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ABSTRACT

Graph neural network (GNN) and label propagation algorithm (LPA) are both
message passing algorithms, which have achieved superior performance in semi-
supervised classification. GNN performs feature propagation by a neural network
to make predictions, while LPA uses label propagation across graph adjacency
matrix to get results. However, there is still no good way to combine these two
kinds of algorithms. In this paper, we proposed a new Unified Message Passaging
Model (UniMP) that can incorporate feature propagation and label propagation
with a shared message passing network, providing a better performance in semi-
supervised classification. First, we adopt a Graph Transformer jointly label em-
bedding to propagate both the feature and label information. Second, to train
UniMP without overfitting in self-loop label information, we propose a masked
label prediction strategy, in which some percentage of training labels are sim-
ply masked at random, and then predicted. UniMP conceptually unifies feature
propagation and label propagation and be empirically powerful. It obtains new
state-of-the-art semi-supervised classification results in Open Graph Benchmark
(OGB).

1 INTRODUCTION

There are various scenarios in the world, e.g., recommending related news and products, discovering
new drugs, or predicting social relations, which can be described as graph structures. Many methods
have been proposed to optimize these graph-based problems and achieved significant success in
many related domains such as predicting the properties of nodes (Yang et al.,[2016; |Kipf & Welling,
2016), links (Grover & Leskovec, |2016; |[Battaglia et al., 2018), and graphs (Duvenaud et al., 2015}
Niepert et al.,[2016} | Bojchevski et al.| [2018]).

In the task of semi-supervised node classification, we are required to learn with labeled examples
and then make predictions for those unlabeled ones. To better classify the nodes’ labels in the
graph, based on the Laplacian smoothing assumption (L1 et al., 2018}, |Xu et al., 2018b), the message
passing models were proposed to aggregate the information from its connected neighbors in the
graph, acquiring enough facts to produce a more robust prediction for unlabeled nodes. Generally,
there are two kinds of practical methods to implement message passing model, the Graph Neural
Networks (GNNs) (Kipf & Welling, [2016; Hamilton et al.|[2017; Xu et al.l 2018bj [Liao et al., 2019
Xu et al. 2018a; |Qu et al., 2019) and the Label Propagation Algorithms (LPAs) (Zhul 2005} |[Zhu
et al., 2003; Zhang & Lee, 2007; (Wang & Zhang, 2007} [Karasuyama & Mamitsukal 2013 |Gong
et al} [2016; [Liu et al) |2019). GNNs combine graph structures by propagating and aggregating
nodes features through several neural layers, which get predictions from feature propagation. While
LPAs make predictions for unlabeled instances by label propagation iteratively.

Since GNN and LPA are based on the same assumption, making semi-supervised classifications by
information propagation, there is an intuition that incorporating them together for boosting perfor-
mance. Some superior studies have proposed their graph models based on it. For example, APPNP
(Klicpera et al., 2019) and TPN (Liu et al., 2019)) integrate GNN and LPA by concatenating them
together, and GCN-LPA (Wang & Leskovec, 2019) uses LPA to regularize their GCN model. How-
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ever, as shown in TabelE], aforementioned methods still can not incorporate GNN and LPA within a
message passing model, propagating feature and label in both training and prediction procedure.

Table 1: Comparision between message passing models

Training Prediction
Feature Label Feature Label
LPA v v
GCN v v
APPNP v v
GCN-LPA v v v
UniMP (Ours) v v v v

To unity the feature and label propagation, there are mainly two issues needed to be addressed:

Aggregating feature and label information. Since node feature is represented by embeddings,
while node label is a one-hot vector. They are not in the same vector space. In addition, there
are different between their message passing ways, GNNs can propagate the information by diverse
neural structures likes GraphSAGE (Hamilton et al.} 2017), GCN (Kipf & Welling, [2016) and GAT
(Velickovic et al.l 2017). But LPAs can only pass the label message by graph adjacency matrix.

Supervised training. Supervised training a model with feature and label propagation will overfit
in self-loop label information inevitably, which makes the label leakage in training time and causes
poor performance in prediction.

In this work, inspired by several advantages developments (Vaswani et al.,[2017; [Wang et al.} 2018;
Devlin et al.l 2018) in Natural Language Processing (NLP), we propose a new Unified Message
Passing model (UniMP) with masked label prediction that can settle the aforementioned issues.
UniMP is a multi-layer Graph Transformer, jointly using label embedding to transform nodes labels
into the same vector space as nodes features. It propagates nodes features like the previous attention
based GNNs (Velickovi€ et al.,[2017; Zhang et al., [2018). Meanwhile, its multi-head attentions are
used as the transition matrix for propagating labels vectors. Therefore, each node can aggregate
both features and labels information from its neighbors. To supervised training UniMP without
overfitting in self-loop label information, we draw lessons from masked word prediction in BERT
(Devlin et al., [2018) and propose a masked label prediction strategy, which randomly masks some
training instances’ label embedding vectors and then predicts them. This training method perfectly
simulates the procedure of transducing labels information from labeled to unlabeled examples in the
graph.

We conduct experiments on three semi-supervised classification datasets in the Open Graph Bench-
mark (OGB), where our new methods achieve novel state-of-the-art results in all tasks, gaining
82.56% ACC in ogbn-products, 86.42% ROC-AUC in ogbn-proteins and 73.11% ACC in ogbn-
arxiv. We also conduct the ablation studies for the models with different inputs to prove the effec-
tiveness of our unified method. In addition, we make the most thorough analysis of how the label
propagation boosts our model’s performance.

2 METHOD

We first introduce our notation about graph. We denote a graph as G = (V, E), where V' denotes
the nodes in the graph with |V| = n and E denotes edges with | E| = m. The nodes are described
by the feature matrix X € R™*/, which usually are dense vectors with f dimension, and the target
class matrix Y € R™*¢, with the number of classes c. The adjacency matrix A = [a; ;| € R"*" is
used to describe graph G, and the diagonal degree matrix is denoted by D = diag(dy, da, ..., dy,) ,
where d; = > ; @i 1s the degree of node 7. A normalized adjacency matrix is defined as D 'Aor

D 2AD~%, and we adopt the first definition in this paper.

2.1 FEATURE PROPAGATION AND LABEL PROPAGATION

In semi-supervised node classification, based on the Laplacian smoothing assumption, the GNN
transforms and propagates nodes features X across the graph by several layers, including linear
layers and nonlinear activation to build the approximation of the mapping: X — Y. The feature
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Figure 1: The architecture of our UniMP.

propagation scheme of GNN in layer [ is:
g+ — U(D_lAH(l)W(l)>

1
Y:fout(H(L)) ( )

where the ¢ is an activation function, W) is the trainable weight in the [-th layer, and the H®) is
the {-th layer representations of nodes. H(?) is equal to node input features X . Finally, a fo.; output
layer is applied on the final representation to make prediction for Y.

As for LPA, it also assumes the labels between connected nodes are smoothing and propagates the

labels iteratively across the graph. Given an initial label matrix Y (©), which consists of one-hot
label indicator vectors §? for the labeled nodes or zeros vectors for the unlabeled. A simple iteration
equation of LPA is formulated as following:

YD = p=lay® 2

Labels are propagated from each other nodes through a normalized adjacency matrix D1 A.

2.2  UNIFIED MESSAGE PASSING MODEL

As shown in Figure[I} we employ a Graph Transformer, jointly using label embedding to construct
our unified message passing model for combining the aforementioned feature and label propagation
together.

Graph Transformer. Since Transformer (Vaswani et al.l 2017) has been proved being powerful
in NLP, we employ its vanilla multi-head attention into graph learning with taking into account the

case of edge features. Specifically, given nodes features H(") = {hgl), h(Ql)7 e th )}, we calculate
multi-head attention for each edge from j to ¢ as following:

o = W 0,
l l l l
K0 = W) 18

€cij = c,e€ij + bc,e (3)
l l
o <q£73,k£3 + €c,ij)
c,ij

ZuEN(i) <quv kt(ifgl + ec,iu>
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where (¢, k) = exp(q%) is exponential scale dot-product function and d is the hidden size of each

head. For the c-th head attention, we firstly transform the source feature hgl)

@

CZ

and distant feature

h§-l) into query vector ¢, ;, € R%and key vector k:(l)- € R? respectively using different trainable

parameters Wc(lg, Wc(lk, bglq, bC x- The provided edge features e;; will be encoded and added into

key vector as additional information for each layer.

After getting the graph multi-head attention, we make a message aggregation from the distant j to
the source ¢:

v = w10l
C
) _ (OO
hi - Hc:l[ Z aczg( —&—e“j)]

JEN (i)
r = wOn® 4 o0
551) = sigmoid(Wél)[fzgl); 7‘1@; ﬁgl) - 7’2@])
hEH_l) = ReLU(LayerNorm((1 — ﬂi(l))izl(»l) + Bi(l)rgl)))

where the || is the concatenation operation for C' head attention. Comparing with the Equation
multi-head attention matrix replaces the original normalized adjacency matrix as transition matrix
for message passing. The distant feature h; is transformed to v.; € R? for weighted sum. In
addition, inspired by (Li et al., 2019} [Chen et al., [2020) to prevent oversmoothing, we propose a

gated residual connections between layers by r; € R% and 51-(1) € RL

“4)

Specially, similar to GAT, if we apply the Graph Transformer on the output layer, we will employ
averaging for multi-head output as following:

C
~ 1
W= S Sl + ey

=1 jeN(i) ©)
pUAD _ (1- ﬁ(l))ﬁ(l) + 800

Label Embedding and Propagation. We propose to embed the partially observed labels informa-

tion into the same space as nodes features: Y € R"™¢ — Y, € R™*/, which consist of the label
embedding vector for labeled nodes and zeros vectors for the unlabeled. And then, we combine the
label propagation into Graph Transformer by simply adding the nodes features and labels features

together as propagation features (H° = X + Ye) € R™*/, We can prove that by mapping partially-

labeled Y and nodes features X into the same space and adding them up, our model is unifying
both label propagatlon and feature propagation within a shared message passing framework. Let’s

take Y, = YW, and A* to be normalized adjacency matrix D' A or the attention matrix from our
Graph Transformer like Equation[3] Then we can find that:

HO =X + YW,
HY = 5(((1 - B)A* + BN HOW D)

where [ can be the gated function like Equation [4] or a pre-defined hyper-parameters like APPNP
(Klicpera et al.}[2019). For simplification, we let o function as identity function, then we can get:

HY = (1-p)A* + sDHX + YW ywOw @ w®
= ((1=PB)A* + BD'XW + (1 — B)A* + BD)'YW. W

where W = WOW® WO, Then we can find that our model can be approximately de-
composed into feature propagation ((1 — 3)A* + BI)!XW and label propagation ((1 — 8)A* +
BHY W, W.

(6)

)

3 MASKED LABEL PREDICTION

Previous works on GNNs seldom consider using the partially observed labels Y in both training and
inference stages. They only take those labels information as ground truth target to supervised train
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their model’s parameters 6 with given X and A:
R %
argmax  logpo(V]X, 4) = > " log pa(§:] X, A) ®)

=1

where V represents the partial nodes with labels. However, our UniMP model propagates nodes
features and labels to make prediction: p(y|X, Y, A). Simply using above objective for our model
will make the label leakage in the training stage, causing poor performance in inference. Learning
from BERT, which masks input words and makes prediction for them to pretrain their model (masked
word prediction), we propose a masked label prediction strategy to train our model. During training,
at each step, we corrupt the Y into Y by randomly masking a portion of node labels to zeros and
keep the others remain, which is controlled by a hyper-parameter called label rate. Let those masked
labels be Y, our objective function is to predict Y with given X, Y and A:

\%
argmax logpg(V|X,Y,A) = > logps(5il X, Y, A) )
%

=1

where V represents those nodes with masked labels. In this way, we can train our model without the

leakage of self-loop labels information. And during inference, we will employ all Y as input labels
to predict the remaining unlabeled nodes.

4 EXPERIMENTS

We propose a Unified Message Passing Model (UniMP) for semi-supervised node classification,
which incorporates the feature and label propagation jointly by a Graph Transformer and employ a
masked label prediction strategy to optimize it. We conduct the experiments on the Node Property
Prediction of Open Graph Benchmark (OGBN), which includes several various challenging and
large-scale datasets for semi-supervised classification, splitted in the procedure that closely matches
the real-world application [Hu et al.| (2020). To verified our models effectiveness, we compare our
model with others State-Of-The-Art models (SOTASs) in ogbn-products, ogbn-proteins and ogbn-
arxiv three OGBN datasets. We also provide more experiments and comprehensive studies to show
our motivation more intuitively, and how LPA improves our model to achieve better results.

4.1 DATASETS AND EXPERIMENTAL SETTINGS

Table 2: Dataset statistics of OGB node property prediction

Name \ Node Edges Tasks Split Rate Split Type Task Type Metric

ogbn-products | 2,449,029 61,859, 140 1 8\02\88 Sales rank Multi-class class Accuracy
ogbn-proteins | 132,534 39,561,252 112 65\16\19  Species Binary class  ROC-AUC
ogbn-arxiv 169,343 1,166,243 1 78\08\14 Time Multi-class class  Accuracy

Datasets. Most of the frequently-used graph datasets are extremely small compared to graphs found
in real applications. And the performance of GNNs on these datasets is often unstable due to several
issues including their small-scale nature, non-negligible duplication or leakage rates, unrealistic
data splits (Dwivedi et al., [2020; Hu et al.| 2020). Consequently, we conduct our experiments on
the recently released datasets of Open Graph Benchmark (OGB) (Hu et al.|,|2020), which overcome
the main drawbacks of commonly used datasets and thus are much more realistic and challenging.
OGB datasets cover a variety of real-world applications and span several important domains ranging
from social and information networks to biological networks, molecular graphs, and knowledge
graphs. They also span a variety of predictions tasks at the level of nodes, graphs, and links/edges.
As shown in table [2] in this work, we performed our experiments on the three OGBN datasets
with different sizes and tasks for getting credible result, including ogbn-products about 47 products
categories classification with given 100-dimensional nodes features , ogbn-proteins about 112 kinds
of proteins function prediction with given 8-dimensional edges features and ogbn-arxiv about 40-
class topics classification with given 128 dimension nodes features. More details about these datasets
are provided in Appendix [A]
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Implementation Details. As mentioned above, these datasets are different from each other in sizes
or tasks. So we evaluate our model on them with different sampling methods like previous studies
(L1 et al.| [2020), getting credible comparison results. In ogbn-products dataset, we use Neighbor-
Sampling with size = 10 for each layer to sample the subgraph during training and use full-batch for
inference. In ogbn-proteins dataset, we use Random Partition to split the dense graph into subgraph
to train and test our model. The number of partitions is 9 for training and 5 for test. As for small-size
ogbn-arxiv dataset, we just apply full batch for both training and test. We set the hyper-parameter of
our model for each dataset in Table[3] and the label_rate means the percentage of labels we preserve
during applying masked label prediction strategy. We use Adam optimizer with [ = 0.001 to train
our model. Specially, we set weight decay to 0.0005 for our model in small-size ogbn-arxiv dataset
to prevent overfitting. More details about the tuned hyper-parameters are provided in Appendix

Table 3: The hyper-paramerter setting of our model

ogbn-products ogbn-proteins ogbn-arxiv
sampling_method NeighborSampling Random Partition  Full-batch
num_layers 3 7 3
hidden_size 128 64 128
num_heads 4 4 2
dropout 0.3 0.1 0.3
Ir 0.001 0.001 0.001
weight_decay * * 0.0005
label rate 0.625 0.5 0.625

4.2 COMPARISON WITH SOTAS

Baseline and other comparative SOTAs are provided by OGB leaderboard. Some of the including
results are conducted officially by authors from original papers, while the others are re-implemented
by communities. And all these results are guaranteed to be reproducible with open source codes.
Following the requirement of OGB, we run our experimental results for each dataset 10 times and
report the mean and standard deviation. As shown in Tabel[d] Tabel[5} and Tabel[6} our unified model
outperform all other comparative models in three OGBN datasets. Since most of the compared mod-
els only consider optimizing their models for the features propagation, these results demonstrate that
incorporating label propagation into GNN models can bring significant improvements. Specifically,
we gain 82.56% ACC in ogbn-products, 86.42% ROC-AUC in ogbn-proteins, which achieves about
0.6-1.6% absolute improvements compared to the newly SOTA methods like DeeperGCN (Li et al.}
2020). In ogbn-arxiv, our method gains 73.11% ACC, achieve 0.37% absolute improvements com-
pared to GCNII (Chen et al.| 2020), whose parameters are four times larger than ours.

Table 4: Results for ogbn-products

Model Test Accuracy Validation Accuracy Params
GCN-Cluster (Chiang et al.;[2019) 0.7897 + 0.0036 0.9212 + 0.0009 206, 895
GAT-Cluster 0.7923 + 0.0078 0.8985 + 0.0022 1,540, 848
GAT-NeighborSampling 0.7945 £+ 0.0059 - 1,751,574
GraphSAINT (Zeng et al.,[2019) 0.8027 + 0.0026 - 331,661
DeeperGCN (Li et al.| [2020) 0.8090 + 0.0020 0.9238 + 0.0009 253,743
UniMP B 0.8256 + 0.0031 0.9308 + 0.0017 1,475,605

Table 5: Results for ogbn-proteins

Model Test ROC-AUC Validation ROC-AUC Params
GaAN (Zhang et al . [2018)) 0.7803 £ 0.0073 - -
GeniePath-BS (Liu et al.,|2020b)) 0.7825 4+ 0.0035 - 316, 754
MWE-DGCN 0.8436 %+ 0.0065 0.8973 4+ 0.0057 538, 544
DeepGCN (Li et al.;2019) 0.8496 + 0.0028 0.8921 + 0.0011 2,374,456
DeeperGCN (Li et al.||2020) 0.8580 4+ 0.0017 0.9106 + 0.0016 2,374,568
UniMP 0.8642 + 0.0008 0.9175 + 0.0007 1,909, 104
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Table 6: Results for ogbn-arxiv

Model Test Accuracy Validation Accuracy Params
DeeperGCN (Li et al.,[2020) | 0.7192 £ 0.0016 0.7262 £ 0.0014 1,471, 506
GaAN (Zhang et al.[[2018) 0.7197 £ 0.0024 - 1,471,506
DAGNN (Liu et al., 2020a) 0.7209 £ 0.0025 - 1,751,574
JKNet (Xu et al.;|[2018b) 0.7219 £ 0.0021 0.7335 £ 0.0007 331,661
GCNII (Chen et al.}|2020) 0.7274 £ 0.0016 - 2,148,648
UniMP B 0.7311 £ 0.0021 0.7450 + 0.0005 473,489

4.3 ABLATION STUDIES ON GRAPH TRANSFORMER AND MASKED LABEL PREDICTION

In this section, we will conduct extensive studies to identify the improvements from different com-
ponents of our unified model. To get a fair comparison, we re-implement classical GNN methods
like GCN and GAT, following the same sampling methods and model setting shown in Table[3] The
hidden size of GCN is head_num*hidden_size since it doesn’t have head attention. We also change

different inputs for our models to study the effectiveness of feature and label propagation.

As shown in Tabel[7] it’s surprising that only Y and A, GNNs still work well in all three datasets,
outperforming those MLP model only given X. This implies that one’s label relies heavily on
its neighborhood instead of itself feature. For models with X and A as inputs like most GNNs
do, they are more likely to remember the labels of training set through approximations, which is
inaccurate. It’s a waste of information in semi-supervised classification when prediction without
incorporating the annotated label Y information from training sets, which are preciser than the
model’s approximations for training data. In addition, with different input settings, our improved

Graph Transformer can outperform GAT, GCN in most cases.

Table 7: Ablation studies on models with different inputs.

Datasets

ogbn-products
Test ACC

ogbn-proteins T
Test ROC-AUC

ogbn-arxiv
Test ACC

0.6106 & 0.0008

0.7204 £ 0.0048

0.5765 + 0.0012

0.7851 +0.0011
0.8002 + 0.0063
0.8137 £ 0.0047

0.8265 £ 0.0008
0.8376 £ 0.0007
0.8347 £ 0.0014

0.7218 £ 0.0014
0.7246 £ 0.0013
0.7292 £ 0.0010

0.7832 £ 0.0013
0.7751 £ 0.0054
0.7987 + 0.0104

0.8083 £ 0.0021
0.8247 £ 0.0033
0.8160 £ 0.0007

0.7018 £ 0.0009
0.7055 £ 0.0012
0.7090 +£ 0.0007

Inputs Model
X MLP
GCN
X, A GAT
Transformer
GCN
AY GAT
Transformer
GCN
X, A Y GAT
Transformer

0.7987 £ 0.0104
0.8193 + 0.0017
0.8269 + 0.0009

0.8247 £ 0.0032
0.8556 £ 0.0009

0.8560 + 0.0003

0.7264 £ 0.0003
0.7278 £ 0.0009
0.7332 + 0.0014

" In ogbn-proteins, nodes features are not provided initially. We average the edge features as
their nodes features and drop the edge features for fair comparison in this experiment. which is
slightly different from Table|5} X is the nodes features, A is the graph adjacent matrix and Y is
the observed labels. We run these models three times and report their means and stds.

4.4 EXPLORING HOW LABEL PROPAGATION AFFECTS UNIMP
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Figure 2: Exploration of how label coverage affects label propagation.

7



Under review as a conference paper at ICLR 2021

One of our motivations for using label propagation is that labels can carry additional informative
feature which cannot be replaced by the model’s approximation. However, the relation between
the coverage of labeled data and the impact of label propagation for our model still be uncertain.
Therefore, we conduct more experiments in ogbn-arxiv to investigate their relationship in several
different scenarios:

e In Figure we train UniMP using X, Y, A as inputs. We tune the training label rate
which is the hyper-parameter of masked label prediction task and display the validation
and test accuracy. Our model achieves better performance when label rate is about 0.625.

e Figure 2b] describes the correlation between the proportion of training data and the ef-
fectiveness of label propagation. We fix the label rate with 0.625. The only change is
the training data proportion. It’s a common sense that with the increase of training data,
the performance is gradually improving. And the model with label propagation can have
greater benefits from increasing labeled data proportion.

o In the training stage, our model always masks a part of the training label and tries to recover
them. But in the inference stage, our model utilizes all training labels for predictions, which
is slightly inconsistent with the one in training. In Figure[2c] we fix our trained models and
perform label propagation with different label rate in inference. It’s found that when lower
the label rate during prediction, UniMP might have worse performance (less than 0.70)
than the baseline (about 0.72). However, when the label rate climbs up, the performance
can boost up to 0.73.

e In Figure[2d] we calculate accuracy for unlabeled nodes with a different number of neigh-
bors. The experimental result shows that nodes with more neighbors have higher accuracy.
And the model with label propagation can always have improvements even with different
numbers of training neighbors.
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" Transformer (e " Transformer I

P GAT Ml T T - CAT IS
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69 70 71 72 73 74 2465 247 2475 248 2485 249 2495 25
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Figure 3: Correlation between accuracy and margin similarity between neighbors.

Wang & Leskovec|(2019) have theoretically proved that using the LPA for GCN during training can
enable nodes within the same class/label to connect more strongly, increasing the accuracy (ACC)
of model’s prediction. Our model can be seen as an upgraded version of them, using LPA in both
training and testing time. Therefore, we try to experimentally prove the above idea based on our
model. We use the Margin Similarity Function to reflect the connection tightness of the nodes with
same class (the higher scores, the stronger connection they are, and more details in Appendix[C). We
conduct the experiments on ogbn-arxiv. And as shown in Figure 3] the ACC of models’ prediction
is proportional to Margin Similarity. Unifying feature and label propagation can further strengthen
their connection, improving their ACC. Moreover, our Graph Transformer outperforms GAT in both
connection tightness and ACC with different inputs.

5 CONCLUSION

We first propose a unified message passing model, UniMP, which jointly performs feature propaga-
tion and label propagation within a Graph Transformer to make the semi-supervised classification.
Furthermore, we propose a masked label prediction method to supervised training our model, pre-
venting it from overfitting in self-loop label information. Experimental results show that UniMP
outperforms the previous state-of-the-art models on three main OGBN datasets: ogbn-products,
ogbn-proteins and ogbn-arxiv by a large margin, and ablation studies demonstrate the effectiveness
of unifying feature propagation and label propagation.
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A DATASETS DETAILS

ogbn-products. As shown in Table [2] ogb-products is an undirected and unweighted graph, repre-
senting an Amazon product co-purchasing network. The goal of this task is to predict the category
of a product in a multi-class classification setup, where the 47 top-level categories are used for target
labels. To match the real-world application, it conducts a splitting on the dataset based on sales
ranking, where the top 10% for training, next top 2% for validation, and the rest for testing.

ogbn-proteins. As shown in Table 2| ogbn-proteins dataset is an undirected, weighted, and typed
(according to species) graph. Nodes represent proteins, and edges indicate different types of bi-
ologically meaningful associations between proteins, e.g., physical interactions, co-expression or
homology. The task is to predict the presence of protein functions in a multi-label binary classifica-
tion setup, where there are 112 kinds of labels to predict in total. The performance is measured by
the average of ROC-AUC scores across the 112 tasks. It conducts the splitting by species.

ogbn-arxiv. As shown in Table 2] ogbn-arxiv dataset is a directed graph, representing the citation
network between all Computer Science (CS) arXiv papers indexed by MAG (Wang et al.| [2020).
The task is to predict the 40 subject areas of arXiv CS papers, e.g., cs.Al, ¢s.LG, and ¢s.0S, which
are manually determined by the paper’s authors and arXiv moderators. This dataset were splitted by
time.

B HYPER-PARAMETERS TUNED ON UNIMP MODEL

There are the hyper-parameters we tuned on our unified model for comparison with other SOTA
results, where the asterisks denote the hyper-parameters we eventually selected.

Table 8: The tuned hyperparamerters of our model

ogbn-prdouct ogbn-proteins ogbn-arxiv
sampling_method NeighborSampling ~ Random Partition Full-batch
num_layers [3%, 4] [3, 5, 7%, 9] [3%*, 4]
hidden_size [128%*, 256] [32, 64%*, 128] [128%*, 256]
num_heads [4%2] [6, 4%, 2] [2%, 1]
dropout [0.3%] [0, 0.1%*, 0.3] [0.1, 0.3%]
Ir [0.01, 0.001%] [0.01, 0.001%] [0.1, 0.001%*]
weight_decay - - [0, 0.0005%*]

[0.125, 0.25, 0.375, 0.5,

label_rate [0.625%] [0.375, 0.5%, 0.625] 0.625%, 0.75, 0.875]

C MARGIN SIMILARITY FUNCTION

Given an attention weight a;; from GAT or Graph Transformer, which can represent the connec-
tion tightness between source node ¢ and distance node j, we employ the Circle Loss (Sun et al.,
2020) and make a slight change on it to build our Margin Similarity Function (MSF), measuring
the connection tightness between the neighbors nodes with same labels. For each center node 7 and
its neighbors j, k € N (i), we take the measurement task as a pair similarity problem in which the
center node’s neighbors with same label are positive samples and the others are negative samples,
calculating their connection tightness as following:

N
MSF = NZlog (1+ o > | e — e J») (10)
i=1 JEN (i) pos KEN (i) neg

11



	Introduction
	Method
	Feature propagation and Label propagation
	Unified message passing model

	Masked label prediction
	Experiments
	Datasets and Experimental Settings
	Comparison with SOTAs
	Ablation studies on Graph Transformer and Masked Label Prediction 
	Exploring how label propagation affects UNIMP

	Conclusion
	Datasets Details
	 hyper-parameters tuned on UniMP model
	Margin Similarity function

