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Abstract. We present an end-to-end unsupervised deformable regis-
tration approach for high-resolution histopathology images with differ-
ent stains. Our method comprises two sequential registration networks,
where the local affine network can handle small deformations, and the
non-rigid network is able to align texture details further. Both networks
adopt the multi-magnification structure to improve registration accuracy.
We train the proposed networks separately and evaluate them on the
dataset provided by the University Hospital Frankfurt, which contains
41 multi-stained histopathology whole-slide images. By comparing with
methods using the single-magnification structure, we confirm that the
proposed multi-view architecture can significantly improve the perfor-
mance of the local affine registration algorithm. Moreover, the proposed
method achieves high registration accuracy of contents at the cell level
and is potentially applicable to other medical image alignment tasks.

Keywords: Histopathological image · Affine transformation · Non-rigid
registration · Unsupervised Learning · Multi-Magnification Network.

1 Introduction

Histopathological whole slide images, i.e., digital tissue slides produced by scan-
ning conventional glass slides under high-resolution microscopy, are vital for
modern histopathology analysis [15]. Standard whole slide images employ the
pyramid structure to support different resolutions, making it easy for patholo-
gists to observe by zooming. Each layer of the pyramid corresponds to a resolu-
tion level, with the bottom being the highest resolution information. In general,
histopathologists utilise various staining techniques based on chemical features of
the tissue, e.g. Hematoxylin-Eosin (H&E), periodic-acid Schiff (PAS) or elastic-
van Gieson (EvG). In addition, antibody-mediated visualization of specific pro-
teins, termed immunohistochemistry, is widely used in modern histopathology.
As tissue specimens are prepared by approx. 3 µm-thin cuts each specimen rep-
resents an unique sample and slides obtained from directly adjacent tissue differ
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slightly in their morphology. Even when the same tissue slide is used for multiple
staining, e.g. by bleaching and re-staining, shifts and/or deformations inevitably
occur. These digital multi-stained histopathology images that are not aligned
accurately pose obstacles to the diagnosis or further processing, thus need to be
registered first.

Image registration is the process of matching two images geometrically so
that corresponding coordinate points in both images correspond to the same
physical region of the scene being imaged [21]. Biomedical image registration
constitutes one of the key research areas for medical analysis that has been
extensively studied. Traditional registration methods search for spatial transfor-
mation that brings the defined similarity metric to be optimum by an iterative
optimization algorithm [1]. Nevertheless, the superiority of accuracy and robust-
ness of classical approaches come at the cost of time, which becomes the main
bottleneck in archiving desirable performance for practical applications. With
the revival of deep learning, attempts have been made to develop learning-based
approaches to implement faster registration, which can be grouped into three
main categories [6,5]: (i) deep iterative registration, which follows the frame-
work of traditional methods but instead adopts similarity metrics learned by
deep neural networks [16,17], (ii) supervised transformation prediction, utilizing
the known ground truth transformations to define the cost function [9,18], (iii)
Unsupervised transformation prediction, where a spatial transformation network
is applied to calculate the error of the given metric(s) with an appropriate reg-
ularization term [2,19]. The first class of methods inherits the time-consuming
drawback of conventional approaches due to the iterative process, whereas the
supervised training requires a large amount of data with annotations. In con-
trast, unsupervised transformation approaches produce the supervisory signals
required for training directly by data and can achieve real-time registration dur-
ing prediction. Therefore, we focused on the unsupervised methods in this work.

An obstacle to applying learning-based methodologies to histopathology im-
ages concerns their ultra-high resolution. Some studies have resampled images
down to an acceptable memory limit before deformation estimation [15,3]. How-
ever, such detailed information as the cell morphological structure is almost
impossible to observe on low-resolution images, becoming a key hamper in im-
proving alignment accuracy. An alternative solution is to perform registration on
smaller patches [12,8]. The shortcoming of this approach is the irreversible loss
of neighboring information when splitting the images, resulting in the narrow
field-of-view. In this work, we propose two deep multi-magnification network ar-
chitectures for patch-based affine and non-rigid registration. The proposed local
affine algorithm can effectively deal with imperceptible collective shifts of cell
nuclei in the low-resolution pattern, and non-rigid registration is able to align
further the cell components that are slightly altered in the morphological struc-
ture. We train the presented networks unsupervised and yield higher registration
accuracy than the methods using only ordinary single-magnification networks.
The result reaches precise alignment at the cellular level under the maximum
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resolution of histopathology WSIs, which significantly contributes to the man-
ual/automatic pathological diagnosis on the differently stained tissue sections.

Fig. 1. Overview of the proposed algorithm: Both networks take as input concatenated
patches Is, It for Mh (high) magnification, and concatenated patches Is

′, It
′ for Ml

(low) magnification. An example in the upper right corner illustrates the construction
process of a patch set, where the cropping rate (CR) and sampling factor (SR) used
to build patches for each magnification level are given. The red boxes denote the
corresponding regions at different magnifications.

2 Methods

Let IS , IT : Ω → R represent the whole slide source and target images, defined
in the spatial domain Ω ⊂ Rd, where d denotes (d = 2 in this study) spatial
dimensionality of the given data. Similarly, Is, It: ω → R with ω ⊂ Ω represent
the patch-wise source and target images, extracted from IS and IT . Assuming
that the image pairs to be registered are pre-aligned well, we aim to find two
deformation fields ϕA, ϕN : Ω → Ω to deform the source image such that:

IS(ϕN ◦ ϕA(x)) ≈ IT ,∀x ∈ Ω. (1)

Here “◦” represents the composition of deformations and I(ϕ) indicates I de-
formed by ϕ. The deformations ϕA, ϕN are defined as a patch-wise affine defor-
mation and a pixel-wise non-rigid deformation, respectively. They are obtained
by aggregating the local deformations ϕp

a, ϕ
p
n : ω → ω of image patches (Is, It)

extracted from (IS , IT ), where p indicates the index of the patch on the whole
slide image. Two convolutional neural networks fa and fn are used to realize the
affine registration ϕa= fa(Is, It) and non-rigid registration ϕn= fn(Is(ϕa), It),
respectively.



4 OC et al.

An affine registration network is leveraged to learn the affine transformation
ϕa:= Tx, where T ∈ Rd×m with m = d+ 1. Next, the affinely registered images
are fed into the non-rigid registration network to learn the displacement field
u(x) with ϕn:= x+ u(x), which represents the displacements for ∀x ∈ ω in the
vertical and horizontal directions.

Fig. 2. Architecture of the local affine and non-rigid registration networks: ConvBlock
includes two sets, each consisting of a 3×3 convolution layer with group normalization
(GN), activated by PReLU. TransBlock comprises a 2×2 transposed convolution layer
with a stride of 2 followed by GN and PReLU activation. The green and red arrows
indicate maximum pooling and average pooling, respectively. The center cropping op-
erations are denoted by brown arrows with the cropping rates written in brown. Other
blocks are described in the text.

The input of both networks is a set of image patches with different magnifica-
tions, providing multiple field-of-views to the networks. Fig.1 offers an overview
of the proposed registration algorithm for the case of two magnification levels.
The strategy adopted for extracting multi-magnification patches in this work
is described as follows: In a multi-magnification set, all other patches are ob-
tained by center-cropping the base image with different cropping rates. Then,
the patches are downsampled with the corresponding sampling factors to uni-
form the patch size. The downsampled base image is the one with the lowest
magnification level in the set. Registration networks take the patch set as input
and predict the local affine transform matrix/displacement field corresponding
to the patch with the highest magnification level, as details described in the next
section. According to equation 1, the final deformation for the given images IS
and IT is obtained by composing the folded ϕA and ϕN .

2.1 Network Architectures

The proposed networks are inspired from [7], which contains multiple magnifi-
cation layers that obtain more information from different field-of-views. Consid-
ering that the architectures of both networks are quite similar, they are shown



Deformable unsupervised image registration on histopathology images 5

in one figure for brevity, as visualized in Fig.2. The concatenation of the high-
magnification patches Is and It is fed into the target magnification layer based
on the U-Net [13], to extract the higher magnification feature maps. During re-
construction, these feature maps are concatenated with the corresponding lower
magnification feature maps extracted from the lower-magnification patches Is

′

and It
′ in another magnification layer. To limit the usage of feature maps from

cropped boundary areas in a wide field-of-view, the lower magnification feature
maps are center-cropped with a given cropping rate followed by up-sampling
utilizing transpose convolution to match the size.

In the local affine network, FinalBlock has the same structure as ConvBlock
but a stride of 2, followed by an adaptive average pooling layer. The recon-
structed feature maps are transformed into six numeric parameters through a
fully-connected layer and then rearranged into the resulting affine transform
matrix T in the regression layer. Whereas, in the non-rigid network, the recon-
structed feature maps are compressed utilizing Final Block, a stack of a 3 × 3
and a 1× 1 convolution layer, into two-channel displacement field u(x).

2.2 Loss Function

Assume that ϕ : ω → ω is the local deformation field estimated by networks
with image patches Is and It as input, the loss function can be described as

L (Is, It, ϕ) = LS (Is(ϕ), It) + λLR (ϕ) , (2)

where the first term LS measures the similarity between the warped source and
the target patches, and LR is a regularization term considered only in the non-
rigid network. Parameter λ controls the trade-off between these two terms as a
hyperparameter in the training process.

We choose the normalized cross-correlation (NCC) [10] as the similarity met-
ric LS . Let I1, I2 be two images then this similarity can be computed as

NCC(I1, I2) =
1

N − 1

∑
x∈ω

(I1(x)− Ī1)(I2(x)− Ī2)

σI1σI2

, (3)

where N indicates the number of non-zero pixels, Ī and σI represent the mean
and standard deviation of the intensities in image I, respectively. The nega-
tive normalized cross-correlation (NCC) is used in training to minimize the loss
function, while a higher NCC value corresponds to a higher similarity between
images.

Under the intuition that a desirable deformation field should not vary too
much between nearby points, the curvature regularization [4] is used to constrain
the geometric smoothness of the displacement field ϕ predicted by the non-rigid
network, i.e.,

LR(ϕ) =
∑
x∈ω

∥ ∇ϕ(x) ∥2 . (4)
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3 Experiments

The University Hospital Frankfurt (UKF) provided the images used in this study
to evaluate the proposed algorithm, with clinical data removed and completely
anonymized. The UKF dataset comprises two parts: The first part offers 36
histopathological WSIs, where every two images are from the same tissue section,
respectively stained with H&E and IHC-CD8. The second part consists of 5
WSIs obtained from two staining experiments in which multiple staining was
performed on the tissue slides from one tissue in different orders. All WSIs are
provided as .mrxs files with a unified specification. Each of them contains images
at nine resolutions with a downsampling factor of 2, where the full resolution
exceeds 180k×90k pixels in size. We generated 18 and 5 image pairs respectively
from two parts of the UKF dataset for training and evaluation. The experiment
details are presented next.

3.1 Experimental Settings

Data Preprocessing We removed large background areas in the raw data by
a boundary detection algorithm and then converted them into single-channel
grayscale images. The rigid alignment method derived from [20] was adopted to
handle the large misalignment of the image pairs.

Technical Details The proposed algorithm was implemented by modifying and
extending the DeepHistReg framework [20]. Unsupervised methods were trained
on the resolution-level 4 images whose size varies from 3k to 7k pixels in one
dimension. The images are split into overlapping patches, followed by extracting
224× 224 patches of different magnification levels as the input to the networks.
We trained both presented networks with a batch size of 4 using Nvidia Tesla
P100 (PCIe). The Adam optimizer with an initial learning rate of 1e− 3 and a
decay rate of 0.95 was adopted to update the network parameters. The constraint
coefficient λ for the non-rigid network training was chosen to be 60.

Baseline Methods We built two single-magnification networks for local affine
and non-rigid registration as the baseline models for comparison. The architec-
ture of both networks inherited the target magnification layer of the correspond-
ing multi-amplification network with some adaptations. The training settings
were the same as the proposed methods.

3.2 Evaluation Metrics

We quantified the registration accuracy by several similarity metrics since no
ground truth such as landmarks or segmentation maps are provided for the
UKF dataset. Except for the metric NCC used as the objective function during
network training, the quality of the deformation fields was also evaluated by the
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Mean-Squared-Error (MSE) [11] and the normalized Mutual-Information (NMI)
[14], which are respectively defined as

MSE(I1, I2) =
1

N

∑
x∈ω

[I1(x)− I2(x)]
2
, (5)

NMI(I1, I2) =
2 ·H(I1, I2)

H(I1) +H(I2)
, (6)

where H indicates Shannon’s entropy and H(I1, I2) represents the dependence
of variables (images) I1 and I2.

Table 1. Comparison among methods with single/multi-magnification registration net-
works, containing the average inference time and performance quantified by the similar-
ity metrics NCC, MSE, and NMI (arrows indicate the trend of the increased similarity):
The methods are named according to the adopted network architectures, where S/M
stands for networks with the single/multi-magnification structure, and A/N denotes
the local affine transformation and non-rigid deformation. For example, MASN refers
to combining a multi-magnification local affine network and a single-magnification non-
rigid network. Besides, an iterative approach is applied based on the presented method,
with the number of iterations denoted in parentheses.

Metric Initial SASN SAMN MASN MAMN MASN(3)

NCC ↑ 0.6828 0.7123 0.7060 0.7461 0.7443 0.7728
MSE ↓ 0.0403 0.0376 0.0382 0.0336 0.0338 0.0305
NMI ↑ 0.1670 0.1781 0.1756 0.1952 0.1954 0.2038

Time (sec) - 25.48 28.96 28.95 32.31 45.29

Fig. 3. Local subtractions of a high-resolution image pair registered by different meth-
ods: The non-overlapping regions appear as fluorescent green due to the nature of
stains. For visibility, the contrast/brightness of images has been increased by 50%.
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4 Results

Table 1 summarizes the overall performance of our proposed algorithm in com-
parison to approaches containing one or more baseline models. All of them take
images pre-aligned by rigid alignment as input.

As shown in Table 1, the proposed multi-magnification structures outper-
formed the ordinary single-magnification architecture for the local affine algo-
rithm with remarkable benefits, whereas yielding almost no improvement in the
performance of the non-rigid network. The increase in runtime due to the multi-
magnification structure is not significant compared to the base runtime (SASN).
According to the proposed algorithm, the difference in time will decrease ex-
ponentially for smaller image pairs. By iterating the prediction on the previous
result by the same network, we obtained registration results with significantly
higher accuracy.

We upsampled the predicted deformation fields for generating the registered
images at a higher resolution. By performing local subtraction between the de-
formed source and target images, we evaluated the registration performance of
different methods at the cellular level, as illustrated in Fig.3. It can be observed
that the local affine network improved by the multi-magnification structure is
crucial for the enhancement of the overall performance. The cell nuclei can over-
lap completely in the best cases.

5 Discussion and Conclusion

In modern histopathology multiple staining techniques are used to detect specific
structures within biological tissues. Each technique highlights different charac-
teristics of the tissue and proper analysis needs to address the spatial distribution
of these characteristics. In this context, we developed two novel deep networks
with the multi-magnification structure for patch-based image registration, which
can learn peripheral information outside the patches as auxiliary information to
improve network performance. The presented method is of great importance
for biomedical image registration since studies for them can often be performed
only on smaller patches due to the large image size. Moreover, the network ar-
chitectures can be easily expanded with more magnification levels. Nevertheless,
this expansion makes little sense since too many field-of-views may instead neg-
atively affect the network performance, especially for cases with no apparent
global misalignment.

Our experiments compared the impact of single- and multi-magnification net-
works on the overall alignment performance by different network combinations.
The results revealed that the multi-magnification structure could significantly
improve the performance of the patch-based affine registration network. How-
ever, it yielded little success on the local non-rigid network. This might mainly
attribute to the transformation nature of these two registration methods. The
lack of neighboring information can aggravate the estimation error of deforma-
tion for the whole image patch region by the local affine approach, while this
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error occurs only within the edge region of the image patches in the non-rigid
method due to the dense prediction. Therefore, the enhancement of the non-rigid
method by the multi-magnification structure was much less evident than that
of the local affine approach. Besides, we introduced an iterative approach on
the method with the best performance, which further improved the registration
accuracy, with an acceptable growth of inference time. The proposed method
has the potential to be applicable for other medical image registration tasks.
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