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ABSTRACT

We study robot control with flow policy optimization (FPO), an online reinforce-
ment learning algorithm for flow-based action distributions. We demonstrate how
flow policy optimization can succeed for more difficult continuous control tasks
than shown in prior work, using a set of design choices that reduce gradient vari-
ance and regularize entropy. We show that these design choices mitigate policy
collapse challenges faced by the original FPO algorithm and use the resulting al-
gorithm, FPO++, to train flow policies for legged robot locomotion and humanoid
motion tracking. We find that FPO++ is stable to train, interpretably models cross-
action correlations, and can be deployed to real humanoid robots. Sim2real video
results can be found on our anonymous webpage.1

1 INTRODUCTION

Recent work in Flow Policy Optimization (FPO) (McAllister et al., 2025) has demonstrated how
flow matching models (Lipman et al., 2023) can be trained in an online, policy gradient-based rein-
forcement learning setting. Flow-based policies are attractive because they generalize both simple
and complex continuous action distributions, while remaining simple to implement. They are there-
fore promising for continuous control in robotics, both for fine-tuning flow-based policies learned
via behavior cloning (Black et al.; Chi et al., 2024a) and for training flow policies from scratch.

Despite promising performance in synthetic benchmarks, we found it challenging to naively apply
flow policies to real robot control challenges. In this work, we therefore introduce FPO++: an
improved version of FPO that is stable and effective for real-world robot control problems. We
document challenges associated with training standard FPO policies on robot locomotion and motion
tracking tasks—notably, both sudden and gradual policy collapse—and show that a small but critical
set of algorithmic changes mitigates these problems. Specifically, FPO++ proposes (1) an updated
likelihood ratio approximation that increases effective batch size, (2) an entropy-preserving trust
region objective inspired by DAPO (Yu et al., 2025) and SPO (Xie et al., 2024), and (3) numerically
stable CFM loss computation.

We evaluate FPO++ on a diverse set of robotic tasks across four simulated robots (Unitree Go2,
Boston Dynamics Spot, Unitree H1, and Unitree G1), demonstrating stable training on quadrupedal
and bipedal locomotion benchmarks as well as humanoid motion tracking. Our experiments show
that FPO++ is significantly stabler to train than standard FPO, and can achieve competitive perfor-
mance when compared to Gaussian PPO baselines. We analyze the learned policy distributions,
which reveal that FPO++ captures interpretable cross-action correlations during training. We fur-
ther validate these results through zero-shot sim-to-real transfer, deploying FPO++ policies trained
entirely in simulation to two physical humanoid robots (Unitree G1 and Booster T1). To facili-
tate further research, we will provide open-source implementations of FPO++ along with training
configurations for all tasks.

2 IMPROVED FLOW POLICY OPTIMIZATION

We introduce FPO++: an updated version of the FPO algorithm that stabilizes training and improves
performance in challenging, real-world robotics tasks. To present FPO++, we first summarize the
flow matching policy gradient framework. We then discuss the failure modes we observed in naive
FPO implementations, followed by specific updates made in FPO++.

1Project webpage: https://fpocontrol.github.io/
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2.1 PRELIMINARIES

Policy Gradients and PPO. In on-policy reinforcement learning, rollouts in the form of per-
timestep observation, action, and reward tuples (ot, at, rt) from a policy πθ(at | ot) are used to
update the policy to maximize expected return. The dominant approach for achieving this is Prox-
imal Policy Optimization (PPO) (Schulman et al., 2017), which applies an on-policy trust region
using a clipped likelihood ratio:

max
θ

Eat∼πθold (at|ot)

[
min

(
r(θ)Ât, clip(r(θ), 1− εclip, 1 + εclip)Ât

)]
, (1)

where Ât is an advantage estimate (Schulman et al., 2015b) and r(θ) is the likelihood ratio,

r(θ) =
πθ(at | ot)
πθold(at | ot)

. (2)

PPO is popular because it is simple to implement and provides strong empirical performance. It
also inherits the advantages of general policy gradient methods, requiring differentiability only from
action likelihoods and not from a reward model or environment dynamics.

Flow Policy Optimization (FPO). The goal of the FPO (McAllister et al., 2025) algorithm is to
enable PPO-style training of policies parameterized as flow models (Lipman et al., 2023). While
likelihoods under the distribution captured by a flow model can be estimated (Skreta et al., 2025),
doing so in a reinforcement learning setting is computationally prohibitive. To address this, FPO
replaces the PPO likelihood ratio r(θ) with a surrogate,

r̂FPO(θ) = exp
(
L̂CFM,θold(at; ot)− L̂CFM,θ(at; ot)

)
, (3)

where L̂CFM,θ(at; ot) is a Monte Carlo estimate of the conditional flow matching (CFM) loss.

This formulation enables PPO-style training of expressive flow-based policies, and can be applied
in a way that mirrors PPO’s clipped objective:

max
θ

Eat∼πθ(at|ot)

[
min

(
r̂FPO(θ)Ât, clip(r̂FPO(θ), 1− ϵ, 1 + ϵ)Ât

)]
. (4)

Intuitively, FPO’s ratio approximation uses CFM loss differences to approximate action log-
likelihood differences; as discussed by McAllister et al. (2025), this construction can be justified
by interpreting the CFM loss as a variational bound. The final objective (Equation 4) then uses
advantage estimates to shift probability flow toward higher-reward actions.

Conditional flow matching loss. To estimate CFM losses, FPO first draws Nmc random noise
ϵi ∼ N (0, I) and flow step τi ∈ [0, 1] samples for each action at. Multiple noised actions are then
computed using an interpolation schedule defined by τi,

aτit = (1− τi)at + τiϵi (5)
Squared errors are computed and averaged for the policy’s velocity predictions v̂θ,

L̂CFM,θ(at; ot) =
1

Nmc

Nmc∑
i

ℓθ(at, τi, ϵi; ot) (6)

ℓθ(at, τi, ϵi; ot) = ∥v̂θ(aτit , τi; ot)− (at − ϵi)∥22 . (7)
These losses can then be used in the FPO ratio approximation (Equation 3) for flow policy updates,
which aims to decrease CFM losses for actions with positive advantages and increase CFM losses
for actions with negative advantages.

While the standard FPO formulation succeeds in synthetic benchmarks (McAllister et al., 2025), we
found that it required refinements to achieve reliable performance in more difficult tasks.

2.2 FLOW POLICY FAILURE MODES

We observed that naive FPO implementations have two common failure modes when applied to
more difficult robot control tasks. We show examples of these failure modes in Figure 1, and provide
descriptions below.
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Figure 1: FPO failure modes. We found that naively applying FPO to more difficult reinforcement
learning tasks often results in instabilities during training. (a) Sudden collapse in episode returns.
(b) Fast initial learning, followed by gradual decay. (c) Stable training using FPO++.

Policy collapse during training. FPO implementations that achieve high rewards on DMC
tasks (Tassa et al., 2018) encounter frequent instabilities when applied to more challenging robot
locomotion tasks. This can be characterized by large drops in average training returns, which is
often then followed by floating-point overflow. Instabilities would irrecoverably halt training across
tasks, even after tuning hyperparameters like learning rate, clip threshold, weight decay, and nor-
malization strategies.

Gradual decay after returns peak. As policy learning progresses, we typically hope to see steady
increases in average training returns. This should happen until an optimal policy is found; after-
wards, policy performance should plateau. While initial FPO rewards often peaked faster than PPO
rewards, we found that policy performance sometimes began to decay after this peak. We observed
that this happens as a result of entropy collapse in FPO policies. If the policy’s entropy is too low to
explore effectively, rewards begin to decay because each sampled action carries a small approxima-
tion error from Euler integration, which accumulates across policy updates.

2.3 FPO++

FPO++ proposes a set of changes to FPO for (1) reducing the variance of gradients during training,
(2) regularizing entropy of action distributions, and (3) sampling smoother actions at test-time. We
find that these changes mitigate the failure modes discussed in Section 2.2, while improving overall
performance for converged policies.

Increasing effective batch size. Unlike Gaussian policies that compute a single likelihood per
action, FPO estimates CFM losses by averaging over multiple (τi, ϵi) samples. In the standard FPO
framework (McAllister et al., 2025), this average is performed before the exponential, producing a
single ratio per action:

r̂FPO(θ) = exp

(
1
N

N∑
i=1

(
ℓθold(at, τi, ϵi; ot)− ℓθ(at, τi, ϵi; ot)

))
. (8)

In the context of PPO-style clipping, an important characteristic of this formulation is that ratios are
clipped after averaging across samples. For a given action, this means that either all or no samples
are clipped. In FPO++, we instead compute ratios on a per-sample basis:

r̂
(i)
FPO(θ) = exp

(
ℓθold(at, τi, ϵi; ot)− ℓθ(at, τi, ϵi; ot)

)
. (9)

Each (τi, ϵi) pair therefore contributes its own ratio, with the same advantage Ât shared across all
samples. Clipping is applied independently to each ratio, which provides a finer-grained trust region
than the original per-action formulation.

This modification is motivated by decreasing gradient variance, but it comes at the cost of bias.
Because the exponential function is convex, note that

exp

(
1
N

N∑
i=1

xi

)
≤ 1

N

N∑
i=1

exp(xi). (10)

The per-sample formulation is therefore an upper bound on the per-action ratio. Empirically, we
find that this slows down initial learning, but leads to higher and more stable final policy returns.

3
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Entropy-preserving trust region (ASPO). We found that the stability of FPO training can be
improved significantly by adjusting its trust region implementation. In FPO++, we adopt an asym-
metric trust region inspired by Yu et al. (2025) that we refer to as Asymmetric SPO (ASPO). We use
standard PPO clipping positive advantages; for negative advantages, we adopt the more constrained
Simple Policy Optimization (SPO) objective proposed by Xie et al. (2024):

max
θ

Eat∼πθold
(at|ot)

[
r(θ) Ât − |Ât|

2 εclip
(
r(θ)− 1

)2]
(11)

Like the asymmetric design proposed by (Yu et al., 2025), the SPO objective we use for negative
advantages preserves entropy in the action distribution by providing gradient signals that discourage
over-aggressive likelihood decreases. We find empirically that this is critical for stability in FPO++.

The SPO objective also reduces gradient variance. PPO clipping zeros out gradients for samples
that pass the trust region, which leads to increasingly sparse and noisy updates. In contrast, the SPO
objective retains gradients for all samples that it is applied to (Xie et al., 2024).

Improving numerical stability. The FPO surrogate ratio (Eq. 3) involves exponentiating differ-
ences of squared CFM losses. We found this operation to be the source of numerical problems in
FPO: loss outliers in the (τi, ϵi) sampling process can easily cause instabilities after being squared
and then exponentiated. We address this with two steps. First, we replace the L2 conditional flow
matching objective with a robust Huber loss:

ℓHuber
θ (at, τi, ϵi; ot) = ρδ (v̂θ(a

τi
t , τi; ot)− (at − ϵi)) , (12)

where the Huber kernel ρδ is defined as

ρδ(x) =

{
1
2∥x∥

2
2, if ∥x∥2 ≤ δ,

δ
(
∥x∥2 − δ

2

)
, if ∥x∥2 > δ.

(13)

Second, we apply a gradient-preserving clamping operator ϕ to the CFM loss difference:

ϕclamp
∆ (x) = x+ stopgrad

(
clamp(x,−ξ, ξ)− x

)
. (14)

We empirically verify the importance of both the Huber kernel and clamping in our experiments.

2.4 FINAL FPO++ OBJECTIVE

We now summarize the complete FPO++ algorithm by combining the training modifications de-
scribed above. The key differences from vanilla FPO are:

1. Ratios are computed per-sample rather than per-action, increasing effective batch size.
2. We use the SPO (Xie et al., 2024) surrogate objective for negative advantages.
3. The CFM loss uses a Huber kernel with clamping to improve numerical stability.

4. At test-time, actions are sampled by initializing flow integration from ϵ = 0⃗.

Formally, for each action at with advantage Ât, we draw Nmc Monte Carlo pairs (τi, ϵi). We com-
pute the robust CFM loss using each pair:

ℓHuber
θ (at, τi, ϵi; ot). (15)

The final FPO++ objective is then

max
θ

Eat∼πθold (at|ot)

[
1

Nmc

Nmc∑
i=1

ψASPO

(
r̂
(i)
FPO(θ), Ât

)]
, (16)

where the per-sample ratio is

r̂
(i)
FPO(θ) = exp

(
ϕclamp
∆

(
ℓHuber
θold

(at, τi, ϵi; ot)− ℓHuber
θ (at, τi, ϵi; ot)

))
, (17)

and the ASPO trust region objective is defined piecewise:

ψASPO(r, Ât) =


min

(
r Ât, clip

(
r, 1− εclip, 1 + εclip

)
Ât

)
, Ât > 0,

r Ât −
|Ât|
2 εclip (r − 1)2, Ât ≤ 0.

(18)

We empirically verify this formulation in our experiments.

4
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Figure 2: Stability. We plot episode returns (y-axis) over training steps (x-axis) for FPO and FPO++;
the latter is significantly more stable to train.
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Figure 3: Ablation on ratio approximation. We replace the ratio proposed by FPO with a biased
but lower-variance alternative.
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Figure 4: Ablation on trust region objective. We compare replacing FPO++’s asymmetric clipping
objective with standard PPO-style clipping and an SPO (Xie et al., 2024) trust region. FPO++
balances training speed and stability, while converging to the highest reward across tasks.

3 EXPERIMENTS

The goal of our experiments is to validate and evaluate FPO++ on real robotics problems. To ac-
complish this, we train policies for both legged locomotion and humanoid motion tracking.

We structure our experiments as follows. (i) We begin by evaluating policy learning from scratch
using simulated locomotion tasks, on both quadrupedal and bipedal robots (Section 3.1). (ii) We
ablate design decisions, including the asymmetric trust region objective, and per-sample ratio. (iii)
We analyze the policy distribution that FPO++ learns. (iv) Finally, we show that FPO++ trained in
simulation can be zero-shot deployed to real humanoid robots.

3.1 LOCOMOTION BENCHMARKING

To evaluate the characteristics of FPO++, we begin by training FPO++, FPO, and Gaussian PPO
policies using the standard IsaacLab (Mittal et al., 2023) velocity-conditioned robot locomotion
environments. We include results for four simulated robots: Unitree Go2, Boston Dynamics Spot,
Unitree H1, and Unitree G1. Results and analysis are discussed below; hyperparameter sweeping
procedures and implementation details are documented in the appendix.
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Figure 5: ASPO ablation. We visualize the flow field density for a single action dimension. A
vanilla FPO policy trained with a standard PPO trust region is shown at its peak reward (a) and after
its performance has started to degrade (b). The narrowing of the distribution in (b) illustrates an
entropy collapse, leading to instability. In contrast, our FPO++ policy is shown at a checkpoint with
a reward level similar to the baseline’s peak (c) and at its final, higher-reward converged state (d).
FPO++ maintains a wider, more exploratory distribution, demonstrating how its asymmetric trust
region effectively regularizes entropy and prevents policy collapse.
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Figure 6: Comparison against Gaussian PPO. We compare FPO++ training curves against PPO;
FPO++ compares favorably.

FPO++ trains stably. Figure 2 reports training curves averaged over 5 seeds. We observe that
standard FPO struggles significantly in these tasks: while rewards increase at the beginning of train-
ing for quadruped locomotion tasks, policies consistently end up collapsing. In contrast, FPO++
stably solves all locomotion tasks.

Ratio approximation ablation. A primary difference between FPO++ and FPO is an updated
ratio approximation. We evaluate the effect of this in Figure 3. The original FPO approximation
converges more slowly and often leads to unstable training, while the FPO++ variant, although in-
troducing a small bias, results in decreased variance in gradient estimation that improves the training
stability. The reduced variance is especially important in the later stage of training, when the policy
has low entropy and high gradient variance is more likely to cause collapse, as the baseline shows.

Trust region ablation. To evaluate the effectiveness of different trust region objectives, we com-
pare their learning curves in Figure 4. Replacing the asymmetric clipping objective with PPO-style
clipping results in slightly faster early-stage learning but leads to instability in later training. On the
other hand, adopting the objective from SPO (Xie et al., 2024) improves stability but significantly
slows down progress. In contrast, FPO++, which employs an asymmetric trust region, achieves both
stability and efficiency throughout training.

To better understand the differences in training performance, we examine how policy distribution
progresses during training, as shown in (Figure 5a–d). We see that vanilla FPO with the standard
PPO trust region produces highly centered action distributions, leading to entropy collapsing and
performance deteriorating over time (Figure 5a–b). In contrast, FPO++ maintains a broader, more
exploratory distribution even after convergence (Figure 5c–d), contributing to stable and robust per-
formance. This behavior is driven by the asymmetric trust region, which implicitly regularizes
entropy and prevents collapse. These dynamics align with the learning curves in Figure 4, where
FPO++ outperforms PPO and vanilla FPO by preserving exploration and ensuring training stability.
Notably, despite these differences in training stability, both the vanilla FPO and FPO++ policies
learn a seemingly Gaussian exploration strategy.
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(a) (b) (c) (d) (e)

Figure 7: FPO++ action distributions in H1 humanoid locomotion. We visualize the correlations
between joints learned by the policy. Initially, the policy exhibits uncorrelated actions, similar to
a diagonal Gaussian policy. In contrast, the converged policy (b) learns significant off-diagonal
correlations, demonstrating its ability to capture complex dependencies between action dimensions.
By Sampling the generation process, we can visualize FPO++ policy distributions across joint pairs:
(c) positive, (d) uncorrelated, and (e) negative. As expected, right hips correlate positively and left
hips negatively, reflecting reciprocal leg motion in walking, while shoulders show little correlation,
consistent with their weaker role.

Comparison against Gaussian PPO. We compare FPO++ training curves against Gaussian PPO
training curves in Figure 6. While outperforming Gaussian PPO is not the purpose of this work,
we nonetheless find that FPO++ achieve competitive training returns. We note that one limitation of
FPO++, however, is wall-clock time: FPO++ is slower to train than Gaussian PPO because backprop
is required through each CFM Monte Carlo sample. The runtime hit for reported experiments is
typically around 20%: for G1 locomotion on an L40S GPU, our Gaussian PPO baseline reaches a
return of 25 in 19 minutes. FPO++ experiments required 23 minutes to reach the same return. Future
improvements to FPO++ may explore adaptive sampling techniques to accelerate training without
sacrificing policy performance.

Analyzing FPO++ policy distributions. A key advantage of flow-based models is the ability to
represent complex distributions. To understand what FPO++ learns in practice, we analyze the
resulting policy distribution in the locomotion task by taking multiple samples at fixed observations
and visualizing correlations between actions dimensions. We find interpretable correlations, which
are visualized and discussed in Figure 7.

Figure 8: FPO++ policy deployment on Booster T1 robot. We deploy a joystick-conditioned
locomotion policy to the Booster T1 humanoid robot.

FPO++ PPO

Return 38.4± 0.6 37.4± 1.1
Episode Length 452.5± 5.2 475.4± 9.6

Table 1: Motion tracking metrics. We report training return and episode length statistics from
FPO++ and Gaussian PPO, for BeyondMimic (Liao et al., 2025)-based motion tracking.

3.2 SIM-TO-REAL WITH FPO++

We validate the real-world capabilities of FPO++ by deploying policies on two distinct hardware
platforms: a Booster Robotics T1 humanoid for a velocity-conditioned locomotion task and a Uni-

7
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(a) FPO++ motion tracking with a Unitree G1 robot. We train BeyondMimic (Liao et al., 2025)-style motion
tracking using a flow matching policy, which is deployed directly to the G1 robot.

(b) Robustness to Perturbations: The FPO++ policy exhibits strong robustness against external forces
and pushes, maintaining balance and continuing to track the reference motion despite significant distur-
bances.

Figure 9: Sim2real deployment. FPO++ motion tracking policies deployed on a Unitree G1 robot.

tree G1 humanoid for motion tracking. Policies are trained in simulation and transferred zero-shot
to physical robots.

T1 locomotion policy. The locomotion policy was trained using a modified version of the Hu-
manoidVerse (LeCAR-Lab, 2023) framework, which uses IsaacGym (Makoviychuk et al., 2021) for
simulation. We find that FPO++ policies can learn robust gaits; results are shown in Figure 8. Videos
can be found on our project webpage.

G1 motion tracking policy. The motion tracking policy was trained by adapting the Beyond-
Mimic (Liao et al., 2025) codebase, which is built on IsaacLab framework (Mittal et al., 2023); we
replaced its PPO objective and MLP actor with the FPO++ objective and a flow model, respectively.
We show results in Figure 9.

Sampling step count. Flow policies trained by FPO and FPO++ are compatible with any choice of
sampler schedule. We found that a small number (4 or 8) of flow sampling steps could be used for
the ODE integration to generate actions with acceptable latency.

Smoother test-time actions. Reinforcement learning with policy gradient methods requires
stochastic policies during training: the policy outputs a distribution from which actions are sampled,
enabling exploration. At test-time, however, it is standard to switch to a deterministic inference strat-
egy. For Gaussian policies, this typically corresponds to taking the mean action. We found a similar
strategy beneficial for flow policies. During training, initial noises are drawn from ϵ ∼ N (0, I); at
test-time, we instead initialize flow integration from ϵ = 0⃗. We found that this inference procedure
produces smoother, more stable actions that qualitatively improves performance across tasks.

4 RELATED WORK

Flow-based Policies for Robot Control. Recently, denoising diffusion models (Chi et al., 2024b;
Ankile et al., 2024; Reuss et al., 2023) have shown success in robot manipulation tasks, where the
policies are trained with human demonstrations (Mandlekar et al., 2021) through supervised learn-
ing. In these approaches the policy is modeled using diffusion or flow-based models, an expressive
class of generative models capable of learning multi-modal distributions. π0 (Black et al.) adopts a
diffusion model for large-scale VLA-based manipulation, and π0.5 (Black et al., 2024) later uses a
flow matching model. Flow matching (Lipman et al., 2023; 2024) is a simpler alternative to denois-
ing diffusion, a generalization of diffusion and normalizing flow-based generative models, which

8
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is easy to train and have achieved competitive quality in image domain (Esser et al., 2024; Black
Forest Labs, 2024; Kuaishou, 2024; Wang et al., 2025; Brooks et al., 2024; Kong et al., 2024).
Recently, Streaming Flow Policy (Jiang et al., 2025) proposed to turn the flow process over ac-
tion trajectories into a streaming flow in action space, enabling faster and reactive policy. In this
paper, we treat diffusion and flow policies as a single family of iterative generative policies. Go-
ing beyond manipulation, Diffuse-CLoC (Huang et al., 2025) proposes a guided diffusion policy for
physics-based, whole-body control via supervised learning, in which a single diffusion model jointly
generates (state, action) horizons to enable steerable, look-ahead control. BeyondMimic (Liao et al.,
2025) extends this line to a real humanoid by performing an offline distillation from multiple motion
tracking expert policies to a single diffusion policy. All of these existing flow-based and diffusion
policies rely on human demonstrations or distillation from expert controllers. In contrast, we pro-
pose FPO++, an on-policy reinforcement learning algorithm that is trains flow policies from scratch
in a reinforcement learning setting.

Online Reinforcement Learning for Flow-based Policies. In online RL for robot control,
DPPO (Ren et al., 2024) treats the denoising process as a Markov Decision Process (MDP), en-
abling policy gradient updates by leveraging the tractable Gaussian likelihood at each denoising
step, but increasing a task horizon as a result. ReinFlow (Zhang et al., 2025b) applies a similar ap-
proach to flow policies by injecting learnable noise into the deterministic flow path, converting it into
a discrete-time Markov process for likelihood computation. NCDPO (Yang et al., 2025) reformu-
lates the diffusion process as a noise-conditioned deterministic policy and backpropagates gradients
through all diffusion timesteps, rather than treating diffusion timesteps as an MDP to not increase a
task horizon and make credit assignment stable. GenPO (Ding et al., 2025) leverages exact diffusion
inversion to construct invertible action mappings and introduces a “doubled dummy action” mecha-
nism that enables invertibility via alternating updates, yielding tractable log-likelihoods. In contrast,
FPO (McAllister et al., 2025) offers a simpler and more direct alternative. Specifically, FPO does
not extend the task horizon, require backpropagation through the generative steps, or depend on
invertible architectures, and it is agnostic to the choice of sampling method. This streamlined de-
sign makes it particularly effective for challenging control problems. FPO++ is the first method to
demonstrate successful zero-shot sim-to-real transfer for a humanoid robot using a flow-matching
policy trained from scratch with on-policy RL.

5 CONCLUSION

In this paper, we introduce a practical training recipe for training flow policies for real robotic sys-
tems. We demonstrate that FPO++ can effectively train policies for complex legged robots, which
can also successfully transfer from simulation to real hardware. We hope this existence proof helps
spur further research in this area. To establish reliable training foundations, we intentionally keep
the flow policy architecture simple, focusing on algorithmic stability rather than architectural inno-
vations. Future work may explore policies conditioned on more observation state history, training
flow policies that predict multiple future actions (action chunking), and fine-tuning of behavior-
cloned policies. We hope our findings and open-source implementation will facilitate progress in
these endeavors.
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A APPENDIX

Figure 10: Robots used for experiments. We train policies for the Go2, Spot, H1, and G1 robots
in simulation. We deploy policies to physical G1 and Booster T1 robots.

A.1 DETAILS OF EXPERIMENTS

Hyperparameters. All policies use 3-layer MLPs with 256 hidden units for the actor and 768 hidden
units for the critic. Quadruped policies are trained for 1500 steps, and humanoid policies for 2000
steps. For FPO, clipping parameters are set to 0.05 (quadrupeds) and 0.03 (humanoids). For PPO,
we adopt the default configurations provided by rsl rl, with additional sweeps over clipping
parameters in {0.1, 0.15, 0.2, 0.25}.

A.2 FURTHER RELATED WORK

Policy gradients for robot control. Policy gradient methods, such as Trust Region Policy Op-
timization (TRPO) (Schulman et al., 2015a) and Proximal Policy Optimization (PPO) (Schulman
et al., 2017) have demonstrated remarkable success across diverse robot control tasks. They enable
quadrupeds to recover from falls on challenging terrain (Lee et al., 2019), achieve locomotion from
pure proprioception without exteroceptive sensing (Lee et al., 2020), and perform agile, high-speed
maneuvers (Hwangbo et al., 2019). More recently, Liu et al. (2025) have shown PPO can scale
to generalist locomotion across diverse legged morphologies.Beyond locomotion, policy gradients
drive example-guided imitation of character skills (Peng et al., 2018), contextual humanoid behav-
iors such as terrain traversal and stair climbing from monocular video (Allshire et al., 2025), and
hierarchical humanoid planning for tasks like table tennis rallies (Su et al., 2025). In manipulation,
they have enabled solving a Rubik’s cube with a humanoid hand via automatic domain random-
ization (Akkaya et al., 2019) and vision-based dexterous in-hand manipulation under large-scale
randomization (Handa et al., 2022). Despite these successes, PPO variants in continuous control are
designed for Gaussian policies, whose modeling capabilities are fundamentally limited. In this work,
we introduce an RL training recipe for flow-based policies—policies that leverage flow models, an
expressive class of generative models—within a PPO-like framework that can be trained stably on
robot tasks.

Flow-based offline RL. Within reinforcement learning, many offline methods have explored using
iterative generative models to represent policies. A common strategy is to utilize advantage weighted
regression (AWR) Peng et al. (2019), which modulates a diffusion or flow-based policy by assigning
weights to transition samples based on their learned action-values (Kang et al., 2024; Lu et al.,
2023; Ding et al., 2024; Zhang et al., 2025a). Another popular approach involves Q-learning with
a generative model loss (Wang et al., 2022; He et al., 2023; Ding & Jin, 2023; Zhang et al., 2024;
Ada et al., 2024), which directly maximizes the value function, using reparameterized gradients
while regularizing the policy with a diffusion or flow-matching loss. In contrast to these methods,
FQL Park et al. (2025) trains a one-step policy that avoids backpropagation through time (BPTT),
thereby circumventing the associated stability issues and suboptimal performance. Our method,
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built on FPO (McAllister et al., 2025), is conceptually similar to AWR in its use of an advantage-
weighted flow-matching loss. However, FPO is fundamentally distinct as it is an on-policy algorithm
that learns from direct environment interaction rather than a static offline dataset. Moreover, FPO
bypasses the need for BPTT without distillation from a separate behavior cloning model like FQL.
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