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ABSTRACT

Large Language Models (LLMs) are trained on next-word prediction yet often ap-
pear to acquire structured knowledge beyond surface statistics. A central question
is whether such internal representations emerge during zero shot learning with-
out additional cues or only when explicit context is provided. We address this by
training GPT-style models on paths sampled from synthetic and real-world graphs
under two regimes: in-context learning, where subgraph information is provided,
and zero shot learning, where only query nodes are given. We evaluate models
through adjacency matrix reconstruction and linear probing of hidden activations.
We find evidence that in-context learning models consistently recover graph struc-
ture and encode neighborhood information, while zero shot learning models fail
to develop comparable representations.

1 INTRODUCTION

Large language models are neural networks that are based on the transformer architecture, these
models are trained on the input sentences on a simple "next-word-prediction" task 1Vaswani et al.
(2023a); Brown et al. (2020c); Devlin et al. (2019). The models take user queries as input and
generate predictions in response.

Two major techniques are used when generating predictions from these models: (1) In-context learn-
ing, where few-shot examples are provided alongside the query to guide the model toward better
predictions, and (2) Zero shot learning, where only the input query is provided to the modelBrown
et al. (2020b); Yang et al. (2024); Weber et al. (2023); Min et al. (2022); Han et al. (2023); Gozeten
et al. (2025).

Despite being trained on such a simple task, these models demonstrate remarkable capabilities in
understanding context from natural language text data. These are models are used for a plethora of
tasks, including solving logic puzzles, writing and debugging computer programs, and answering
general user queries Abdou et al. (2021); Li et al. (2021).

Generally in-context learning approaches have proven to provide better predictive capabilities than
the zero shot learning approaches Wei et al. (2023); Brown et al. (2020a); Agarwal et al. (2024).
However, how these capabilities emerge in these models while being trained on a simple next word
prediction task, remains unclear. There are two main theories that attempt to explain working of
these models : 1 ) These models only understand correlation of words in the sentences used in the
training data, thus only learning the surface level statistics Bender et al. (2021). 2) These models do
more than learn the surface level statistics and develop an internal representations for very simple
concepts, such as color, direction, game state etc Li et al. (2024); Karvonen (2024); Vafa et al.
(2024).

The world representation theory has primarily been explored through in-context learning models,
where context such as partial game states is provided alongside the input Li et al. (2024); Karvonen
(2024). In this scenario, it is difficult to determine whether learned representations emerge from the
provided context or from the underlying training data.

1Modern LLMs may also be trained with reinforcement learning techniques, but this aspect is beyond the
scope of this study. LLMs trained solely on next-word prediction also exhibit capabilities such as solving logic
puzzles, reasoning, Wei et al. (2023); Brown et al. (2020a); Agarwal et al. (2024)
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In this paper we investigate whether large language models develop internal representations of sim-
ple graph structures during zero shot learning. We study this problem by training models using
the two approaches described above on the sequences generated from a graph. Then employ various
probing techniques to determine whether the models have constructed internal graph representations
from the training data.

To assess whether models have learned internal representations, we use the model’s predictive ca-
pabilities to generate the adjacency matrix of the underlying graph, which we then compare it to the
original adjacency matrix of the graph to calculate the reconstruction errors by the model. We also
use linear probes to understand whether the activations of the trained model contained representation
of the underlying graph.

Reconstruction errors and probing accuracy provide complementary perspectives on understanding
the representation learned by the model. Reconstruction evaluates whether the model’s outputs can
recover the adjacency matrix, while probing tests whether hidden activations encode edge informa-
tion independent of the output.

We observe that models trained using in-context learning produce fewer errors and are able to re-
cover the internal structure of the graph, compared to the model trained using the zero shot learning
approach. We find no evidence that the zero shot learning models learn internal representation of
the underlying graph structure from training data. These findings are interesting and timely since
they demonstrate that these models are only able to reconstruct the underlying structure when it is
explicitly provided in the input.

2 RELATED WORK

Large Language Models : Large Language Models (LLms) are non-linear machine learning mod-
els that are built on the transformer architecture Vaswani et al. (2023b). These are trained on a huge
corpora of dataset and have demonstrated remarkable capabilities to perform various tasks such as
question answering, summarization, puzzle solving etc Devlin et al. (2019); Brown et al. (2020c).
Their ability to generalize from patterns in data has made them a focal point of research in natural
language processing and machine learning.

World-Representation in LLMs: Despite their success, LLMs are largely blackboxes and un-
derstanding their internal mechanisms remains a key challenge. One prominent research direction
is the study of world-representations-the extent to which models learn internal representations of
structured environments from the training data. In such studies, LLMs are trained on sequences
generated from controlled environments, such as game boards, and researchers analyze the learned
representations. Notable examples include investigations into games like Othello, Chess, and sim-
plified spatial reasoning tasks Karvonen (2024); Li et al. (2024); Vafa et al. (2024). These studies
explore whether LLMs encode underlying rules, states, or other abstract features of the environment.

In-Context Learning and Zero Shot Learning : Predictions from LLMs are typically generated
using either in-context learning or zero shot learning approaches.

1) In context learning : In this setting, the model receives both the query and a few input
examples. These examples guide the model toward more accurate predictions and reduce errors
Brown et al. (2020b); Yang et al. (2024); Weber et al. (2023); Min et al. (2022); Han et al. (2023).
In-context learning is often used to study internal representations: for instance, providing partial
game states along with next moves allows researchers to analyze attention patterns and reconstruct
the game-state representations learned by the model Li et al. (2024); Karvonen (2024).

2) Zero Shot Learning: Here, the model is trained on input sequences, but during predic-
tion, no additional examples are provided. While simpler to deploy, this approach generally yields
lower predictive accuracy than in-context learning and provides fewer cues for extracting internal
representations Gozeten et al. (2025).

Probing : Probing is a standard methodology to investigate whether models encode specific feature
or concepts in its activations. A probe is typically a classifier or regressor that takes the activations
of a trained model as input and predicts a feature of interest, such as part-of-speech tags, syntactic
structure, or game state Alain and Bengio (2016); Belinkov (2021); Krause et al. (2020). Probing
has been widely used to explore both linguistic knowledge in LLMs and abstract representations in
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structured environments, providing insight into what information is encoded and where it resides
within the network.

3 PRELIMINARIES

3.1 GENERATING TRAINING AND VALIDATION DATA FROM THE GRAPH

A non-weighted graph is defined as G = (V,E) where V are the vertices of the graph and E
represents the edges between the vertices. To generate training data, we generate random paths from
the graph. Each sequence starts with the S (the start node of the path), D end node of the path and
L length of the path, followed by the corresponding path. The validation dataset is generated by
sampling sub-paths from the sequences while ensuring that no (S,D) pair appears in both training
and validation datasets.

To encourage the model to learn when paths do not exist, we also include (S,D) pairs with no valid
path of length L in both training and validation datasets. In such cases, instead of providing a path,
we insert a special [NP] token, which signals the absence of a valid connection between the nodes.
For in-context learning, the model input additionally includes a subgraph relevant to the current
path. Full details on query generation are provided in the Appendix.

In this setup, the tuple (S,D,L) serves as the query, and the corresponding path or the special [NP]
token when no such path exists serves as a response to the query.

3.2 COMPUTING ERRORS DURING RECONSTRUCTION

Our models are trained to predict paths between node pairs in the graph. The predictions can be
used to reconstruct an adjacency matrix, which serves as a proxy for the internal representation of
the graph learned by the model.

For a given path length L, we sample N (S,D) pairs not present in the training dataset2 and gen-
erate predictions for each pair. These predictions are used to construct the adjacency matrix. The
reconstructed matrix is then compared with the original adjacency matrix to quantify errors:

gte: edges present in the original graph but absent in the reconstruction (indicating gaps or biases).

pre: edges present in the reconstruction but absent in the original graph (indicating hallucinations).

Ideally, both gte and pre should be close to zero, indicating accurate reconstruction without bias or
hallucination.

A direct comparison against the full original adjacency matrix may overestimate errors, because
sampled paths do not necessarily cover every edge of the graph. To address this, we construct a
reduced “reference” adjacency matrix that contains only the edges present in the training data. The
error metrics are then computed relative to this reduced matrix. This adjustment ensures that the
evaluation measures how well the model captures the graph structure that was actually presented
during training, rather than penalizing it for missing edges it had no opportunity to learn.

3.3 PROBING INTERNAL STATE

Probing allows us to determine whether specific structural information is encoded in the intermediate
layers of a trained model, independently of its output predictions.

We focus on the existence of an edge between two nodes. Given a pair of nodes (S,D), the probe
is trained to predict whether an edge exists between S and E, i.e., whether (S,D) ∈ {edges}. The
ability of a probe to recover this information from hidden activations indicates that the model has
encoded neighborhood structure.

A linear probe can only succeed if the relevant information is linearly separable in the model’s
activation space. This ensures that high probe accuracy reflects information already present in the
representations, rather than capacity of the probe itself.

2Details on N are provided in the Appendix.
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Figure 1: Measure pre and gte for the toy graph dataset v pathlength; 1c shows the prediction
accuracy of the two models vs the path length in the graph; 1d shows the probe accuracy of the two
models vs the layer number in the graph;
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Figure 2: Measured pre Various datasets.

We construct a balanced dataset of positive pairs ((S,D) ∈ {edges})) and negative pairs ((S,D) /∈
{edges}), sampled from graphs disjoint from the training set. The dataset is split into training and
validation sets in an 80 : 20 ratio.

For each pair, hidden activations are extracted from every attention layer. A separate linear probe is
trained for each layer to classify edge presence, providing a layer-wise measure of how neighbor-
hood information is represented.

4 PERFORMANCE OF IN-CONTEXT LEARNING VS ZERO SHOT LEARNING

To initially study the performance of in-context Learning and the zero shot learning model we gener-
ate 5 small graphs using networkX 3, containing 10 nodes and 20 edges. The training and validation
data is generated from each graph dataset4. For more details about the training data we refer the
reader to Section-3.1.

We evaluate the following models :

1) In-context learning (Ma) : The model receives the relevant graph as context and is queried
to predict a path between a pair of nodes. For training, each input sequence also includes the full
graph to guide the model’s predictions.

2) Zero Shot Learning (Mb) : The model receives only the pair of query nodes and predict a
path in the graph without any context. This model is trained specifically on a single graph.

Both Ma and Mb are GPT-style transformer models with 2 hidden layers, 8 attention heads, and
an embedding size of 128. The models are trained from scratch with randomly initialized weights
in an auto-regressive fashion for next-word prediction, ensuring no prior knowledge of the graph
structure.

We evaluate the models by computing pre and gte errors as described previously. These metrics
quantify hallucinated edges and missing edges in the reconstructed adjacency matrices, respectively.

3https://networkx.org/
4The training and validation data contains paths from all the graphs.
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Figure 3: Measured gte Various datasets.
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Figure 4: Measured Classification Accuracy of linear probe for Various datasets. x axis represents
the layer from which the activations were chosen, the y axis represents the accuracy of the linear
probe on validation dataset.

Figures 1a and 1b present the reconstruction errors of both models on the graphs. The results indi-
cate that the two models yield comparable reconstruction errors as well as similar path prediction
accuracy.

Figure 1c illustrates the accuracy of predicting the correct path given the query (S,D,L) as the
path length increases. We observe that Ma achieves slightly higher accuracy than Mb for longer
paths, while their overall performance remains largely comparable. This pattern aligns with the
reconstruction errors, where both models exhibit a similar level of error.

We also train linear probes for the models for various attention layers. The training and validation
data for probes is generated from the graph as described previously. Figure-1d shows the linear
probe accuracy v the path length. We observe the probes for model Ma consistently outperforms
the probes for model Mb.

The high performance of the probe on Ma indicates that the activations of the in-context learning
model encode structural information about the graph - specifically, whether two nodes are neighbors
- whereas the activations of Mb do not contain this information.

The results for model Ma are unsurprising since the relevant graph to the query is provided as input
to model, hence it can be reconstructed by a probe at the initial layers. Interestingly the activations
of model Mb fail to support a reliable reconstruction of the graph structure.

5 PREDICTION PERFORMANCE: SINGLE VS MULTIPLE MODELS

On the synthetic graph, we observed that the in-context learning model Ma produced slightly fewer
errors and achieved higher path-prediction accuracy than the zero-shot learning model Mb, although
the overall performance of the two models was largely comparable. In that setting, the full graph
was provided as context to Ma, making the tasks of reconstruction and path prediction relatively
straightforward.

In contrast, real-world graphs are substantially larger and more complex, making it impractical to
supply the entire graph as input context. Instead, only a small, relevant subgraph is provided. This
change in input fundamentally alters the difficulty of the task: while in Section 4 both models
performed similarly when Ma had access to the full graph, in real-world scenarios the length of
the subgraph context plays a decisive role. In this section, we evaluate the models on real-world
datasets, where only a subgraph relevant to the query is provided as input context. This setup allows
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us to examine how limiting the context to local subgraphs, rather than the full graph, affects the
in-context learning process.

Datasets

We train and test our models on the following datasets :

CORA Dataset : Cora Citation Network is a directed graph where nodes are scientific papers and
edges represent citations (i.e., paper A → paper B means A cites B). For our experiments we sample
500 nodes from the CORA dataset. We generated 60000 training sequences from the graph.

Dublin Street Map : A real-world directed road network of Dublin, Ireland. We use the Open-
street Map API to extract the graph. For our experiments we sample 500 nodes from the original
map dataset. We generated 60000 training sequences from the graph.

Facebook Social Circle Dataset : A real-world directed graph that dataset consists of ’circles’
(or ’friends lists’) from Facebook. Each node in a graph denotes an individual and an edge between
the individual represent a connection on facebook between the nodes. For our experiments we
sample 500 nodes from the CORA dataset. We generated 60000 training sequences from the graph.

Amazon Co-Purchase Network : A graph crawled from amazon website. It is based on Customers
Who Bought This Item Also Bought feature of the Amazon website. If a product i is frequently
co-purchased with product j, the graph contains an edge from i to j. Each product category provided
by Amazon defines each ground-truth community. For our experiments we sample 500 nodes from
the CORA dataset. We generated 60000 training sequences from the graph.

Training sequences are constructed as described in Section 3.1, capturing paths between node pairs.
In this setting, the context provided to Ma consists solely of a relevant subgraph extracted around
the query nodes. For more details on how the subgraph is generated we refer the reader to the
appendix.

Experiments

Models Ma and Mb are trained on each dataset using the approach described in the previous sec-
tion. Both models have 10 hidden layers, 10 attention heads, and an embedding size of 500 to
accommodate the increased graph complexity.

The adjacency matrix is generated from the predictions of sampled (S,D ) node pairs as explained
previously, that is then used to calculate the errors generated by the models.

Figures 2 and 3 show the errors for both models across datasets for various path-lengths. Model Ma

consistently exhibits lower error rates than Mb. This improvement can be attributed to the explicit
subgraph context provided to Ma, which allows it to better capture underlying graph structure and
reduce hallucination. These results demonstrate that in-context learning produces fewer error than
zero shot learning when applied to real-world graphs.

In the previous setting, where the full graph was available as context both models performed sim-
ilarly. However, when only relevant subgraphs are provided, the performance of Ma improves
relative to Mb. This suggests that shorter, localized contexts make in-context learning more effec-
tive when holding the model complexity constant, whereas zero-shot learning fails to take advantage
of the available structural information.

Probing Internal State

We train linear probes for the models for all the attention layers. The training and validation data for
probes is generated from the graph as described previously.

Figure 4 shows the validation accuracy of the linear probe for both models as a function of attention
layer. Across all layers, the probe trained on model Ma consistently outperforms the probe trained
on model Mb. We expected the earlier layers of Ma to achieve good probe accuracy, since the
input graph information is explicitly provided as context. However, we also observe that this signal
propagates through later layers.

6
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Figure 5: Measure pre and gte on various other datasets for the model trained on cora dataset. 5a
and 5b shows the pre and gte error for dublin dataset; 5c and 5d shows the pre and gte error for
amazon dataset;

6 NO EVIDENCE FOR MEMORIZATION BY IN-CONTEXT LEARNING

Our previous experiment shows that model Ma outperforms model Mb across various datasets
when only a relevant subgraph is provided. The huge performance improvement is due to the extra
context provided to the model during training and inference. We also wanted to observe whether
Ma is relying on memorizing its training data or actually learning graph processing patterns that
can generalize. To test this, we evaluate the models on paths from a completely different graph: a
model trained on sequences from graph Gs is now tested on a separate graph Gd.

We generate Gd from a new graph dataset and select a subgraph from Gd such that the number of
nodes are similar to that of Gs. We sort the nodes in both graphs by their total degree and then
rename the nodes in Gd to match the degrees in Gs. This way, the graphs are similar in structure but
do not share the same nodes or edges. If Ma had memorized the training data, we would expect its
performance to drop sharply on this new graph.

To reconstruct the adjacency matrix, we again sample N number of (S,E) nodes from the new
graph dataset Gd. We then compare it to the true adjacency matrix of Gd to calculate the prediction
errors (pre and gte).

Figure 5 shows the errors for both models when trained on the CORA dataset and tested on the
Dublin street map and Amazon co-purchase datasets. We see that Ma produces slightly fewer errors
than Mb for shorter paths, but as the path length grows, the errors of both models become similar.
We observe similar results on other dataset pairs, which are provided in the appendix. Fewer errors
for Ma at short path lengths suggests that it is not simply memorizing the training data, instead it is
using the context to generate predictions.

The results suggests that the improved performance of in-context learning comes from using the
provided subgraph during prediction, rather than from memorizing training data. However, when
tested on completely new graphs, performance decreases, suggesting that the model’s ability to
generalize depends on patterns seen in the training graphs and does not fully transfer to graphs with
different structures.

7 SCALING OF IN-CONTEXT LEARNING AND ZERO SHOT LEARNING
MODELS

Scaling is a crucial consideration for evaluating whether the observed behaviors of LLMs persist
as input context or graph size increases. In this section, we study : (1) the effect of enlarging the
subgraph provided as context for in-context learning models (Ma), and (2) the effect of increasing
the size of the training graph for zero shot learning models (Mb).

Both models are trained on synthetic graph datasets generated with networkX, where we vary the
number of nodes in each graph. For every dataset with a fixed node count, models Ma and Mb are
trained. The training and validation sets are constructed using the procedure outlined earlier. For
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Figure 6: 6a shows the prediction accuracy of the model Ma as the context is varied; 6b shows the
error in prediction of the model Ma as the context is varied; 6c shows the prediction accuracy of
the model Mb as the graph size is varied; 6d shows the error in prediction of the model Mb as the
graph size is varied;

model Ma, we adjust the number of nodes included in the input context, whereas for model Mb,
we adjust the number of nodes in the underlying graph structure.

The models are GPT style models with 2 hidden layers, 8 attention heads and an embedding size of
128 5. The training is carried out in an auto-regressive fashion as explained previously.

Scaling of Context in In-Context Learning (Ma):

Figure 6a illustrates path-prediction accuracy as the size of the subgraph provided in the context
increases, while Figure 6b shows the corresponding reconstruction errors. As the number of nodes
in the context grows, path-prediction accuracy decreases and the proportion of hallucinated edges
(pre) increases. It can be seen that the accuracy of in-context learning model predictions degrades
as the context size increases.

Scaling of Graph Size in Zero shot learning (Mb):

We also examined the effect of increasing the size of an almost linear underlying training graph.
Figures 6c and 6d show that as the graph size increases, prediction accuracy declines and recon-
struction error grows. However, compared to Ma, Mb retains relatively high accuracy even for
larger graphs, indicating that zero-shot learning scales more gracefully with graph size.

The two models exhibit distinct behaviors as the number of nodes increases. In-context learning
models (Ma) show a decline in path-prediction accuracy and an increase in hallucinated edges as the
context size grows, whereas zero-shot learning models (Mb) show decreasing prediction accuracy
and increasing reconstruction error as the training graph size increases.

These findings highlight that both approaches have inherent scaling limitations. For in-context learn-
ing, performance is sensitive to the size of the input context, while for zero-shot learning, perfor-
mance is constrained by the size of the training graph.

8 CONCLUSION

Our findings indicate that current LLMs do not develop robust internal representations of under-
lying graph structures from training data alone. In zero-shot settings, these models produce high
reconstruction errors and show no evidence of internal structure learning. While providing contex-
tual information improves reconstruction and probing accuracy, this demonstrates that the models
primarily rely on the input context rather than forming generalizable, internal world models during
training.

We argue that if these models truly learned internal representations from training data, they should
demonstrate lower reconstruction and probing errors even in zero shot learning settings. Our findings
suggest that current LLMs primarily rely on explicit contextual information rather than developing
robust internal world models during training.

5The trained model had 5.3M parameter
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A APPENDIX

A.1 GENERATING QUERIES

In this section we provide details about how we generated training and test sentences for training the
models.

1.) Training Queries Training Queries consists of valid and in-valid paths from the graph. A
Graph G consists of nodes and edges, an edge in a graph represents a relationship between two
nodes. Sentences from the graph can be generated by randomly selecting an edge from the list of
all possible edges, then traversing through that edge until we either reach an "EndNode"6, or we
reach the desired path length, see here for example Vafa et al. (2024). Each full-path traversed can
be converted to an input sentence of the following format :

[StartNode] [EndNode] [Pathlength] [StartNode] [List of Nodes] [END].

Where the StartNode is the starting node, and EndNode is the destination node, Pathlength is the
number of nodes between the StartNode and the EndNode of the path and [END] token is a special
token that is used to indicate end of path.

In addition to the paths that can be reached we sample X% of un-reachable paths from the graph G
as well. The sentences formed in such cases follow the format :

[StartNode] [EndNode] [Pathlength] [NP] [END].

where [NP] is a special token that denotes no path exists between the StartNode and EndNode for
the given Pathlength.

2.) Test Queries To query the trained LLM we use the following format for our test-queries:

[StartNode] [EndNode] [Pathlength]

We generate various test queries for our experiments. Specific details about them can be found in
the following sections. The format of the test queries remains the same.

Note. Since for a given Node in a graph G number of non-neighbour’s node always exceeds the
number of neighbour nodes we only sample k - (Number of Neighbours for the StartNode), number
of non-neighbour’s node from the input data.

We also generate a separate set of training and validation queries that contain a subgraph in the
context. In such cases the training and validation queries will be updated to the following format :

State edgeA || edgeB QUERY : [StartNode] [EndNode] [Pathlength] [GEN]

Where edgeA and edgeB are various edges extracted from the input graph, that is relevant to answer
the input queries. [GEN] is a especial token that guides the LLM to only start generated sequences.
We refer the reader to Section-?? for more details about sampling of edges present in the context.

A.2 RECONSTRUCTING LEARNED GRAPH

Visualizing the world state learned by the model is an open problem. Previously authors have used
the prediction capabilities of the LLM to generate the implicit graphs learned by the model Vafa
et al. (2024). Another approach is to look at the internal activation of the LLM to generate saliency
maps of the world-state learned Karvonen (2024); Li et al. (2024). In this work we will be using the
predictions capabilities of the LLM to generate a world-state learned by the LLM.

A graph can be represented as an Adjacency Matrix. It is an NxN matrix, where each row and
column denotes a node. Each item at the index (i, j), denotes the presence or absence of an edge
between the nodes i and j.

The paths predicted from test queries can be used to generate an adjacency matrix. We use
Algorithm-1 to generate the adjacency matrix.

6Node that has no outgoing edge
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Algorithm 1 Generate Adjacency Matrix; predictions are the generated paths from the model;
N : Number of nodes in the graph.

function generateMatrix(prediction[ ],N )
set numPreds = len(predictions)
A[N ][N ] = 0 ▷ Adjacency Matrix N x N having all the values zero’s

for k← 1 to numPreds do
sent← prediction[k]
set M ← len(sent)
for j← 1 to M − 1 do

sn← sent[j]
dn← sent[j + 1]
sn← location of source node in adjacency matrix
dn← location of destination node in adjacency matrix
if dn! = [END]ordn! = [NP ] then

A[sn][dn] = 1
end if

end for
end for
return A

end function
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(a) Dublin dataset.
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(b) Cora dataset
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(c) Amazon dataset
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(d) Facebook dataset

Figure 7: Measured train and validation loss for various datasets for model Ma

A.3 HYPER PARAMETERS FOR GPT TRAINING

All the models were trained in an auto regressive fashion using pytorch and pytorch lightning with
the following hyper parameters - batch_size = 4, learning rate = 0.0001. Adam optimizer was used
to train the model.

A.4 TRAINING THE GPT MODEL

Figure-7 and Figure-8 shows the training and validation loss for models Ma and Mb respectively.

A.5 TRAINING THE LINEAR PROBE

We train a logistic-regression model provided by scikit-learn7 on the attention layer of the trained
model.

A.6 PERFORMANCE OF Ma ON VARIOUS DATASETS

Figure 11, Figure 10 and Figure 9 shows the reconstruction errors of the model that are validated on
new graphs. We observe that model Ma produced fewer errors than model Mb.

A.7 EXTRACTING SUBGRAPH FOR Ma

We construct a subgraph from the original graph that is relevant to the input query. This subgraph
includes the query-specific path as well as a subset of additional edges.

7https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
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(a) Dublin dataset.
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(b) Cora dataset
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(c) Amazon dataset
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(d) Facebook dataset

Figure 8: Measured train and validation loss for various datasets for model Mb
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Figure 9: Measure pre and gte on various other datasets for the model trained on dublin dataset.

1 2 3 4
Path Length

0.2

0.4

0.6

0.8

1.0

pr
e

a

b

(a) pre Dublin

1 2 3 4
Path Length

0.2

0.4

0.6

0.8

1.0

gt
e

a

b

(b) gte Dublin

1 2 3 4
Path Length

0.2

0.4

0.6

0.8

1.0

pr
e

a

b

(c) pre Facebook

1 2 3 4
Path Length

0.0

0.2

0.4

0.6

0.8

1.0

gt
e

a

b

(d) gte Facebook

1 2 3 4
Path Length

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

pr
e

a

b

(e) pre Cora

1 2 3 4
Path Length

0.2

0.4

0.6

0.8

1.0

gt
e

a

b

(f) gte Cora

Figure 10: Measure pre and gte on various other datasets for the model trained on amazon dataset.

To generate the subgraph, we first identify all neighbors of the nodes that are relevant to the input
query. From the resulting candidate subgraph, we then randomly discard 60% of the edges that are
not directly related to the query. The resulting pruned subgraph, which preserves both the essential
path and a controlled number of auxiliary edges, is subsequently incorporated into the input.
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Figure 11: Measure pre and gte on various other datasets for the model trained on Facebook dataset.

A.8 THE USE OF LARGE LANGUAGE MODELS (LLMS)

A Large Language Model, specifically GPT-5, was used to assist in writing the manuscript and
refining the English. It was not involved in other stages of the project, including ideation, experi-
mentation, or data interpretation.
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