Under review as a conference paper at ICLR 2026

FLoOwW POLICY GRADIENTS FOR LEGGED ROBOTS

Anonymous authors
Paper under double-blind review

ABSTRACT

We study robot control with flow policy optimization (FPO), an online reinforce-
ment learning algorithm for flow-based action distributions. We demonstrate how
flow matching policies can be trained from rewards for more difficult continuous
control tasks than shown in prior work, using a set of design choices that reduce
gradient variance and regularize entropy. We show that these design choices mit-
igate policy collapse challenges faced by the original FPO algorithm and use the
resulting algorithm, FPO++, to train flow policies for legged robot locomotion and
humanoid motion tracking. We find that FPO++ is stable to train, interpretably
models cross-action correlations, and can be deployed to real humanoid robots.
Sim2real video results can be found on our anonymous webpagem

1 INTRODUCTION

Recent work in Flow Policy Optimization (FPO) (McAllister et al.l [2025) has demonstrated how
flow matching models (Lipman et al., 2023)) can be trained in an online, policy gradient-based rein-
forcement learning setting. Flow-based policies are attractive because they generalize both simple
and complex continuous action distributions, while remaining simple to implement. They are there-
fore promising for continuous control in robotics, both for fine-tuning flow-based policies learned
via behavior cloning (Black et al.; |Chi et al., [2024a)) and for training flow policies from scratch.

Despite promising performance in synthetic benchmarks, we found it challenging to naively apply
flow policies to real robot control challenges. In this work, we therefore introduce FPO++: an
improved version of FPO that is stable and effective for real-world robot control problems. We
document challenges associated with training standard FPO policies on robot locomotion and motion
tracking tasks—notably, both sudden and gradual policy collapse—and show that a small but critical
set of algorithmic changes mitigates these problems. Specifically, FPO++ proposes (1) an updated
likelihood ratio approximation that increases effective batch size, (2) an entropy-preserving trust
region objective inspired by DAPO (Yu et al.,[2025) and SPO (Xie et al.,|[2024), and (3) numerically
stable CFM loss computation.

We evaluate FPO++ on a diverse set of robotic tasks across four simulated robots (Unitree Go2,
Boston Dynamics Spot, Unitree H1, and Unitree G1), demonstrating stable training on quadrupedal
and bipedal locomotion benchmarks as well as humanoid motion tracking. Our experiments show
that FPO++ is significantly stabler to train than standard FPO, and can achieve competitive perfor-
mance when compared to Gaussian PPO baselines. We analyze the learned policy distributions,
which reveal that FPO++ captures interpretable cross-action correlations during training. We fur-
ther validate these results through zero-shot sim-to-real transfer, deploying FPO++ policies trained
entirely in simulation to two physical humanoid robots (Unitree G1 and Booster T1). To facili-
tate further research, we will provide open-source implementations of FPO++ along with training
configurations for all tasks.

2 IMPROVED FLOW POLICY OPTIMIZATION

We introduce FPO++: an updated version of the FPO algorithm that stabilizes training and improves
performance in challenging, real-world robotics tasks. To present FPO++, we first summarize the
flow matching policy gradient framework. We then discuss the failure modes we observed in naive
FPO implementations, followed by specific updates made in FPO++.

"Project webpage: https://fpocontrol.github.io/

https://fpocontrol.github.io/

Under review as a conference paper at ICLR 2026

2.1 PRELIMINARIES

Policy Gradients and PPO. In on-policy reinforcement learning, rollouts in the form of per-
timestep observation, action, and reward tuples (o, a¢, ;) from a policy mg(a; | o;) are used to
update the policy to maximize expected return. The dominant approach for achieving this is Prox-
imal Policy Optimization (PPO) (Schulman et al., 2017), which applies an on-policy trust region
using a clipped likelihood ratio:

max Eq, o, (aslor) [min (r(&)/lt, clip(r(0),1 — &P 1 + EcliP)At)} ’ (1)

where flt is an advantage estimate (Schulman et al., 2015b) and (#) is the likelihood ratio,

Yy (at ‘ Ot)
(@) Toga(at | 0¢) @
PPO is popular because it is simple to implement and provides strong empirical performance. It
also inherits the advantages of general policy gradient methods, requiring differentiability only from
action likelihoods and not from a reward model or environment dynamics.

Flow Policy Optimization (FPO). The goal of the FPO (McAllister et al., 2025) algorithm is to
enable PPO-style training of policies parameterized as flow models (Lipman et al., [2023). While
likelihoods under the distribution captured by a flow model can be estimated (Skreta et al.| [2025),
doing so in a reinforcement learning setting is computationally prohibitive. To address this, FPO
replaces the PPO likelihood ratio () with a surrogate,

Trro(6) = exp (ﬁCFM,ind(atQ 01) — Lerw o (as; Ot)), 3)
where L:CFMﬁg(at; o0¢) is a Monte Carlo estimate of the conditional flow matching (CFM) loss.

This formulation enables PPO-style training of expressive flow-based policies, and can be applied
in a way that mirrors PPO’s clipped objective:

max Eq, ~ro(as]or) [min(fppo(ﬁ)flt, clip(frpo(6),1 — €, 1 + G)At):| . @

Intuitively, FPO’s ratio approximation uses CFM loss differences to approximate action log-
likelihood differences; as discussed by McAllister et al.| (2025)), this construction can be justified
by interpreting the CFM loss as a variational bound. The final objective (Equation [) then uses
advantage estimates to shift probability flow toward higher-reward actions.

Conditional flow matching loss. To estimate CFM losses, FPO first draws N, random noise
e; ~ N (0,) and flow step 7; € [0, 1] samples for each action a,. Multiple noised actions are then
computed using an interpolation schedule defined by 7;,

a;i = (1 — Ti)at + Ti€q (5)
Squared errors are computed and averaged for the policy’s velocity predictions 0y,
1 Nine
Lcrm,o(at; 0) = N Zfe(ataTi,Q;Ot) (6)
lo(ar, i, €5500) = ||Dg(af, 7i;00) — (ae — €)]3 -)

These losses can then be used in the FPO ratio approximation (Equation [3) for flow policy updates,
which aims to decrease CFM losses for actions with positive advantages and increase CFM losses
for actions with negative advantages.

While the standard FPO formulation succeeds in synthetic benchmarks (McAllister et al., 2025)), we
found that it required refinements to achieve reliable performance in more difficult tasks.

2.2 FLow PoLicY FAILURE MODES

We observed that naive FPO implementations have two common failure modes when applied to
more difficult robot control tasks. We show examples of these failure modes in Figure[I] and provide
descriptions below.

Under review as a conference paper at ICLR 2026

(a) Policy Collapse (b) Gradual Decay (c) FPO++

Return

Trlain Step Trlain Step Trlain Step
Figure 1: FPO failure modes. We found that naively applying FPO to more difficult reinforcement
learning tasks often results in instabilities during training. (a) Sudden collapse in episode returns.

(b) Fast initial learning, followed by gradual decay. (c¢) Stable training using FPO++.

Policy collapse during training. FPO implementations that achieve high rewards on DMC
tasks (Tassa et al., 2018)) encounter frequent instabilities when applied to more challenging robot
locomotion tasks. This can be characterized by large drops in average training returns. Instabili-
ties would irrecoverably halt training across tasks, even after tuning hyperparameters like learning
rate, clip threshold, weight decay, and normalization strategies. Examples can be observed across
hyperparameter choices in Figure 2]

Gradual decay after returns peak. As policy learning progresses, we hope to see steady in-
creases in average training returns. This should happen until an optimal policy is found; afterwards,
policy performance should plateau. While initial FPO rewards often peaked faster than PPO re-
wards, we found that policy performance sometimes began to decay after this peak. We observed
that this happens after entropy collapse in FPO policies. If the policy’s entropy is too low to explore
effectively, rewards begin to decay because each sampled action carries a small approximation error
from Euler integration, which accumulates across policy updates.

2.3 FPO++

FPO++ proposes a set of changes to FPO for (1) reducing the variance of gradients during training,
(2) regularizing entropy of action distributions, and (3) improving numerical stability. We find
that these changes mitigate the failure modes discussed in Section [2.2] while improving overall
performance for converged policies.

Increasing effective batch size. Unlike Gaussian policies that compute a single likelihood per
action, FPO estimates CFM losses by averaging over multiple (7;, ;) samples. In the standard FPO
framework (McAllister et al., [2025), this average is performed before the exponential, producing a
single ratio per action:

N

Frro(0) = eXP(i; Z (faold(atﬁi,ﬁi; ot) — lo(ar, i, €; Ot))) : ®)
i=1

In the context of PPO-style clipping, an important characteristic of this formulation is that ratios are

clipped after averaging across samples. For a given action, this means that either all or no samples

are clipped. In FPO++, we instead compute ratios on a per-sample basis:

fé?o(g) = eXP(éaold(at’Tiy €i;01) — Lo(ag, Ti, €5 0t))~ 9

Each (7;, €;) pair contributes its own ratio, with the same advantage A, shared across all samples.

These two ratio formulations produce identical gradients for on-policy data, where all ratios evaluate
to 1. When taking multiple gradient steps on the same batch of transitions, however, the per-sample
ratio provides a finer-grained trust region than the original per-action formulation. This leads to
higher and more stable final policy returns.

Entropy-preserving trust region (ASPO). We found that the stability of FPO training can be
improved significantly by adjusting its trust region implementation. In FPO++, we adopt an asym-
metric trust region inspired by |Yu et al.[(2025) that we refer to as Asymmetric SPO (ASPO). We use

Under review as a conference paper at ICLR 2026

standard PPO clipping positive advantages; for negative advantages, we adopt the more constrained
Simple Policy Optimization (SPO) objective proposed by |Xie et al.| (2024):

LAl)
iy arlon) [1(0) Av = 5555 (r(0) = 1)’ (10)

max E

0
Like the asymmetric design proposed by (Yu et al.| [2025), the SPO objective we use for negative
advantages preserves entropy in the action distribution by providing gradient signals that discourage

aggressive likelihood decreases. We find empirically that this is critical for stability in FPO++.

The SPO objective also reduces gradient variance. PPO clipping zeros out gradients for samples
that pass the trust region, which leads to increasingly sparse and noisy updates. In contrast, the SPO
objective retains gradients for all samples that it is applied to (Xie et al., [2024).

Improving numerical stability. The FPO surrogate ratio (Eq. [3) involves exponentiating differ-
ences of squared CFM losses. We found this operation to be the source of numerical problems in
FPO: loss outliers in the (7;, ;) sampling process can easily cause instabilities after being squared
and then exponentiated. We address this with two steps. First, we replace the L2 conditional flow
matching objective with a robust Huber loss:

0y (ar, 7, €5500) = ps (Bg(a]', 7i5.00) — (ar — €)) (1
where the Huber kernel ps is defined as
3llzl13, if [|z(]2 <4,
ps(x) = (12)
) .
5 (llzll —3), ifllzl > 4,
Second, we apply a gradient-preserving clamping operator ¢ to the CFM loss difference:
VP (1) = x + stopgrad(clamp(z, -, §) —). (13)

We empirically verify the importance of both the Huber kernel and clamping in our experiments.

2.4 FINAL FPO++ OBJECTIVE

We now summarize the complete FPO++ algorithm by combining the training modifications de-
scribed above. The key differences from vanilla FPO are:

1. Ratios are computed per-sample rather than per-action, increasing effective batch size.
2. We use the SPO (Xie et al., [2024) surrogate objective for negative advantages.

3. The CFM loss uses a Huber kernel with clamping to improve numerical stability.

Formally, for each action a; with advantage flt, we draw N, Monte Carlo pairs (7;, €;). We com-

pute the robust CFM loss using each pair:
Elguber(ataTia €53 Ot)' (14)

The final FPO++ objective is then

max Eaq, g, (o) l Z Yaspo (TFpo 0), Af)) (15)
where the per-sample ratio is
P (0) = exp(V(OO (4, 73, €55 0) — L (ag, 7o, € ot))) : (16)
and the ASPO trust region objective is defined piecewise:
min(r Ay, clip(r, 1 — g€l 1 4 gcli) At) A >0,
Uaspo(r A = il) (17)
rA — 5 cclip (r—1)2, A <0.

We empirically verify this formulation in our experiments.

Under review as a conference paper at ICLR 2026

Go2 Spot H1 Gl

£ 404 40
é 300 1
< 209 | 200 - o 20 20 4
§ l 100

0 T 4
g 0 0 [
w 04

0 500 1000 1500 0 500 1000 1500 0 1000 2000 0 1000 2000
Train Step Train Step Train Step Train Step
= FPO FPO++

Figure 2: FPO vs FPO++ stability. We compare episode returns from FPO++ training with FPO
returns over many different hyperparameter choices. Algorithmic changes in FPO++ resolve training
performance and stability problems that cannot be solved by tuning FPO hyperparameters.

Go2 Spot H1 Gl
c
3 304 300 A 30 30 A
¢ 200 20 - 20
[J] 15 A
3 100 A 10 10 A
g 0 A 0 0 A 0 A
*—15 : ; ; : : — -10 . .
0 500 1000 0 500 1000 0 800 1600 0 800 1600
Train Step Train Step Train Step Train Step
FPO++ with per-action ratio FPO++ with per-sample ratio

Figure 3: Ablation on ratio approximation. FPO++ uses a per-sample ratio approximation, which
results in more stable training than FPO’s per-action ratio.

Relation to architectural stabilization methods. One natural question is whether the instabilities
described in Section could be addressed through architectural strategies (Nauman et al., 2024;
Lee et al., 2024) rather than algorithmic changes. These architecture chanages are designed for
instability when scaling to higher-capacity networks; in contrast, we consider stability problems
for smaller networks used in real-time robot control. Hyperparameters and network architecture
details can be found in the Appendix. We also found that hyperparameter tuning and standard PPO
implementation details (running observation normalization, gradient clipping, weight decay, etc) do
not prevent the collapse or post-peak decay of FPO. In contrast, FPO++ is stable with a broad range
of hyperparameter choices.

3 EXPERIMENTS

The goal of our experiments is to validate and evaluate FPO++ on real robotics problems. To ac-
complish this, we train policies for both legged locomotion and humanoid motion tracking.

We structure our experiments as follows. (i) We begin by evaluating policy learning from scratch
using simulated locomotion tasks, on both quadrupedal and bipedal robots (Section [3.I). (ii) We
ablate design decisions, including the asymmetric trust region objective and per-sample ratio. (iii)
We analyze the policy distribution that FPO++ learns. (iv) Finally, we show that FPO++ trained in
simulation can be zero-shot deployed to real humanoid robots.

3.1 LOCOMOTION BENCHMARKING

To evaluate the characteristics of FPO++, we begin by training FPO++, FPO, and Gaussian PPO
policies using the standard IsaacLab (Mittal et al., 2023) velocity-conditioned robot locomotion
environments. We include results for four simulated robots: Unitree Go2, Boston Dynamics Spot,
Unitree H1, and Unitree G1. Results and analysis are discussed below; hyperparameter sweeping
procedures and implementation details are documented in the appendix.

Under review as a conference paper at ICLR 2026

Go2 Spot H1 Gl
£ 320 A
2 30- 30 1 301
2 15 240 A 20 1 20 -
3 160 - 101 10 -
8 0 80 - 04
EL 0 .
#-15 - . : 01 . : ; —-10 ; ;
0 500 1000 0 500 1000 0 800 1600 0 800 1600
Train Step Train Step Train Step Train Step
FPO++ with PPO FPO++ with SPO FPO++ with ASPO

Figure 4: Ablation on trust region objective. We compare replacing FPO++’s asymmetric clipping
objective with standard PPO-style clipping and an SPO (Xie et al [2024) trust region. FPO++
balances training speed and stability, while converging to the highest reward across tasks.

— =

Figure 5: ASPO preserves entropy. We visualize the flow field density for a single action dimension
of H1 humanoid locomotion. An FPO++ policy trained with a standard PPO trust region is shown
at its peak reward (a) and after its performance has started to degrade (b). The narrowing of the
distribution in (b) illustrates an entropy collapse, leading to instability. In contrast, FPO++ with an
ASPO objective is shown at a checkpoint with a reward level similar to the baseline’s peak (c) and at
its final, higher-reward converged state (d). ASPO maintains a wider, more exploratory distribution;
it better preserves entropy and prevents policy collapse.

(d)

Go2 Spot H1l Gl
c 4
5 30 320 30 - 30
Q 240 A
S 151 201 15 4
% 160 A 101
k) 04 80 A 0- 01
o
*o-1s ; ; 01 ; ; ; : : :
0 500 1000 0 500 1000 0 800 1600 0 800 1600
Gaussian PPO FPO++

Figure 6: Comparison against Gaussian PPO. We compare FPO++ training curves against PPO;
FPO++ compares favorably.

FPO++ trains stably. Figure[2|reports training curves of FPO++ averaged over 5 seeds, compared
with FPO runs that sweep over hyperparameters like learning rate € {0.00001, 0.0001,0.0003}, clip
parameter € {0.04,0.05,0.06}, and Monte Carlo samples € {8,16,32}. We found that standard
FPO struggles significantly in these tasks, even after significant tuning of these parameters and
adding incorporating details like adaptive learning rates, gradient clipping, and running observation
normalization. In contrast, FPO++ stably solves all locomotion tasks.

Ratio approximation ablation. A primary difference between FPO++ and FPO is an updated
ratio approximation. We evaluate the effect of this in Figure [3] The original FPO approximation
converges more slowly and often leads to unstable training, while the FPO++ variant, although in-
troducing a small bias, results in decreased variance in gradient estimation that improves the training
stability. The reduced variance is especially important in the later stage of training, when the policy
has low entropy and high gradient variance is more likely to cause collapse, as the baseline shows.

Under review as a conference paper at ICLR 2026

Torso s Right hip pitch

Torso us Left shoulder pitch

Torso vs Left hip pitch

I'm
n " || .
"= .i ..t
" =) : .
. ’. I Lol s,
.
L || L . ﬁ-’v S]
o 06 . %o . »
.. ~mue I .. l.° (A .7, i“:.,a.
" .. e ~ad, .
"x " N . o 0y apae .
o o 3
n = s c e e s
n n
n] :

(@ (b) (© (d) (e)

Figure 7: The FPO++ objective results in meaningful action distributions. We sample many
actions conditioned on the same observation from a policy learned for H1 humanoid locomotion.
The policy at initialization is visualized in (a): it exhibits uncorrelated actions, similar to a diago-
nal Gaussian policy. In contrast, the converged policy (b) after FPO++ training learns significant
off-diagonal correlations, which verifies its ability to capture more action dimension dependencies
than is possible with standard diagonal Gaussian policies. Correlations during locomotion are inter-
pretable: the right hip (c) correlates positively with the torso, the left shoulder (d) is uncorrelated,
and the left hip (e) correlates negatively.

Trust region ablation. To evaluate the effectiveness of different trust region objectives, we com-
pare their learning curves in Figure 4] Replacing the asymmetric clipping objective with PPO-style
clipping results in slightly faster early-stage learning but leads to instability in later training. On the
other hand, adopting the objective from SPO (Xie et al.l [2024) improves stability but significantly
slows down progress. In contrast, FPO++, which employs an asymmetric trust region, achieves both
stability and efficiency throughout training.

To better understand the differences in training performance, we examine how policy distribution
progresses during training, as shown in (Figure [Sh—d). We see that vanilla FPO with the standard
PPO trust region produces highly centered action distributions, leading to entropy collapsing and
performance deteriorating over time (Figure [Sp—b). In contrast, FPO++ maintains a broader, more
exploratory distribution even after convergence (Figure [5t—d), contributing to stable and robust per-
formance. This behavior is driven by the asymmetric trust region, which implicitly regularizes
entropy and prevents collapse. These dynamics align with the learning curves in Figure 4] where
FPO++ outperforms PPO and vanilla FPO by preserving exploration and ensuring training stability.
Notably, despite these differences in training stability, both the vanilla FPO and FPO++ policies
learn a seemingly Gaussian exploration strategy.

Comparison against Gaussian PPO. We compare FPO++ training curves against Gaussian PPO
training curves in Figure [o] While outperforming Gaussian PPO is not the purpose of this work,
we nonetheless find that FPO++ achieve competitive training returns. We note that one limitation of
FPO++, however, is wall-clock time: FPO++ is slower to train than Gaussian PPO because backprop
is required through each CFM Monte Carlo sample. The runtime hit for reported experiments is
typically around 20%: for G1 locomotion on an L40S GPU, our Gaussian PPO baseline reaches a
return of 25 in 19 minutes. FPO++ experiments required 23 minutes to reach the same return. Future
improvements to FPO++ may explore adaptive sampling techniques to accelerate training without
sacrificing policy performance.

Analyzing FPO++ policy distributions. A key advantage of flow-based models is the ability to
represent complex distributions. To understand what FPO++ learns in practice, we analyze the
resulting policy distribution in the locomotion task by taking multiple samples at fixed observations
and visualizing correlations between actions dimensions. We find interpretable correlations, which
are visualized and discussed in Figure[7}

3.2 SIM-TO-REAL WITH FPO++

We validate the real-world capabilities of FPO++ by deploying policies on two distinct hardware
platforms: a Booster Robotics T1 humanoid for a velocity-conditioned locomotion task and a Uni-

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Figure 8: FPO++ policy deployment on Booster T1 robot. We deploy a joystick-conditioned
locomotion policy to the Booster T1 humanoid robot.

(a) Dynamic motion tracking: The FPO++ policy reliably tracks long (1.5-minute) and highly dynamic danc-
ing motions from the LAFAN dataset entirely onboard.

(b) Robustness to Perturbations: The FPO++ policy exhibits strong robustness against external forces
and pushes, maintaining balance and continuing to track the reference motion despite significant distur-
bances.

Figure 9: FPO++ motion tracking policy deployed on a Unitree G1 robot. We trained FPO++ for

BeyondMimic 2025)-style motion tracking task and deployed it to a physical G1 robot
in zero-shot.

FPO++ PPO

Return 384+06 374=£1.1
Episode Length 452.5+5.2 475.4+£9.6

Table 1: Motion tracking metrics. We report training return and episode length statistics from
FPO++ and Gaussian PPO, for BeyondMimic 2025)-based motion tracking.

tree G1 humanoid for motion tracking. Policies are trained in simulation and transferred zero-shot
to physical robots in realworld. Videos can be found on our project webpageEl

Setup. The T1 locomotion policy was trained using a modified version of the Humanoid-
Verse (LeCAR-Lab| [2023) framework, which uses IsaacGym (Makoviychuk et al., [202T) for simu-
lation. The G1 motion tracking policy was trained by adapting the BeyondMimic (Liao et al., 2025)
codebase, which is built on IsaacLab framework (Mittal et al., 2023)); we replaced its PPO objective
and MLP actor with the FPO++ objective and a flow model, respectively. We used LAFAN motion
capture data (Harvey et al}, 2020)f| retargeted to Unitree G1 to train a policy.

Evaluation. FPO++ is the first method to demonstrate successful zero-shot sim-to-real transfer
for a humanoid robot using a flow matching policy trained entirely from scratch with on-policy

2Sim-to-real humanoid videos: https:/fpocontrol.github.io/
3This dataset was used solely for research purposes.

Under review as a conference paper at ICLR 2026

reinforcement learning. Here, we focus on the qualitative evaluation of the sim-to-real performance
of FPO++ across the two hardware platforms following prior work, since quantitative comparison
of sim-to-real methods remains challenging due to the variability of physical conditions and task
setups.

First, FPO++ learns robust gaits for Booster T1 locomotion (Figure[8). Second, the FPO++ policy
reliably tracks long, dynamic motion sequences while remaining robust to external perturbations
(Figure 0). Although the showcased motion-tracking result is trained on a single sequence, as in
BeyondMimic, where the policy quickly saturates the reward, we also evaluate training performance
in simulation by training FPO++ and a Gaussian PPO baseline to track the entire LAFAN dataset.
Tracking the full corpus is challenging, but FPO++ achieves performance comparable to Gaussian
PPO (Table[T).

Inference strategy. We outline two practical inference-time considerations for sim-to-real deploy-
ment of FPO++, detailed below.

Sampling step count. Flow policies trained by FPO and FPO++ are compatible with any choice of
sampler schedule. We found that a small number (4 or 8) of flow sampling steps could be used for
the ODE integration to generate actions with acceptable latency.

Smoother test-time actions. Reinforcement learning with policy gradient methods requires stochastic
policies during training: the policy outputs a distribution from which actions are sampled, enabling
exploration. At test-time, however, it is standard to switch to a deterministic inference strategy. For
Gaussian policies, this typically corresponds to taking the mean action. We found a similar strategy
beneficial for flow policies. During training, initial noises are drawn from € ~ A/ (0, I); at test-time,

we instead initialize flow integration from € = 0. We found that this inference procedure produces
smoother, more stable actions that qualitatively improves performance across tasks.

4 RELATED WORK

Flow-based Policies for Robot Control. Recently, denoising diffusion models (Chi et al.|[2024b;
Ankile et al.| 2024} Reuss et al.,2023)) have shown success in robot manipulation tasks, where poli-
cies are trained with human demonstrations (Mandlekar et al., 2021} through supervised learning.
In these approaches the policy is modeled using diffusion or flow-based models, an expressive class
of generative models capable of learning multi-modal distributions. 7y (Black et al.) adopts a diffu-
sion model for large-scale VLA-based manipulation, and 7.5 (Black et al., [2024)) later uses a flow
matching model. Recently, Streaming Flow Policy (Jiang et al., 2025) proposed to turn the flow
process over action trajectories into a streaming flow in action space, enabling faster and reactive
policy. In this paper, we treat diffusion and flow policies as a single family of iterative genera-
tive policies. Going beyond manipulation, Diffuse-CLoC (Huang et al. 2025) proposes a guided
diffusion policy for physics-based, whole-body control via supervised learning, in which a single
diffusion model jointly generates (state, action) horizons to enable steerable, look-ahead control.
BeyondMimic (Liao et al., 2025) extends this line to a real humanoid by performing an offline
distillation from multiple motion tracking expert policies to a single diffusion policy. All of these
existing flow-based and diffusion policies rely on human demonstrations or distillation from expert
controllers. In contrast, we propose FPO++, an on-policy reinforcement learning algorithm that is
trains flow policies from scratch in a reinforcement learning setting.

Online Reinforcement Learning for Flow-based Policies. In online RL for robot control,
DPPO (Ren et al 2024)) treats the denoising process as a Markov Decision Process (MDP). Like
DDPO (Black et al., 2023)), this uses noise injected via a stochastic sampler to chain Gaussian like-
lihoods. This is compatible with standard policy gradient techniques, but increases the task horizon
and ties the underlying diffusion model to a specific sampler choice. ReinFlow (Zhang et al.,|2025b)
applies a similar approach to flow policies by injecting learnable noise into the deterministic flow
path, converting it into a discrete-time Markov process for likelihood computation. NCDPO (Yang
et al.,2025)) reformulates the diffusion process as a noise-conditioned deterministic policy and back-
propagates gradients through all diffusion timesteps, rather than treating diffusion timesteps as an
MDP to not increase a task horizon and make credit assignment stable. GenPO (Ding et al., [2025)
leverages exact diffusion inversion to construct invertible action mappings and introduces a “dou-
bled dummy action” mechanism that enables invertibility via alternating updates, yielding tractable

Under review as a conference paper at ICLR 2026

log-likelihoods. In contrast, FPO (McAllister et al., [2025)) offers a simpler and more direct alter-
native. Specifically, FPO does not extend the task horizon, require backpropagation through the
generative steps, or depend on invertible architectures, and it is agnostic to the choice of sampling
method. This streamlined design makes it particularly effective for challenging control problems.
FPO++ is the first method to demonstrate successful zero-shot sim-to-real transfer for a humanoid
robot using a flow-matching policy trained from scratch with on-policy RL.

5 CONCLUSION

In this paper, we introduce a practical training recipe for training flow policies for real robotic sys-
tems. We demonstrate that FPO++ can effectively train policies for complex legged robots, which
can also successfully transfer from simulation to real hardware. We hope this existence proof helps
spur further research in this area. To establish reliable training foundations, we intentionally keep the
flow policy architecture simple, focusing on algorithmic stability rather than architectural innova-
tions. Future work may explore policies conditioned on more observation and state history, training
flow policies that predict multiple future actions (action chunking), and fine-tuning of behavior-
cloned policies. We hope our findings and open-source implementation will facilitate progress in
these endeavors.

REFERENCES

Suzan Ece Ada, Erhan Oztop, and Emre Ugur. Diffusion policies for out-of-distribution generaliza-
tion in offline reinforcement learning. IEEE Robotics and Automation Letters, 9(4):3116-3123,
2024.

Ilge Akkaya, Marcin Andrychowicz, Maciek Chociej, Mateusz Litwin, Bob McGrew, Arthur Petron,
Alex Paino, Matthias Plappert, Glenn Powell, Raphael Ribas, et al. Solving rubik’s cube with a
robot hand. arXiv preprint arXiv:1910.07113, 2019.

Arthur Allshire, Hongsuk Choi, Junyi Zhang, David McAllister, Anthony Zhang, Chung Min Kim,
Trevor Darrell, Pieter Abbeel, Jitendra Malik, and Angjoo Kanazawa. Visual imitation enables
contextual humanoid control. In Conference on Robot Learning (CoRL), 2025.

Lars Ankile, Anthony Simeonov, Idan Shenfeld, Marcel Torne, and Pulkit Agrawal. From imitation
to refinement—residual rl for precise visual assembly. arXiv preprint arXiv:2407.16677, 2024.

Lars Ankile, Zhenyu Jiang, Rocky Duan, Guanya Shi, Pieter Abbeel, and Anusha Nagabandi. Resid-
ual off-policy rl for finetuning behavior cloning policies. arXiv preprint arXiv:2509.19301, 2025.

Kevin Black, Noah Brown, Danny Driess, Adnan Esmail, Michael Equi, Chelsea Finn, Niccolo
Fusai, Lachy Groom, Karol Hausman, Brian Ichter, et al. 70: A vision-language-action flow
model for general robot control. corr, abs/2410.24164, 2024. doi: 10.48550. arXiv preprint
ARXIV.2410.24164.

Kevin Black, Michael Janner, Yilun Du, Ilya Kostrikov, and Sergey Levine. Training diffusion
models with reinforcement learning. arXiv preprint arXiv:2305.13301, 2023.

Kevin Black, Noah Brown, Danny Driess, Adnan Esmail, Michael Equi, Chelsea Finn, Niccolo
Fusai, Lachy Groom, Karol Hausman, Brian Ichter, Szymon Jakubczak, Tim Jones, Liyiming Ke,
Sergey Levine, Adrian Li-Bell, Mohith Mothukuri, Suraj Nair, Karl Pertsch, Lucy Xiaoyang Shi,
James Tanner, Quan Vuong, Anna Walling, Haohuan Wang, and Ury Zhilinsky. my: A vision-
language-action flow model for general robot control, 2024. URL https://arxiv.org/
abs/2410.24164.

Onur Celik, Zechu Li, Denis Blessing, Ge Li, Daniel Palenicek, Jan Peters, Georgia Chalvatzaki,
and Gerhard Neumann. DIME: Diffusion-based maximum entropy reinforcement learning. In
International Conference on Machine Learning (ICML), 2025. URL https://openreview.
net/forum?id=Aw6dBR7Vxj.

10

https://arxiv.org/abs/2410.24164
https://arxiv.org/abs/2410.24164
https://openreview.net/forum?id=Aw6dBR7Vxj
https://openreview.net/forum?id=Aw6dBR7Vxj

Under review as a conference paper at ICLR 2026

Cheng Chi, Zhenjia Xu, Siyuan Feng, Eric Cousineau, Yilun Du, Benjamin Burchfiel, Russ Tedrake,
and Shuran Song. Diffusion policy: Visuomotor policy learning via action diffusion. The Inter-
national Journal of Robotics Research, 2024a.

Cheng Chi, Zhenjia Xu, Siyuan Feng, Eric Cousineau, Yilun Du, Benjamin Burchfiel, Russ Tedrake,
and Shuran Song. Diffusion policy: Visuomotor policy learning via action diffusion. The Inter-
national Journal of Robotics Research, 2024b.

Shutong Ding, Ke Hu, Shan Zhong, Haoyang Luo, Weinan Zhang, Jingya Wang, Jun Wang, and
Ye Shi. Genpo: Generative diffusion models meet on-policy reinforcement learning. arXiv
preprint arXiv:2505.18763, 2025.

Zihan Ding and Chi Jin. Consistency models as a rich and efficient policy class for reinforcement
learning. arXiv preprint arXiv:2309.16984, 2023.

Zihan Ding, Amy Zhang, Yuandong Tian, and Qinging Zheng. Diffusion world model. arXiv
preprint arXiv:2402.03570, 2024.

Ankur Handa, Arthur Allshire, Viktor Chebotar, Thinh Sojoudi, Aleksei J. Ba, Dmitry Kalashnikov,
Jacob Varley, Alex Lim, Stephen Luu, Dmitry Yevzlin, et al. Dextreme: Transfer of agile in-hand
manipulation from simulation to reality, 2022.

Félix G Harvey, Mike Yurick, Derek Nowrouzezahrai, and Christopher Pal. Robust motion in-
betweening. ACM Transactions on Graphics (TOG), 39(4):60-1, 2020.

Longxiang He, Li Shen, Linrui Zhang, Junbo Tan, and Xueqian Wang. Diffcps: Diffusion
model based constrained policy search for offline reinforcement learning. arXiv preprint
arXiv:2310.05333, 2023.

Xiaoyu Huang, Takara Truong, Yunbo Zhang, Fangzhou Yu, Jean Pierre Sleiman, Jessica Hodgins,
Koushil Sreenath, and Farbod Farshidian. Diffuse-cloc: Guided diffusion for physics-based char-
acter look-ahead control. ACM Transactions on Graphics (TOG), 44(4):1-12, 2025.

Jemin Hwangbo, Joonho Lee, Alexey Dosovitskiy, Dario Bellicoso, Vassilios Tsounis, Vladlen
Koltun, and Marco Hutter. Learning agile and dynamic motor skills for legged robots. Science
Robotics, 2019.

Andrew Ilyas, Logan Engstrom, Shibani Santurkar, Dimitris Tsipras, Firdaus Janoos, Larry
Rudolph, and Aleksander Madry. A closer look at deep policy gradients. In International Con-
ference on Learning Representations (ICLR) 2020, 2020. arXiv:1811.02553.

Sunshine Jiang, Xiaolin Fang, Nicholas Roy, Tomds Lozano-Pérez, Leslie Pack Kaelbling, and Sid-
dharth Ancha. Streaming flow policy: Simplifying diffusion / flow-matching policies by treating
action trajectories as flow trajectories. arXiv preprint arXiv:2505.21851, 2025.

Bingyi Kang, Xiao Ma, Chao Du, Tianyu Pang, and Shuicheng Yan. Efficient diffusion policies for
offline reinforcement learning. Advances in Neural Information Processing Systems, 2024.

LeCAR-Lab. Humanoidverse: A versatile and extendable reinforcement learning framework for hu-
manoid robots. https://github.com/LeCAR-Lab/HumanoidVerse, 2023. Accessed:
2025-09-22.

Hojoon Lee, Dongyoon Hwang, Donghu Kim, Hyunseung Kim, Jun Jet Tai, Kaushik Subramanian,
Peter R. Wurman, Jaegul Choo, Peter Stone, and Takuma Seno. Simba: Simplicity bias for
scaling up parameters in deep reinforcement learning. arXiv preprint arXiv:2410.09754, 2024.
URL https://arxiv.org/abs/2410.09754.

Joonho Lee, Marko Jantos, Marco Miki, Giuseppe Nava, Jessy Khatib, Carlos Mastalli, and Marco
Hutter. Robust recovery controller for a quadrupedal robot using deep reinforcement learning,
2019.

Joonho Lee, Jemin Hwangbo, Lorenz Wellhausen, Vladlen Koltun, and Marco Hutter. Learning
quadrupedal locomotion over challenging terrain. Science Robotics, 5(47):eabc5986, 2020. doi:
10.1126/scirobotics.abc5986.

11

https://github.com/LeCAR-Lab/HumanoidVerse
https://arxiv.org/abs/2410.09754

Under review as a conference paper at ICLR 2026

Qiayuan Liao, Takara E Truong, Xiaoyu Huang, Guy Tevet, Koushil Sreenath, and C Karen Liu.
Beyondmimic: From motion tracking to versatile humanoid control via guided diffusion. arXiv
e-prints, pp. arXiv—2508, 2025.

Yaron Lipman, Ricky T. Q. Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching
for generative modeling, 2023. URL https://arxiv.org/abs/2210.02747,

Min Liu, Deepak Pathak, and Ananye Agarwal. Locoformer: Generalist locomotion via long-
context adaptation. In Conference on Robot Learning (CoRL), 2025.

Cheng Lu, Huayu Chen, Jianfei Chen, Hang Su, Chongxuan Li, and Jun Zhu. Contrastive energy
prediction for exact energy-guided diffusion sampling in offline reinforcement learning. In Inter-
national Conference on Machine Learning, pp. 22825-22855. PMLR, 2023.

Viktor Makoviychuk, Lukasz Wawrzyniak, Yunrong Guo, Michelle Lu, Kier Storey, Miles Macklin,
David Hoeller, Nikita Rudin, Arthur Allshire, Ankur Handa, et al. Isaac gym: High performance
gpu-based physics simulation for robot learning. arXiv preprint arXiv:2108.10470, 2021.

Ajay Mandlekar, Danfei Xu, Josiah Wong, Soroush Nasiriany, Chen Wang, Rohun Kulkarni, Li Fei-
Fei, Silvio Savarese, Yuke Zhu, and Roberto Martin-Martin. What matters in learning from offline
human demonstrations for robot manipulation. In arXiv preprint arXiv:2108.03298, 2021.

David McAllister, Songwei Ge, Brent Yi, Chung Min Kim, Ethan Weber, Hongsuk Choi, Haiwen
Feng, and Angjoo Kanazawa. Flow matching policy gradients. arXiv preprint arXiv:2507.21053,
2025.

Mayank Mittal, Calvin Yu, Qinxi Yu, Jingzhou Liu, Nikita Rudin, David Hoeller, Jia Lin Yuan,
Ritvik Singh, Yunrong Guo, Hammad Mazhar, Ajay Mandlekar, Buck Babich, Gavriel State,
Marco Hutter, and Animesh Garg. Orbit: A unified simulation framework for interactive robot
learning environments. IEEE Robotics and Automation Letters, 8(6):3740-3747, 2023. doi:
10.1109/LRA.2023.3270034.

Michat Nauman, Mateusz Ostaszewski, Krzysztof Jankowski, Piotr Mito§, and Marek Cygan. Big-
ger, regularized, optimistic: Scaling for compute and sample-efficient continuous control. In
Advances in Neural Information Processing Systems (NeurIPS 2024), 2024. URL https:
//arxiv.org/abs/2405.16158.

Seohong Park, Qiyang Li, and Sergey Levine. Flow g-learning. arXiv preprint arXiv:2502.02538,
2025.

Xue Bin Peng, Pieter Abbeel, Sergey Levine, and Michiel Van de Panne. Deepmimic: Example-
guided deep reinforcement learning of physics-based character skills. ACM Transactions On
Graphics (TOG), 37(4):1-14, 2018.

Xue Bin Peng, Aviral Kumar, Grace Zhang, and Sergey Levine. Advantage-weighted regression:
Simple and scalable off-policy reinforcement learning. arXiv preprint arXiv:1910.00177, 2019.

Allen Z Ren, Justin Lidard, Lars L Ankile, Anthony Simeonov, Pulkit Agrawal, Anirudha Majum-
dar, Benjamin Burchfiel, Hongkai Dai, and Max Simchowitz. Diffusion policy policy optimiza-
tion. arXiv preprint arXiv:2409.00588, 2024.

Moritz Reuss, Maximilian Li, Xiaogang Jia, and Rudolf Lioutikov. Goal-conditioned imitation
learning using score-based diffusion policies. arXiv preprint arXiv:2304.02532, 2023.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
policy optimization. In International conference on machine learning, pp. 1889-1897. PMLR,
2015a.

John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-
dimensional continuous control using generalized advantage estimation. arXiv preprint
arXiv:1506.02438, 2015b.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

12

https://arxiv.org/abs/2210.02747
https://arxiv.org/abs/2405.16158
https://arxiv.org/abs/2405.16158

Under review as a conference paper at ICLR 2026

Marta Skreta, Lazar Atanackovic, Avishek Joey Bose, Alexander Tong, and Kirill Neklyudov.
The superposition of diffusion models using the it6 density estimator, 2025. URL https:
//arxiv.org/abs/2412.17762.

Zhi Su, Chenyu Yang, Qingwen Wang, Tianyu Li, Chenghao Wang, Quan Wang, Xue Bin Peng,
Koushil Sreenath, and Sergey Levine. Hitter: A humanoid table tennis robot via hierarchical
planning and learning, 2025.

Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David Bud-
den, Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, et al. Deepmind control suite. arXiv
preprint arXiv:1801.00690, 2018.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ international conference on intelligent robots and systems, 2012.

Zhendong Wang, Jonathan J Hunt, and Mingyuan Zhou. Diffusion policies as an expressive policy
class for offline reinforcement learning. arXiv preprint arXiv:2208.06193, 2022.

Zhengpeng Xie, Qiang Zhang, Fan Yang, Marco Hutter, and Renjing Xu. Simple policy opti-
mization. arXiv preprint arXiv:2401.16025,2024. URL https://arxiv.org/abs/2401.
16025, v9, revised 26 Jul 2025.

Ningyuan Yang, Jiaxuan Gao, Feng Gao, Yi Wu, and Chao Yu. Fine-tuning diffusion policies with
backpropagation through diffusion timesteps. arXiv preprint arXiv:2505.10482, 2025.

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Tiantian Fan, Gachong
Liu, Lingjun Liu, Xin Liu, Haibin Lin, Zhiqi Lin, Bole Ma, Guangming Sheng, Yuxuan Tong, Chi
Zhang, Mofan Zhang, Wang Zhang, Hang Zhu, Jinhua Zhu, Jiaze Chen, Jiangjie Chen, Chengyi
Wang, Hongli Yu, Weinan Dai, Yuxuan Song, Xiangpeng Wei, Hao Zhou, Jingjing Liu, Wei-Ying
Ma, Ya-Qin Zhang, Lin Yan, Mu Qiao, Yonghui Wu, and Mingxuan Wang. Dapo: An open-
source 1lm reinforcement learning system at scale. 2025. URL https://arXiv.org/abs/
2503.14476. version v2, submitted March 2025.

Ruoqi Zhang, Ziwei Luo, Jens Sjolund, Thomas Schon, and Per Mattsson. Entropy-regularized
diffusion policy with g-ensembles for offline reinforcement learning. Advances in Neural Infor-
mation Processing Systems, 37:98871-98897, 2024.

Shiyuan Zhang, Weitong Zhang, and Quanquan Gu. Energy-weighted flow matching for offline
reinforcement learning. arXiv preprint arXiv:2503.04975, 2025a.

Tonghe Zhang, Chao Yu, Sichang Su, and Yu Wang. Reinflow: Fine-tuning flow matching policy
with online reinforcement learning. arXiv preprint arXiv:2505.22094, 2025b.

Yuke Zhu, Josiah Wong, Ajay Mandlekar, Roberto Martin-Martin, Abhishek Joshi, Soroush Nasiri-
any, and Yifeng Zhu. robosuite: A modular simulation framework and benchmark for robot
learning. arXiv preprint arXiv:2009.12293, 2020.

13

https://arxiv.org/abs/2412.17762
https://arxiv.org/abs/2412.17762
https://arxiv.org/abs/2401.16025
https://arxiv.org/abs/2401.16025
https://arXiv.org/abs/2503.14476
https://arXiv.org/abs/2503.14476

Under review as a conference paper at ICLR 2026

Appendix of “Flow Policy Gradients for Legged Robots”

T

Tl f,'f'r"‘{
-

S &
- Wi

Figure A.1: Robots used for experiments. We train policies for the Go2, Spot, H1, and G1 robots
in simulation. We deploy policies to physical G1 and Booster T1 robots.

g~
gy

A FURTHER RELATED WORK

Policy gradients for robot control. Policy gradient methods, such as Trust Region Policy Op-
timization (TRPO) (Schulman et al., 2015a) and Proximal Policy Optimization (PPO)
have demonstrated remarkable success across diverse robot control tasks. They enable
quadrupeds to recover from falls on challenging terrain (Lee et al.,[2019), achieve locomotion from
pure proprioception without exteroceptive sensing (Lee et al.,[2020), and perform agile, high-speed
maneuvers (Hwangbo et al, 2019). More recently, (2025) have shown PPO can scale
to generalist locomotion across diverse legged morphologies.Beyond locomotion, policy gradients
drive example-guided imitation of character skills [2018), contextual humanoid behav-
iors such as terrain traversal and stair climbing from monocular video (Allshire et all, 2025)), and
hierarchical humanoid planning for tasks like table tennis rallies (Su et al.,2025). In manipulation,
they have enabled solving a Rubik’s cube with a humanoid hand via automatic domain random-
ization (Akkaya et al) [2019) and vision-based dexterous in-hand manipulation under large-scale
randomization (Handa et al., 2022)). Despite these successes, PPO variants in continuous control are
designed for Gaussian policies, whose modeling capabilities are fundamentally limited. In this work,
we introduce an RL training recipe for flow-based policies—policies that leverage flow models, an
expressive class of generative models—within a PPO-like framework that can be trained stably on
robot tasks.

Flow-based offline RL. A large body of offline RL work has explored using flow and diffusion-
based generative models to represent policies. One common strategy is advantage weighted re-
gression (AWR) [2019), where the generative model is trained with advantage-weighted

updates (Kang et al., 2024} [Lu et al 2023}, [Ding et al 2024; [Zhang et all, [20254d). Another line
of work optimizes a Q-learning objective jointly with a generative-model loss (Wang et al., 2022}

He et al} 2023} [Ding & Jin| 2023} [Zhang et all,[2024}; [Ada et al., 2024), enabling value-based train-
ing while regularizing the policy through diffusion or flow matching. Maximum-entropy approaches
such as DIME [Celik et al.| (2025) extend this direction by integrating diffusion policies with entropy-
regularized RL, further improving robustness and sample quality in offline settings.

FQL (2025)) takes a different approach by training a one-step flow policy without back-
propagation through time (BPTT), avoiding instability issues that arise in iterative policy improve-

ment. Our method, based on FPO (McAllister et al., 2025)), is conceptually closest to AWR in its
use of an advantage-weighted flow-matching loss. However, FPO is fundamentally distinct: it is
an on-policy algorithm that learns directly from environment interaction rather than a static offline
dataset, and it avoids BPTT without requiring distillation from a behavior policy as in FQL.

14

Under review as a conference paper at ICLR 2026

Final Train Return

Go2 Spot 20 H1l G1
w{== == == E— == = - -—— I
300 0 11
It Iz Ik | I
20 - 2007 20
100

6=16=26=4 Off

T T T T
6=16=26=4 Off

Naive clamp

6=16=26=4 Off

Gradient-preserving clamp

6=16=26=4 Off

Figure A.2: Huber loss and gradient-preserving clamping improve training. We present training
returns for FPO++ runs after sweeping different Huber parameters (6 = {1, 2,4, Off}) and both
naive clamping and gradient-preserving clamping (Equation [13). We observe that the same Huber
0 = 2 and gradient-preserving clamping can be used to improve results across environments. Mean
and standard error are computed over 5 seeds.

Go2 Spot H1 Gl

_ 41.5 350 40 =~
5 41.0 A 35 1 4
=}
2 300 4 20 - \"
0_: 40.5 A » 30 .
©
& 40.0 4 y 250 o€ o 5

L)

39 40 250 300 30 35 25 30 35

Train Return

Train Return

Train Return

Train Return

FPO++ with per-action ratio FPO++ with per-sample ratio

Figure A.3: Per-sample ratio improves training and evaluation returns. We sweep the clip-
ping parameter over {0.04, 0.05, 0.06} and observe that FPO++ with per-sample ratios consistently
achieves higher train and eval returns than the per-action ratio formulation.

B ADDITIONAL EXPERIMENTS FOR REBUTTAL

In response to reviewer feedback, we conducted several additional experiments to validate the de-
sign choices in FPO++ and to provide further empirical evidence for the mechanisms discussed in
the paper. Figure presents a sweep over Huber parameters and clamping strategies, showing
that § = 2 together with gradient-preserving clamping improves training stability across all envi-
ronments. Figure[A.3]demonstrates that using per-sample ratios consistently improves both training
and evaluation returns over a range of clipping thresholds. Figure [A.4] compares PPO, SPO, and
ASPO trust regions and shows that ASPO provides higher and more stable performance across hy-
perparameter settings. Finally, Figure[A.5]provides direct evidence for reduced gradient variance by
showing increased cosine similarity of per-update gradients when using ASPO and per-sample ra-
tios. Together, these results support the algorithmic modifications introduced in FPO++ and address
core concerns raised by reviewers.

C EXPERIMENT DETAILS

C.1 LOCOMOTION BENCHMARKING

C.1.1 HYPERPARAMETERS

All policies for the locomotion benchmarking experiments utilize 3-layer Multi-Layer Perceptrons
(MLPs). Specifically, the actor network employs 256 hidden units, and the critic network employs
768 hidden units per layer. Additional hyperparameters can be found in Table

Quadruped policies are trained for 1500 steps, and humanoid policies are trained for 2000 steps.
For the Flow Policy Optimization (FPO) algorithm, the clipping parameters are set to 0.05 for
quadrupeds and 0.03 for humanoids. For the Proximal Policy Optimization (PPO) algorithm, we

15

Under review as a conference paper at ICLR 2026

Go2 Spot H1 Gl
40 40 1 40
£
2 204]
g 200 - 20 1 20
R
O -
o] 04
20 T T T T 0 L T T T T T T T T
-20 0 20 40 0 100 200 300 0 20 40 0 20
Train Return Train Return Train Return Train Return
FPO++ with PPO FPO++ with SPO FPO++ with ASPO

Figure A.4: ASPO improves training and evaluation returns. We sweep clipping and learning-
rate settings for FPO++ using PPO, SPO, and ASPO trust regions, and plot the resulting train and
eval returns. ASPO consistently yields higher and more stable performance.

(a) Effect of Trust Region on Gradient Similarity (b) Effect of Ratio on Gradient Similarity
é‘ 0.07 4 = FPO++ with per-action ratio
] 0.06 FPO++ with per-sample ratio
E 0.06 -
& 0.04 4
v 0.05 A
£ 0.02 1
S FPO++ with PPO 0.04 4 Fa¥
© 0.00 4 FPO++ with SPO J
z FPO++ with ASPO 0.03 -
0 250 500 750 1000 1250 1500 0 250 500 750 1000 1250 1500
Train Step Train Step

Figure A.5: ASPO and per-sample ratios reduce empirical gradient variance. We measure
gradient variance by adapting the cosine similarity metric employed by (Ilyas et al., 2020): for
each policy update, we measure the average cosine similarity between individual gradients and the
average of gradients within that policy update. We observe that ASPO and the per-sample ratio result
in higher cosine similarity between gradients computed within each policy update; this provides
evidence of lower gradient variance. Averages are reported over 5 seeds; the PPO curve terminates
early because of one of these seeds crashes from numerical instability..

adopt the default configurations provided by the rs1_r1 library, with additional sweeps performed
over the clipping parameters in the set {0.1,0.15,0.2,0.25}.

C.1.2 ENVIRONMENTS AND REWARDS

All locomotion benchmarking experiments use the standard IsaacLab velocity-conditioned locomo-
tion environments. We use the default weight for each reward term. The reward terms are as follows:

* Linear velocity tracking: The agent receives an exponential reward for matching the com-
manded linear velocity in the horizontal plane.

* Angular velocity tracking: The agent receives an exponential reward for matching the
commanded yaw rate.

* Feet air time: The agent is rewarded for keeping feet in the air for a sufficient duration
during each step.

* Gait synchronization: The agent is rewarded for synchronizing diagonal foot pairs to
encourage a trotting gait.

* Foot clearance: The agent is rewarded for achieving a target foot clearance height during
the swing phase.

* Vertical velocity: The agent is penalized for vertical base velocity.

* Body orientation: The agent is penalized for deviations from a flat base orientation.
* Angular velocity (xy): The agent is penalized for roll and pitch angular velocities.
 Joint torques: The agent is penalized for high joint torque magnitudes.

16

Under review as a conference paper at ICLR 2026

» Joint accelerations: The agent is penalized for large joint accelerations.

* Action rate: The agent is penalized for rapid changes in actions between consecutive
timesteps.

* Foot slip: The agent is penalized for foot sliding while in contact with the ground.
* Joint limits: The agent is penalized for joint positions that exceed soft limits.

* Undesired contacts: The agent is penalized for undesired contacts on non-foot body parts.

For more details, we refer to the open-source IsaacLab (Mittal et al., 2023)) repository.

C.2 MOTION TRACKING

Our motion tracking experiments train a policy for the Unitree G1 robot, which has 29 degrees of
freedom (DoF). The control frequency is set to 50 Hz (with a simulation timestep At = 0.005 s
and decimation of 4). The reward design, observation space, and termination conditions follow Be-
yondMimic (Liao et al.|[2025)’s settings. The following sections detail the specific hyperparameters
used.

C.2.1 DOMAIN RANDOMIZATION

Domain Randomization (DR) is applied to improve the policy’s ability to transfer to the real world:

* Physics Material: ~ Static friction (Uniform [0.3,1.6]), Dynamic friction (Uniform
[0.3,1.2]), and Restitution (Uniform [0.0, 0.5]) are sampled at startup.

* Joint Defaults: Default joint angles are uniformly offset by ¢/(—0.01,0.01) rad at startup.
* Center of Mass (COM): The torso COM is offset uniformly in (x, y,) at startup.

* External Forces: Pushes are applied at uniform intervals (2.0-3.0 s), with random-
ized Linear velocity U([(—0.5,0.5), (—0.5,0.5), (—0.2,0.2)] m/s) and Angular velocity
U([(—0.52,0.52), (—0.52,0.52), (—0.78,0.78)] rad/s).

* Actuator Command Delay: Actuator latency is simulated by applying a random delay of 0
to 2 simulation steps (corresponding to 0 ms to 10 ms at At = 0.005 s) to the control com-
mands (joint positions, velocities, efforts) at each environment reset to improve robustness
and sim-to-real transfer.

* Motion Initialization: Root position, orientation, and joint angle offsets are applied uni-
formly at episode reset.

Hyperparameter category Used value Sweep range / Notes
FPO++
Flow integration steps 32 {8,16,32}
Network output u {u,x0}, ¢ denotes data
Samples per action 16 {8,16, 32}
Training
Learning rate 1x1074 1x107°%,1x107%,3x107*
Weight decay / Adam betas 1x107%/(0.9,0.95) AdamW parameters
Clip parameter 0.05 {0.03,0.04,0.05,0.06}
Discount factor (v) 0.99
GAE lambda ()\) 0.95
Learning epochs 16 for Go2, others 32
Minibatches per update 4
Running observation normalization Yes

Table A.1: FPO++ and training hyperparameters used for locomotion. Reported sweeps are
performed by modifying this standard configuration.

17

Under review as a conference paper at ICLR 2026

Hyperparameter category Used value Sweep range / Notes
FPO++
Flow integration steps 50 {10, 50}
Network output u {u,zg}, xo denotes data
Samples per action 16 {8, 16, 32}
Training
Learning rate 3x 1074
Weight decay / Adam betas 1x1074/(0.9,0.95) AdamW parameters
Clip parameter 0.01 {0.01,0.05,0.1}
Discount factor () 0.99
GAE lambda (\) 0.95
Learning epochs 5
Minibatches per update 4
Running observation normalization Yes

Table A.2: FPO++ and training hyperparameters used for motion tracking.

C.2.2 TRAINING HYPERPARAMETERS

Training is conducted across 4096 parallel environments, with a rollout length of 96 steps per envi-
ronment. Both the actor and critic networks use 3-layer policy MLPs for with hidden units of (1024,
512,256). We will release the code for the further details. Additional hyperparameters can be found
in Table

Training Mean Reward Training Mean Episode Length Value Loss Surrogate Loss (Policy Loss)
500

IS
S

0.3

w

&
IS
S
5}

0.2

w
S
5

0.1

N
S
S

o = N w &

Value Loss

R

-1 -0.1

0.0

Mean Reward
= N
5 s
Mean Episode Length

Surrogate Loss

,_.
1)
5}

o

o

0 2000 4000 6000 0 2000 4000 6000 0 2000 4000 6000 0 2000 4000 6000
Training Steps Training Steps Training Steps Training Steps

s FPO++ mmssm Vanilla FPO

Figure A.6: Motion tracking training curves. FPO fails in this challenging, domain-randomized
task, while FPO++ trains stably. Hyperparameters are shared between both runs.

C.3 COMPARISON WITH VANILLA FPO

Figure [A.6] shows the training curves for the motion-tracking policy that we deploy on the real G1
robot (Figure[9). As the plots illustrate, vanilla FPO initially learns but quickly collapses: the mean
reward and episode length peak early and then deteriorate, while both the value loss and surrogate
loss exhibit large spikes, indicating numerical instability. In contrast, FPO++ maintains stable value
and policy losses throughout, continues improving monotonically, and successfully converges to the
high-return policy used for real-world deployment. These curves provide direct evidence for the
core motivation of our work: vanilla FPO is unstable on realistic, high-DoF robot control tasks,
whereas the algorithmic components of FPO++ prevent collapse and enable successful sim-to-real
transfer. We will release the full training code and configuration for reproducibility.

D FULL ACTION SPACE FLOW FIELD

In addition to the qualitative analysis presented in Figures 4] and [5] of the main text, we provide vi-
sualizations of the flow fields across the full action space (19 DoF) for the H1 humanoid’s velocity
commanded locomotion task. These supplementary figures illustrate the impact of the trust region

18

Under review as a conference paper at ICLR 2026

a0: left_hip_yaw al: right_hip_yaw a2: torso a3: left_hip_roll ad: right_hip_roll

| =

0.00 025 0.50 075 1.00 000 0.25 050 075 1.00 0.00 025 0.50 075 1.00 000 0.25 050 075 1.00 0.00 025 0.50 075 1.00
Time (1) Time () Time (1) Time () Time (1)
as: left_shoulder_pitch a6: right_shoulder_pitch a7: left_hip_pitch a8: right_hip_pitch a9: left_shoulder_roll

| = >

0.00 0.25 0.50 0.75 1.00 0.00 025 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

0.00 025 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

Time (t) Time (£) Time (t) Time (£) Time (t)

<

a10: right_shoulder_roll

all: left_knee al2: right_knee al3: left_shoulder_yaw al4: right_shoulder_yaw

- .

0.00 025 0.50 0.75 1.00 0.00 025 0.50 0.75 1.00 0.00 025 0.50 0.75 1.00 0.00 025 0.50 0.75 1.00

-~
N

0.00 025 0.50 0.75 1.00

Time (t) Time (t) Time (t) Time (t) Time (t)
a18: right_elbow

a15: left_ankle a16: right_ankle a17: left_elbow

>

0.00 0.25 0.50 0.75 1.00 0.00 025 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

Time (t) Time () Time (t) Time ()

0.00 025 0.50 0.75 1.00

Figure A.7: FPO++ with PPO clipping at peak performance. Policy flow field density for the
Unitree H1 humanoid trained using the standard PPO trust region, captured at the point of maximum
average return. The flow is still relatively broad, indicating adequate exploration.

objective on the policy distribution at different stages of training. Specifically, the FPO++ policy
trained with the standard PPO objective exhibits a clear narrowing of the action distribution (en-
tropy collapse) as performance degrades, evident when comparing the field at its reward peak (Fig-
ure[A.7)) to the field during collapse (Figure[A.8). In contrast, the policy trained with the asymmetric
objective (ASPO) successfully maintains a broader, more exploratory distribution, consistently pre-
serving entropy from an intermediate checkpoint (Figure [AJ9) to its final, converged state (Figure
[ATT0). This confirms that the asymmetric objective effectively prevents the policy collapse shown
in the main text, irrespective of the action dimension (joint type). For visualization, we plotted the
transporting trajectories of the prior Gaussian noise to the action space by sampling 10,000 noises
per state and using 8 discretized Euler integration steps.

E MANIPULATION

We validate that the contributions of FPO++ generalize by fine-tuning policies on the
RoboMimic (Mandlekar et al., [2021) tasks (Figure m, implemented in the Robosuite frame-
work (Zhu et al., 2020), which is built on MuJoCo (Todorov et al. [2012) and operated at a 20
Hz control frequency. We first train a flow-matching base policy using the RoboMimic behavior-
cloning dataset, following the data preparation procedure of |Ankile et al.|(2025)). We then fine-tune
this policy using FPO++ and compare its performance against Vanilla FPO as well as two estab-
lished on-policy flow-based optimization baselines: DPPO (Ren et al.,|2024) and ReinFlow (Zhang
et al.| |2025b). These baselines are particularly relevant because they represent contemporary ap-
proaches for applying on-policy RL methods to expressive generative policies (diffusion or flow
models) without relying on residual actors. Our experiments focus on two representative single-arm
manipulation tasks, Can and Square (Figure[A.TT] which use a Franka arm with a parallel-jaw grip-
per and a 7-dimensional action space (6 DoF end-effector delta pose plus a 1 DoF gripper action).
The tasks involve challenges from sparse rewards, where a reward is only given upon successful
task completion. FPO++ converges to a higher evaluation success rate than all baselines, as shown

in Figure[A12]

19

Under review as a conference paper at ICLR 2026

| |

0.00 0.25 0.50 0.75 1.00

a3: left_hip_roll ad: right_hip_roll

a0: left_hip_yaw al: right_hip_yaw a2: torso

N
_

[

<

0.00 0.25 0.50 0.75 1.00 0.00 025 0.50 0.75 1.00
Time (t) Time () Time (t) Time (t) Time (t)

a6: right_shoulder_pitch a7: left_hip_pitch

<

0.00 025 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

as: left_shoulder_pitch a8: right_hip_pitch a9: left_shoulder_roll

2 !

0.00 0.25 0.50 0.75 1.00 0.00 025 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 025 0.50 0.75 1.00

i
—
i

0.00 0.25 0.50 0.75 1.00
Time (t) Time (f) Time (t) Time (t) Time (t)

a10: right_shoulder_roll all: left_knee al2: right_knee a13: left_shoulder_yaw al4: right_shoulder_yaw

i
|

B

0.00 025 0.50 0.75 1.00

N

.

<

0.00 025 0.50 0.75 1.00 0.00 025 0.50 0.75 1.00

0.00 025 0.50 0.75 1.00 0.00 025 0.50 0.75 1.00

Time (t) Time () Time (t) Time () Time (t)
a15: left_ankle a16: right_ankle a17: left_elbow a18: right_elbow

0.00 0.25 0.50 0.75 1.00 0.00 025 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 025 0.50 0.75 1.00
Time (t) Time () Time (t) Time ()

Figure A.8: FPO++ with PPO clipping during policy collapse. Policy flow field density for
the Unitree HI humanoid trained using the standard PPO trust region, captured as the average return
begins to collapse. The action distribution has narrowed significantly for many joints, demonstrating
the entropy collapse that leads to instability and performance degradation.

20: left_hip_yaw al: right_hip_yaw a3: left_hip_roll a4: right_hip_roll
00 025 050 0.75 1.00 00 0.25 0.50 0.75 1.00 00 025 050 0.75 1.00 000 025 050 0.75 1.00 0.00 0.25 050 075 1.00
Time (t) Time (t) Time (t) Time (t) Time (t)

a7: left_hip_pitch a8: right_hip_pitch a9: left_shoulder_roll

|

0.00 025 050 075 1.00

a6: right_shoulder_pitch

o
a
o

kd
'n
5
H
£
a
5
K
3
7
5

0.00 0.25 050 0.75 1.00
ime (t)
al4: right_shoulder_yaw

0.00 0.25 0.50 0.75 1.00
ime (t)

0.00 0.25 0.50 0.75 1.00 0.00 025 050 075 1.00

all: left_knee a13: left_shoulder_yaw

=

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
Time (t) Time () Time (t) Time () Time (t)
a17: left_elbow a18: right_elbow

al2: right_knee

a10: right_shoulder_roll

Time (t)

a15: left_ankle a16: right_ankle

0.00 0.25 0.50 0.75 1.00 0.00 025 0.50 0.75 1.00 0.00 025 0.50 0.75 1.00 0.00 025 0.50 0.75 1.00
Time (t) Time () Time (t) Time (£)

Figure A.9: FPO++ with ASPO objective at intermediate training stage. Policy flow field density
for the Unitree H1 humanoid trained using the entropy-preserving ASPO objective, captured at an
intermediate stage where the average return matches the peak average return of FPO++ with the
standard PPO trust region. This distribution is already wider and more exploratory than the PPO-
clipped policy at a similar or later time step, contributing to stable training.

20

Under review as a conference paper at ICLR 2026

a0: left_hip_yaw al: right_hip_yaw a2: torso a3: left_hip_roll ad: right_hip_roll

EE

0.00 025 0.50 075 1.00 000 0.25 050 075 1.00 0.00 025 0.50 075 1.00 000 0.25 050 075 1.00 0.00 025 0.50 075 1.00
Time (1) Time () Time (1) Time () Time (1)
as: left_shoulder_pitch a6: right_shoulder_pitch a7: left_hip_pitch

EE

0.00 0.25 0.50 0.75 1.00 0.00 025 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

a8: right_hip_pitch a9: left_shoulder_roll

=

0.00 025 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

Time (t) Time (t) Time (t) Time (t) Time (t)

<

a10: right_shoulder_roll all: left_knee al2: right_knee a13: left_shoulder_yaw al4: right_shoulder_yaw

> >

< :

0.00 025 050 075 1.00 0.00 0.25 0.50 075 1.00 000 025 050 075 1.00 0.00 0.25 0.50 075 1.00 000 025 050 075 1.00
ime (t) Time () Time (t) Time () Time (t)
a15: left_ankle a16: right_ankle a17: left_elbow

N

a18: right_elbow

> >

0.00 0.25 0.50 0.75 1.00

0.00 025 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

Time (t) Time () Time (t) Time ()

0.00 025 0.50 0.75 1.00

Figure A.10: FPO++ with ASPO objective at converged state. Policy flow field density for the
Unitree H1 humanoid trained using the ASPO objective, captured at its final, high-reward converged
state. The distribution remains wide and exploratory, confirming that ASPO effectively preserves
entropy and prevents the collapse observed with PPO clipping.

(a) Can (b) Square

Figure A.11: RoboMimic Can and Square manipulation tasks. We evaluate FPO++ and baseline
flow-based RL methods on two single-arm RoboMimic benchmarks implemented in Robosuite: (a)
Can, where a Franka arm with a parallel-jaw gripper must grasp and move a can, and (b) Square, a
more challenging task that requires precise object alignment and insertion using the same 7D action
space (6 DoF end-effector delta pose plus 1 DoF gripper command).

FPO++ implementation for manipulation. To maintain architectural parity with DPPO and Re-
inFlow and to leverage short-horizon temporal correlations in the controls, all manipulation policies
operate over action chunks. Following these baselines, the pre-trained base policies are structured
to predict chunks of size 4. During fine-tuning, we apply the policy gradient objective at the chunk
level: instead of computing a log-probability for each individual action, we approximate the log-
probability of an action chunk by summing the corresponding CFM losses across the four actions
in the chunk. This chunk-wise log-ratio is then used inside a PPO-style trust region objective, mir-
roring the training scheme of DPPO and ReinFlow while replacing their diffusion or flow likelihood
with our CFM loss.

For all manipulation experiments, we use small learning rates for stable fine-tuning (actor learning
rate 1 x 1072, critic learning rate 1 x 10~%), a shared discount factor v = 0.99, GAE parameter

21

Under review as a conference paper at ICLR 2026

Robomimic CAN Robomimic Square
1.00 A=
0.9
0.95
0.8
0.90
[0} 0.7
g 0.85 T
o o
% 0.80 06
8 8
$0.75 go05
V2] V2]
0.70 0.4
0.65 0.3
0.60
0 1 2 3 4 0 2 4 6 8
total env step (M) 16 total env step (M) 1e6
e FPO++ = \/anilla FPO ReinFlow = DPPO

Figure A.12: Manipulation comparison. Fine-tuning success rates on the RoboMimic Can and
Square tasks for flow-based RL methods. All methods start from pre-trained behavior-cloning base
policies; FPO++ and Vanilla FPO share the same base policy, while DPPO and ReinFlow use ar-
chitectures and implementation from their original papers. Please refer to the base policy setting
written in the text for further details. FPO++ learns fastest and attains the highest final success on
both tasks, while Vanilla FPO, DPPO, and ReinFlow remains stable but underperforms FPO, high-
lighting the benefit of the FPO++ training recipe for expressive manipulation policies.

A = 0.99, and gradient clipping with max norm of 1. The vision encoder is kept frozen during
fine-tuning, and we use zero-initialized flow integration for deterministic inference for FPO++. We
will release the code for further details.

Base policy setting. The base policies’ performance, reflected in the success rates at 0 total envi-
ronment steps in Figure [A:12] provides the anchor for fine-tuning. FPO++ and Vanilla FPO share
the same base policy, while DPPO and ReinFlow utilize different pre-trained policies structured ac-
cording to their original papers. The policies for DPPO and ReinFlow were trained and evaluated
using 100 denoising/flow steps, whereas the base policy for FPO++ and Vanilla FPO was trained
and evaluated with 10 flow steps. The base policy success rates (evaluated on 1,000 episodes) are: *
Can task: FPO++/ Vanilla FPO (73.76%), ReinFlow (76.3%), and DPPO (76.1%). * Square task:
DPPO (37.6%), ReinFlow (36.5%), and FPO++/ Vanilla FPO (28.62%).

Analysis of fine-tuning performance Figure [A.12] plots the fine-tuning success rates (evaluated
by collecting 200 episodes per timestep using 50 parallel environments). FPO++ achieves the high-
est final success rate in both the Can and Square tasks. In the Can task, FPO++ exhibits rapid
initial learning, reaching high success significantly faster than all baselines. Notably, the Vanilla
FPO variant performs robustly in this fine-tuning setup, achieving competitive results without the
policy collapse or gradual decay seen in training from scratch on locomotion tasks (Figure [I] and
Section [3.I). This suggests that initializing training with a stable pre-trained base policy provides
sufficient regularization to mitigate the early-stage instability challenges inherent to vanilla FPO.
Still, FPO++ achieves significant improvements over FPO-not only in learning speed, but also in its
final performance on the Square task, which demands higher-precision control and is therefore more
challenging. The successful application of FPO across manipulation, locomotion, and whole-body
control highlights its general potential as a stable and expressive framework for diverse robotic tasks.

F ZERO-SAMPLING IN INFERENCE TIME

FPO++ generates actions by transporting an initial noise sample € ~ N(0, I) through a learned flow
field. During training, the stochasticity of the learned flow field from different initial noise samples
enable exploration and learning a rich action distributions. However, at inference time we have
the freedom to choose how we initialize the flow integration. We found that a simple deterministic
choice-zero-sampling, i.e., always setting e = 0 at test time-produces consistently higher returns and

22

Under review as a conference paper at ICLR 2026

lower variability across locomotion benchmarks, without changing the training procedure, as shown
in Table[A3]

Zero-sampling is particularly important when deploying flow policies on real hardware under strict
latency constraints. On the G1 motion-tracking task, the policy is trained with 50 flow integration
steps but must be executed with as few as 5 steps on the robot to keep control latency acceptable. In
this aggressively downsampled regime, standard random sampling becomes brittle: average perfor-
mance degrades and variance increases, even though the underlying policy is the same. In contrast,
zero-sampling remains robust to this step reduction, maintaining high mean rewards and substan-
tially lower variance, as summarized in Table[A.4] This robustness to reduced integration steps is
crucial for sim-to-real deployment, where deterministic, low-latency inference is often a hard re-
quirement.

Robot Random sampling Zero-sampling

Spot 331.3+24 337.2+26
Go2 40.6 £0.0 41.1+0.1
H1 37.3£0.2 384+0.1
Gl 34.4£0.5 35504

Table A.3: Effect of inference-time action sampling on locomotion performance. All policies
are trained with stochastic sampling, but at test time we compare random-sampling versus zero-
sampling. Zero-sampling consistently yields higher returns across all four robots.

Sampling method 5 steps 50 steps

Random sampling 34.7 £ 55.0 38.4 + 26.6
Zero-sampling 45.1 +27.4 45.5+23.2

Table A.4: Effect of zero-sampling on motion-tracking robustness. Rewards are computed over
100 rollouts of a 2 min 30 s dancing sequence in IsaacSim, with domain randomization and strong
push perturbations. The policy is trained with 50 flow steps; at test time we compare random sam-
pling and zero-sampling under 5 and 50 flow steps.

23

	Introduction
	Improved Flow Policy Optimization
	Preliminaries
	Flow Policy Failure Modes
	FPO++
	Final FPO++ Objective

	Experiments
	Locomotion Benchmarking
	Sim-to-real with FPO++

	Related Work
	Conclusion
	Further related work
	Additional Experiments for Rebuttal
	Experiment Details
	Locomotion Benchmarking
	Hyperparameters
	Environments and Rewards

	Motion Tracking
	Domain Randomization
	Training Hyperparameters

	Comparison with vanilla FPO

	Full action space flow field
	Manipulation
	Zero-sampling in inference time

