
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

DO LLMS LEARN GRAPH REPRESENTATIONS WITH-
OUT CONTEXT?

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Language Models (LLMs) are trained on next-word prediction yet often ap-
pear to acquire structured knowledge beyond surface statistics. A central question
is whether such internal representations emerge during zero shot learning with-
out additional cues or only when explicit context is provided. We address this by
training GPT-style models on paths sampled from synthetic and real-world graphs
under two regimes: in-context learning, where subgraph information is provided,
and zero shot learning, where only query nodes are given. We evaluate models
through adjacency matrix reconstruction and linear probing of hidden activations.
We find evidence that in-context learning models consistently recover graph struc-
ture and encode neighborhood information, while zero shot learning models fail
to develop comparable representations.

1 INTRODUCTION

Large language models are neural networks that are based on the transformer architecture, these
models are trained on the input sentences on a simple "next-word-prediction" task 1Vaswani et al.
(2023a); Brown et al. (2020c); Devlin et al. (2019). The models take user queries as input and
generate predictions in response.

Two major techniques are used when generating predictions from these models: (1) In-context learn-
ing, where few-shot examples are provided alongside the query to guide the model toward better
predictions, and (2) Zero shot learning, where only the input query is provided to the modelBrown
et al. (2020b); Yang et al. (2024); Weber et al. (2023); Min et al. (2022); Han et al. (2023); Gozeten
et al. (2025).

Despite being trained on such a simple task, these models demonstrate remarkable capabilities in
understanding context from natural language text data. These are models are used for a plethora of
tasks, including solving logic puzzles, writing and debugging computer programs, and answering
general user queries Abdou et al. (2021); Li et al. (2021).

Generally in-context learning approaches have proven to provide better predictive capabilities than
the zero shot learning approaches Wei et al. (2023); Brown et al. (2020a); Agarwal et al. (2024).
However, how these capabilities emerge in these models while being trained on a simple next word
prediction task, remains unclear. There are two main theories that attempt to explain working of
these models : 1) These models only understand correlation of words in the sentences used in the
training data, thus only learning the surface level statistics Bender et al. (2021). 2) These models do
more than learn the surface level statistics and develop an internal representations for very simple
concepts, such as color, direction, game state etc Li et al. (2024); Karvonen (2024); Vafa et al.
(2024).

The world representation theory has primarily been explored through in-context learning models,
where context such as partial game states is provided alongside the input Li et al. (2024); Karvonen
(2024). In this scenario, it is difficult to determine whether learned representations emerge from the
provided context or from the underlying training data.

1Modern LLMs may also be trained with reinforcement learning techniques, but this aspect is beyond the
scope of this study. LLMs trained solely on next-word prediction also exhibit capabilities such as solving logic
puzzles, reasoning, Wei et al. (2023); Brown et al. (2020a); Agarwal et al. (2024)

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

In this paper we investigate whether large language models develop internal representations of sim-
ple graph structures during zero shot learning. We study this problem by training models using
the two approaches described above on the sequences generated from a graph. Then employ various
probing techniques to determine whether the models have constructed internal graph representations
from the training data.

To assess whether models have learned internal representations, we use the model’s predictive ca-
pabilities to generate the adjacency matrix of the underlying graph, which we then compare it to the
original adjacency matrix of the graph to calculate the reconstruction errors by the model. We also
use linear probes to understand whether the activations of the trained model contained representation
of the underlying graph.

Reconstruction errors and probing accuracy provide complementary perspectives on understanding
the representation learned by the model. Reconstruction evaluates whether the model’s outputs can
recover the adjacency matrix, while probing tests whether hidden activations encode edge informa-
tion independent of the output.

We observe that models trained using in-context learning produce fewer errors and are able to re-
cover the internal structure of the graph, compared to the model trained using the zero shot learning
approach. We find no evidence that the zero shot learning models learn internal representation of
the underlying graph structure from training data. These findings are interesting and timely since
they demonstrate that these models are only able to reconstruct the underlying structure when it is
explicitly provided in the input.

2 RELATED WORK

Large Language Models : Large Language Models (LLms) are non-linear machine learning mod-
els that are built on the transformer architecture Vaswani et al. (2023b). These are trained on a huge
corpora of dataset and have demonstrated remarkable capabilities to perform various tasks such as
question answering, summarization, puzzle solving etc Devlin et al. (2019); Brown et al. (2020c).
Their ability to generalize from patterns in data has made them a focal point of research in natural
language processing and machine learning.

World-Representation in LLMs: Despite their success, LLMs are largely blackboxes and un-
derstanding their internal mechanisms remains a key challenge. One prominent research direction
is the study of world-representations-the extent to which models learn internal representations of
structured environments from the training data. In such studies, LLMs are trained on sequences
generated from controlled environments, such as game boards, and researchers analyze the learned
representations. Notable examples include investigations into games like Othello, Chess, and sim-
plified spatial reasoning tasks Karvonen (2024); Li et al. (2024); Vafa et al. (2024). These studies
explore whether LLMs encode underlying rules, states, or other abstract features of the environment.

In-Context Learning and Zero Shot Learning : Predictions from LLMs are typically generated
using either in-context learning or zero shot learning approaches.

1) In context learning : In this setting, the model receives both the query and a few input
examples. These examples guide the model toward more accurate predictions and reduce errors
Brown et al. (2020b); Yang et al. (2024); Weber et al. (2023); Min et al. (2022); Han et al. (2023).
In-context learning is often used to study internal representations: for instance, providing partial
game states along with next moves allows researchers to analyze attention patterns and reconstruct
the game-state representations learned by the model Li et al. (2024); Karvonen (2024).

2) Zero Shot Learning: Here, the model is trained on input sequences, but during predic-
tion, no additional examples are provided. While simpler to deploy, this approach generally yields
lower predictive accuracy than in-context learning and provides fewer cues for extracting internal
representations Gozeten et al. (2025).

Probing : Probing is a standard methodology to investigate whether models encode specific feature
or concepts in its activations. A probe is typically a classifier or regressor that takes the activations
of a trained model as input and predicts a feature of interest, such as part-of-speech tags, syntactic
structure, or game state Alain and Bengio (2016); Belinkov (2021); Krause et al. (2020). Probing
has been widely used to explore both linguistic knowledge in LLMs and abstract representations in

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

structured environments, providing insight into what information is encoded and where it resides
within the network.

3 PRELIMINARIES

3.1 GENERATING TRAINING AND VALIDATION DATA FROM THE GRAPH

A non-weighted graph is defined as G = (V,E) where V are the vertices of the graph and E
represents the edges between the vertices. To generate training data, we generate random paths from
the graph. Each sequence starts with the S (the start node of the path), D end node of the path and
L length of the path, followed by the corresponding path. The validation dataset is generated by
sampling sub-paths from the sequences while ensuring that no (S,D) pair appears in both training
and validation datasets.

To encourage the model to learn when paths do not exist, we also include (S,D) pairs with no valid
path of length L in both training and validation datasets. In such cases, instead of providing a path,
we insert a special [NP] token, which signals the absence of a valid connection between the nodes.
For in-context learning, the model input additionally includes a subgraph relevant to the current
path. Full details on query generation are provided in the Appendix.

In this setup, the tuple (S,D,L) serves as the query, and the corresponding path or the special [NP]
token when no such path exists serves as a response to the query.

3.2 COMPUTING ERRORS DURING RECONSTRUCTION

Our models are trained to predict paths between node pairs in the graph. The predictions can be
used to reconstruct an adjacency matrix, which serves as a proxy for the internal representation of
the graph learned by the model.

For a given path length L, we sample N (S,D) pairs not present in the training dataset2 and gen-
erate predictions for each pair. These predictions are used to construct the adjacency matrix. The
reconstructed matrix is then compared with the original adjacency matrix to quantify errors:

gte: edges present in the original graph but absent in the reconstruction (indicating gaps or biases).

pre: edges present in the reconstruction but absent in the original graph (indicating hallucinations).

Ideally, both gte and pre should be close to zero, indicating accurate reconstruction without bias or
hallucination.

A direct comparison against the full original adjacency matrix may overestimate errors, because
sampled paths do not necessarily cover every edge of the graph. To address this, we construct a
reduced “reference” adjacency matrix that contains only the edges present in the training data. The
error metrics are then computed relative to this reduced matrix. This adjustment ensures that the
evaluation measures how well the model captures the graph structure that was actually presented
during training, rather than penalizing it for missing edges it had no opportunity to learn.

3.3 PROBING INTERNAL STATE

Probing allows us to determine whether specific structural information is encoded in the intermediate
layers of a trained model, independently of its output predictions.

We focus on the existence of an edge between two nodes. Given a pair of nodes (S,D), the probe
is trained to predict whether an edge exists between S and E, i.e., whether (S,D) ∈ {edges}. The
ability of a probe to recover this information from hidden activations indicates that the model has
encoded neighborhood structure.

A linear probe can only succeed if the relevant information is linearly separable in the model’s
activation space. This ensures that high probe accuracy reflects information already present in the
representations, rather than capacity of the probe itself.

2Details on N are provided in the Appendix.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

1 2 3 4 5 6 7 8 9
Path Length

0.06

0.08

0.10

0.12

0.14

0.16

0.18

pr
e

a

b

(a)

1 2 3 4 5 6 7 8 9
Path Length

0.00

0.02

0.04

0.06

0.08

gt
e

a

b

(b)

1 2 3 4 5 6 7 8 9
Path Length

0.65

0.70

0.75

0.80

0.85

0.90

Co
rre

ct
 P

at
h

Pr
ed

ict
io

n

a

b

(c)

0.0 0.2 0.4 0.6 0.8 1.0
Layer Number

0.5

0.6

0.7

0.8

0.9

1.0

Va
lid

at
io

n
Ac

cu
ra

cy

b

a

(d)

Figure 1: Measure pre and gte for the toy graph dataset v pathlength; 1c shows the prediction
accuracy of the two models vs the path length in the graph; 1d shows the probe accuracy of the two
models vs the layer number in the graph;

1 2 3 4
Path Length

0.0

0.1

0.2

0.3

0.4

0.5

pr
e

a

b

(a) Dublin dataset.

1 2 3 4 5 6
Path Length

0.0

0.1

0.2

0.3

0.4

0.5

0.6

pr
e

a

b

(b) Cora dataset

1 2 3 4 5 6
Path Length

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

pr
e

a

b

(c) Amazon dataset

1 2 3 4 5 6
Path Length

0.0

0.1

0.2

0.3

0.4

0.5

0.6

pr
e

a

b

(d) Facebook dataset

Figure 2: Measured pre Various datasets.

We construct a balanced dataset of positive pairs ((S,D) ∈ {edges})) and negative pairs ((S,D) /∈
{edges}), sampled from graphs disjoint from the training set. The dataset is split into training and
validation sets in an 80 : 20 ratio.

For each pair, hidden activations are extracted from every attention layer. A separate linear probe is
trained for each layer to classify edge presence, providing a layer-wise measure of how neighbor-
hood information is represented.

4 PERFORMANCE OF IN-CONTEXT LEARNING VS ZERO SHOT LEARNING

To initially study the performance of in-context Learning and the zero shot learning model we gener-
ate 5 small graphs using networkX 3, containing 10 nodes and 20 edges. The training and validation
data is generated from each graph dataset4. For more details about the training data we refer the
reader to Section-3.1.

We evaluate the following models :

1) In-context learning (Ma) : The model receives the relevant graph as context and is queried
to predict a path between a pair of nodes. For training, each input sequence also includes the full
graph to guide the model’s predictions.

2) Zero Shot Learning (Mb) : The model receives only the pair of query nodes and predict a
path in the graph without any context. This model is trained specifically on a single graph.

Both Ma and Mb are GPT-style transformer models with 2 hidden layers, 8 attention heads, and
an embedding size of 128. The models are trained from scratch with randomly initialized weights
in an auto-regressive fashion for next-word prediction, ensuring no prior knowledge of the graph
structure.

We evaluate the models by computing pre and gte errors as described previously. These metrics
quantify hallucinated edges and missing edges in the reconstructed adjacency matrices, respectively.

3https://networkx.org/
4The training and validation data contains paths from all the graphs.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

1 2 3 4
Path Length

0.00

0.05

0.10

0.15

0.20

0.25

0.30

gt
e

a

b

(a) Dublin dataset.

1 2 3 4 5
Path Length

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

gt
e a

b

(b) Cora dataset

1 2 3 4 5
Path Length

0.150

0.175

0.200

0.225

0.250

0.275

0.300

0.325

gt
e

a

b

(c) Amazon dataset

1 2 3 4 5
Path Length

0.2

0.3

0.4

0.5

0.6

gt
e

a

b

(d) Facebook dataset

Figure 3: Measured gte Various datasets.

0 1 2 3 4 5 6 7 8
Layer Number

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Va
lid

at
io

n
Ac

cu
ra

cy

a

b

(a) Dublin dataset.

0 1 2 3 4 5 6 7 8
Layer Number

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Va
lid

at
io

n
Ac

cu
ra

cy

a

b

(b) Cora dataset

0 1 2 3 4 5 6 7 8
Layer Number

0.75

0.80

0.85

0.90

0.95

1.00

Va
lid

at
io

n
Ac

cu
ra

cy

a

b

(c) Amazon dataset

0 1 2 3 4 5 6 7 8
Layer Number

0.6

0.7

0.8

0.9

1.0

Va
lid

at
io

n
Ac

cu
ra

cy

a

b

(d) Facebook dataset

Figure 4: Measured Classification Accuracy of linear probe for Various datasets. x axis represents
the layer from which the activations were chosen, the y axis represents the accuracy of the linear
probe on validation dataset.

Figures 1a and 1b present the reconstruction errors of both models on the graphs. The results indi-
cate that the two models yield comparable reconstruction errors as well as similar path prediction
accuracy.

Figure 1c illustrates the accuracy of predicting the correct path given the query (S,D,L) as the
path length increases. We observe that Ma achieves slightly higher accuracy than Mb for longer
paths, while their overall performance remains largely comparable. This pattern aligns with the
reconstruction errors, where both models exhibit a similar level of error.

We also train linear probes for the models for various attention layers. The training and validation
data for probes is generated from the graph as described previously. Figure-1d shows the linear
probe accuracy v the path length. We observe the probes for model Ma consistently outperforms
the probes for model Mb.

The high performance of the probe on Ma indicates that the activations of the in-context learning
model encode structural information about the graph - specifically, whether two nodes are neighbors
- whereas the activations of Mb do not contain this information.

The results for model Ma are unsurprising since the relevant graph to the query is provided as input
to model, hence it can be reconstructed by a probe at the initial layers. Interestingly the activations
of model Mb fail to support a reliable reconstruction of the graph structure.

5 PREDICTION PERFORMANCE: SINGLE VS MULTIPLE MODELS

On the synthetic graph, we observed that the in-context learning model Ma produced slightly fewer
errors and achieved higher path-prediction accuracy than the zero-shot learning model Mb, although
the overall performance of the two models was largely comparable. In that setting, the full graph
was provided as context to Ma, making the tasks of reconstruction and path prediction relatively
straightforward.

In contrast, real-world graphs are substantially larger and more complex, making it impractical to
supply the entire graph as input context. Instead, only a small, relevant subgraph is provided. This
change in input fundamentally alters the difficulty of the task: while in Section 4 both models
performed similarly when Ma had access to the full graph, in real-world scenarios the length of
the subgraph context plays a decisive role. In this section, we evaluate the models on real-world
datasets, where only a subgraph relevant to the query is provided as input context. This setup allows

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

us to examine how limiting the context to local subgraphs, rather than the full graph, affects the
in-context learning process.

Datasets

We train and test our models on the following datasets :

CORA Dataset : Cora Citation Network is a directed graph where nodes are scientific papers and
edges represent citations (i.e., paper A → paper B means A cites B). For our experiments we sample
500 nodes from the CORA dataset. We generated 60000 training sequences from the graph.

Dublin Street Map : A real-world directed road network of Dublin, Ireland. We use the Open-
street Map API to extract the graph. For our experiments we sample 500 nodes from the original
map dataset. We generated 60000 training sequences from the graph.

Facebook Social Circle Dataset : A real-world directed graph that dataset consists of ’circles’
(or ’friends lists’) from Facebook. Each node in a graph denotes an individual and an edge between
the individual represent a connection on facebook between the nodes. For our experiments we
sample 500 nodes from the CORA dataset. We generated 60000 training sequences from the graph.

Amazon Co-Purchase Network : A graph crawled from amazon website. It is based on Customers
Who Bought This Item Also Bought feature of the Amazon website. If a product i is frequently
co-purchased with product j, the graph contains an edge from i to j. Each product category provided
by Amazon defines each ground-truth community. For our experiments we sample 500 nodes from
the CORA dataset. We generated 60000 training sequences from the graph.

Training sequences are constructed as described in Section 3.1, capturing paths between node pairs.
In this setting, the context provided to Ma consists solely of a relevant subgraph extracted around
the query nodes. For more details on how the subgraph is generated we refer the reader to the
appendix.

Experiments

Models Ma and Mb are trained on each dataset using the approach described in the previous sec-
tion. Both models have 10 hidden layers, 10 attention heads, and an embedding size of 500 to
accommodate the increased graph complexity.

The adjacency matrix is generated from the predictions of sampled (S,D) node pairs as explained
previously, that is then used to calculate the errors generated by the models.

Figures 2 and 3 show the errors for both models across datasets for various path-lengths. Model Ma

consistently exhibits lower error rates than Mb. This improvement can be attributed to the explicit
subgraph context provided to Ma, which allows it to better capture underlying graph structure and
reduce hallucination. These results demonstrate that in-context learning produces fewer error than
zero shot learning when applied to real-world graphs.

In the previous setting, where the full graph was available as context both models performed sim-
ilarly. However, when only relevant subgraphs are provided, the performance of Ma improves
relative to Mb. This suggests that shorter, localized contexts make in-context learning more effec-
tive when holding the model complexity constant, whereas zero-shot learning fails to take advantage
of the available structural information.

Probing Internal State

We train linear probes for the models for all the attention layers. The training and validation data for
probes is generated from the graph as described previously.

Figure 4 shows the validation accuracy of the linear probe for both models as a function of attention
layer. Across all layers, the probe trained on model Ma consistently outperforms the probe trained
on model Mb. We expected the earlier layers of Ma to achieve good probe accuracy, since the
input graph information is explicitly provided as context. However, we also observe that this signal
propagates through later layers.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

res_section5/dublin_pr-eps-converted-to.pdf

(a)

res_section5/dublin_gt-eps-converted-to.pdf

(b)

res_section5/amazon_gt-eps-converted-to.pdf

(c)

res_section5/amazon_pr-eps-converted-to.pdf

(d)

Figure 5: Measure pre and gte on various other datasets for the model trained on cora dataset. 5a
and 5b shows the pre and gte error for dublin dataset; 5c and 5d shows the pre and gte error for
amazon dataset;

6 NO EVIDENCE FOR MEMORIZATION BY IN-CONTEXT LEARNING

Our previous experiment shows that model Ma outperforms model Mb across various datasets
when only a relevant subgraph is provided. The huge performance improvement is due to the extra
context provided to the model during training and inference. We also wanted to observe whether
Ma is relying on memorizing its training data or actually learning graph processing patterns that
can generalize. To test this, we evaluate the models on paths from a completely different graph: a
model trained on sequences from graph Gs is now tested on a separate graph Gd.

We generate Gd from a new graph dataset and select a subgraph from Gd such that the number of
nodes are similar to that of Gs. We sort the nodes in both graphs by their total degree and then
rename the nodes in Gd to match the degrees in Gs. This way, the graphs are similar in structure but
do not share the same nodes or edges. If Ma had memorized the training data, we would expect its
performance to drop sharply on this new graph.

To reconstruct the adjacency matrix, we again sample N number of (S,E) nodes from the new
graph dataset Gd. We then compare it to the true adjacency matrix of Gd to calculate the prediction
errors (pre and gte).

Figure 5 shows the errors for both models when trained on the CORA dataset and tested on the
Dublin street map and Amazon co-purchase datasets. We see that Ma produces slightly fewer errors
than Mb for shorter paths, but as the path length grows, the errors of both models become similar.
We observe similar results on other dataset pairs, which are provided in the appendix. Fewer errors
for Ma at short path lengths suggests that it is not simply memorizing the training data, instead it is
using the context to generate predictions.

The results suggests that the improved performance of in-context learning comes from using the
provided subgraph during prediction, rather than from memorizing training data. However, when
tested on completely new graphs, performance decreases, suggesting that the model’s ability to
generalize depends on patterns seen in the training graphs and does not fully transfer to graphs with
different structures.

7 SCALING OF IN-CONTEXT LEARNING AND ZERO SHOT LEARNING
MODELS

Scaling is a crucial consideration for evaluating whether the observed behaviors of LLMs persist
as input context or graph size increases. In this section, we study : (1) the effect of enlarging the
subgraph provided as context for in-context learning models (Ma), and (2) the effect of increasing
the size of the training graph for zero shot learning models (Mb).

Both models are trained on synthetic graph datasets generated with networkX, where we vary the
number of nodes in each graph. For every dataset with a fixed node count, models Ma and Mb are
trained. The training and validation sets are constructed using the procedure outlined earlier. For

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

2 5 7 10 12 15 17 20
Number of Nodes

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Path Prediction Accuracy

(a)

2 5 7 10 12 15 17 20
Number of Nodes

0.0

0.1

0.2

0.3

0.4

0.5

Er
ro

r r
at

e

pre
gte

(b)

10 15 20 25 30 35 40 45 50
Number of Nodes

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

Path Prediction Accuracy

(c)

10 15 20 25 30 35 40 45 50
Number of Nodes

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

Er
ro

r R
at

e

pre
gte

(d)

Figure 6: 6a shows the prediction accuracy of the model Ma as the context is varied; 6b shows the
error in prediction of the model Ma as the context is varied; 6c shows the prediction accuracy of
the model Mb as the graph size is varied; 6d shows the error in prediction of the model Mb as the
graph size is varied;

model Ma, we adjust the number of nodes included in the input context, whereas for model Mb,
we adjust the number of nodes in the underlying graph structure.

The models are GPT style models with 2 hidden layers, 8 attention heads and an embedding size of
128 5. The training is carried out in an auto-regressive fashion as explained previously.

Scaling of Context in In-Context Learning (Ma):

Figure 6a illustrates path-prediction accuracy as the size of the subgraph provided in the context
increases, while Figure 6b shows the corresponding reconstruction errors. As the number of nodes
in the context grows, path-prediction accuracy decreases and the proportion of hallucinated edges
(pre) increases. It can be seen that the accuracy of in-context learning model predictions degrades
as the context size increases.

Scaling of Graph Size in Zero shot learning (Mb):

We also examined the effect of increasing the size of an almost linear underlying training graph.
Figures 6c and 6d show that as the graph size increases, prediction accuracy declines and recon-
struction error grows. However, compared to Ma, Mb retains relatively high accuracy even for
larger graphs, indicating that zero-shot learning scales more gracefully with graph size.

The two models exhibit distinct behaviors as the number of nodes increases. In-context learning
models (Ma) show a decline in path-prediction accuracy and an increase in hallucinated edges as the
context size grows, whereas zero-shot learning models (Mb) show decreasing prediction accuracy
and increasing reconstruction error as the training graph size increases.

These findings highlight that both approaches have inherent scaling limitations. For in-context learn-
ing, performance is sensitive to the size of the input context, while for zero-shot learning, perfor-
mance is constrained by the size of the training graph.

8 CONCLUSION

Our findings indicate that current LLMs do not develop robust internal representations of under-
lying graph structures from training data alone. In zero-shot settings, these models produce high
reconstruction errors and show no evidence of internal structure learning. While providing contex-
tual information improves reconstruction and probing accuracy, this demonstrates that the models
primarily rely on the input context rather than forming generalizable, internal world models during
training.

We argue that if these models truly learned internal representations from training data, they should
demonstrate lower reconstruction and probing errors even in zero shot learning settings. Our findings
suggest that current LLMs primarily rely on explicit contextual information rather than developing
robust internal world models during training.

5The trained model had 5.3M parameter

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

REFERENCES

Mostafa Abdou, Artur Kulmizev, Daniel Hershcovich, Stella Frank, Ellie Pavlick, and Anders Sø-
gaard. 2021. Can language models encode perceptual structure without grounding? a case study
in color. arXiv preprint arXiv:2109.06129.

Rishabh Agarwal, Avi Singh, Lei Zhang, Bernd Bohnet, Luis Rosias, Stephanie Chan, Biao Zhang,
Ankesh Anand, Zaheer Abbas, Azade Nova, et al. 2024. Many-shot in-context learning. Advances
in Neural Information Processing Systems, 37:76930–76966.

Guillaume Alain and Yoshua Bengio. 2016. Understanding intermediate layers using linear classifier
probes. arXiv preprint arXiv:1610.01644.

Yonatan Belinkov. 2021. http://arxiv.org/abs/2102.12452 Probing classifiers: Promises, shortcom-
ings, and advances.

Emily M Bender, Timnit Gebru, Angelina McMillan-Major, and Shmargaret Shmitchell. 2021. On
the dangers of stochastic parrots: Can language models be too big?. In Proceedings of the 2021
ACM conference on fairness, accountability, and transparency, pages 610–623.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla
Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sand-
hini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen,
Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher
Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. 2020a.
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-
Paper.pdf Language models are few-shot learners. In Advances in Neural Information Processing
Systems, volume 33, pages 1877–1901. Curran Associates, Inc.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla
Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sand-
hini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen,
Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher
Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. 2020b.
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-
Paper.pdf Language models are few-shot learners. In Advances in Neural Information Processing
Systems, volume 33, pages 1877–1901. Curran Associates, Inc.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal,
Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin,
Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford,
Ilya Sutskever, and Dario Amodei. 2020c. http://arxiv.org/abs/2005.14165 Language models are
few-shot learners.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019.
http://arxiv.org/abs/1810.04805 Bert: Pre-training of deep bidirectional transformers for
language understanding.

Halil Alperen Gozeten, M Emrullah Ildiz, Xuechen Zhang, Mahdi Soltanolkotabi, Marco Mondelli,
and Samet Oymak. 2025. Test-time training provably improves transformers as in-context learn-
ers. arXiv preprint arXiv:2503.11842.

Xiaochuang Han, Daniel Simig, Todor Mihaylov, Yulia Tsvetkov, Asli Celikyilmaz, and Tianlu
Wang. 2023. http://arxiv.org/abs/2306.15091 Understanding in-context learning via supportive
pretraining data.

Adam Karvonen. 2024. http://arxiv.org/abs/2403.15498 Emergent world models and latent variable
estimation in chess-playing language models.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Ben Krause, Akhilesh Deepak Gotmare, Bryan McCann, Nitish Shirish Keskar, Shafiq Joty, Richard
Socher, and Nazneen Fatema Rajani. 2020. Gedi: Generative discriminator guided sequence
generation. arXiv preprint arXiv:2009.06367.

Belinda Z. Li, Maxwell Nye, and Jacob Andreas. 2021. http://arxiv.org/abs/2106.00737 Implicit
representations of meaning in neural language models.

Kenneth Li, Aspen K. Hopkins, David Bau, Fernanda Viégas, Hanspeter Pfister, and Martin Wat-
tenberg. 2024. http://arxiv.org/abs/2210.13382 Emergent world representations: Exploring a se-
quence model trained on a synthetic task.

Sewon Min, Xinxi Lyu, Ari Holtzman, Mikel Artetxe, Mike Lewis, Hannaneh Hajishirzi, and Luke
Zettlemoyer. 2022. http://arxiv.org/abs/2202.12837 Rethinking the role of demonstrations: What
makes in-context learning work?

Keyon Vafa, Justin Y. Chen, Ashesh Rambachan, Jon Kleinberg, and Sendhil Mullainathan. 2024.
http://arxiv.org/abs/2406.03689 Evaluating the world model implicit in a generative model.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. 2023a. http://arxiv.org/abs/1706.03762 Attention is all you
need.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. 2023b. http://arxiv.org/abs/1706.03762 Attention is all you
need.

Lucas Weber, Elia Bruni, and Dieuwke Hupkes. 2023. http://arxiv.org/abs/2310.13486 Mind the
instructions: a holistic evaluation of consistency and interactions in prompt-based learning.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc
Le, and Denny Zhou. 2023. http://arxiv.org/abs/2201.11903 Chain-of-thought prompting elicits
reasoning in large language models.

Tong Yang, Yu Huang, Yingbin Liang, and Yuejie Chi. 2024. http://arxiv.org/abs/2408.10147 In-
context learning with representations: Contextual generalization of trained transformers.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 GENERATING QUERIES

In this section we provide details about how we generated training and test sentences for training the
models.

1.) Training Queries Training Queries consists of valid and in-valid paths from the graph. A
Graph G consists of nodes and edges, an edge in a graph represents a relationship between two
nodes. Sentences from the graph can be generated by randomly selecting an edge from the list of
all possible edges, then traversing through that edge until we either reach an "EndNode"6, or we
reach the desired path length, see here for example Vafa et al. (2024). Each full-path traversed can
be converted to an input sentence of the following format :

[StartNode] [EndNode] [Pathlength] [StartNode] [List of Nodes] [END].

Where the StartNode is the starting node, and EndNode is the destination node, Pathlength is the
number of nodes between the StartNode and the EndNode of the path and [END] token is a special
token that is used to indicate end of path.

In addition to the paths that can be reached we sample X% of un-reachable paths from the graph G
as well. The sentences formed in such cases follow the format :

[StartNode] [EndNode] [Pathlength] [NP] [END].

where [NP] is a special token that denotes no path exists between the StartNode and EndNode for
the given Pathlength.

2.) Test Queries To query the trained LLM we use the following format for our test-queries:

[StartNode] [EndNode] [Pathlength]

We generate various test queries for our experiments. Specific details about them can be found in
the following sections. The format of the test queries remains the same.

Note. Since for a given Node in a graph G number of non-neighbour’s node always exceeds the
number of neighbour nodes we only sample k - (Number of Neighbours for the StartNode), number
of non-neighbour’s node from the input data.

We also generate a separate set of training and validation queries that contain a subgraph in the
context. In such cases the training and validation queries will be updated to the following format :

State edgeA || edgeB QUERY : [StartNode] [EndNode] [Pathlength] [GEN]

Where edgeA and edgeB are various edges extracted from the input graph, that is relevant to answer
the input queries. [GEN] is a especial token that guides the LLM to only start generated sequences.
We refer the reader to Section-?? for more details about sampling of edges present in the context.

A.2 RECONSTRUCTING LEARNED GRAPH

Visualizing the world state learned by the model is an open problem. Previously authors have used
the prediction capabilities of the LLM to generate the implicit graphs learned by the model Vafa
et al. (2024). Another approach is to look at the internal activation of the LLM to generate saliency
maps of the world-state learned Karvonen (2024); Li et al. (2024). In this work we will be using the
predictions capabilities of the LLM to generate a world-state learned by the LLM.

A graph can be represented as an Adjacency Matrix. It is an NxN matrix, where each row and
column denotes a node. Each item at the index (i, j), denotes the presence or absence of an edge
between the nodes i and j.

The paths predicted from test queries can be used to generate an adjacency matrix. We use
Algorithm-1 to generate the adjacency matrix.

6Node that has no outgoing edge

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Algorithm 1 Generate Adjacency Matrix; predictions are the generated paths from the model;
N : Number of nodes in the graph.

function generateMatrix(prediction[],N)
set numPreds = len(predictions)
A[N][N] = 0 ▷ Adjacency Matrix N x N having all the values zero’s

for k← 1 to numPreds do
sent← prediction[k]
set M ← len(sent)
for j← 1 to M − 1 do

sn← sent[j]
dn← sent[j + 1]
sn← location of source node in adjacency matrix
dn← location of destination node in adjacency matrix
if dn! = [END]ordn! = [NP] then

A[sn][dn] = 1
end if

end for
end for
return A

end function

0 10000 20000 30000 40000 50000
Steps

−1.5

−1.0

−0.5

0.0

0.5

1.0

Lo
g

Lo
ss

Train Loss
Val Loss

(a) Dublin dataset.

0 5000 10000 15000 20000 25000 30000 35000 40000
Steps

−1.5

−1.0

−0.5

0.0

0.5

Lo
g

Lo
ss

Train Loss
Val Loss

(b) Cora dataset

0 10000 20000 30000 40000 50000 60000
Steps

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8
Lo

g
Lo

ss

Train Loss
Val Loss

(c) Amazon dataset

0 10000 20000 30000 40000 50000
Steps

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

Lo
g

Lo
ss

Train Loss
Val Loss

(d) Facebook dataset

Figure 7: Measured train and validation loss for various datasets for model Ma

A.3 HYPER PARAMETERS FOR GPT TRAINING

All the models were trained in an auto regressive fashion using pytorch and pytorch lightning with
the following hyper parameters - batch_size = 4, learning rate = 0.0001. Adam optimizer was used
to train the model.

A.4 TRAINING THE GPT MODEL

Figure-7 and Figure-8 shows the training and validation loss for models Ma and Mb respectively.

A.5 TRAINING THE LINEAR PROBE

We train a logistic-regression model provided by scikit-learn7 on the attention layer of the trained
model.

A.6 PERFORMANCE OF Ma ON VARIOUS DATASETS

Figure 11, Figure 10 and Figure 9 shows the reconstruction errors of the model that are validated on
new graphs. We observe that model Ma produced fewer errors than model Mb.

A.7 EXTRACTING SUBGRAPH FOR Ma

We construct a subgraph from the original graph that is relevant to the input query. This subgraph
includes the query-specific path as well as a subset of additional edges.

7https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

0 200000 400000 600000 800000
Steps

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

Lo
g

Lo
ss

Train Loss
Val Loss

(a) Dublin dataset.

0 100000 200000 300000 400000 500000 600000
Steps

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

Lo
g

Lo
ss

Train Loss
Val Loss

(b) Cora dataset

0 10000 20000 30000 40000
Steps

−0.2

0.0

0.2

0.4

0.6

0.8

Lo
g

Lo
ss

Train Loss
Val Loss

(c) Amazon dataset

0 100000 200000 300000 400000
Steps

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

Lo
g

Lo
ss

Train Loss
Val Loss

(d) Facebook dataset

Figure 8: Measured train and validation loss for various datasets for model Mb

1 2 3 4
Path Length

0.2

0.4

0.6

0.8

1.0

pr
e

a

b

(a) pre Amazon

1 2 3 4
Path Length

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

gt
e

a

b

(b) gte Amazon

1 2 3 4
Path Length

0.0

0.2

0.4

0.6

0.8

1.0

pr
e

a

b

(c) pre Facebook

1 2 3 4
Path Length

0.2

0.4

0.6

0.8

1.0

gt
e

a

b

(d) gte Facebook

1 2 3 4
Path Length

0.0

0.2

0.4

0.6

0.8

1.0

pr
e

a

b

(e) pre Cora

1 2 3 4
Path Length

0.0

0.2

0.4

0.6

0.8

1.0

gt
e

a

b

(f) gte Cora

Figure 9: Measure pre and gte on various other datasets for the model trained on dublin dataset.

1 2 3 4
Path Length

0.2

0.4

0.6

0.8

1.0

pr
e

a

b

(a) pre Dublin

1 2 3 4
Path Length

0.2

0.4

0.6

0.8

1.0

gt
e

a

b

(b) gte Dublin

1 2 3 4
Path Length

0.2

0.4

0.6

0.8

1.0

pr
e

a

b

(c) pre Facebook

1 2 3 4
Path Length

0.0

0.2

0.4

0.6

0.8

1.0

gt
e

a

b

(d) gte Facebook

1 2 3 4
Path Length

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

pr
e

a

b

(e) pre Cora

1 2 3 4
Path Length

0.2

0.4

0.6

0.8

1.0

gt
e

a

b

(f) gte Cora

Figure 10: Measure pre and gte on various other datasets for the model trained on amazon dataset.

To generate the subgraph, we first identify all neighbors of the nodes that are relevant to the input
query. From the resulting candidate subgraph, we then randomly discard 60% of the edges that are
not directly related to the query. The resulting pruned subgraph, which preserves both the essential
path and a controlled number of auxiliary edges, is subsequently incorporated into the input.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

1 2 3 4
Path Length

0.0

0.2

0.4

0.6

0.8

1.0

pr
e

a

b

(a) pre Dublin

1 2 3 4
Path Length

0.4

0.5

0.6

0.7

0.8

0.9

1.0

gt
e

a

b

(b) gte Dublin

1 2 3 4
Path Length

0.0

0.2

0.4

0.6

0.8

1.0

pr
e

a

b

(c) pre Amazon

1 2 3 4
Path Length

0.5

0.6

0.7

0.8

0.9

1.0

gt
e

a

b

(d) gte Amazon

1 2 3 4
Path Length

0.0

0.2

0.4

0.6

0.8

1.0

pr
e

a

b

(e) pre Cora

1 2 3 4
Path Length

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

gt
e

a

b

(f) gte Cora

Figure 11: Measure pre and gte on various other datasets for the model trained on Facebook dataset.

A.8 THE USE OF LARGE LANGUAGE MODELS (LLMS)

A Large Language Model, specifically GPT-5, was used to assist in writing the manuscript and
refining the English. It was not involved in other stages of the project, including ideation, experi-
mentation, or data interpretation.

14

