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Abstract

Multi-source domain adaptation (MSDA) methods aim to transfer knowledge from
multiple labeled source domains to an unlabeled target domain. Although cur-
rent methods achieve target joint distribution identifiability by enforcing minimal
changes across domains, they often necessitate stringent conditions, such as an
adequate number of domains, monotonic transformation of latent variables, and
invariant label distributions. These requirements are challenging to satisfy in
real-world applications. To mitigate the need for these strict assumptions, we
propose a subspace identification theory that guarantees the disentanglement of
domain-invariant and domain-specific variables under less restrictive constraints
regarding domain numbers and transformation properties, thereby facilitating do-
main adaptation by minimizing the impact of domain shifts on invariant variables.
Based on this theory, we develop a Subspace Identification Guarantee (SIG) model
that leverages variational inference. Furthermore, the SIG model incorporates
class-aware conditional alignment to accommodate target shifts where label dis-
tributions change with the domains. Experimental results demonstrate that our
SIG model outperforms existing MSDA techniques on various benchmark datasets,
highlighting its effectiveness in real-world applications.

1 Introduction

Multi-Source Domain Adaptation (MSDA) is a method of transferring knowledge from multiple
labeled source domains to an unlabeled target domain, to address the challenge of domain shift
between the training data and the test environment. Mathematically, in the context of MSDA, we
assume the existence of M source domains {S1,S2, ...,SM} and a single target domain T . For each
source domain Si, data are drawn from a distinct distribution, represented as px,y|uSi

, where the
variables x,y,u correspond to features, labels, and domain indices, respectively. In a similar manner,
the distribution within the target domain T is given by px,y|uT . In the source domains, we have access
to mi annotated feature-label pairs of each domain, denoted by (xSi ,ySi) = (xSi

k , ySi
k )mi

k=1, while in
the target domain, only mT unannotated features are observed, represented as (x(T )) = (xT

k )
mT
k=1.

The primary goal of MSDA is to effectively leverage these labeled source data and unlabeled target
data to identify the target joint distribution px,y|uT .

However, identifying the target joint distribution of x,y|uT using only x|uT as observations present
a significant challenge, since the possible mappings from px,y|uT to px|uT are infinite when no extra
constraints are given. To solve this problem, some assumptions have been proposed to constrain the
domain shift, such as covariate shift [44], target shift [58, 1], and conditional shift [3, 56]. For example,
the most conventional covariate shift assumption posits that py|x is fixed across different domains
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while px varies. Under this assumption, researchers can employ techniques such as importance
reweighting [52], invariant representation learning [11], or cycle consistency [17] for distribution
alignment. Additionally, target shift assumes that px|y is fixed while the label distribution py changes,
whereas conditional shift is represented by a fixed py and a varying px|y. More generally, the minimal
change principle has been proposed, which not only unifies the aforementioned assumptions but also
enables the theoretical guarantee of the identifiability of the target joint distribution. Specifically, it
assumes that py|u and px|y,u change independently and the change of px|y,u is minimal. Please refer
to Appendix G for further discussion of related works, including domain adaptation and identification.

Although current methods demonstrate the identifiability of the target joint distribution through the
minimal change principle, they often impose strict conditions on the data generation process and
the number of domains, limiting their practical applicability. For instance, iMSDA [30] presents
the component-wise identification of the domain-changed latent variables, subsequently identifying
target joint distribution by modeling a data generation process with variational inference. However,
this identification requires the following conditions. First, a sufficient number of auxiliary variables is
employed for the component-wise theoretical guarantees, meaning that when the dimension of latent
variables is n, a total of 2n+ 1 domains are needed. Second, in order to identify high-level invariant
latent variables, a component-wise monotonic function between latent variables must be assumed.
Third, these methods implicitly assume that label distribution remains stable across domains, despite
the prevalence of target shift in real-world scenarios. These conditions are often too restrictive to
be met in practice, highlighting the need for a more general approach to identifying latent variables
across a wider range of domain shifts.

In an effort to alleviate the need for such strict assumptions, we present a subspace identification
theory in this paper that guarantees the disentanglement of domain-invariant and domain-specific
variables under more relaxed constraints concerning the number of domains and transformation
properties. In contrast to component-wise identification, our subspace identification method demands
fewer auxiliary variables (i.e., when the dimension of latent variables is n, only n+ 1 domains are
required). Additionally, we design a more general data generation process that accounts for target
shift and does not necessitate monotonic transformation between latent variables. In this process, we
categorize latent variables into four groups based on whether they are influenced by domain index or
label. Building on the theory and causal generation process, we develop a Subspace Identification
Guarantee (SIG) model that employs variational inference to identify latent variables. A class-aware
condition alignment is incorporated to mitigate the impact of target shift, ensuring the update of
the most confident cluster embedding. Our approach is validated through a simulation experiment
for subspace identification evaluation and four widely-used public domain adaptation benchmarks
for application evaluation. The impressive performance that outperforms state-of-the-art methods
demonstrates the effectiveness of our method.

2 Identifying Target Joint Distribution with Data Generation Process

2.1 Data Generation Process

ଵ ଶ ଷ ସ

Figure 1: Data generation process,
where the gray the white nodes de-
note the observed and latent vari-
ables, respectively.

We begin with introducing the data generation process. As
shown in Figure 1, the observed data x ∈ X are generated
by latent variables z ∈ Z ⊆ Rn. Sequentially, we divide the
latent variables z into the four parts, i.e. z = {z1, z2, z3, z4} ∈
Z ⊆ Rn, which are shown as follows.

• domain-specific and label-irrelevant variables z1 ∈ Rn1 .
• domain-specific but label-relevant variables z2 ∈ Rn2 .
• domain-invariant and label-relevant variables z3 ∈ Rn3 .
• domain-invariant but label-irrelevant variables z4 ∈ Rn4 .

To better understand these latent variables, we provide some
examples in DomainNet datasets. First, z1 ∈ Rn1 denotes the
styles of the images like “infograph” and “sketch”, which are
irrelevant to labels. z2 ∈ Rn2 denotes the latent variables that
can be the texture information relevant to domains and labels.
For example, the samples of “clock” and “telephone” contain some digits, and these digits in these
samples are a special texture, which can be used for classification and be influenced by different
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styles, such as “infograph”. z3 ∈ Rn3 denotes the latent variables that are only relevant to the labels.
For example, in the DomainNet dataset, it can be interpreted as the meaning of different classes like
“Bicycle” or “Teapot”. Finally, z4 ∈ Rn4 denotes the label-irrelevant latent variables. For example,
z4 can be interpreted as the background that is invariant to domains and labels.

Based on the definitions of these latent variables, we let the observed data be generated from z
through an invertible and smooth mixing function g : Z → X . Due to the target shift, we further
consider that the py is influenced by u, i.e. u → y.

Compared with the existing data generation process like [30], the proposed data generation process
is different in three folds. First, pu is independent of py in the iMSDA [30], so the target shift is
not taken into account. Second, the data generation process of iMSDA requires an invertible and
monotonic function between latent variables for component-wise identification, which is too strict
to be met in practice. Third, to provide a more general way to depict the real-world data, our data
generation process introduces the domain-specific but label-relevant latent variables zs2 and the
domain-invariant but label-irrelevant variables z4.

2.2 Identifying the Target Joint Distribution

In this part, we show how to identify the target joint distribution px,y|uT with the help of marginal
distribution. By introducing the latent variables and combining the proposed data generation process,
we can obtain the following derivation.

px,y|uT =

∫
z1

∫
z2

∫
z3

∫
z4

px,y,z1,z2,z3,z4|uT dz1dz2dz3dz4

=

∫
z1

∫
z2

∫
z3

∫
z4

px,z1,z2,z3,z4|y,uT · py|uT dz1dz2dz3dz4

=

∫
z1

∫
z2

∫
z3

∫
z4

px|z1,z2,z3,z4
· pz1,z2,z3,z4|y,uT · py|uT dz1dz2dz3dz4.

(1)

According to the derivation in Equation (1), we can identify the target joint distribution by modeling
three distributions. First, we need to model px|z1,z2,z3,z4

, implying that we need to model the
conditional distribution of observed data give latent variables, which coincides with a generative
model for observed data. Second, we need to estimate the label pseudo distribution of target domain
py|uT . Third, we need to model pz1,z2,z3,z4|y,uT meaning that the latent variables should be identified
with auxiliary variables u,y under theoretical guarantees. In the next section, we will introduce how
to identify these latent variables with subspace identification block-wise identification results.

3 Subspace Identifiability for Latent Variables

௦ ௖

Figure 2: A sim-
ple data generaliza-
tion process for intro-
ducing subspace iden-
tification.

In this section, we provide how to identify the latent variables in Figure 1.
In detail, we first prove that z2 is subspace identifiable and z1, z3 can be
reconstructed from the estimated ẑ1, ẑ2, ẑ3. Then we further prove that z4
is block-wise identifiable.

To clearly introduce the subspace identification theory, we employ a sim-
ple data generation process [3] as shown in Figure 2. In this data gen-
eration process, zs ∈ Rns and zc ∈ Rnc denote the domain-specific
and domain-invariant latent variables, respectively. For convenient, we let
z = {zs, zc}, n = ns + nc. Moreover, we assume zs = (zi)

ns
i=1 and

zc = (zi)
n
i=ns+1. And {u,y,x} denote the domain index, labels, and ob-

served data, respectively. And we further let the observed data be generated
from z through an invertible and smooth mixing function g : Z → X . The
subspace identification of zs means that for each ground-truth zs,i, there exits
ẑs and an invertible function hi : Rn → R, such that zs,i = hi(ẑs).
Theorem 1. (Subspace Identification of zs.) We follow the data generation process in Figure 2 and
make the following assumptions:

• A1 (Smooth and Positive Density): The probability density function of latent variables is smooth
and positive, i.e., pz|u > 0 over Z and U .
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• A2 (Conditional independent): Conditioned on u, each zi is independent of any other zj for
i, j ∈ {1, · · · , n}, i ̸= j, i.e. log pz|u(z|u) =

∑n
i qi(zi,u) where qi(zi,u) is the log density of

the conditional distribution, i.e., qi : log pzi|u.
• A3 (Linear independence): For any zs ∈ Zs ⊆ Rns , there exist ns + 1 values of u, i.e., uj with
j = 0, 1, · · · , ns, such that these ns vectors w(z,uj)−w(z,u0) with j = 1, · · · , ns are linearly
independent, where vector w(z,uj) is defined as follows:

w(z,u) =

(
∂q1(z1,u)

∂z1
, · · · , ∂qi(zi,u)

∂zi
, · · · ∂qns(zns ,u)

∂zns

)
, (2)

By modeling the aforementioned data generation process, zs is subspace identifiable.

Proof sketch. First, we construct an invertible transformation h between the ground-truth z and
estimated ẑ. Sequentially, we leverage the variance of different domains to construct a full-rank
linear system, where the only solution of ∂zs

∂ẑc
is zero. Since the Jacobian of h is invertible, for each

zs,i, i ∈ {1, · · · , ns}, there exists a hi such that zs,i = hi(ẑ) and zs is subspace identifiable.

The proof can be found in Appendix B.1. The first two assumptions are standard in the component-
wise identification of existing nonlinear ICA [30, 27]. The third Assumption means that pz|u should
vary sufficiently over n+1 domains. Compared to component-wise identification, which necessitates
2n+1 domains and is likely challenging to fulfill, subspace identification can yield equivalent results
in terms of identifying the ground-truth latent variables with only n+1 domains. Therefore, subspace
identification benefits from a more relaxed assumption.

Based on the theoretical results of subspace identification, we show that the ground-truth z1, z2 and z3
be reconstructed from the estimated ẑ1, ẑ2 and ẑ3. For ease of exposition, we assume that z1, z2, z3,
and z4 correspond to components in z with indices {1, · · · , n1}, {n1 +1, · · · , n1 +n2}, {n1 +n2 +
1, · · · , n1 + n2 + n3}, and {n1 + n2 + n3 + 1, · · · , n}, respectively.
Corollary 1.1. We follow the data generation in Section 2.1, and make the following assumptions
which are similar to A1-A3:

A4 (Smooth and Positive Density): The probability density function of latent variables is smooth and
positive, i.e., pz|u,y > 0 over Z , U , and Y .

A5 (Conditional independent): Conditioned on u and y, each zi is independent of any other zj
for i, j ∈ {1, · · · , n}, i ̸= j, i.e. log pz|u,y(z|u,y) =

∑n
i qi(zi,u,y) where qi(zi,u,y) is the log

density of the conditional distribution, i.e., qi : log pzi|u,y.

A6 (Linear independence): For any z ∈ Z ⊆ Rn, there exists n1 + n2 + n3 + 1 combination of
(u,y), i.e. j = 1, · · · , U and c = 1, · · · , C and U × C − 1 = n1 + n2 + n3, where U and C
denote the number of domains and the number of labels. such that these n1 + n2 + n3 vectors
w(z,uj ,yc)−w(z,u0,y0) are linearly independent, where w(z,uj ,yc) is defined as follows:

w(z,u,y) =

(
∂q1(z1,u,y)

∂z1
, · · · , ∂qi(zi,u,y)

∂zi
, · · · ∂qn(zn,u,y)

∂zn

)
. (3)

By modeling the data generation process in Section 2.1, z2 is subspace identifiable, and z1, z3 can be
reconstructed from ẑ1, ẑ2 and ẑ2, ẑ3, respectively.

Proof sketch. The detailed proof can be found in Appendix B.2. First, we construct
an invertible transformation h to bridge the relation between the ground-truth z and the
estimated ẑ. Then, we repeatedly use Theorem 1 three times by considering the chang-
ing of labels and domains. Hence, we find that the values of some blocks of the Ja-
cobian of h are zero. Finally, the Jacobian of h can be formalized as Equation (4).

Jh =


J1,1
h J1,2

h J1,3
h = 0 J1,4

h = 0

J2,1
h = 0 J2,2

h J2,3
h = 0 J2,4

h = 0

J3,1
h = 0 J3,2

h J3,3
h J3,4

h = 0

J4,1
h J4,2

h J4,3
h J4,4

h

 , (4)

where Jh denotes the Jacobian of h and
J ij
h := ∂zi

∂ẑj
and i, j ∈ {1, 2, 3, 4}. Since

h(·) is invertible, Jh is a full-rank ma-
trix. Therefore, for each z2,i, i ∈ {n1 +
1, · · · , n1 + n2}, there exists a h2,i such
that z2,i = hi(ẑ2). Moreover, for each
z1,i, i ∈ {1, · · · , n1 + 1}, there exists a
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Figure 3: The framework of the Subspace Identification Guarantee model. The pre-trained backbone
networks are used to extract the feature f from observed data. The bottleneck and fµ, fσ are used
to generate z with a reparameterization trick. Label predictor takes z2, z3, and u as input to model
py|u,z2,z3

. The decoder is used to model the marginal distribution. Finally, z2 is used for class-aware
conditional alignment.

h1,i such that z1,i = h1,i(ẑ1, ẑ2). And for each z3,i, i ∈ {n1 + n2 + 1, · · · , n1 + n2 + n3}, there
exists a h3,i such that z3,i = h3,i(ẑ2, ẑ3). Then we prove that z4 is block-wise identifiable, which
means that there exists an invertible function h4, s.t.z4 = h4(ẑ4).
Lemma 2. [30] Following the data generation process in Section 2.1 and the assumptions A4-A6 in
Theorem 3, we further make the following assumption:

• A7 (Domain Variability: For any set Az ⊆ Z) with the following two properties: 1) Az has nonzero
probability measure, i.e. P[z ∈ Az|{u = u′,y = y′}] > 0 for any u′ ∈ U and y′ ∈ Y . 2) Az

cannot be expressed as Bz4
×Z1 ×Z2 ×Z3 for any Bz4

⊂ Z4.

∃u1,u2 ∈ U and y1,y2 ∈ Y , such that
∫
z∈Az

pz|u1,y1
dz ̸=

∫
z∈Az

pz|u2,y2
dz. By modeling the data

generation process in Section 2.1, the z4 is block-wise identifiable.

The proof can be found in Appendix B.3. Lemma 4 shows that z4 can be block-wise identifiable
when the pz|u changes sufficiently across domains.

In summary, we can obtain the estimated latent variables ẑ with the help of subspace identification
and block-wise identification.

4 Subspace Identification Guarantee Model

Based on the theoretical results, we proposed the Subspace Identification Guaranteed model (SIG)
as shown in Figure 3, which contains a variational-inference-based neural architecture to model the
marginal distribution and a class-aware conditional alignment to mitigate the target shift.

4.1 Variational-Inference-based Neural Architecture

According to the data generation process in Figure 1, we first derive the evidence lower bound
(ELBO) in Equation (5).

ELBO =Eqz|x(z|x) ln px|z(x|z) + Eqz|x(z|x) ln py|u,z2,z3(y|u, z2, z3)
+ Eqz|x(z|x) ln pu|z(u|z)−DKL(qz|x(z|x)||pz(z)).

(5)

Since the reconstruction of u is not the optimization goal, we remove the reconstruction of u and we
rewrite Equation (5) as the objective function in Equation (6).

Lelbo = Lvae + Ly

Lvae = −Eqz|x(z|x) ln px|z(x|z) +DKL(qz|x(z|x)||pz(z))
Ly = −Eqz|x(z|x) ln py|u,z2,z3(y|u, z2, z3).

(6)

To minimize the pairwise class confusion, we further employ the minimum class confusion [25] into
the classification loss Ly. According to the objective function in Equation (6), we illustrate how to
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implement the SIG model in Figure 3. First, we take the observed data xSi and xT from the source
domains and the target domain as the inputs of the pre-trained backbone networks like ResNet50
and extract the feature fSi and fT . Sequentially, we employ an MLP-based encoder, which contains
bottleneck networks, fµ and fσ, to extract the latent variables z. Then, we take z to reconstruct the
pre-trained features via an MLP-based decoder to estimate the marginal distribution px|u. Finally, we
take the z2, z3, and the domain embedding to predict the source label to estimate py|u,z2,z3

.
4.2 Class-aware Conditional Alignment

To estimate the target label distribution py|uT and mitigate the influence of target shift, we propose
the class-aware conditional alignment to automatically adjust the conditional alignment loss for each
sample. Formally, it can be written as

La =
1

C

C∑
i=1

w(i) · pŷ(i) ||ẑ(i)3,S − ẑ
(i)
3,T ||2, w(i) = 1 + exp (−H(pŷ(i))), (7)

where C denotes the class number; ẑ(i)3,S and ẑ
(i)
3,T denote the latent variables of ith class from source

and target domain, respectively; w(i) denotes the prediction uncertainty of each class in the target
domain; pŷ(i) denotes the estimated label probability density of ith class; H denotes the entropy.

The aforementioned class-aware conditional alignment is based on the existing conditional alignment
loss, which can be formalized in Equation (8).

La =
1

C

C∑
i=1

||ẑ(i)3,S − ẑ
(i)
3,T ||2, (8)

However, conventional conditional alignment usually suffers from two drawbacks including misesti-
mated centroid and low-quality pseudo-labels. First, the conditional alignment method implicitly
assumes that the feature centroids from different domains are the same. But it is hard to estimate the
correct centroids of the target domain for the class with low probability density. Second, conditional
alignment heavily relies on the quality of the pseudo label. But existing methods usually use pseudo
labels without any discrimination, which might result in false alignment. To solve these problems,
we consider two types of reweighting.

Distribution-based Reweighting for Misestimated Centroid: Although the conditional alignment
method implicitly assumes that the feature centroids from different domains are the same, it is hard
to estimate the correct centroids of the target domain for the class with low probability density. To
address this challenge, one straightforward solution is to consider the label distribution of the target
domain. To achieve this, we employ the technique of black box shift estimation method (BBSE) [37]
to estimate the label distribution from the target domain pŷ. So we use the estimated label distribution
to reweight the conditional alignment loss in Equation (8).

Entropy-based Reweighting for Low-quality Pseudo-labels: conditional alignment heavily relies
on the quality of the pseudo label. However, existing methods usually use pseudo labels without any
discrimination, which might result in false alignment. To address this challenge, we consider the
prediction uncertainty of each class in the target domain. Technologically, for each sample in the
target dataset, we calculate the entropy-based weights via the prediction results which are shown as
w(i) in Equation (7).

By combining the distribution-based weights and the entropy-based weight, we can obtain the
class-aware conditional alignment as shown in Equation (7). Hence the total loss of the Subspace
Identification Guarantee model can be formalized as follows:

Ltotal = Ly + βLvae + αLa, (9)

where α, β denote the hyper-parameters.

5 Experiments

5.1 Experiments on Simulation Data

In this subsection, we illustrate the experiment results of simulation data to evaluate the theoretical
results of subspace identification in practice.

6



5.1.1 Experimental Setup

Data Generation. We generate the simulation data for binary classification with 8 domains. To better
evaluate our theoretical results, we follow the data generation process in Figure 2, which includes two
types of latent variables, i.e., domain-specific latent variables zs and domain-invariant latent variables
zc. We let the dimensions of zs and zc be both 2. Moreover, zs are sampled from u different mixture
of Gaussians, and zc are sampled from a factorized Gaussian distribution. We let the data generation
process from latent variables to observed variables be MLPs with the Tanh activation function. We
further split the simulation dataset into the training set, validation set, and test set.

Evaluation Metrics. First, we employ the accuracy of the target domain data to measure the
classification performance of the model. Second, we compute the Mean Correlation Coefficient
(MCC) between the ground-truth zs and the estimated ẑs on the test dataset to evaluate the component-
wise identifiability of domain-specific latent variables. A higher MCC denotes the better identification
performance the model can achieve. Third, to evaluate the performance of subspace identifiability of
domain-specific latent variables, we first use the estimated ẑs from the validation set to regress each
dimension of the ground-truth zs from the validation set with the help of a MLPs. Sequentially, we
take the ẑs from the test set as input to estimate how well the MLPs can reconstruct the ground-truth
zs from the test set, so we employ Root Mean Square Error (RMSE) to measure the extent of subspace
identification. A low RMSE denotes that there exists a transformation hi between zs,i and ẑs,1, ẑs,2,
i.e. zs,i = hi(ẑs,1, ẑs,2), i ∈ {1, 2}. For the scenario where the number of domains is less than 8, we
first fix the target domain and then try all the combinations of the source domains. And we publish
the average performance of all the combinations. We repeat each experiment over 3 random seeds.

5.1.2 Results and Discussion

Table 1: Experiments results on simulation data.

State U ACC MCC RMSE

Component-wise
Identification

8 0.9982(0.0004) 0.9037(0.0087) 0.0433(0.0051)
6 0.9982(0.0007) 0.8976(0.0162) 0.0439(0.0073)
5 0.9982(0.0007) 0.8973(0.0131) 0.0441(0.0055)

Subspace
Identification

4 0.9233(0.2039) 0.8484(0.1452) 0.0582(0.0431)
3 0.8679(0.2610) 0.8077(0.1709) 0.0669(0.0482)

No Identification 2 0.5978(0.3039) 0.6184(0.2093) 0.1272(0.0608)

The experimen-
tal results of
the simulation
dataset are
shown in Table
1. According
to the exper-
iment results,
we can obtain
the following
conclusions:
1) We can find
that the values of MCC increase along with the number of domains. Moreover, the values of MCC
are high (around 0.9) and stable when the number of domains is larger than 5. This result corresponds
to the theoretical result of component-wise identification, where a certain number of domains (i.e.
2n+ 1) are necessary for component-wise identification. 2) We can find that the values of RMSE
decrease along with the number of domains. Furthermore, the values of RMSE are low and stable
(less than 0.07) when the number of domains is larger than 3, but it drops sharply when u = 2.
These experimental results coincide with the theoretical results of subspace identification as well
as the intuition where a certain number of domains are necessary for subspace identification (i.e.
ns + 1). 3) According to the experimental results of ACC, we can find that the accuracy grows
along with the number of domains and its changing pattern is relevant to that of RMSE, i.e., the
performance is stable when the number of domains is larger than 3. The ACC results also indirectly
support the results of subspace identification, since one straightforward understanding of subspace
identification is that the domain-specific information is preserved in ẑs. And the latent variables are
well disentangled with the help of subspace identification, which benefits the model performance.

5.2 Experiments on Real-world Data

5.2.1 Experimental Setup

Datasets: We consider four benchmarks: Office-Home, PACS, ImageCLEF, and DomainNet. For
each dataset, we let each domain be a target domain and the other domains be the source domains. For
the DomainNet dataset, we equip a cross-attention module to the ResNet101 backbone networks for
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Table 2: Classification results on the Office-Home and ImageCLEF datasets. For the Office-Home
dataset, We employ ResNet50 as the backbone network. For the ImageCLEF dataset, we employ
ResNet18 as the backbone network.

Model Office-Home ImageCLEF

Art Clipart Product RealWorld Average P C I Average

Source Only [16] 64.5 52.3 77.6 80.7 68.8 77.2 92.3 88.1 85.8
DANN [11] 64.2 58.0 76.4 78.8 69.3 77.9 93.7 91.8 87.8
DAN [40] 68.2 57.9 78.4 81.9 71.6 77.6 93.3 92.2 87.7
DCTN [69] 66.9 61.8 79.2 77.7 71.4 75.0 95.7 90.3 87.0
MFSAN [81] 72.1 62.0 80.3 81.8 74.1 79.1 95.4 93.6 89.4
WADN [54] 75.2 61.0 83.5 84.4 76.1 77.7 95.8 93.2 88.9
iMSDA [30] 75.4 61.4 83.5 84.4 76.2 79.2 96.3 94.3 90.0

SIG 76.4 63.9 85.4 85.8 77.8 79.3 97.3 94.3 90.3

better usage of domain knowledge. We also employ the alignment of MDD [78]. For the Office-Home
and ImageCLEF datasets, we employ the pre-trained ResNet50 with an MLP-based classifier. For
the PACS dataset, we use ResNet18 with an MLP-based classifier. The implementation details are
provided in the Appendix C. We report the average results over 3 random seeds.

Table 3: Classification results on the PACS datasets. We employ
ResNet18 as the backbone network. Experiment results of other
compared methods are taken from ([30]).

Model A C P S Average

Source Only [16] 74.9 72.1 94.5 64.7 76.7
DANN [11] 81.9 77.5 91.8 74.6 81.5
MDAN [79] 79.1 76.0 91.4 72.0 79.6
WBN [43] 89.9 89.7 97.4 58.0 83.8
MCD [50] 88.7 88.9 96.4 73.9 87.0
M3SDA [46] 89.3 89.9 97.3 76.7 88.3
CMSS [70] 88.6 90.4 96.9 82.0 89.5
LtC-MSDA [63] 90.1 90.4 97.2 81.5 89.8
T-SVDNet [33] 90.4 90.6 98.5 85.4 91.2
iMSDA [30] 93.7 92.4 98.4 89.2 93.4

SIG 94.1 93.6 98.6 89.5 93.9

Baselines: Besides the classical ap-
proaches for single source domain
adaptation like DANN [11], DAN
[40], MCD [50], and ADDA [61].
We also compare our method with
several state-of-the-art multi-source
domain adaptation methods, for ex-
ample, MIAN-γ [45], T-SVDNet
[33], LtC-MSDA [63], SPS [64],
and PFDA [10]. Moreover, we
further consider the WADN [54],
which is devised for the target shift
of multi-source domain adaptation.
For a fair comparison, we employ
the same pre-train backbone net-
works instead of the pre-trained fea-
tures for WADN in the original pa-
per. We also consider the latest
iMSDA [30], which addresses the MSDA via component-wise identification.

5.2.2 Results and Discussion

Experimental results on Office-Home, ImageCLEF, PACS, and DomainNet are shown in Table 2, 3,
and 4, respectively. Experiment results of other compared methods are provided in Appendix D.2.

According to the experiment results of the Office-Home dataset on the left side of Table 2, our
SIG model significantly outperforms all other baselines on all the transfer tasks. Specifically, our
method outperforms the most competitive baseline by a clear margin of 1.3%− 4% and promotes the
classification accuracy substantially on the hard transfer task, e.g. Clipart. It is noted that our method
achieves a better performance than that of WADN, which is designed for the target shift scenario.
This is because our method not only considers how the domain variables influence the distribution
of labels but also identifies the latent variables of the data generation process. Moreover, our SIG
method also outperforms iMSDA, indirectly reflecting that the proposed data generation process is
closer to the real-world setting and the subspace identification can achieve better disentanglement
performance under limited auxiliary variables.

For datasets like ImageCLEF and PACS, our method also achieves the best-averaged results. In
detail, we achieved a comparable performance in all the transfer tasks in the ImageCLFE dataset.
In the PACS dataset, our SIG method still performs better than the latest compared methods like
iMSDA and T-SVDNet in some challenging transfer tasks like Cartoon. Finally, we also consider the
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Table 4: Classification results on the DomainNet datasets. We employ ResNet101 as the backbone
network. Experiment results of other compared methods are taken from ([34] and [64]).

Model Clipart Infograph Painting Quickdraw Real Sketch Average

Source Only [16] 52.1 23.4 47.6 13.0 60.7 46.5 40.6
ADDA [61] 47.5 11.4 36.7 14.7 49.1 33.5 32.2
MCD [50] 54.3 22.1 45.7 7.6 58.4 43.5 38.5
DANN [11] 60.6 25.8 50.4 7.7 62.0 51.7 43
DCTN [69] 48.6 23.5 48.8 7.2 53.5 47.3 38.2
M3SDA-β [46] 58.6 26.0 52.3 6.3 62.7 49.5 42.6
ML_MSDA [35] 61.4 26.2 51.9 19.1 57.0 50.3 44.3
meta-MCD [32] 62.8 21.4 50.5 15.5 64.6 50.4 44.2
LtC-MSDA [63] 63.1 28.7 56.1 16.3 66.1 53.8 47.4
CMSS [70] 64.2 28.0 53.6 16.9 63.4 53.8 46.5
DRT+ST [34] 71.0 31.6 61.0 12.3 71.4 60.7 51.3
SPS [64] 70.8 24.6 55.2 19.4 67.5 57.6 49.2
PFDA [10] 64.5 29.2 57.6 17.2 67.2 55.1 48.5
iMSDA [30] 68.1 25.9 57.4 17.3 64.2 52.0 47.5

SIG 72.7 32.0 61.5 20.5 72.4 59.5 53.0
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Figure 4: Ablation study on the Office-Home dataset. we explore the impact of different loss terms.

most challenging dataset, DomainNet, which contains more classes and more complex domain shifts.
Results in Table 4 show the significant performance of the proposed SIG method, which provides
3.3% averaged promotion, although the performance in the task of Sketch is slightly lower than that
of DRT+ST. Compared with iMSDA, our SIG overpasses by a large margin under a more general
data generation process.

Ablation Study: To evaluate the effectiveness of individual loss terms, we also devise the two
model variants. 1) SIG-sem: remove the class-aware alignment loss. 2) SIG-vae: remove the
reconstruction loss and the KL divergence loss. Experiment results on the Office-Home dataset are
shown in Figure 4. We can find that the class-aware alignment loss plays an important role in the
model performance, reflecting that the class-aware alignment can mitigate the influence of target shift.
We also discover that incorporating the reconstruction and KL divergence has a positive impact on the
overall performance of the model, which shows the necessity of modeling the marginal distributions.

6 Conclusion
This paper presents a general data generation process for multi-source domain adaptation, which
coincides with real-world scenarios. Based on this data generation process, we prove that the changing
latent variables are subspace identifiable, which provides a novel solution for disentangled representa-
tion. Compared with the existing methods, the proposed subspace identification theory requires fewer
auxiliary variables and frees the model from the monotonic transformation of latent variables, making
it possible to apply the proposed method to real-world data. Experiment results on several main-
stream benchmark datasets further evaluate the effectiveness of the proposed subspace identification
guaranteed model. In summary, this paper takes a meaningful step for causal representation learning.
Broader Impacts: SIG disentangles the latent variables to create a model that is more transparent,
thereby aiding in the reduction of bias and the promotion of fairness. Limitation: However, the
proposed subspace identification still requires several assumptions that might not be met in real-world
scenarios. Therefore, how further to relax the assumptions, i.e., conditional independent assumption,
would be an interesting future direction.
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