FLOW POLICY GRADIENTS FOR LEGGED ROBOTS

Anonymous authors

Paper under double-blind review

ABSTRACT

We study robot control with flow policy optimization (FPO), an online reinforcement learning algorithm for flow-based action distributions. We demonstrate how flow policy optimization can succeed for more difficult continuous control tasks than shown in prior work, using a set of design choices that reduce gradient variance and regularize entropy. We show that these design choices mitigate policy collapse challenges faced by the original FPO algorithm and use the resulting algorithm, FPO++, to train flow policies for legged robot locomotion and humanoid motion tracking. We find that FPO++ is stable to train, interpretably models crossaction correlations, and can be deployed to real humanoid robots. Sim2real video results can be found on our anonymous webpage. I

1 Introduction

Recent work in Flow Policy Optimization (FPO) (McAllister et al., 2025) has demonstrated how flow matching models (Lipman et al., 2023) can be trained in an online, policy gradient-based reinforcement learning setting. Flow-based policies are attractive because they generalize both simple and complex continuous action distributions, while remaining simple to implement. They are therefore promising for continuous control in robotics, both for fine-tuning flow-based policies learned via behavior cloning (Black et al.; Chi et al., 2024a) and for training flow policies from scratch.

Despite promising performance in synthetic benchmarks, we found it challenging to naively apply flow policies to real robot control challenges. In this work, we therefore introduce FPO++: an improved version of FPO that is stable and effective for real-world robot control problems. We document challenges associated with training standard FPO policies on robot locomotion and motion tracking tasks—notably, both sudden and gradual policy collapse—and show that a small but critical set of algorithmic changes mitigates these problems. Specifically, FPO++ proposes (1) an updated likelihood ratio approximation that increases effective batch size, (2) an entropy-preserving trust region objective inspired by DAPO (Yu et al., 2025) and SPO (Xie et al., 2024), and (3) numerically stable CFM loss computation.

We evaluate FPO++ on a diverse set of robotic tasks across four simulated robots (Unitree Go2, Boston Dynamics Spot, Unitree H1, and Unitree G1), demonstrating stable training on quadrupedal and bipedal locomotion benchmarks as well as humanoid motion tracking. Our experiments show that FPO++ is significantly stabler to train than standard FPO, and can achieve competitive performance when compared to Gaussian PPO baselines. We analyze the learned policy distributions, which reveal that FPO++ captures interpretable cross-action correlations during training. We further validate these results through zero-shot sim-to-real transfer, deploying FPO++ policies trained entirely in simulation to two physical humanoid robots (Unitree G1 and Booster T1). To facilitate further research, we will provide open-source implementations of FPO++ along with training configurations for all tasks.

2 IMPROVED FLOW POLICY OPTIMIZATION

We introduce FPO++: an updated version of the FPO algorithm that stabilizes training and improves performance in challenging, real-world robotics tasks. To present FPO++, we first summarize the flow matching policy gradient framework. We then discuss the failure modes we observed in naive FPO implementations, followed by specific updates made in FPO++.

¹Project webpage: https://fpocontrol.github.io/

2.1 Preliminaries

Policy Gradients and PPO. In on-policy reinforcement learning, rollouts in the form of pertimestep observation, action, and reward tuples (o_t, a_t, r_t) from a policy $\pi_{\theta}(a_t \mid o_t)$ are used to update the policy to maximize expected return. The dominant approach for achieving this is *Proximal Policy Optimization* (PPO) (Schulman et al., 2017), which applies an on-policy trust region using a clipped likelihood ratio:

$$\max_{\theta} \ \mathbb{E}_{a_t \sim \pi_{\theta_{\text{old}}}(a_t|o_t)} \left[\min \left(r(\theta) \hat{A}_t, \ \text{clip}(r(\theta), 1 - \varepsilon^{\text{clip}}, 1 + \varepsilon^{\text{clip}}) \hat{A}_t \right) \right], \tag{1}$$

where \hat{A}_t is an advantage estimate (Schulman et al., 2015b) and $r(\theta)$ is the likelihood ratio,

$$r(\theta) = \frac{\pi_{\theta}(a_t \mid o_t)}{\pi_{\theta_{\text{old}}}(a_t \mid o_t)}.$$
 (2)

PPO is popular because it is simple to implement and provides strong empirical performance. It also inherits the advantages of general policy gradient methods, requiring differentiability only from action likelihoods and not from a reward model or environment dynamics.

Flow Policy Optimization (FPO). The goal of the FPO (McAllister et al., 2025) algorithm is to enable PPO-style training of policies parameterized as flow models (Lipman et al., 2023). While likelihoods under the distribution captured by a flow model can be estimated (Skreta et al., 2025), doing so in a reinforcement learning setting is computationally prohibitive. To address this, FPO replaces the PPO likelihood ratio $r(\theta)$ with a surrogate,

$$\hat{r}_{\text{FPO}}(\theta) = \exp\left(\hat{\mathcal{L}}_{\text{CFM},\theta_{\text{old}}}(a_t; o_t) - \hat{\mathcal{L}}_{\text{CFM},\theta}(a_t; o_t)\right),\tag{3}$$

where $\hat{\mathcal{L}}_{\text{CFM},\theta}(a_t;o_t)$ is a Monte Carlo estimate of the conditional flow matching (CFM) loss.

This formulation enables PPO-style training of expressive flow-based policies, and can be applied in a way that mirrors PPO's clipped objective:

$$\max_{\theta} \ \mathbb{E}_{a_t \sim \pi_{\theta}(a_t | o_t)} \left[\min \left(\hat{r}_{\text{FPO}}(\theta) \hat{A}_t, \ \text{clip}(\hat{r}_{\text{FPO}}(\theta), 1 - \epsilon, 1 + \epsilon) \hat{A}_t \right) \right]. \tag{4}$$

Intuitively, FPO's ratio approximation uses CFM loss differences to approximate action log-likelihood differences; as discussed by McAllister et al. (2025), this construction can be justified by interpreting the CFM loss as a variational bound. The final objective (Equation 4) then uses advantage estimates to shift probability flow toward higher-reward actions.

Conditional flow matching loss. To estimate CFM losses, FPO first draws $N_{\rm mc}$ random noise $\epsilon_i \sim \mathcal{N}(0,I)$ and flow step $\tau_i \in [0,1]$ samples for each action a_t . Multiple noised actions are then computed using an interpolation schedule defined by τ_i ,

$$a_t^{\tau_i} = (1 - \tau_i)a_t + \tau_i \epsilon_i \tag{5}$$

Squared errors are computed and averaged for the policy's velocity predictions \hat{v}_{θ} ,

$$\hat{\mathcal{L}}_{\text{CFM},\theta}(a_t; o_t) = \frac{1}{N_{\text{mc}}} \sum_{i}^{N_{\text{mc}}} \ell_{\theta}(a_t, \tau_i, \epsilon_i; o_t)$$
(6)

$$\ell_{\theta}(a_t, \tau_i, \epsilon_i; o_t) = \|\hat{v}_{\theta}(a_t^{\tau_i}, \tau_i; o_t) - (a_t - \epsilon_i)\|_2^2. \tag{7}$$

These losses can then be used in the FPO ratio approximation (Equation 3) for flow policy updates, which aims to decrease CFM losses for actions with positive advantages and increase CFM losses for actions with negative advantages.

While the standard FPO formulation succeeds in synthetic benchmarks (McAllister et al., 2025), we found that it required refinements to achieve reliable performance in more difficult tasks.

2.2 FLOW POLICY FAILURE MODES

We observed that naive FPO implementations have two common failure modes when applied to more difficult robot control tasks. We show examples of these failure modes in Figure 1, and provide descriptions below.

Figure 1: **FPO failure modes.** We found that naively applying FPO to more difficult reinforcement learning tasks often results in instabilities during training. (a) Sudden collapse in episode returns. (b) Fast initial learning, followed by gradual decay. (c) Stable training using FPO++.

Policy collapse during training. FPO implementations that achieve high rewards on DMC tasks (Tassa et al., 2018) encounter frequent instabilities when applied to more challenging robot locomotion tasks. This can be characterized by large drops in average training returns, which is often then followed by floating-point overflow. Instabilities would irrecoverably halt training across tasks, even after tuning hyperparameters like learning rate, clip threshold, weight decay, and normalization strategies.

Gradual decay after returns peak. As policy learning progresses, we typically hope to see steady increases in average training returns. This should happen until an optimal policy is found; afterwards, policy performance should plateau. While initial FPO rewards often peaked faster than PPO rewards, we found that policy performance sometimes began to decay after this peak. We observed that this happens as a result of entropy collapse in FPO policies. If the policy's entropy is too low to explore effectively, rewards begin to decay because each sampled action carries a small approximation error from Euler integration, which accumulates across policy updates.

2.3 FPO++

FPO++ proposes a set of changes to FPO for (1) reducing the variance of gradients during training, (2) regularizing entropy of action distributions, and (3) sampling smoother actions at test-time. We find that these changes mitigate the failure modes discussed in Section 2.2, while improving overall performance for converged policies.

Increasing effective batch size. Unlike Gaussian policies that compute a single likelihood per action, FPO estimates CFM losses by averaging over multiple (τ_i, ϵ_i) samples. In the standard FPO framework (McAllister et al., 2025), this average is performed before the exponential, producing a single ratio per action:

$$\hat{r}_{\text{FPO}}(\theta) = \exp\left(\frac{1}{N} \sum_{i=1}^{N} \left(\ell_{\theta_{\text{old}}}(a_t, \tau_i, \epsilon_i; o_t) - \ell_{\theta}(a_t, \tau_i, \epsilon_i; o_t) \right) \right). \tag{8}$$

In the context of PPO-style clipping, an important characteristic of this formulation is that ratios are clipped *after* averaging across samples. For a given action, this means that either all or no samples are clipped. In FPO++, we instead compute ratios on a per-sample basis:

$$\hat{r}_{\text{FPO}}^{(i)}(\theta) = \exp\left(\ell_{\theta_{\text{old}}}(a_t, \tau_i, \epsilon_i; o_t) - \ell_{\theta}(a_t, \tau_i, \epsilon_i; o_t)\right). \tag{9}$$

Each (τ_i, ϵ_i) pair therefore contributes its own ratio, with the same advantage \hat{A}_t shared across all samples. Clipping is applied independently to each ratio, which provides a finer-grained trust region than the original per-action formulation.

This modification is motivated by decreasing gradient variance, but it comes at the cost of bias. Because the exponential function is convex, note that

$$\exp\left(\frac{1}{N}\sum_{i=1}^{N}x_i\right) \leq \frac{1}{N}\sum_{i=1}^{N}\exp(x_i). \tag{10}$$

The per-sample formulation is therefore an upper bound on the per-action ratio. Empirically, we find that this slows down initial learning, but leads to higher and more stable final policy returns.

Entropy-preserving trust region (ASPO). We found that the stability of FPO training can be improved significantly by adjusting its trust region implementation. In FPO++, we adopt an asymmetric trust region inspired by Yu et al. (2025) that we refer to as Asymmetric SPO (ASPO). We use standard PPO clipping positive advantages; for negative advantages, we adopt the more constrained Simple Policy Optimization (SPO) objective proposed by Xie et al. (2024):

$$\max_{\theta} \mathbb{E}_{a_t \sim \pi_{\theta_{\text{old}}}(a_t|o_t)} \left[r(\theta) \, \hat{A}_t \, - \, \frac{|\hat{A}_t|}{2 \, \varepsilon^{\text{clip}}} \left(r(\theta) - 1 \right)^2 \right] \tag{11}$$

Like the asymmetric design proposed by (Yu et al., 2025), the SPO objective we use for negative advantages preserves entropy in the action distribution by providing gradient signals that discourage over-aggressive likelihood decreases. We find empirically that this is critical for stability in FPO++.

The SPO objective also reduces gradient variance. PPO clipping zeros out gradients for samples that pass the trust region, which leads to increasingly sparse and noisy updates. In contrast, the SPO objective retains gradients for all samples that it is applied to (Xie et al., 2024).

Improving numerical stability. The FPO surrogate ratio (Eq. 3) involves exponentiating differences of squared CFM losses. We found this operation to be the source of numerical problems in FPO: loss outliers in the (τ_i, ϵ_i) sampling process can easily cause instabilities after being squared and then exponentiated. We address this with two steps. First, we replace the L2 conditional flow matching objective with a robust Huber loss:

$$\ell_{\theta}^{\text{Huber}}(a_t, \tau_i, \epsilon_i; o_t) = \rho_{\delta} \left(\hat{v}_{\theta}(a_t^{\tau_i}, \tau_i; o_t) - (a_t - \epsilon_i) \right), \tag{12}$$

where the Huber kernel ρ_{δ} is defined as

$$\rho_{\delta}(x) = \begin{cases} \frac{1}{2} \|x\|_{2}^{2}, & \text{if } \|x\|_{2} \leq \delta, \\ \delta\left(\|x\|_{2} - \frac{\delta}{2}\right), & \text{if } \|x\|_{2} > \delta. \end{cases}$$
 Second, we apply a gradient-preserving clamping operator ϕ to the CFM loss difference:

$$\phi_{\Delta}^{\text{clamp}}(x) = x + \text{stopgrad}(\text{clamp}(x, -\xi, \xi) - x). \tag{14}$$

We empirically verify the importance of both the Huber kernel and clamping in our experiments.

2.4 FINAL FPO++ OBJECTIVE

We now summarize the complete FPO++ algorithm by combining the training modifications described above. The key differences from vanilla FPO are:

- 1. Ratios are computed *per-sample* rather than per-action, increasing effective batch size.
- 2. We use the SPO (Xie et al., 2024) surrogate objective for negative advantages.
- 3. The CFM loss uses a Huber kernel with clamping to improve numerical stability.
- 4. At test-time, actions are sampled by initializing flow integration from $\epsilon = \vec{0}$.

Formally, for each action a_t with advantage A_t , we draw $N_{\rm mc}$ Monte Carlo pairs (τ_i, ϵ_i) . We compute the robust CFM loss using each pair:

$$\ell_{\theta}^{\text{Huber}}(a_t, \tau_i, \epsilon_i; o_t). \tag{15}$$

The final FPO++ objective is then

$$\max_{\theta} \ \mathbb{E}_{a_t \sim \pi_{\theta_{\text{old}}}(a_t|o_t)} \left[\frac{1}{N_{\text{mc}}} \sum_{i=1}^{N_{\text{mc}}} \ \psi_{\text{ASPO}} \left(\hat{r}_{\text{FPO}}^{(i)}(\theta), \hat{A}_t \right) \right], \tag{16}$$

where the per-sample ratio is

$$\hat{r}_{\text{FPO}}^{(i)}(\theta) = \exp\left(\phi_{\Delta}^{\text{clamp}}(\ell_{\theta_{\text{old}}}^{\text{Huber}}(a_t, \tau_i, \epsilon_i; o_t) - \ell_{\theta}^{\text{Huber}}(a_t, \tau_i, \epsilon_i; o_t))\right),\tag{17}$$

and the ASPO trust region objective is defined piecewise:

$$\psi_{\text{ASPO}}(r, \hat{A}_t) = \begin{cases} \min\left(r \, \hat{A}_t, \, \operatorname{clip}(r, 1 - \varepsilon^{\text{clip}}, 1 + \varepsilon^{\text{clip}}) \, \hat{A}_t\right), & \hat{A}_t > 0, \\ r \, \hat{A}_t - \frac{|\hat{A}_t|}{2 \, \varepsilon^{\text{clip}}} \, (r - 1)^2, & \hat{A}_t \leq 0. \end{cases}$$

$$(18)$$

We empirically verify this formulation in our experiments.

Figure 2: **Stability.** We plot episode returns (*y-axis*) over training steps (*x-axis*) for FPO and FPO++; the latter is significantly more stable to train.

Figure 3: **Ablation on ratio approximation.** We replace the ratio proposed by FPO with a biased but lower-variance alternative.

Figure 4: **Ablation on trust region objective.** We compare replacing FPO++'s asymmetric clipping objective with standard PPO-style clipping and an SPO (Xie et al., 2024) trust region. FPO++ balances training speed and stability, while converging to the highest reward across tasks.

3 EXPERIMENTS

The goal of our experiments is to validate and evaluate FPO++ on real robotics problems. To accomplish this, we train policies for both legged locomotion and humanoid motion tracking.

We structure our experiments as follows. (i) We begin by evaluating policy learning from scratch using simulated locomotion tasks, on both quadrupedal and bipedal robots (Section 3.1). (ii) We ablate design decisions, including the asymmetric trust region objective, and per-sample ratio. (iii) We analyze the policy distribution that FPO++ learns. (iv) Finally, we show that FPO++ trained in simulation can be zero-shot deployed to real humanoid robots.

3.1 LOCOMOTION BENCHMARKING

To evaluate the characteristics of FPO++, we begin by training FPO++, FPO, and Gaussian PPO policies using the standard IsaacLab (Mittal et al., 2023) velocity-conditioned robot locomotion environments. We include results for four simulated robots: Unitree Go2, Boston Dynamics Spot, Unitree H1, and Unitree G1. Results and analysis are discussed below; hyperparameter sweeping procedures and implementation details are documented in the appendix.

Figure 5: **ASPO ablation.** We visualize the flow field density for a single action dimension. A vanilla FPO policy trained with a standard PPO trust region is shown at its peak reward (a) and after its performance has started to degrade (b). The narrowing of the distribution in (b) illustrates an entropy collapse, leading to instability. In contrast, our FPO++ policy is shown at a checkpoint with a reward level similar to the baseline's peak (c) and at its final, higher-reward converged state (d). FPO++ maintains a wider, more exploratory distribution, demonstrating how its asymmetric trust region effectively regularizes entropy and prevents policy collapse.

Figure 6: **Comparison against Gaussian PPO.** We compare FPO++ training curves against PPO; FPO++ compares favorably.

FPO++ trains stably. Figure 2 reports training curves averaged over 5 seeds. We observe that standard FPO struggles significantly in these tasks: while rewards increase at the beginning of training for quadruped locomotion tasks, policies consistently end up collapsing. In contrast, FPO++ stably solves all locomotion tasks.

Ratio approximation ablation. A primary difference between FPO++ and FPO is an updated ratio approximation. We evaluate the effect of this in Figure 3. The original FPO approximation converges more slowly and often leads to unstable training, while the FPO++ variant, although introducing a small bias, results in decreased variance in gradient estimation that improves the training stability. The reduced variance is especially important in the later stage of training, when the policy has low entropy and high gradient variance is more likely to cause collapse, as the baseline shows.

Trust region ablation. To evaluate the effectiveness of different trust region objectives, we compare their learning curves in Figure 4. Replacing the asymmetric clipping objective with PPO-style clipping results in slightly faster early-stage learning but leads to instability in later training. On the other hand, adopting the objective from SPO (Xie et al., 2024) improves stability but significantly slows down progress. In contrast, FPO++, which employs an asymmetric trust region, achieves both stability and efficiency throughout training.

To better understand the differences in training performance, we examine how policy distribution progresses during training, as shown in (Figure 5a–d). We see that vanilla FPO with the standard PPO trust region produces highly centered action distributions, leading to entropy collapsing and performance deteriorating over time (Figure 5a–b). In contrast, FPO++ maintains a broader, more exploratory distribution even after convergence (Figure 5c–d), contributing to stable and robust performance. This behavior is driven by the asymmetric trust region, which implicitly regularizes entropy and prevents collapse. These dynamics align with the learning curves in Figure 4, where FPO++ outperforms PPO and vanilla FPO by preserving exploration and ensuring training stability. Notably, despite these differences in training stability, both the vanilla FPO and FPO++ policies learn a seemingly Gaussian exploration strategy.

Figure 7: **FPO++ action distributions in H1 humanoid locomotion.** We visualize the correlations between joints learned by the policy. Initially, the policy exhibits uncorrelated actions, similar to a diagonal Gaussian policy. In contrast, the converged policy (b) learns significant off-diagonal correlations, demonstrating its ability to capture complex dependencies between action dimensions. By Sampling the generation process, we can visualize FPO++ policy distributions across joint pairs: (c) positive, (d) uncorrelated, and (e) negative. As expected, right hips correlate positively and left hips negatively, reflecting reciprocal leg motion in walking, while shoulders show little correlation, consistent with their weaker role.

Comparison against Gaussian PPO. We compare FPO++ training curves against Gaussian PPO training curves in Figure 6. While outperforming Gaussian PPO is not the purpose of this work, we nonetheless find that FPO++ achieve competitive training returns. We note that one limitation of FPO++, however, is wall-clock time: FPO++ is slower to train than Gaussian PPO because backprop is required through each CFM Monte Carlo sample. The runtime hit for reported experiments is typically around 20%: for G1 locomotion on an L40S GPU, our Gaussian PPO baseline reaches a return of 25 in 19 minutes. FPO++ experiments required 23 minutes to reach the same return. Future improvements to FPO++ may explore adaptive sampling techniques to accelerate training without sacrificing policy performance.

Analyzing FPO++ policy distributions. A key advantage of flow-based models is the ability to represent complex distributions. To understand what FPO++ learns in practice, we analyze the resulting policy distribution in the locomotion task by taking multiple samples at fixed observations and visualizing correlations between actions dimensions. We find interpretable correlations, which are visualized and discussed in Figure 7.

Figure 8: **FPO++ policy deployment on Booster T1 robot.** We deploy a joystick-conditioned locomotion policy to the Booster T1 humanoid robot.

	FPO++	PPO
Return	38.4 ± 0.6	37.4 ± 1.1
Episode Length	452.5 ± 5.2	475.4 ± 9.6

Table 1: **Motion tracking metrics.** We report training return and episode length statistics from FPO++ and Gaussian PPO, for BeyondMimic (Liao et al., 2025)-based motion tracking.

3.2 SIM-TO-REAL WITH FPO++

We validate the real-world capabilities of FPO++ by deploying policies on two distinct hardware platforms: a Booster Robotics T1 humanoid for a velocity-conditioned locomotion task and a Uni-

(a) **FPO++ motion tracking with a Unitree G1 robot.** We train BeyondMimic (Liao et al., 2025)-style motion tracking using a flow matching policy, which is deployed directly to the G1 robot.

(b) **Robustness to Perturbations:** The FPO++ policy exhibits strong robustness against external forces and pushes, maintaining balance and continuing to track the reference motion despite significant disturbances.

Figure 9: Sim2real deployment. FPO++ motion tracking policies deployed on a Unitree G1 robot.

tree G1 humanoid for motion tracking. Policies are trained in simulation and transferred zero-shot to physical robots.

T1 locomotion policy. The locomotion policy was trained using a modified version of the HumanoidVerse (LeCAR-Lab, 2023) framework, which uses IsaacGym (Makoviychuk et al., 2021) for simulation. We find that FPO++ policies can learn robust gaits; results are shown in Figure 8. Videos can be found on our project webpage.

G1 motion tracking policy. The motion tracking policy was trained by adapting the Beyond-Mimic (Liao et al., 2025) codebase, which is built on IsaacLab framework (Mittal et al., 2023); we replaced its PPO objective and MLP actor with the FPO++ objective and a flow model, respectively. We show results in Figure 9.

Sampling step count. Flow policies trained by FPO and FPO++ are compatible with any choice of sampler schedule. We found that a small number (4 or 8) of flow sampling steps could be used for the ODE integration to generate actions with acceptable latency.

Smoother test-time actions. Reinforcement learning with policy gradient methods requires stochastic policies during training: the policy outputs a distribution from which actions are sampled, enabling exploration. At test-time, however, it is standard to switch to a deterministic inference strategy. For Gaussian policies, this typically corresponds to taking the mean action. We found a similar strategy beneficial for flow policies. During training, initial noises are drawn from $\epsilon \sim \mathcal{N}(0,I)$; at test-time, we instead initialize flow integration from $\epsilon = \vec{0}$. We found that this inference procedure produces smoother, more stable actions that qualitatively improves performance across tasks.

4 RELATED WORK

Flow-based Policies for Robot Control. Recently, denoising diffusion models (Chi et al., 2024b; Ankile et al., 2024; Reuss et al., 2023) have shown success in robot manipulation tasks, where the policies are trained with human demonstrations (Mandlekar et al., 2021) through supervised learning. In these approaches the policy is modeled using diffusion or flow-based models, an expressive class of generative models capable of learning multi-modal distributions. π_0 (Black et al.) adopts a diffusion model for large-scale VLA-based manipulation, and $\pi_0.5$ (Black et al., 2024) later uses a flow matching model. Flow matching (Lipman et al., 2023; 2024) is a simpler alternative to denoising diffusion, a generalization of diffusion and normalizing flow-based generative models, which

is easy to train and have achieved competitive quality in image domain (Esser et al., 2024; Black Forest Labs, 2024; Kuaishou, 2024; Wang et al., 2025; Brooks et al., 2024; Kong et al., 2024). Recently, Streaming Flow Policy (Jiang et al., 2025) proposed to turn the flow process over action trajectories into a streaming flow in action space, enabling faster and reactive policy. In this paper, we treat diffusion and flow policies as a single family of iterative generative policies. Going beyond manipulation, Diffuse-CLoC (Huang et al., 2025) proposes a guided diffusion policy for physics-based, whole-body control via supervised learning, in which a single diffusion model jointly generates (*state, action*) horizons to enable steerable, look-ahead control. BeyondMimic (Liao et al., 2025) extends this line to a real humanoid by performing an offline distillation from multiple motion tracking expert policies to a single diffusion policy. All of these existing flow-based and diffusion policies rely on human demonstrations or distillation from expert controllers. In contrast, we propose FPO++, an on-policy reinforcement learning algorithm that is trains flow policies from scratch in a reinforcement learning setting.

Online Reinforcement Learning for Flow-based Policies. In online RL for robot control, DPPO (Ren et al., 2024) treats the denoising process as a Markov Decision Process (MDP), enabling policy gradient updates by leveraging the tractable Gaussian likelihood at each denoising step, but increasing a task horizon as a result. ReinFlow (Zhang et al., 2025b) applies a similar approach to flow policies by injecting learnable noise into the deterministic flow path, converting it into a discrete-time Markov process for likelihood computation. NCDPO (Yang et al., 2025) reformulates the diffusion process as a noise-conditioned deterministic policy and backpropagates gradients through all diffusion timesteps, rather than treating diffusion timesteps as an MDP to not increase a task horizon and make credit assignment stable. GenPO (Ding et al., 2025) leverages exact diffusion inversion to construct invertible action mappings and introduces a "doubled dummy action" mechanism that enables invertibility via alternating updates, yielding tractable log-likelihoods. In contrast, FPO (McAllister et al., 2025) offers a simpler and more direct alternative. Specifically, FPO does not extend the task horizon, require backpropagation through the generative steps, or depend on invertible architectures, and it is agnostic to the choice of sampling method. This streamlined design makes it particularly effective for challenging control problems. FPO++ is the first method to demonstrate successful zero-shot sim-to-real transfer for a humanoid robot using a flow-matching policy trained from scratch with on-policy RL.

5 CONCLUSION

In this paper, we introduce a practical training recipe for training flow policies for real robotic systems. We demonstrate that FPO++ can effectively train policies for complex legged robots, which can also successfully transfer from simulation to real hardware. We hope this existence proof helps spur further research in this area. To establish reliable training foundations, we intentionally keep the flow policy architecture simple, focusing on algorithmic stability rather than architectural innovations. Future work may explore policies conditioned on more observation state history, training flow policies that predict multiple future actions (action chunking), and fine-tuning of behavior-cloned policies. We hope our findings and open-source implementation will facilitate progress in these endeavors.

REFERENCES

Suzan Ece Ada, Erhan Oztop, and Emre Ugur. Diffusion policies for out-of-distribution generalization in offline reinforcement learning. *IEEE Robotics and Automation Letters*, 9(4):3116–3123, 2024.

Ilge Akkaya, Marcin Andrychowicz, Maciek Chociej, Mateusz Litwin, Bob McGrew, Arthur Petron, Alex Paino, Matthias Plappert, Glenn Powell, Raphael Ribas, et al. Solving rubik's cube with a robot hand. *arXiv preprint arXiv:1910.07113*, 2019.

Arthur Allshire, Hongsuk Choi, Junyi Zhang, David McAllister, Anthony Zhang, Chung Min Kim, Trevor Darrell, Pieter Abbeel, Jitendra Malik, and Angjoo Kanazawa. Visual imitation enables contextual humanoid control. In *Conference on Robot Learning (CoRL)*, 2025.

- Lars Ankile, Anthony Simeonov, Idan Shenfeld, Marcel Torne, and Pulkit Agrawal. From imitation to refinement–residual rl for precise visual assembly. *arXiv preprint arXiv:2407.16677*, 2024.
 - Kevin Black, Noah Brown, Danny Driess, Adnan Esmail, Michael Equi, Chelsea Finn, Niccolo Fusai, Lachy Groom, Karol Hausman, Brian Ichter, et al. π0: A vision-language-action flow model for general robot control. corr, abs/2410.24164, 2024. doi: 10.48550. *arXiv preprint ARXIV.*2410.24164.
 - Kevin Black, Noah Brown, Danny Driess, Adnan Esmail, Michael Equi, Chelsea Finn, Niccolo Fusai, Lachy Groom, Karol Hausman, Brian Ichter, Szymon Jakubczak, Tim Jones, Liyiming Ke, Sergey Levine, Adrian Li-Bell, Mohith Mothukuri, Suraj Nair, Karl Pertsch, Lucy Xiaoyang Shi, James Tanner, Quan Vuong, Anna Walling, Haohuan Wang, and Ury Zhilinsky. π_0 : A vision-language-action flow model for general robot control, 2024. URL https://arxiv.org/abs/2410.24164.
 - Black Forest Labs. Flux. https://github.com/black-forest-labs/flux, 2024.
 - Tim Brooks, Bill Peebles, Connor Holmes, Will DePue, Yufei Guo, Li Jing, David Schnurr, Joe Taylor, Troy Luhman, Eric Luhman, et al. Video generation models as world simulators. *OpenAI Blog*, 1:8, 2024.
 - Cheng Chi, Zhenjia Xu, Siyuan Feng, Eric Cousineau, Yilun Du, Benjamin Burchfiel, Russ Tedrake, and Shuran Song. Diffusion policy: Visuomotor policy learning via action diffusion. *The International Journal of Robotics Research*, 2024a.
 - Cheng Chi, Zhenjia Xu, Siyuan Feng, Eric Cousineau, Yilun Du, Benjamin Burchfiel, Russ Tedrake, and Shuran Song. Diffusion policy: Visuomotor policy learning via action diffusion. *The International Journal of Robotics Research*, 2024b.
 - Shutong Ding, Ke Hu, Shan Zhong, Haoyang Luo, Weinan Zhang, Jingya Wang, Jun Wang, and Ye Shi. Genpo: Generative diffusion models meet on-policy reinforcement learning. *arXiv* preprint arXiv:2505.18763, 2025.
 - Zihan Ding and Chi Jin. Consistency models as a rich and efficient policy class for reinforcement learning. *arXiv preprint arXiv:2309.16984*, 2023.
 - Zihan Ding, Amy Zhang, Yuandong Tian, and Qinqing Zheng. Diffusion world model. *arXiv* preprint arXiv:2402.03570, 2024.
 - Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers for high-resolution image synthesis. In *Proceedings of the 41st International Conference on Machine Learning (ICML)*, 2024.
 - Ankur Handa, Arthur Allshire, Viktor Chebotar, Thinh Sojoudi, Aleksei J. Ba, Dmitry Kalashnikov, Jacob Varley, Alex Lim, Stephen Luu, Dmitry Yevzlin, et al. Dextreme: Transfer of agile in-hand manipulation from simulation to reality, 2022.
 - Longxiang He, Li Shen, Linrui Zhang, Junbo Tan, and Xueqian Wang. Diffcps: Diffusion model based constrained policy search for offline reinforcement learning. *arXiv preprint arXiv:2310.05333*, 2023.
 - Xiaoyu Huang, Takara Truong, Yunbo Zhang, Fangzhou Yu, Jean Pierre Sleiman, Jessica Hodgins, Koushil Sreenath, and Farbod Farshidian. Diffuse-cloc: Guided diffusion for physics-based character look-ahead control. *ACM Transactions on Graphics (TOG)*, 44(4):1–12, 2025.
 - Jemin Hwangbo, Joonho Lee, Alexey Dosovitskiy, Dario Bellicoso, Vassilios Tsounis, Vladlen Koltun, and Marco Hutter. Learning agile and dynamic motor skills for legged robots. *Science Robotics*, 2019.
 - Sunshine Jiang, Xiaolin Fang, Nicholas Roy, Tomás Lozano-Pérez, Leslie Pack Kaelbling, and Siddharth Ancha. Streaming flow policy: Simplifying diffusion / flow-matching policies by treating action trajectories as flow trajectories. *arXiv preprint arXiv:2505.21851*, 2025.

- Bingyi Kang, Xiao Ma, Chao Du, Tianyu Pang, and Shuicheng Yan. Efficient diffusion policies for offline reinforcement learning. Advances in Neural Information Processing Systems, 2024.
- Weijie Kong, Qi Tian, Zijian Zhang, Rox Min, Zuozhuo Dai, Jin Zhou, Jiangfeng Xiong, Xin Li, Bo Wu, Jianwei Zhang, et al. Hunyuanvideo: A systematic framework for large video generative models. *arXiv preprint arXiv:2412.03603*, 2024.
- Kuaishou. Kling ai. https://klingai.kuaishou.com/, 2024.
- LeCAR-Lab. Humanoidverse: A versatile and extendable reinforcement learning framework for humanoid robots. https://github.com/LeCAR-Lab/HumanoidVerse, 2023. Accessed: 2025-09-22.
- Joonho Lee, Marko Jantos, Marco Miki, Giuseppe Nava, Jessy Khatib, Carlos Mastalli, and Marco Hutter. Robust recovery controller for a quadrupedal robot using deep reinforcement learning, 2019.
- Joonho Lee, Jemin Hwangbo, Lorenz Wellhausen, Vladlen Koltun, and Marco Hutter. Learning quadrupedal locomotion over challenging terrain. *Science Robotics*, 5(47):eabc5986, 2020. doi: 10.1126/scirobotics.abc5986.
 - Qiayuan Liao, Takara E Truong, Xiaoyu Huang, Guy Tevet, Koushil Sreenath, and C Karen Liu. Beyondmimic: From motion tracking to versatile humanoid control via guided diffusion. *arXiv e-prints*, pp. arXiv–2508, 2025.
- Yaron Lipman, Ricky T. Q. Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching for generative modeling, 2023. URL https://arxiv.org/abs/2210.02747.
 - Yaron Lipman, Marton Havasi, Peter Holderrieth, Neta Shaul, Matt Le, Brian Karrer, Ricky TQ Chen, David Lopez-Paz, Heli Ben-Hamu, and Itai Gat. Flow matching guide and code. *arXiv* preprint arXiv:2412.06264, 2024.
 - Min Liu, Deepak Pathak, and Ananye Agarwal. Locoformer: Generalist locomotion via long-context adaptation. In *Conference on Robot Learning (CoRL)*, 2025.
 - Cheng Lu, Huayu Chen, Jianfei Chen, Hang Su, Chongxuan Li, and Jun Zhu. Contrastive energy prediction for exact energy-guided diffusion sampling in offline reinforcement learning. In *International Conference on Machine Learning*, pp. 22825–22855. PMLR, 2023.
 - Viktor Makoviychuk, Lukasz Wawrzyniak, Yunrong Guo, Michelle Lu, Kier Storey, Miles Macklin, David Hoeller, Nikita Rudin, Arthur Allshire, Ankur Handa, et al. Isaac gym: High performance gpu-based physics simulation for robot learning. *arXiv preprint arXiv:2108.10470*, 2021.
 - Ajay Mandlekar, Danfei Xu, Josiah Wong, Soroush Nasiriany, Chen Wang, Rohun Kulkarni, Li Fei-Fei, Silvio Savarese, Yuke Zhu, and Roberto Martín-Martín. What matters in learning from offline human demonstrations for robot manipulation. In *arXiv preprint arXiv:2108.03298*, 2021.
 - David McAllister, Songwei Ge, Brent Yi, Chung Min Kim, Ethan Weber, Hongsuk Choi, Haiwen Feng, and Angjoo Kanazawa. Flow matching policy gradients. *arXiv preprint arXiv:2507.21053*, 2025.
 - Mayank Mittal, Calvin Yu, Qinxi Yu, Jingzhou Liu, Nikita Rudin, David Hoeller, Jia Lin Yuan, Ritvik Singh, Yunrong Guo, Hammad Mazhar, Ajay Mandlekar, Buck Babich, Gavriel State, Marco Hutter, and Animesh Garg. Orbit: A unified simulation framework for interactive robot learning environments. *IEEE Robotics and Automation Letters*, 8(6):3740–3747, 2023. doi: 10.1109/LRA.2023.3270034.
- Seohong Park, Qiyang Li, and Sergey Levine. Flow q-learning. *arXiv preprint arXiv:2502.02538*, 2025.
 - Xue Bin Peng, Pieter Abbeel, Sergey Levine, and Michiel Van de Panne. Deepmimic: Example-guided deep reinforcement learning of physics-based character skills. *ACM Transactions On Graphics (TOG)*, 37(4):1–14, 2018.

- Xue Bin Peng, Aviral Kumar, Grace Zhang, and Sergey Levine. Advantage-weighted regression: Simple and scalable off-policy reinforcement learning. *arXiv preprint arXiv:1910.00177*, 2019.
 - Allen Z Ren, Justin Lidard, Lars L Ankile, Anthony Simeonov, Pulkit Agrawal, Anirudha Majumdar, Benjamin Burchfiel, Hongkai Dai, and Max Simchowitz. Diffusion policy policy optimization. *arXiv preprint arXiv:2409.00588*, 2024.
 - Moritz Reuss, Maximilian Li, Xiaogang Jia, and Rudolf Lioutikov. Goal-conditioned imitation learning using score-based diffusion policies. *arXiv preprint arXiv:2304.02532*, 2023.
 - John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region policy optimization. In *International conference on machine learning*, pp. 1889–1897. PMLR, 2015a.
 - John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-dimensional continuous control using generalized advantage estimation. *arXiv* preprint *arXiv*:1506.02438, 2015b.
 - John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy optimization algorithms. *arXiv preprint arXiv:1707.06347*, 2017.
 - Marta Skreta, Lazar Atanackovic, Avishek Joey Bose, Alexander Tong, and Kirill Neklyudov. The superposition of diffusion models using the itô density estimator, 2025. URL https://arxiv.org/abs/2412.17762.
 - Zhi Su, Chenyu Yang, Qingwen Wang, Tianyu Li, Chenghao Wang, Quan Wang, Xue Bin Peng, Koushil Sreenath, and Sergey Levine. Hitter: A humanoid table tennis robot via hierarchical planning and learning, 2025.
 - Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David Budden, Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, et al. Deepmind control suite. *arXiv* preprint arXiv:1801.00690, 2018.
 - Ang Wang, Baole Ai, Bin Wen, Chaojie Mao, Chen-Wei Xie, Di Chen, Feiwu Yu, Haiming Zhao, Jianxiao Yang, Jianyuan Zeng, et al. Wan: Open and advanced large-scale video generative models. *arXiv preprint arXiv:2503.20314*, 2025.
 - Zhendong Wang, Jonathan J Hunt, and Mingyuan Zhou. Diffusion policies as an expressive policy class for offline reinforcement learning. *arXiv preprint arXiv:2208.06193*, 2022.
 - Zhengpeng Xie, Qiang Zhang, Fan Yang, Marco Hutter, and Renjing Xu. Simple policy optimization. arXiv preprint arXiv:2401.16025, 2024. URL https://arxiv.org/abs/2401.16025.v9, revised 26 Jul 2025.
 - Ningyuan Yang, Jiaxuan Gao, Feng Gao, Yi Wu, and Chao Yu. Fine-tuning diffusion policies with backpropagation through diffusion timesteps. *arXiv* preprint arXiv:2505.10482, 2025.
 - Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Tiantian Fan, Gaohong Liu, Lingjun Liu, Xin Liu, Haibin Lin, Zhiqi Lin, Bole Ma, Guangming Sheng, Yuxuan Tong, Chi Zhang, Mofan Zhang, Wang Zhang, Hang Zhu, Jinhua Zhu, Jiaze Chen, Jiangjie Chen, Chengyi Wang, Hongli Yu, Weinan Dai, Yuxuan Song, Xiangpeng Wei, Hao Zhou, Jingjing Liu, Wei-Ying Ma, Ya-Qin Zhang, Lin Yan, Mu Qiao, Yonghui Wu, and Mingxuan Wang. Dapo: An open-source llm reinforcement learning system at scale. 2025. URL https://arxiv.org/abs/2503.14476. version v2, submitted March 2025.
 - Ruoqi Zhang, Ziwei Luo, Jens Sjölund, Thomas Schön, and Per Mattsson. Entropy-regularized diffusion policy with q-ensembles for offline reinforcement learning. *Advances in Neural Information Processing Systems*, 37:98871–98897, 2024.
 - Shiyuan Zhang, Weitong Zhang, and Quanquan Gu. Energy-weighted flow matching for offline reinforcement learning. *arXiv preprint arXiv:2503.04975*, 2025a.
 - Tonghe Zhang, Chao Yu, Sichang Su, and Yu Wang. Reinflow: Fine-tuning flow matching policy with online reinforcement learning. *arXiv preprint arXiv:2505.22094*, 2025b.

A APPENDIX

Figure 10: **Robots used for experiments.** We train policies for the Go2, Spot, H1, and G1 robots in simulation. We deploy policies to physical G1 and Booster T1 robots.

A.1 DETAILS OF EXPERIMENTS

Hyperparameters. All policies use 3-layer MLPs with 256 hidden units for the actor and 768 hidden units for the critic. Quadruped policies are trained for 1500 steps, and humanoid policies for 2000 steps. For FPO, clipping parameters are set to 0.05 (quadrupeds) and 0.03 (humanoids). For PPO, we adopt the default configurations provided by rsl_rl , with additional sweeps over clipping parameters in $\{0.1, 0.15, 0.2, 0.25\}$.

A.2 FURTHER RELATED WORK

Policy gradients for robot control. Policy gradient methods, such as Trust Region Policy Optimization (TRPO) (Schulman et al., 2015a) and Proximal Policy Optimization (PPO) (Schulman et al., 2017) have demonstrated remarkable success across diverse robot control tasks. They enable quadrupeds to recover from falls on challenging terrain (Lee et al., 2019), achieve locomotion from pure proprioception without exteroceptive sensing (Lee et al., 2020), and perform agile, high-speed maneuvers (Hwangbo et al., 2019). More recently, Liu et al. (2025) have shown PPO can scale to generalist locomotion across diverse legged morphologies. Beyond locomotion, policy gradients drive example-guided imitation of character skills (Peng et al., 2018), contextual humanoid behaviors such as terrain traversal and stair climbing from monocular video (Allshire et al., 2025), and hierarchical humanoid planning for tasks like table tennis rallies (Su et al., 2025). In manipulation, they have enabled solving a Rubik's cube with a humanoid hand via automatic domain randomization (Akkaya et al., 2019) and vision-based dexterous in-hand manipulation under large-scale randomization (Handa et al., 2022). Despite these successes, PPO variants in continuous control are designed for Gaussian policies, whose modeling capabilities are fundamentally limited. In this work, we introduce an RL training recipe for flow-based policies—policies that leverage flow models, an expressive class of generative models—within a PPO-like framework that can be trained stably on robot tasks.

Flow-based offline RL. Within reinforcement learning, many offline methods have explored using iterative generative models to represent policies. A common strategy is to utilize advantage weighted regression (AWR) Peng et al. (2019), which modulates a diffusion or flow-based policy by assigning weights to transition samples based on their learned action-values (Kang et al., 2024; Lu et al., 2023; Ding et al., 2024; Zhang et al., 2025a). Another popular approach involves Q-learning with a generative model loss (Wang et al., 2022; He et al., 2023; Ding & Jin, 2023; Zhang et al., 2024; Ada et al., 2024), which directly maximizes the value function, using reparameterized gradients while regularizing the policy with a diffusion or flow-matching loss. In contrast to these methods, FQL Park et al. (2025) trains a one-step policy that avoids backpropagation through time (BPTT), thereby circumventing the associated stability issues and suboptimal performance. Our method,

built on FPO (McAllister et al., 2025), is conceptually similar to AWR in its use of an advantage-weighted flow-matching loss. However, FPO is fundamentally distinct as it is an on-policy algorithm that learns from direct environment interaction rather than a static offline dataset. Moreover, FPO bypasses the need for BPTT without distillation from a separate behavior cloning model like FQL.