LANL2DZ effective core potential (Hay & Wadt, 1985)
basis set was used for metals and the 6-31G* basis (Pritchard
et al., 2019) for all other atoms. In all DFT geometry opti-
mizations, level shifting (Saunders & Hillier, 1973) of 0.25
Ha on all virtual orbitals was employed. Initial geometries
were assembled by molSimplify (Ioannidis et al., 2016) and
optimized using the L-BFGS algorithm in translation rota-
tion internal coordinates (TRIC) (Wang & Song, 2016) to
the default tolerances of 4.5 × 10−4 hartree/bohr for the
maximum gradient and 10−6 hartree for the energy change
between steps. Because all HS TMCs are open-shell, the
unrestricted formalism was used for all geometry optimiza-
tions.

Geometry checks were applied to eliminate optimized struc-
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tures that deviated from the expected octahedral shape fol-
lowing previously established metrics without modification
(Nandy et al., 2018; Duan et al., 2019). Open-shell struc-
tures were also removed from the data set following estab-
lished protocols if the expectation value of the S2 operator
deviated from its expected value of S(S + 1) by > 1µ2

B .
(Nandy et al., 2018; Duan et al., 2019). After these two filter-
ing steps, we converged 452 HS TMCs with good octahedral
geometries and electronic structures.

3.3. Single-point energy calculations with multiple DFAs
and DLPNO-CCSD(T)

We followed the protocol introduced by Duan et al. (Duan
et al., 2021) for the computation of HS and LS electronic
energies with multiple DFAs for the 452 optimized TMCs
using a developer version of Psi4 1.4 (Smith et al., 2020). In
this workflow, the converged wavefunction obtained from
the B3LYP geometry optimization was used as the initial
guess for the single-point energy calculations with other
DFAs, thus maximizing the correspondence of the con-
verged electronic state among all DFAs and also reducing
the computational cost.

The range of 23 DFAs used in the development of the proto-
col (Duan et al., 2021) were chosen to be evenly distributed
among the rungs of “Jacob’s ladder” (Perdew & Schmidt,
2001) (Appendix C). Practically, it has been observed that
there is a nearly linear change of chemical properties (e.g.,
spin splitting) computed with a DFA at different percentages
of Hartree–Fock (HF) exchange (Liu et al., 2019). There-
fore, we sampled the HF exchange from 10% to 50% with
an interval of 10% on five selected semi-local functionals
(i.e., BLYP, PBE, SCAN, M06-L, and MN15-L). This proce-
dure results in 25 additional DFAs (Appendix D). Combined
with the original 23 DFAs, we have a final pool of 48 DFAs
in total.

CCSD(T) has been treated as the “gold standard” for quan-
tum chemistry and is frequently used as benchmark for
DFT (Mardirossian & Head-Gordon, 2017). Here, we used
domain-based local pair natural orbital (DLPNO)-CCSD(T),
which is a proxy for canonical CCSD(T), as our reference
method due to the sufficient accuracy of DLPNO-CCSD(T)
on TMCs and the high computational cost of canonical
CCSD(T) for a large data set (Flaser et al., 2020). In ad-
dition, we expect our DFA recommender approach to be
general and have similar accuracy if reference data is de-
rived from higher-level theory (e.g., phaseless auxiliary field
quantum Monte-Carlo (Shee et al., 2018)) or experiments
in the future.

Single-point energies for all non-singlet states were calcu-
lated with an unrestricted formalism and for singlet states
with a restricted formalism. All single-point energy calcula-
tions were performed with a balanced polarized triple-zeta

basis set def2-TZVP (Pritchard et al., 2019). We refer to the
data set that contains vertical spin splitting (∆EH−L) com-
puted from 48 DFAs and DLPNO-CCSD(T) as VSS-452.

3.4. Train/test partition and model training

We randomly partitioned VSS-452, with 300 points (66%)
as the training set and 152 (34%) points as the set-aside test
set. For all TL models, the hyperparameters were selected
using HyperOpt (Bergstra et al., 2013) with 200 evaluations,
with 60 points of the training set used as the validation set.
All TL models were built with PyTorch (Paszke et al., 2019).
All models were trained with the Adam optimizer up to
2000 epochs, using dropout and early stopping to avoid
over-fitting.

4. Results
4.1. Performance of DFA recommender

We first demonstrate the performance of our TL models
for predicting the difference in vertical spin-splitting en-
ergy obtained by a DFA and DLPNO-CCSD(T). The 48 TL
models have mean absolute errors (MAEs) ranging from
2.3 kcal/mol to 3.4 kcal/mol, with a median MAE of 2.5
kcal/mol (Figure 2(a)). These MAEs are low considering
the fact that the TL models were only trained on a small
data set of 300 TMCs that contain diverse chemistry. In ad-
dition, these TL models are already at the level of transition
metal chemical accuracy (i.e., a 3 kcal/mol uncertainty of
experimental observations for TMCs (Jiang et al., 2012))
and have comparable performance to previous examples in
the literature (Husch et al., 2021). Interestingly, the rank-
ing of TL model performance (i.e., MAE) does not have
the same order as that of the error of the underlying DFA
relative to DLPNO-CCSD(T). For example, the DFA with
the lowest TL MAE is a double-hybrid functional DSD-
PBEB95-D3BJ, which has the fifth-lowest MAE relative to
the reference calculation (Appendix F). MN15, which gives
the highest TL MAE, only ranks 17th among the DFAs
with highest MAEs relative to DLPNO-CCSD(T). For the
set of functionals, the rank-ordering coefficient (i.e., Spear-
man’s r) between DFAs ranked by TL model MAE and
those ranked by DFA performance is 0.36. This observa-
tion suggests that a TL model does not necessarily perform
better when the MAE of the DFA-derived MAE of the base-
line DFA is smaller, posing an interesting question of how
to select the best baseline method from which the transfer
learning yields the lowest errors.

We then utilize the predicted |∆∆EH−L[f ]| for all 48 DFAs
to recommend a DFA and evaluate the performance of the
recommender (Section 2.3). The recommender achieves an
MAE of 2.1 kcal/mol, better than the best of the 48 TL mod-
els. This MAE is only 2.5 times the theoretical lower bound



DFA recommender

recommender

M
AE

 (k
ca

l/m
ol

)

pe
rc

en
ta

ge

cu
m

ul
at

iv
e 

pe
rc

en
ta

ge

rank for selected DFA

b)a)

lik
el

ih
oo

d 
in

 to
p 

5 
D

FA
 

recommender
ground truth

c)
TL models

50

40

30

20

10

0

Figure 2. a) Violin plot for the MAE of 48 TL models for the prediction of |∆∆EH−L| with a box indicating the mean (dotted line)
and median (solid line). The MAEs for each TL model (black circle) and our recommender approach (blue star) are also shown. b)
Normalized distribution of the rank of the DFA selected using our recommender approach, with the cumulative percentage (blue solid
line) shown according to the axis on the right. The cumulative curve for a random guess (blue dashed line) is also shown. c) Bar plot
for the percentage likelihood of a DFA residing in the top 5 choices suggested by ground truth (green) and our recommender approach
(blue). The DFAs are sorted in a descending order of the predicted likelihood of the recommender. In all cases, the model performance is
evaluated on the set-aside 152 test complexes of VSS-452.

(0.8 kcal/mol) that we obtain by assuming that the DFA
that gives the lowest absolute error can always be selected
(Appendix E). Our recommender outperforms random DFA
selection (MAE=13.3 kcal/mol) by 6.5 fold. More impor-
tantly, even if an alternative recommender had prior knowl-
edge to pick the single DFA with the lowest error in the
VSS-452 test set, its DFA-derived MAE (i.e., 6.2 kcal/mol)
would be three times larger than that of our recommender.
One distinct advantage of this recommender approach is
that its performance is likely to improve systematically with
increasing number of DFAs under consideration, despite
using the same training data set and TL models. For exam-
ple, the MAE of the recommender would achieve an MAE
3.0 kcal/mol if we had used the smaller set of 23 DFAs
introduced in Duan et al. (Duan et al., 2021). There, its
performance is even slightly worse than the median of the
48 TL models (2.5 kcal/mol). However, as we added the
remaining HF-sampled DFAs, the MAE decreased to 2.1
kcal/mol, exceeding the accuracy of our best TL model of

DSD-PBEB95-D3BJ (2.3 kcal/mol).

One distinct feature of our recommender approach is its
system specificity, meaning that a DFA is selected based on
the prior knowledge (here the electron density) of a system.
As a result, our recommender can avoid selecting a DFA
that is on average good, yet particularly bad on the given
complex. For example, DSD-BLYP-D3BJ has the lowest
DFA-derived MAE for ∆EH−L (i.e., 6.2 kcal/mol) against
DLPNO-CCSD(T) but gives a relatively high absolute error
of 9.2 kcal/mol on cis Fe(III)(acetonitrile)4(CO)2. Our
recommender, instead, selects M06-2X, which has a very
small error of 0.1 kcal/mol on this compound, despite the
fact the DFA-derived MAE of M06-2X is higher (i.e, 6.6
kcal/mol).

4.2. Statistical analysis of recommended DFAs

Next, we investigate the statistics of the recommended DFA.
Surprisingly, we find a significant percentage (18%) of our
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recommended DFAs actually produce the lowest absolute
error of vertical splitting among the 48 candidate DFAs,
although some TMCs might have multiple equivalently
performing DFAs (Appendix A). Over 40% of our recom-
mended DFAs rank in the top 3 among the 48 DFAs and
two-thirds (i.e., 100 out of 152 complexes in the set-aside
test set of VSS-452) of the recommended DFAs are within
the top 5 DFAs relative to the ground truth (Figure 2 (b)).
In less than 15% of cases, our approach recommends a DFA
that is not in the top 10 out of 48 candidate DFAs. Interest-
ingly, we get more favorable statistics on the ranking using
only the 23 DFAs, despite a higher recommender MAE.
With only 23 DFAs, 40% of our recommended DFAs are
the best ones, 75% are within the top 3, 88% are within the
top 5, and nearly none (i.e. 4%) fall out of the top 10 DFAs
(Appendix G). This behavior is expected to be general in our
recommender approach: With more candidate DFAs in the
pool, it is more difficult to get favorable ranking statistics
but easier to obtain a lower MAE for practical performance
because there are more DFAs to choose from.

Lastly, we focus on DFAs that are within the top 5 choices,
because they usually result in the accuracy required for tran-
sition metal chemistry (i.e., 3 kcal/mol, Appendix E). (Jiang
et al., 2012). Out of the 48 DFAs, MN15-L with 50% HF
exchange (i.e., MN15-L:50%) is most frequently among
the top 5 DFAs, with a likelihood of 43% for the 152 set-
aside test complexes (Figure 2 (c)). Correspondingly, our
recommender identifies the same DFA to have the highest
likelihood (53%) being in top 5. In addition, our recom-
mender maintains the rank ordering of probable top-5 DFAs
compared to the ground truth, leading to a Spearman’s r
of 0.96. This extremely high correspondence demonstrates
that our DFA recommender is capable of identifying DFAs
that are most likely to be accurate in a chemical space.

5. Conclusions
ML techniques have been adopted in computational chem-
istry to develop data-driven DFAs for accelerated property
assessment within large design spaces. However, these ML
DFAs are generally less transferable compared to conven-
tional DFAs and have a strong focus on main group chem-
istry. Here, we take a different approach by framing the
question as DFA recommendation and demonstrate our rec-
ommender approach on the challenging space of transition
metal chemistry. Using a DF procedure, we decompose elec-
tron density into atom-centered features that are compatible
with neural network architectures. We build TL models with
these DF features, resulting in the accuracy required for tran-
sition metal chemistry. Exploiting a set of TL models built
on different DFAs, we develop a recommender that selects a
DFA in a system-specific manner. This recommender gives
a high accuracy of 2.1 kcal/mol and selects a top-5 DFA two-

thirds of the time. Our DFA recommender is also capable
of identifying DFAs that are most likely to be accurate in a
chemical space by preserving the rank ordering (Spearman’s
r of 0.96) of top-5 DFAs compared to the ground truth. We
have demonstrated our recommender for selecting conven-
tional DFAs, however it should be considered as a general
approach for method selection in computational chemistry.
We anticipate this recommender approach to continue to be
useful in virtual high-throughput screening and chemical
discovery with advances in both conventional and ML-based
quantum chemistry methods.

6. Reply to reviewers’ comments
6.1. Previous related works

Most of the efforts of applying machine learning on DFT
have been made on developing new, either numerical (Dick
& Fernandez-Serra, 2020; Qiao et al., 2020; Chen et al.,
2021; Kirkpatrick et al., 2021) or symbolic (Ma et al.,
2022) density functional approximations (DFAs). The only
exception is is the work from McAnanama-Brereton and
Waller (McAnanama-Brereton & Waller, 2018), where they
adopted game theory set up for selecting a combination of
DFA and basis set with an attempt to reach a balance be-
tween computational cost and accuracy. However, they only
used chemical compositions as the inputs for their models
and studied relatively small chemical systems.

6.2. Model architecture: Why Behler–Parrinello but not
equivariant?

Since both the density features inputs (pAL in Eq. 3) and
vertical spin splitting differences (|∆∆EH−L|) outputs are
already scalars (i.e., invariant), using equivalent architec-
tures will not generally improve model performance. How-
ever, it would be interesting to directly start with CA

Q in Eq.
2 and build equivariant graph neural networks to predict
|∆∆EH−L| because CA

Q contains higher-order tensors that
correspond to basis functions with L > 1. It would be an
interesting direction to explore in future study.

6.3. Why do we call our models transfer learning
models?

We call our model transfer learning (TL) models simply be-
cause we are learning a property difference (i.e., the absolute
difference between a DFA f and our reference results from
DLPNO-CCSD(T), |∆∆EH−L[f ]|). To be more precise,
one can also refer our learning task as ∆-learning.

7. Acknowledgment
The authors acknowledge support by the Department of En-
ergy under grant number DESC0018096 as well as a MolSSI



DFA recommender

fellowship (grant no. OAC-1547580) to C.D.. A.J.L. was
supported by the MIT Summer Research Program. The au-
thors acknowledge the MIT SuperCloud and Lincoln Labo-
ratory Supercomputing Center for providing HPC resources
that have contributed to the research results reported within
this paper. This work was also carried out in part using
computational resources from the Extreme Science and
Engineering Discovery Environment (XSEDE), which is
supported by National Science Foundation grant number
ACI-1548562. H.J.K. holds a Career Award at the Sci-
entific Interface from the Burroughs Wellcome Fund, an
AAAS Marion Milligan Mason Award, and an Alfred P.
Sloan Fellowship in Chemistry, which supported this work.
The authors thank Adam H. Steeves for providing a critical
reading of the manuscript.

References
Becke, A. D. Density-functional thermochemistry. iii. the

role of exact exchange. The Journal of Chemical Physics,
98(7):5648–5652, 1993. doi: 10.1063/1.464913. URL
https://doi.org/10.1063/1.464913.

Behler, J. and Parrinello, M. Generalized neural-
network representation of high-dimensional potential-
energy surfaces. Phys. Rev. Lett., 98:146401,
Apr 2007. doi: 10.1103/PhysRevLett.98.146401.
URL https://link.aps.org/doi/10.1103/
PhysRevLett.98.146401.

Bergstra, J., Yamins, D., and Cox, D. Making a science of
model search: Hyperparameter optimization in hundreds
of dimensions for vision architectures. In Dasgupta, S.
and McAllester, D. (eds.), Proceedings of the 30th Inter-
national Conference on Machine Learning, volume 28
of Proceedings of Machine Learning Research, pp. 115–
123, Atlanta, Georgia, USA, 17–19 Jun 2013. PMLR.
URL https://proceedings.mlr.press/v28/
bergstra13.html.

Chen, Y., Zhang, L., Wang, H., and E, W. Deepks: A
comprehensive data-driven approach toward chemically
accurate density functional theory. Journal of Chemical
Theory and Computation, 17(1):170–181, 2021. doi:
10.1021/acs.jctc.0c00872. URL https://doi.org/
10.1021/acs.jctc.0c00872. PMID: 33296197.

Cohen, A. J., Mori-Sánchez, P., and Yang, W. Chal-
lenges for density functional theory. Chemical Re-
views, 112(1):289–320, 2012. doi: 10.1021/cr200107z.
URL https://doi.org/10.1021/cr200107z.
PMID: 22191548.

Coley, C. W., Eyke, N. S., and Jensen, K. F. Au-
tonomous discovery in the chemical sciences

part i: Progress. Angewandte Chemie Interna-
tional Edition, 59(51):22858–22893, 2020. doi:
https://doi.org/10.1002/anie.201909987. URL
https://onlinelibrary.wiley.com/doi/
abs/10.1002/anie.201909987.

Curtarolo, S., Hart, G. L. W., Nardelli, M. B., Mingo, N.,
Sanvito, S., and Levy, O. The high-throughput high-
way to computational materials design. Nature Ma-
terials, 12(3):191–201, Mar 2013. ISSN 1476-4660.
doi: 10.1038/nmat3568. URL https://doi.org/
10.1038/nmat3568.

Dick, S. and Fernandez-Serra, M. Machine learning
accurate exchange and correlation functionals of the
electronic density. Nature Communications, 11(1):
3509, Jul 2020. ISSN 2041-1723. doi: 10.1038/
s41467-020-17265-7. URL https://doi.org/10.
1038/s41467-020-17265-7.

Duan, C., Janet, J. P., Liu, F., Nandy, A., and Kulik, H. J.
Learning from failure: Predicting electronic structure cal-
culation outcomes with machine learning models. Journal
of Chemical Theory and Computation, 15(4):2331–2345,
2019. doi: 10.1021/acs.jctc.9b00057. URL https://
doi.org/10.1021/acs.jctc.9b00057. PMID:
30860839.

Duan, C., Chen, S., Taylor, M. G., Liu, F., and Kulik, H. J.
Machine learning to tame divergent density functional
approximations: a new path to consensus materials design
principles. Chem. Sci., 12:13021–13036, 2021. doi:
10.1039/D1SC03701C. URL http://dx.doi.org/
10.1039/D1SC03701C.

Flaser, B. M., Guo, Y., Riplinger, C., Tuczek, F., and Neese,
F. Detailed pair natural orbital-based coupled cluster
studies of spin crossover energetics. Journal of Chemical
Theory and Computation, 16(4):2224–2235, 2020. doi:
10.1021/acs.jctc.9b01109. URL https://doi.org/
10.1021/acs.jctc.9b01109. PMID: 32196337.

Grisafi, A., Fabrizio, A., Meyer, B., Wilkins, D. M.,
Corminboeuf, C., and Ceriotti, M. Transferable
machine-learning model of the electron density. ACS
Central Science, 5(1):57–64, 2019. doi: 10.1021/
acscentsci.8b00551. URL https://doi.org/10.
1021/acscentsci.8b00551. PMID: 30693325.

Hay, P. J. and Wadt, W. R. Ab initio effective core potentials
for molecular calculations. potentials for the transition
metal atoms sc to hg. The Journal of Chemical Physics,
82(1):270–283, 1985. doi: 10.1063/1.448799. URL
https://doi.org/10.1063/1.448799.

Hohenberg, P. and Kohn, W. Inhomogeneous electron
gas. Phys. Rev., 136:B864–B871, Nov 1964. doi:

https://doi.org/10.1063/1.464913
https://link.aps.org/doi/10.1103/PhysRevLett.98.146401
https://link.aps.org/doi/10.1103/PhysRevLett.98.146401
https://proceedings.mlr.press/v28/bergstra13.html
https://proceedings.mlr.press/v28/bergstra13.html
https://doi.org/10.1021/acs.jctc.0c00872
https://doi.org/10.1021/acs.jctc.0c00872
https://doi.org/10.1021/cr200107z
https://onlinelibrary.wiley.com/doi/abs/10.1002/anie.201909987
https://onlinelibrary.wiley.com/doi/abs/10.1002/anie.201909987
https://doi.org/10.1038/nmat3568
https://doi.org/10.1038/nmat3568
https://doi.org/10.1038/s41467-020-17265-7
https://doi.org/10.1038/s41467-020-17265-7
https://doi.org/10.1021/acs.jctc.9b00057
https://doi.org/10.1021/acs.jctc.9b00057
http://dx.doi.org/10.1039/D1SC03701C
http://dx.doi.org/10.1039/D1SC03701C
https://doi.org/10.1021/acs.jctc.9b01109
https://doi.org/10.1021/acs.jctc.9b01109
https://doi.org/10.1021/acscentsci.8b00551
https://doi.org/10.1021/acscentsci.8b00551
https://doi.org/10.1063/1.448799


DFA recommender

10.1103/PhysRev.136.B864. URL https://link.
aps.org/doi/10.1103/PhysRev.136.B864.

Husch, T., Sun, J., Cheng, L., Lee, S. J. R., and Miller,
T. F. Improved accuracy and transferability of molecular-
orbital-based machine learning: Organics, transition-
metal complexes, non-covalent interactions, and tran-
sition states. The Journal of Chemical Physics, 154
(6):064108, 2021. doi: 10.1063/5.0032362. URL
https://doi.org/10.1063/5.0032362.

Ioannidis, E. I., Gani, T. Z. H., and Kulik, H. J. molsim-
plify: A toolkit for automating discovery in inorganic
chemistry. Journal of Computational Chemistry, 37
(22):2106–2117, 2016. doi: https://doi.org/10.1002/jcc.
24437. URL https://onlinelibrary.wiley.
com/doi/abs/10.1002/jcc.24437.

Janesko, B. G. Replacing hybrid density functional theory:
motivation and recent advances. Chem. Soc. Rev., 50:
8470–8495, 2021. doi: 10.1039/D0CS01074J. URL
http://dx.doi.org/10.1039/D0CS01074J.

Jiang, W., DeYonker, N. J., Determan, J. J., and Wilson,
A. K. Toward accurate theoretical thermochemistry
of first row transition metal complexes. The Journal
of Physical Chemistry A, 116(2):870–885, 2012. doi:
10.1021/jp205710e. URL https://doi.org/10.
1021/jp205710e. PMID: 22107449.

Keith, J. A., Vassilev-Galindo, V., Cheng, B., Chmiela, S.,
Gastegger, M., Müller, K.-R., and Tkatchenko, A. Com-
bining machine learning and computational chemistry
for predictive insights into chemical systems. Chemi-
cal Reviews, 121(16):9816–9872, 2021. doi: 10.1021/
acs.chemrev.1c00107. URL https://doi.org/10.
1021/acs.chemrev.1c00107. PMID: 34232033.

Kirkpatrick, J., McMorrow, B., Turban, D. H. P., Gaunt,
A. L., Spencer, J. S., Matthews, A. G. D. G., Obika, A.,
Thiry, L., Fortunato, M., Pfau, D., Castellanos, L. R.,
Petersen, S., Nelson, A. W. R., Kohli, P., Mori-SÃ¡nchez,
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A. Standard deviation of the absolute error for the top-5 DFAs
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Figure A1. Normalized distributions of standard deviation (std. dev.) of |∆∆EH−L| for the top-5 DFAs. A kernel density estimate (black)
is also shown. It can be observed that the difference of |∆∆EH−L| for the top-5 DFAs can be small (i.e to 1 kcal/mol) for many TMCs.

B. 20 ligands used in this work

+

Figure A2. The 20 small ligands resembling those from the spectrochemical series that are considered in this work. The coordinating
atom is shaded in gray for each ligand.
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C. Summary of properties of the original 23 DFAs
Table A1. Summary of 23 functionals in the original work of Duan et al. (Duan et al., 2021), including their rungs on “Jacob’s ladder” of
DFT, Hartree–Fock (HF) exchange fraction, long-range correction (LRC) range-separation parameter (bohr−1), MP2 correlation fraction,
and whether empirical (i.e., D3) dispersion correction is included.

DFA type exchange type HF
exchange
type

LRC RS
parameter
(bohr−1)

MP2 cor-
relation

D3 dispersion

BP86 GGA GGA – – – No
BLYP GGA GGA – – – No
PBE GGA GGA – – – No
TPSS meta-GGA meta-GGA – – – No
SCAN meta-GGA meta-GGA – – – No
M06-L meta-GGA meta-GGA – – – No
MN15-L meta-GGA meta-GGA – – – No
B3LYP GGA hybrid GGA 0.200 – – No
B3P86 GGA hybrid GGA 0.200 – – No
B3PW91 GGA hybrid GGA 0.200 – – No
PBE0 GGA hybrid GGA 0.250 – – No
ωB97X RS hybrid GGA 0.158 0.300 – No
LRCω-PBEh RS hybrid GGA 0.200 0.200 – No
TPSSh meta-GGA hybrid meta-GGA 0.100 – – No
SCAN0 meta-GGA hybrid meta-GGA 0.250 – – No
M06 meta-GGA hybrid meta-GGA 0.270 – – No
M06-2X meta-GGA hybrid meta-GGA 0.540 – – No
MN15 meta-GGA hybrid meta-GGA 0.440 – – No
B2GP-PLYP double hybrid GGA 0.650 – 0.360 No
PBE0-DH double hybrid GGA 0.500 – 0.125 No
DSD-BLYP-
D3BJ

double hybrid GGA 0.710 – 1.000 Yes

DSD-
PBEB95-
D3BJ

double hybrid GGA 0.660 – 1.000 Yes

DSD-
PBEP86-
D3BJ

double hybrid GGA 0.690 – 1.000 Yes
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D. Summary of properties of the additional DFAs
Table A2. Summary of the additional 25 functionals compared to Duan et al. (Duan et al., 2021), including their rungs on “Jacob’s ladder”
of DFT, Hartree–Fock (HF) exchange fraction, long-range correction (LRC) range-separation parameter (bohr−1), MP2 correlation
fraction, whether empirical (i.e., D3) dispersion correction is included.

DFA type exchange type HF
exchange
type

LRC RS
parameter
(bohr−1)

MP2 cor-
relation

D3 dispersion

BLYP:10% GGA hybrid GGA 0.100 – – No
BLYP:20% GGA hybrid GGA 0.200 – – No
BLYP:30% GGA hybrid GGA 0.300 – – No
BLYP:40% GGA hybrid GGA 0.400 – – No
BLYP:50% GGA hybrid GGA 0.500 – – No
PBE:10% GGA hybrid GGA 0.100 – – No
PBE:20% GGA hybrid GGA 0.200 – – No
PBE:30% GGA hybrid GGA 0.300 – – No
PBE:40% GGA hybrid GGA 0.400 – – No
PBE:50% GGA hybrid GGA 0.500 – – No
SCAN:10% meta-GGA hybrid meta-GGA 0.100 – – No
SCAN:20% meta-GGA hybrid meta-GGA 0.200 – – No
SCAN:30% meta-GGA hybrid meta-GGA 0.300 – – No
SCAN:40% meta-GGA hybrid meta-GGA 0.400 – – No
SCAN:50% meta-GGA hybrid meta-GGA 0.500 – – No
M06-L:10% meta-GGA hybrid meta-GGA 0.100 – – No
M06-L:20% meta-GGA hybrid meta-GGA 0.200 – – No
M06-L:30% meta-GGA hybrid meta-GGA 0.300 – – No
M06-L:40% meta-GGA hybrid meta-GGA 0.400 – – No
M06-L:50% meta-GGA hybrid meta-GGA 0.500 – – No
MN15-L:10% meta-GGA hybrid meta-GGA 0.100 – – No
MN15-L:20% meta-GGA hybrid meta-GGA 0.200 – – No
MN15-L:30% meta-GGA hybrid meta-GGA 0.300 – – No
MN15-L:40% meta-GGA hybrid meta-GGA 0.400 – – No
MN15-L:50% meta-GGA hybrid meta-GGA 0.500 – – No
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E. Theoretical bound of recommender approach with 48 DFAs

Figure A3. MAE of |∆∆EH−L| constrained by only selecting a random top-n DFA (black dots and solid line) among the 48 DFAs. The
lower bound (green line), upper bound (red line), and the feasible area (gray shaded) are also shown when the DFA selection is constrained
in top-n choices.

F. MAEs derived from the 48 DFAs compared to DLPNO-CCSD(T)

Figure A4. MAE of |∆∆EH−L| for the 48 DFAs of the VSS-452 set. The DFAs are sorted in an ascending order of their raw MAEs.
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G. Recommender rank-ordering performance with 23 DFAs
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Figure A5. Normalized distribution of the rank for selected DFA using our recommender approach, with the cumulative percentage (blue
solid line) shown according to the axis on the right. The cumulative curve for a random guess (blue dashed line) is also shown.


