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From Contradiction Overcome From Generative Distortion Assessment

What is the most severe generative distortion?
A.  Incorrect structure of the handgun
B.  Blur due to low completion
C.  Incorrect structure of the woman's face
D.  Incorrect structure of the woman's hand (correct)

GPT-4o Response: A

Gemini 1.5 Pro Response : D

Does the cactus contain soft and fluffy leaves?
A.   No
B.   Yes (correct)

GPT-4o Response: A

Gemini 1.5 Pro Response: A. No

From Composition Identification

What is partially covered by the mountain climber's backpacks?
A. Climbing harnesses
B. Boots lined up behind
C. Ropes and carabiners
D. The view of the mountain in the background (correct)

GPT-4o Response: B. Boots lined up behind

Gemini 1.5 Pro Response: B. Boots lined up behind

Figure 1: Error cases from the A-Bench.

ABSTRACT

How to accurately and efficiently assess AI-generated images (AIGIs) remains a
critical challenge for generative models. Given the high costs and extensive time
commitments of user studies, many researchers have turned towards employing
large multi-modal models (LMMs) as AIGI evaluators, the precision and validity
of which are still questionable. Furthermore, traditional benchmarks often utilize
mostly natural-captured content rather than AIGIs to test the abilities of LMMs,
leading to a noticeable gap for AIGIs. Therefore, we introduce A-Bench in this
paper, a benchmark designed to diagnose whether LMMs are masters at evalu-
ating AIGIs. Specifically, A-Bench is organized under two key principles: 1)
Emphasizing both high-level semantic understanding and low-level visual qual-
ity perception to address the intricate demands of AIGIs. 2) Various generative
models are utilized for AIGI creation, and various LMMs are employed for eval-
uation, which ensures a comprehensive validation scope. Ultimately, 2,864 AIGIs
from 16 text-to-image models are sampled, each paired with question-answers an-
notated by human experts. We hope that A-Bench will significantly enhance the
evaluation process and promote the generation quality for AIGIs.

1 INTRODUCTION

One look is worth a thousand words. Inspired by this age-old adage, numerous researchers dedicate
their efforts to developing text-to-image (T2I) models that vividly bring text to life through imagery.
These T2I models, driven by free-form text prompts, aim to create images that accurately align
with the text and showcase high perceptual quality. Innovations such as AlignDRAW (Man-
simov et al., 2015) and the text-conditional GAN (Reed et al., 2016) have introduced differential
architecture for image generation. The field continues to advance with the development of stable
diffusion models (Saharia et al., 2022; Rombach et al., 2022b), significantly propelling T2I tech-
nology forward. On the commercial front, major corporations leverage vast-scale data to launch
stunningly effective T2I models, such as DALL-E (Ramesh et al., 2022), Midjourney (Holz, 2023),
Parti (Yu et al., 2022), etc. However, despite their diversity and widespread adoption, all these
advanced T2I models occasionally face issues of low alignment with prompts and low perceptual
quality in creating AI-generated images (AIGIs), necessitating careful evaluation and improvement.
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T2I Models

A-Bench

Principles: Semantic Alignment  vs.  Perceptual Quality

Text prompt

LMM Evaluation Reliable

Expectations for LMMs as AIGI Evaluators 

Experts AIGIs

Increasing Usage of LMM as AIGI Evaluators

Annotate Construct

Part1 Diagnosis
High-level Semantic Understanding

A-Bench Diagnosing LMMs on AIGI Evaluation
Part2 Diagnosis

Low-level Quality Perception

What is the most severe technical 
distortion in the image?
A. Noise   B. Underexposure
C. Overexposure  D. Blur

What is growing on the trees?
A. Leaf   B. Money  C. Flower
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Figure 2: The proposed A-Bench is designed to find out whether LMMs are reliable for T2I AIGI
evaluation. Instead of directly assessing the performance of LMM-based metrics, we evaluate the
LMMs themselves behind by examining whether the fundamental questions regarding semantic
understanding and quality perception can be correctly answered. Based on the benchmark results,
we can then ‘diagnose’ the strengths and weaknesses across various LMMs.

The alignment and quality evaluation of AIGIs present significant challenges that small expert mod-
els attempt to address. Although these small expert models offer some solutions, they possess in-
herent drawbacks and often fail to meet contemporary demands. Specifically, for alignment assess-
ment, CLIP-based similarity models struggle with accurately judging alignment, particularly with
complex text prompts (Radford et al., 2021b). When it comes to quality evaluation, traditional im-
age quality/aesthetic assessment methods (IQA/IAA) are not capable of identifying AIGI-generative
distortions (Wu et al., 2023a;b), rendering them unsuitable for this specialized task.

Many researchers are increasingly relying on large language models (LLMs) and large multi-modal
models (LMMs) for their human-like processing capabilities, which are presumed to enable accu-
rate judgments of alignment and quality in generated content. Consequently, many LMM-based
evaluators have been developed, including VIE-Score (Ku et al., 2023), Prometheus (Kim et al.,
2023), VQAScore (Lin et al., 2024), GPT4V-Eval (Zhang et al., 2023b), TIFA (Hu et al., 2023), and
Davidsonian Graph (Cho et al., 2023), etc. However, a fundamental question remains:

Are LMMs reliable for evaluating T2I AIGIs?

These LMM-based metrics traditionally employ evaluation criteria such as SRCC/PLCC to deter-
mine their reliability. However, this approach only reveals how well the metrics perform, without
shedding light on their specific strengths and weaknesses. To address this gap, we propose con-
ducting a comprehensive ‘diagnostic’ benchmark → A-Bench, focusing on LMMs’ capabilities in
semantic understanding and quality assessment. Rather than directly evaluating these LMM-based
metrics, we focus on the LMMs themselves behind. We move away from computing SRCC/PLCC
criteria and instead examine whether the fundamental perceptual questions can be correctly an-
swered, which is the core basis of all LMM-based evaluators. To initiate our exploration on the
AIGI evaluation abilities of LMMs, we first construct the A-Bench centered on a pivotal question:

What do we expect from LMMs as AIGI evaluators?

The answer lies in the capabilities of semantic alignment and quality evaluation. We then
define two key diagnostic subsets: A-BenchP1→high-level semantic understanding, and A-
BenchP2→low-level quality perception. For high-level semantic understanding, A-BenchP1 targets
three critical areas: Basic Recognition, Bag-of-Words Pitfalls Discrimination, and Outside Knowl-
edge Realization, which are designed to progressively test the LMM’s capability in AIGI semantic
understanding, moving from simple to complex prompt-related content. For low-level quality per-
ception, A-BenchP2 concentrates on Technical Quality Perception, Aesthetic Quality Evaluation,
and Generative Distortion Assessment, which are designed to cover the common and AIGI-specific
quality problems. The aspect selection is meticulously designed to encompass the most prevalent ap-
plication scenarios. Specifically, a comprehensive dataset of 2,864 AIGIs sourced from various T2I
models is compiled, including 1,408 AIGIs for A-BenchP1 and 1,456 for A-BenchP2. Each AIGI
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is paired with a question-answer set annotated by human experts. We then test 23 prominent LMMs,
including both open-source and closed-source models, on the A-Bench. From the results that the
best LMM still falls behind humans by a large margin, we can derive the following conclusion:

LMMs are still not masters at evaluating AIGIs.

All LMMs lag behind even the poorest human performance on A-Bench, and there is a substantial
disparity between open-source LMMs and closed-source LMMs. The performance across different
subcategories fluctuates for both A-BenchP1 and A-BenchP2, indicating that LMMs are not yet
robust for different evaluation scenarios for AIGIs. There remains a considerable gap and significant
room for improvement before LMMs can be considered masters of evaluating AIGIs.

In summary, we systematically explore the capabilities of LMMs in semantic understanding and
quality perception, both crucial for their role as AIGI evaluators. These two essential capabilities
constitute the core of the proposed A-Bench, the first ‘diagnostic’ benchmark specifically designed
for LMM assessment in AIGI evaluation. Our contributions are summarized as follows:

• We carry out the first ‘diagnostic’ benchmark on AIGI evaluation for LMMs, which
consists of 2,864 AIGIs (sampled from various T2I models) paired with question-answer
sets on both high-level semantic understanding and low-level quality perception.

• A detailed discussion is made about what to ‘diagnose’. Semantic understanding is sub-
divided into Basic Recognition, Bag-of-Words Pitfalls Discrimination, and Outside Knowl-
edge Realization while quality perception is broken down into Technical Quality Percep-
tion, Aesthetic Quality Evaluation, and Generative Distortion Assessment.

• From the benchmark results, several insights are gleaned, which can enable us to diagnose
various issues with different LMMs and assist in their improvement for AIGI evaluation.

2 RELATED WORKS

2.1 LARGE MULI-MODAL MODELS

Large language models (LLMs), such as GPT-4 (OpenAI, 2023), T5 (Chung et al., 2022), and
LLaMA (Touvron et al., 2023), exhibit exceptional linguistic capabilities in general human knowl-
edge domains. By integrating visual input via CLIP (Radford et al., 2021a) and additional adaptation
modules, large multi-modal models (LMMs) (Li et al., 2023a; Gao et al., 2023; Liu et al., 2023b;
Dai et al., 2023; Zhang et al., 2023a) are capable of addressing diverse multi-modal tasks, including
image captioning, visual question answering, visual segmentation, visual classification, visual rea-
soning, etc. Namely, OpenFlamingo (Awadalla et al., 2023) initially integrates several gated cross-
attention dense blocks into the pretrained language encoder layers. InstructBLIP (Dai et al., 2023)
extends BLIP-2 (Li et al., 2023c) by incorporating vision-language instruction tuning. To further
develop open-source LMMs, many works have employed GPT-4 (OpenAI, 2023) to create data for
vision-language tuning, such as LLaVA series (Liu et al., 2023b;a; 2024). However, whether these
LMMs are masters at evaluating T2I AIGIs is still questionable, which needs further investigation.

2.2 MULTI-MODAL BENCHMARKS

Benchmarks such as COCO Caption (Chen et al., 2015) and Nocaps (Agrawal et al., 2019) evalu-
ate the capability of models to generate textual descriptions for images. Subsequently, benchmarks
like GQA (Hudson & Manning, 2019) and OK-VQA (Marino et al., 2019) focus on visual question
answering, assessing multi-modal models’ visual perception and reasoning abilities. Further com-
plexities are added in benchmarks such as TextVQA (Singh et al., 2019) and ScienceQA (Lu et al.,
2022), which incorporate OCR tasks and commonsense reasoning, respectively. MME (Fu et al.,
2023) and MMbench (Liu et al., 2023c) provide comprehensive evaluations of LMMs across vari-
ous subtasks. Additionally, MMMU (Yue et al., 2023) targets extensive multi-disciplinary tasks that
require college-level knowledge and sophisticated reasoning. More recently, Q-Bench (Wu et al.,
2023a) focuses specifically on assessing the low-level visual perception capabilities of LMMs. De-
spite these efforts, there is still a gap in systematic benchmarks for assessing the abilities of LMMs
in AIGI evaluation, prompting the development of A-Bench to address this shortfall.
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Figure 3: Illustration of focused aspects and corresponding quality distributions for A-Bench. The
focused aspects and the amount of AIGIs employed are shown in (a). The quality scores of AIGIs
sampled for Technical Quality Perception and Aesthetic Quality Evaluation subsets are obtained
from AIGIQA-20K (Li et al., 2024) and predicted from Q-Align (Wu et al., 2023c) respectively.

3 CONSTRUCTING THE A-BENCH

3.1 KEY PRINCIPLES

Covering High-level and Low-level Attributes. The demand for generating images has become
increasingly stringent, with requirements for not only accurate adherence to prompt specifications
but also high visual quality of AIGIs. To ascertain whether LMMs can effectively evaluate whether
AIGIs meet these criteria, it is essential to assess their capabilities in both high-level semantic
understanding and low-level quality perception. High-level semantic understanding encompasses
basic recognition and the integration of external knowledge, whereas low-level quality perception
involves the identification of technical quality, aesthetic appeal, and generative distortions. The
detailed focused aspects can be overviewed in Fig. 3 (a).

Ensuring Diverse AIGI Scope. Considering the variety of current generative models and their
application scenarios, we have selected a broad range of mainstream text-to-image (T2I) generation
models to produce AI-generated images (AIGIs). To assess high-level semantic understanding, we
design prompts rich in content to ensure diversity among the generated images. For evaluating
low-level quality perception, we employ uniform sampling to encompass a wide spectrum of visual
quality and the corresponding quality distributions are illustrated in Fig 3 (b) and (c). Throughout
the benchmarking process, we test multiple open-source and closed-source LMMs to guarantee
a comprehensive evaluation. These measures ensure that our proposed A-Bench encompasses a
diverse and extensive scope. More details about AIGIs collection can be referred to in Sec. A.1.

3.2 FOCUSED ASPECTS

The key evaluation aspects of T2I models involve image-text alignment and image visual quality,
which correspond to high-level semantic understanding and low-level quality perception abilities.
Some representative examples regarding the subcategories discussed below are exhibited in Fig. 4.

3.2.1 HIGH-LEVEL SEMANTIC UNDERSTANDING

To evaluate whether LMMs can effectively assess image-text alignment, we implement the A-
BenchP1, which consists of 1,408 challenging multi-modal question-answer pairs that focus on
high-level semantic understanding for AIGIs. The high-level semantic understanding can be divided
into the following subcategories, moving from simple to complex prompt-related content:
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Question: 
What is the hair color of the person 
on the far left in the picture?
Answer candidates:
A. Black      B. Silver
C. Pink      D. Yellow
Correct choice: B

Major Object Recognition Major Object Recognition

Question: 
Is the decoration on the back wall 
in the picture magnificent?
Answer candidates:
A. Yes
B.   No       
Correct choice: A
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Question: 
What is the first bottle made 
of from left to right?
Answer candidates:
A. Green plastic  B. Blue Steel
C. Green glass    D. Blue glass
Correct choice: C

Attributes Awareness Nouns as Adjectives Awareness

Question: 
Is there a shark-sleek submarine in 
the deep ocean?
Answer candidates:
A. Yes
B.   No       
Correct choice: B

Ba
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Composition Identification Number of Objects Counting

Question: 
How many red hats are there hanging 
on the wall?
Answer candidates:
A. 1      B. 2
C.  3      D. 6
Correct choice: B

Question: 
How are the tents arranged in the 
archaeologists camp?
Answer candidates:
A. Arranged in a circle, around camp fire
B. In the middle of the camp
C. Placed in the free space of the camp     
Correct choice: C

Question: 
What painting style is represented in 
the image?
Answer candidates:
A. Abstract      B. Surrealism
C. Expressionism  D. Impressionism
Correct choice: C

Specific Terms Recognition Contradiction Overcome

Question: 
Is the moon larger than the sun
in the image?
Answer candidates:
A. Yes
B.   No       
Correct choice: A

O
ut

si
de

 K
no

w
le
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 R
ea
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Question: 
What technical distortion mainly exists 
in this picture?
Answer candidates:
A. Overexposure  B. Spine texture blur
C. Underexposure D. Out of focus
Correct choice: B

Technical Quality Perception Generative Distortion AssessmentAesthetic Quality Evaluation

Question: 
What kinds of generative distortions exist in 
this image?
Answer candidates:
A. All of options
B. Mismatched left and right ears 
C. Wrong fingers
Correct choice: A

Question: 
What aesthetic 
distortions are 
present in this 
image?
Answer candidates:
A. Lack of clear 
visual guidance
B. Bizarre style
C. Colors are 
monotonous and 
uncoordinated 
D. None of above
Correct choice: D

A
-B

en
ch

P1

A
-B

en
ch

P2

Figure 4: Examples of A-Bench. Each AIGI is accompanied by a question-answer pair.

Basic Recognition. This aspect concentrates on the fundamental semantic understanding of
AIGIs (Nichol et al., 2021; Saharia et al., 2022), which can be subdivided into two distinct areas
based on the objects of interest: 1) Major Object Recognition, which involves recognizing the pri-
mary objects in the image, such as humans or objects depicted in the foreground. 2) Minor Object
Recognition, which pertains to the identification of less-prominent objects within the image, such
as background elements or secondary characters.

Bag-of-Words Pitfalls Discrimination. This dimension focuses on the discriminative semantic
understanding of AIGIs crafted with Bag-of-words prompts (encompassing rich descriptive attributes
or complex object relationships (Qu et al., 2024)). This can be subdivided into the following aspects
related to the crucial points of T2I generation alignment: 1) Attributes Awareness, defined as the
capability to accurately identify the attributes of objects in AIGIs (Xu et al., 2023; Liu et al., 2023c).
2) Additionally, given that T2I models may incorrectly interpret nouns as adjectives, resulting in the
unwanted generation of objects instead of the intended attributes (Chatterjee et al., 2025; Motamed
et al., 2023), we have also introduced a dimension called Nouns as Adjectives Awareness to ad-
dress this issue. 3) Composition Identification, recognized as the ability to correctly comprehend
the compositional relationships such as orientation, occlusion, size comparison, and spatial arrange-
ment (Wang et al., 2024b; Zhang et al., 2024). 4) Number of Objects Counting, regarded as the
ability to accurately count the specified objects in the image, which is crucial for assessing whether
the AIGI aligns with the numerical specifications of the prompt (Binyamin et al., 2024).
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Outside Knowledge Realization. This aspect emphasizes the reasoning ability to utilize external
knowledge not directly depicted in the images (Schwenk et al., 2022), and can be broken down
into the following dimensions: 1) Specific Terms Recognition: This involves identifying specific
scenes and objects related to distinct domains such as geography, sports, science, materials, food,
everyday life, creatures, brands, and styles. 2) Contradiction Overcome, recognized as the ability
to correctly interpret AIGIs even when their content contradicts established world knowledge, which
is particularly crucial for evaluating AIGIs generated from controversial prompts (Hou et al., 2024).

3.2.2 LOW-LEVEL QUALITY PERCEPTION

Conversely, to determine the ability of LMMs on image visual quality, we conduct the A-BenchP2,
comprising 1,456 challenging multi-modal question-answer pairs centered on low-level quality per-
ception for AIGIs, which can be categorized into the following aspects: 1) Technical Quality Per-
ception This indicates the low-level characteristics that directly degrade the quality of images, such
as blur, noise, exposure, etc (Su et al., 2021; Ying et al., 2020). 2) Aesthetic Quality Evaluation
This indicates the attributes that affect the aesthetic appeal of AIGIs and evoke varied human feel-
ings, which include color, lighting, etc (Huang et al., 2024). 3) Generative Distortion Assessment
This indicates the unexpected AIGI-specific distortions (Chen et al., 2023b; Li et al., 2023b; 2024),
such as generative blur caused by low completion, confusing geometry structure, unnaturalness, etc.

3.3 QUESTION COLLECTION

Question Type In the A-Bench, two types of question formats are utilized, including Yes-or-No
questions and What questions. The Yes-or-No questions (accounting for 25.9%) are used to evaluate
the fundamental judgment abilities of LMMs while the What questions (accounting for 74.1%) are
more complicated and require LMMs to gain a more comprehensive understanding of the AIGIs.

Human Expert Annotation We have assembled a team of 15 human annotators, each with ex-
pert experience in AIGI evaluation, to develop questions for A-Bench. This annotation process is
conducted in a controlled laboratory environment, ensuring consistency and reliability. Annotators
are tasked with designing questions specific to the sub-categories of the AIGIs under review, utiliz-
ing their extensive knowledge to determine the content and format of each question. To ensure the
highest quality and suitability, each question undergoes a rigorous review process, with at least three
other expert annotators double-checking it. More details can be acquired in Sec. A.3.

Question Response Specifically, the example input query to LMMs can be exemplified as:

#User: What painting style is represented in the image? |IMAGE TOKEN |
A. Abstract B. Surrealism C. Expressionism D. Impressionism
Answer with the option’s letter from the given choices directly.

The answer candidates and correct answers are shuffled during the evaluation process. Since the
responses from LMMs can be in various forms (if the correct choice is C) such as ‘C’, ‘Expres-
sionism’, ‘The painting style of image is expressionism’, etc., we employ a GPT-assisted choice
evaluation technique proposed in (Liu et al., 2023c; Wu et al., 2023a) to validate the correctness of
LMMs responses. More details are shown in Sec. A.4.

4 EXPERIMENT RESULTS

4.1 BENCHMARK CANDIDATES

To ensure the results are comprehensive and up-to-date, we select the widely used LMMs for bench-
marking. The Proprietary LMMs (closed-source) include Gemini 1.5 Pro (Reid et al., 2024), GPT-
4v (OpenAI, 2023), GPT-4o (2024-05-13) (OpenAI, 2024), and Qwen-VL-Max (Bai et al., 2023).
The Open-source LMMs include Qwen2-VL-72B (Qwen2-72B) (Wang et al., 2024a), MiniCPM-
V2.6 (Qwen2-7B) (Yao et al., 2024), InternVL2-40B (Nous-Hermes-2-Yi-34B) (Chen et al., 2024),
Ovis1.5 (Llama3-8B), LLaVA-OneVision (Qwen2-7B) (Lu et al., 2024b), CogVLM2-19B (Llama3-
8B) (Wang et al., 2023), IDEFICS-2 (Mistral-7B-Instruct-v0.2) (Huggingface, 2023), DeepSeek-
VL-7B (Lu et al., 2024a), InternLM-XComposer2-VL (Dong et al., 2024), LLaVA-NeXT (Llama3-
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Comparison of Part3 Performance Across Different LMMs

(a) Overall results of A-Bench.
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(b) Detailed results of A-Bench.

Figure 5: A Quick Look of the A-Bench outcomes. (a) showcases a comparative analysis of the
overall accuracy between humans, 23 selected LMMs (both closed-source and open-source), and
random guess. (b) displays a radar chart that details the accuracy performance (subtracting the
accuracy of random guess) of the top-7 LMMs across various subcategories of A-Bench.

8B), LLaVA-NeXT (Qwen-72B), LLaVA-NeXT (Qwen-110B) (Liu et al., 2024), mPLUG-Owl2
(LLaMA-7B) (Ye et al., 2023), LLaVA-v1.5 (Vicuna-v1.5-7B), LLaVA-v1.5 (Vicuna-v1.5-13B) (Liu
et al., 2023a), CogVLM-17B (Vicuna-v1.5-7B) (Wang et al., 2023), Qwen-VL (Qwen-7B) (Bai et al.,
2023), BakLLava (Mistral-7B) (Liu et al., 2023b), and Fuyu-8B (Persimmon-8B) (Adept, 2023). All
LMMs are tested with zero-shot setting. It’s worth noting that the instruction prompt might slightly
differ for different LMMs according to the official setting.

4.2 HUMAN PERFORMANCE

For human performance on A-Bench, we conduct a user-study experiment with five ordinary people
in a controlled laboratory setting. Initially, participants familiarize themselves with the tasks through
exposure to similar cases. Subsequently, they select the appropriate responses for the questions
posed in the A-Bench. To maintain consistency with the conditions experienced by LMMs, the
order of questions is randomized, and participants receive no additional information beyond the
AIGIs, questions, and answer options. The best and worst performance is included for comparison.
More details about acquiring human performance can be referred to in Sec.A.5.

4.3 FINDINGS OF A-BENCH

General Observation: Proprietary LMMs deliver performance comparable to the best open-
source LMMs. A concise overview of the A-Bench results is provided in Fig. 5, revealing several
general insights: 1) All LMMs significantly outperform the random guess, indicating their capa-
bilities in handling AIGI evaluation, with Qwen2-VL-72B leading, closely followed by Gemini 1.5
Pro and GPT-4o. Notably, among the open-source LMMs, which are preferred for AIGI evalua-
tions due to their accessibility and modifiability, Qwen2-VL-72B stands out, even outperforming
the best closed-source competitors. 2) Even the lowest performance by humans surpasses that of
all LMMs, with a noticeable 14.62% gap compared to the top-performing LMM, Qwen2-VL-72B,
indicating that LMMs are still far from adequately performing AIGI evaluation as humans. 3) A
closer examination of the radar chart in Fig. 5 (b) shows that top LMMs exhibit varied perfor-
mances across different sub-categories, suggesting a lack of robustness, while humans show more
consistent and balanced performance across these categories, highlighting areas where LMMs need
further improvement.

Findings of A-BenchP1: LMMs excel at basic recognition tasks but tend to be less effective
when it comes to nuanced semantic understanding. The performance results of LMMs on the
A-BenchP1 subset, as detailed in Table 1, reveal several key insights: 1) Almost all LMMs show
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Table 1: Benchmark results on the A-BenchP1 subset, which reveal the high-level semantic under-
standing abilities across LMMs. The best performance is marked in bold and the second perfor-
mance is underlined for both proprietary and open-source LMMs respectively.

Categories Basic Recognition Bag-of-Words Outside Knowledge
Overall↑

LMM (LLM) Major↑ Minor↑ Attr.↑ N. Adj.↑ Comp.↑ Number↑ Term↑ Contra.↑
HUMAN (WORST) 95.18% 94.24% 96.78% 88.70% 85.49% 82.46% 81.76% 88.91% 92.40%
HUMAN (BEST) 95.40% 95.21% 99.42% 95.17% 93.34% 91.73% 84.29% 96.05% 94.02%
Proprietary LMMs:
GEMINI 1.5 PRO 93.82% 95.18% 94.35% 80.27% 72.14% 79.35% 72.88% 61.56% 84.70%
GPT-4V 92.95% 96.00% 87.40% 82.67% 64.39% 68.84% 77.60% 66.73% 83.60%
GPT-4O (2024-05-13) 94.34% 95.14% 91.99% 79.54% 76.40% 73.30% 77.47% 68.59% 85.44%
QWEN-VL-MAX 92.56% 94.75% 91.99% 85.78% 68.94% 75.85% 78.94% 65.05% 84.47%
Open-source LMMs:
Qwen2-VL-72B (Qwen2-72B) 95.15% 94.61% 92.31% 83.66% 71.37% 78.20% 79.12% 68.99% 86.02%
MiniCPM-V2.6 (Qwen2-7B) 93.01% 93.22% 93.44% 81.21% 78.31% 77.06% 79.32% 67.86% 84.98%
InternVL2-40B (Nous-Hermes-2-Yi-34B) 94.86% 93.87% 93.56% 80.32% 79.88% 78.01% 77.44% 69.54% 85.17%
Ovis1.5 (Llama3-8B) 92.79% 92.26% 92.12% 80.55% 78.61% 78.59% 78.34% 69.87% 85.08%
LLaVA-OneVision (Qwen2-7B) 92.53% 92.01% 92.07% 81.12% 79.33% 77.98% 79.02% 69.91% 84.88%
CogVLM2-19B (Llama3-8B) 93.31% 92.70% 89.97% 75.41% 64.63% 66.63% 75.88% 61.54% 82.55%
IDEFICS-2 (Mistral-7B-Instruct-v0.2) 89.92% 91.87% 86.50% 75.45% 61.36% 71.04% 73.31% 62.91% 80.14%
DeepSeek-VL-7B 91.48% 91.15% 82.44% 83.73% 63.38% 69.91% 75.40% 60.32% 81.42%
InternLM-XComposer2-VL (InternLM2) 92.79% 95.21% 86.38% 82.64% 68.87% 72.22% 70.77% 64.35% 81.89%
LLaVA-NeXT (Llama3-8B) 92.72% 92.40% 91.15% 83.62% 61.04% 67.07% 76.23% 62.94% 82.88%
LLaVA-NeXT (Qwen-72B) 94.37% 92.72% 91.49% 81.61% 62.40% 73.39% 77.15% 61.44% 83.99%
LLaVA-NeXT (Qwen-110B) 93.83% 91.10% 90.43% 84.71% 67.76% 67.70% 76.25% 64.28% 83.66%
mPLUG-Owl2 (LLaMA-7B) 85.29% 86.26% 83.87% 79.66% 53.73% 57.85% 71.14% 58.47% 76.40%
LLaVA-v1.5 (Vicuna-v1.5-7B) 87.82% 88.65% 83.86% 75.41% 61.39% 65.67% 74.76% 62.69% 78.86%
LLaVA-v1.5 (Vicuna-v1.5-13B) 88.60% 89.57% 86.48% 79.52% 62.33% 58.82% 74.81% 61.56% 79.72%
CogVLM-17B (Vicuna-v1.5-7B) 90.38% 95.17% 85.89% 77.47% 49.56% 47.82% 73.34% 61.34% 78.61%
Qwen-VL (Qwen-7B) 86.14% 86.32% 81.38% 77.47% 52.72% 61.22% 71.61% 57.32% 76.39%
BakLLava (Mistral-7B) 88.91% 81.31% 77.42% 73.81% 52.18% 62.32% 68.37% 49.02% 74.33%
Fuyu-8B (Persimmon-8B) 81.41% 68.27% 66.72% 57.45% 42.24% 48.32% 61.16% 29.65% 63.12%
random guess 32.27% 37.22% 31.03% 42.82% 29.85% 29.78% 26.51% 32.13% 30.80%

good performance in Basic Recognition, suggesting that they are quite adept at fundamental se-
mantic understanding, which includes recognizing foreground and background objects in AIGIs. 2)
However, their effectiveness diminishes in more complex tasks such as Bag-of-Words, particularly in
subcategories like Nouns as Adjectives Awareness, Composition Identification, and Number of Ob-
jects Counting. These areas require deeper semantic understanding and reasoning, which is critical
as users often employ complex prompts that include such nuanced elements. The LMMs’ under-
performance here indicates potential challenges in accurately aligning AIGIs with user prompts. 3)
Additionally, Outside Knowledge poses significant challenges, with LMMs generally achieving un-
satisfactory performance in the Contradiction Overcome subcategory, where AIGIs contain content
that defies common sense, requiring LMMs to override their prior knowledge to respond correctly.
The subcategory Specific Terms tests the knowledge base of LMMs, where proprietary LMMs gen-
erally perform better due to being trained on more recent and extensive datasets. 4) Therefore, to
improve the evaluation of text alignment in AIGIs using LMM, it is recommended to simplify overly
complex prompts. By employing a divide-and-conquer approach to break down complex prompts
into shorter ones, sequential judgment can effectively enhance accuracy.

Findings of A-BenchP2: LMMs are poor quality evaluators. The performance results of LMMs
on the A-BenchP2 subset, as shown in Table 2, illustrate a notable disparity in capabilities: 1) There
is a significant performance gap of approximately 23.10% between the top-performing LMMs and
human evaluators, highlighting that LMMs lag considerably in quality perception and struggle to ac-
curately assess the quality of AIGIs. 2) Furthermore, most LMMs exhibit their weakest performance
in the Generative Distortion Assessment subcategory (except Qwen2-VL-72B), suggesting their in-
effectiveness at identifying unexpected generative distortions, such as unnatural appearances and
incorrect geometric structures. 3) Interestingly, while humans generally perform better in Techni-
cal Quality Perception compared to Aesthetic Quality Evaluation, LMMs show similar performance
levels in both subcategories (except Qwen2-VL-72B and MiniCPM-V2.6). This difference likely
stems from the more objective nature of technical quality assessments, which leads to more con-
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Table 2: Benchmark results on the A-BenchP2 subset, which reflect the low-level quality perception
abilities across LMMs. The best performance is marked in bold and the second performance is
underlined for both proprietary and open-source LMMs respectively.

Categories Technical↑ Aesthetic↑ Generative↑ Overall↑
LMM (LLM)
HUMAN (WORST) 94.32% 84.49% 86.25% 90.56%
HUMAN (BEST) 94.69% 86.01% 93.00% 92.22%
Proprietary LMMs:
GEMINI 1.5 PRO 71.22% 77.61% 59.07% 69.12%
GPT-4V 67.82% 68.34% 58.02% 64.31%
GPT-4O (2024-05-13) 70.59% 61.61% 67.92% 66.88%
QWEN-VL-MAX 71.31% 69.77% 58.56% 66.21%
Open-source LMMs:
Qwen2-VL-72B (Qwen2-72B) 74.22% 60.31% 70.23% 68.99%
MiniCPM-V2.6 (Qwen2-7B) 69.10% 60.14% 60.47% 64.01%
InternVL2-40B (Nous-Hermes-2-Yi-34B) 66.28% 63.21% 50.10% 59.22%
Ovis1.5 (Llama3-8B) 70.83% 67.82% 55.39% 64.50%
LLaVA-OneVision (Qwen2-7B) 68.84% 67.79% 54.27% 63.78%
CogVLM2-19B (Llama3-8B) 64.21% 61.33% 56.75% 60.73%
IDEFICS-2 (Mistral-7B-Instruct-v0.2) 62.00% 68.76% 47.12% 59.11%
DeepSeek-VL-7B 55.91% 53.79% 47.59% 52.36%
InternLM-XComposer2-VL (InternLM2) 62.29% 63.37% 50.26% 58.58%
LLaVA-NeXT (Llama3-8B) 58.59% 48.57% 52.00% 53.13%
LLaVA-NeXT (Qwen-72B) 59.91% 55.51% 59.80% 58.42%
LLaVA-NeXT (Qwen-110B) 64.69% 57.20% 63.64% 61.89%
mPLUG-Owl2 (LLaMA-7B) 57.90% 54.47% 53.81% 55.45%
LLaVA-v1.5 (Vicuna-v1.5-7B) 45.90% 41.33% 54.59% 47.12%
LLaVA-v1.5 (Vicuna-v1.5-13B) 46.08% 41.22% 48.10% 45.54%
CogVLM-17B (Vicuna-v1.5-7B) 54.76% 48.45% 52.47% 51.36%
Qwen-VL (Qwen-7B) 49.46% 34.34% 50.49% 44.99%
BakLLava (Mistral-7B) 47.88% 33.37% 48.46% 43.39%
Fuyu-8B (Persimmon-8B) 44.61% 30.23% 45.65% 40.20%
random guess 31.87% 32.92% 33.14% 32.63%

sistent evaluations among humans, whereas aesthetic quality, being more subjective, results in a
broader range of opinions and consequently lower performance scores.

Human vs. Proprietary LMMs Proprietary (closed-source) LMMs are regarded as closely mir-
roring human perception and demonstrate superior performance, particularly in zero-shot settings
for evaluating AIGI. Therefore, here we make a finer discussion about the human and proprietary
LMMs. 1) Beginning with a detailed comparison of human and proprietary LMMs, we observe that
proprietary LMMs achieve human-level performance in Basic Recognition, indicating their ability
to correctly assess AIGI alignment when prompts are simple. 2) Despite this, LMMs encounter
difficulties in the Bag-of-Words aspect, especially in identifying composition and counting objects,
which highlights their limitations in handling complex compositional relationships and specific
object counts. 3) In the Outside Knowledge domain, proprietary LMMs show only a slight perfor-
mance gap compared to humans on Specific Terms, demonstrating comprehensive prior knowledge
about specific terms, but they notably lag behind in identifying controversial content. While hu-
mans can easily recognize contradictory elements, proprietary LMMs often struggle due to their
reliance on common sense, making accurate responses challenging. To conclude, according to the
results shown in Table 1, proprietary LMMs are competent as evaluators for simple prompts in AIGI,
yet they require further improvements for more complex prompts related AIGI content. 4) On the
other hand, Table 2 reveals that LMMs have significant shortcomings in low-level quality perception
compared to humans, with an uneven performance across different quality dimensions. Surprisingly,
GPT-4o shows a distinct advantage over other proprietary LMMs in recognizing generative distor-
tions, suggesting its superior capability in this area. However, the substantial overall difference in
quality perception between proprietary LMMs and humans underlines that these models are cur-
rently unsuitable for assessing the visual quality of AIGI.

5 CONCLUSION

In conclusion, the ambition to employ LMMs for evaluating AIGIs exposes considerable deficiencies
in their capabilities, as revealed by the diagnostic benchmark A-Bench. This benchmark scrutinizes
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the core capabilities of LMMs themselves, focusing on their ability to accurately address funda-
mental questions related to high-level semantic understanding and low-level quality perception. Our
findings from A-Bench serve as a stark reminder of the current limitations faced by LMMs in the
realm of AIGI evaluation. The results underscore that while LMMs provide valuable insights, their
evaluation capacity remains notably inferior to human performance, especially in tasks that de-
mand deep semantic comprehension and detailed quality assessment. By identifying specific areas
for enhancement and charting a course for future research, this study not only underscores the urgent
need for further development but also aids in refining the application of LMMs in AIGI evaluation
tasks. Future initiatives should focus on augmenting the capabilities of LMMs to reliably match or
surpass human performance in these intricate evaluation scenarios.

6 ETHICS STATEMENT

This submission complies fully with the ethical guidelines set by ICLR 2025. We follow ICLR’s
principles for responsible AI development, ensuring that our research avoids any potential harm,
bias, or discrimination. The data utilized in this work is sourced exclusively from publicly available
open-source datasets and models. Furthermore, our methods prioritize fairness, accountability, and
transparency in the evaluation of AI-generated images.

7 LIMITATIONS

Timeliness Concern Creating a benchmark involves generating images, collecting data, training
evaluators, and verifying data quality, making the process both time-consuming and costly. As a
result, it is inevitable that AIGI benchmarks may not always keep pace with the latest technologies
or models. However, the insights provided by the benchmark in evaluating AIGI remain valuable
and offer useful guidance. We are committed to ongoing updates and expansions to ensure the
benchmark remains current.

Scale-up Concern Since the A-Bench dataset is fully manually annotated and requires validation
by at least three other humans, the annotation process is both costly and time-consuming. As such,
it is quite challenging to scale up.
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A APPENDIX

Figure 6: Overview of the AIGIs from A-BenchP1.

A.1 AIGIS COLLECTION

AIGI collection for A-BenchP1 To ensure that the AIGIs meet the specific subcategory require-
ments, we have gathered 2,000 manually-written prompts to serve as the textual foundation. Below,
we provide examples of these prompts:

1. Basic Recognition ->Major Object Recognition: An elaborate treehouse in a thick forest,
with children playing inside, rope bridges connecting to other trees, and birds chirping
around.

2. Basic Recognition ->Minor Object Recognition: A magical fairy ring in a moonlit forest,
with tiny glowing fairies dancing and mystical plants all around.

3. Bag-of-Words ->Attributes Awareness: A delicate, frosty, crystal snowflake beside a warm,
glowing, amber ember on a smooth, slate-gray stone.

4. Bag-of-Words ->Nouns as Adjectives Awareness: Shark-sleek submarine exploring ocean
depths.

5. Bag-of-Words ->Composition Identification: A gamer’s setup with consoles and con-
trollers on a desk, multiple screens above, and game boxes and snacks partially obscured
beneath the desk.

6. Bag-of-Words ->Number of Objects Counting: Six logs in a woodpile, stacked so tightly
that they seem to form a solid block.

7. Outside Knowledge ->Specific Terms Recognition: A barometer showing a rapid decrease
in pressure.

8. Outside Knowledge ->Contradiction Overcome: A ship floating above the clouds, sails
made of sunlight.

Afterward, we use the collected prompts to create AIGIs. 15 text-to-image generation models are se-
lected, which include: Dreamlike (dreamlike art, 2023), Pixart α Chen et al. (2023a), Playground v2
PlaygroundAI (2023), SD1.4 (Rombach et al., 2022a), SD1.5 (Rombach et al., 2022a), SDXL (Rom-
bach et al., 2022a), SSD1B (Gupta et al., 2024), LCM Pixart (Luo et al., 2023), LCM SD1.5 (Luo
et al., 2023), LCM SDXL (Luo et al., 2023), SDXL Turbo Sauer et al. (2023) DALLE2 (Ramesh
et al., 2022), DALLE3 (Ramesh et al., 2022), IF (DeepFloyd, 2023), Midjourney v5.2 Holz (2023).
Finally, a total of 15×2,000 =30,000 AIGIs are collected. To guarantee diversity, we randomly se-
lect 2,000 AIGIs, choosing one AIGI per prompt. Subsequently, we conduct a manual review of
these AIGIs to remove any that failed to generate correctly or are unsuitable for annotation. This
process results in the final set of AIGIs for A-BenchP1, which can be overviewed in Fig. 6.
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Figure 7: Illustration of the quality distribution transformation.

Figure 8: Overview of the AIGIs from A-BenchP2.

AIGI collection for A-BenchP2 A-BenchP2 is designed for the quality evaluation of AIGIs. Con-
sequently, it is essential to ensure that the collected AIGIs span a wide quality range to address
various practical scenarios. For Technical Quality, we sample 500 AIGIs from the AIGIQA-20K
dataset (Li et al., 2024) using a uniform sampling strategy. Specifically, each AIGI in the AIGIQA-
20K dataset is assigned a mean opinion score (MOS) for technical quality. We apply uniform sam-
pling to create more even distributions, as illustrated in Fig. 7. For Aesthetic Quality, in the absence
of provided aesthetic scores, we utilize q-align (Wu et al., 2023c), an effective quality predictor, to
infer the aesthetic values of AIGIs. Subsequently, we perform uniform sampling similarly to obtain
500 AIGIs for aesthetic evaluation. For Generative Distortion, we manually select 500 AIGIs ex-
hibiting unexpected AIGI-specific distortions. It is important to note that there is no content overlap
among the selected AIGIs, which can be overviewed in Fig. 8.
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What is located to the left 
of the desks in the 
classroom?
A.  Educational posters on 
the walls (correct)
B. A teacher's desk
C.  A blackboard
D.  A bookcase

What is partially covered by 
cloaks hanging in the 
background of the magic 
workshop?
A.  Shelves (correct)
B.  Tricks and hats on a table
C.  A magic wand
D.  Cards spread out

In the paleontologist's dig site, 
which seems to be the largest?
A.  Human on the right
B.  Human in the middle
C.  The field journal (correct)
D.   Pens

Are strategy boards placed 
in all four corners?
A.  No (correct)
B.  Yes

Composition Identification -> Orientation

Composition Identification -> Size Comparison

Composition Identification -> Orientation

Composition Identification ->  Spatial Arrangement

Specific Terms -> Geography Specific Terms -> Brand

What geography feature is 
depicted here?
A.  Sandy beach
B.  Mangrove forest
C.  Coral reef
D.  Rugged coastline (correct)

Which brand is famous for 
this item?
A.  Shell
B.  Sony
C.  Nike (correct)
D.  Amazon

What is the main cooking 
technique used for the meat 
in this dish?
A.  Poaching
B.  Frying
C.  Grilling (correct)
D.  Roasting

What painting style is 
represented in the image?
A.  Baroque
B.  Rococo (correct)
C.  Neoclassicism
D.  Art Nouveau

Specific Terms -> Food Specific Terms -> Style

Figure 9: Some finer cases for the ‘Bag-of-Words ->Composition Identification’ and ‘Outside
Knowledge ->Specific Terms’ subcategories.

A.2 FINER EXPLANATION FOR SOME SUBCATEGORIES

For certain subcategories that require additional clarification for better understanding, we provide
detailed explanations here (the corresponding cases are shown in Fig. 9):

1. Bag-of-Words ->Nouns as Adjectives Awareness. The ’Noun as Adjectives’ illustrates
the use of nouns as adjectives to modify objects in AIGIs. Essentially, we aim for the
descriptive effect, not for the nouns themselves to be visually represented in the AIGIs. For
instance, as shown in Fig.4 row 2 column 2, when we describe a submarine as ’shark-sleek,’
we do not intend to generate an image of an actual shark. This subcategory is designed to
test whether LMMs can correctly identify such misunderstandings.

2. Bag-of-Words ->Composition Identification. We categorize composition into four distinct
types: 1) Orientation, which assesses the ability to correctly determine the relative spatial
positions of objects; 2) Occlusion, which involves evaluating the accuracy in discerning the
overlapping relationships between objects; 3) Size Comparison, which tests the ability to
accurately judge the size relationships among objects; and 4) Spatial Arrangement, which
examines the ability to accurately assess the arrangement of objects within the AIGI.

3. Outside Knowledge ->Specific Terms. This subcategory covers many aspects, including
geography, sports, science, materials, food, everyday life, creatures, brands, and styles.
This primarily investigates whether it is possible for LMMs to infer and deduce specific
knowledge within these fields based on the content of AIGIs such as identifying the exact
location feature based on geographical attributes, deducing the brand from the characteris-
tics of a product, recognizing the cooking technique of the food, etc.
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Figure 10: Illustration depicting the annotation interface, where experts are presented with the sub-
category and are able to record their questions and answers.

A.3 HUMAN EXPERT ANNOTATION

A total of fifteen experts, each possessing professional skills and extensive experience in photog-
raphy and AIGIs, participate in the subjective labeling experiment of A-Bench. All experts are
informed that their annotation data will be publicly released, and they all agree to this arrangement.
The hourly wage for each expert is approximately 12 US dollars, resulting in a total expense of about
2,400 US dollars for the whole subjective experiment.

The experiment takes place in a laboratory environment with standard indoor lighting. A Dell 4K
monitor, supporting a resolution of 3840 × 2160, is used for displaying the interfaces. Screenshots
of the interfaces can be referred to in Fig. 10. Each expert annotates up to 30 AIGIs per day
to avoid fatigue, with every annotation carefully reviewed by at least three other experts before
acceptance. This approach ensures the highest possible accuracy and rigor of the A-Bench labels,
thereby enhancing the precision and meaningfulness of the performance testing capability of A-
Bench.

A.4 GPT EVALUATION FOR CHOICE JUDGMENT

For some LMMs, the response to the question inquiry may vary. For example, given the correct
answer C. Blurry’ to the question What is the most severe technical distortion of this image?’,
LMMs may respond in different formats: The image is blurry’, There is blur in this image’, or
‘low clarity’. To address the impact of such variations on our evaluation, we’ve implemented a 5-
round voting strategy (Wu et al., 2023a). Under this strategy, we pose the same prompt, as defined in
the templates, five times and determine the final outcome based on the majority of GPT’s responses.

GPT Evaluation Prompt Template

#System: You are a helpful assistant that grades answers related to image perception. There are a lot of special
terms or keywords related to image processing and photography.

#User: Assuming you are a grader, you will now be provided with a question [question] and a set of options
[options] with option [options[0]] being the correct answer. Additionally, there will be an answer [answer]
provided by a respondent. Please determine whether the respondentś answer is correct considering the context
of the question. Even if the word choice is not completely the same, you can decide based on the given options
and see whether the one in the answer is close enough to the given correct answer, The result is 1 if the answer
is correct and else the result is 0. Please only provide the result in the following format: Result:

Example for GPT Evaluation

Question: Which is the most blurry part of this image?

Choices: [‘The house on the left’, ‘The person in the middle’, ‘The background’, ‘The tree on the
left’]
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Figure 11: Illustration of the interface for the user-study.

LMM Answer:

The most blurry part in this image is the house to the left of the person.

5-Round GPT Answers:
[“Score: 1”,“Score: 1”,“Score: 1”,“Score: 1”,“Score: 1”]
→ Final Correctness after Voting: ✓

A.5 USER-STUDY ON A-BENCH

To provide human performance on the A-Bench, we employ five ordinary people in a controlled
laboratory setting. Initially, participants familiarize themselves with the tasks through exposure to
similar cases. Subsequently, they select the appropriate responses for the questions posed in the
A-Bench. The user-study interface is shown in Fig. 11.

A.6 LMM EXPERIMENT DETAILS

The LMMs undergo testing in a zero-shot setting. Proprietary LMMs are evaluated via official APIs,
whereas the open-source LMMs (with the exceptions of LLaVA-NeXT Qwen-72B and LLaVA-
NeXT Qwen-110B) run on an NVIDIA RTX 6000 Ada with 48 GB of memory. The LLaVA-
NeXT Qwen-72B and LLaVA-NeXT Qwen-110B are operated on 4 NVIDIA H100 with 320 GB of
memory. All LMMs operate with default parameters, ensuring that the A-Bench results are readily
reproducible.
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Table 3: Benchmark results on the question types. The best performance is marked in bold and the
second performance is underlined for both proprietary and open-source LMMs respectively.

Categories A-BenchP1 A-BenchP2 Overall
LMM (LLM) Yes-or-no↑ What↑ Yes-or-no↑ What↑ Yes-or-no↑ What↑
HUMAN (WORST) 91.21% 92.77% 89.45% 91.02% 91.23% 91.88%
HUMAN (BEST) 93.55% 94.25% 91.80% 92.64% 92.77% 93.39%
Proprietary LMMs:
GEMINI 1.5 PRO 81.96% 86.91% 74.08% 65.57% 76.50% 76.82%
GPT-4V 82.37% 85.86% 71.11% 60.09% 75.51% 73.23%
GPT-4O 84.39% 85.76% 69.76% 65.15% 76.28% 75.81%
QWEN-VL-MAX 86.70% 84.02% 68.13% 64.60% 75.79% 74.91%
Open-source LMMs:
CogVLM2-19B (Llama3-8B) 81.77% 83.26% 63.70% 58.65% 70.55% 71.61%
IDEFICS-2 (Mistral-7B-Instruct-v0.2) 78.32% 83.84% 63.87% 55.63% 68.91% 69.96%
DeepSeek-VL-7B 80.72% 82.00% 60.00% 47.15% 66.88% 66.48%
InternLM-XComposer2-VL (InternLM2) 82.08% 81.53% 66.49% 53.06% 70.90% 69.83%
LLaVA-NeXT (Llama3-8B) 81.17% 84.11% 52.10% 53.77% 63.89% 68.82%
LLaVA-NeXT (Qwen-72B) 83.22% 84.31% 57.91% 60.01% 70.22% 71.55%
LLaVA-NeXT (Qwen-110B) 82.99% 83.91% 59.78% 62.87% 71.76% 73.05%
mPLUG-Owl2 (LLaMA-7B) 74.92% 78.00% 56.97% 54.36% 64.38% 67.81%
LLaVA-v1.5 (Vicuna-v1.5-7B) 78.27% 82.74% 46.39% 47.97% 58.85% 66.21%
LLaVA-v1.5 (Vicuna-v1.5-13B) 79.51% 81.47% 47.23% 43.90% 61.41% 63.61%
CogVLM-17B (Vicuna-v1.5-7B) 76.77% 80.11% 55.13% 49.71% 64.33% 65.65%
Qwen-VL (Qwen-7B) 72.77% 80.95% 46.22% 44.02% 56.60% 63.39%
BakLLava (Mistral-7B) 71.01% 78.77% 42.11% 44.11% 55.61% 60.03%
Fuyu-8B (Persimmon-8B) 61.56% 64.22% 38.76% 41.66% 50.06% 52.31%

A.7 QUESTION TYPE PERFORMANCE

We assess the performance disparity between Yes-or-no and What questions among LMMs. The Yes-
or-no questions gauge the fundamental judgment capabilities of LMMs, whereas What questions
demand a more comprehensive understanding. According to the results in Table 3, it is observed
that most LMMs perform better on What questions within A-BenchP1, suggesting a proficiency in
processing semantic content. Conversely, in A-BenchP2, where LMMs generally show lesser per-
formance, they exhibit limited in-depth perception, maintaining only basic evaluative capabilities
without comprehensive understanding, leading to poorer performance on What questions. Inter-
estingly, human performance consistently excels in What questions across both A-BenchP1 and
A-BenchP2, likely due to a broader range of options facilitating easier inference. However, human
performance tends to be more balanced compared to LMMs, which may exhibit significant variance,
such as IDEFICS-2, where there is over a 5% accuracy difference between question types, indicating
less robustness.

A.8 RESPONSE VARIANCE FOR LMMS

Considering that the accuracy and stability of the benchmark directly affect the quality of the evalu-
ation, therefore we conduct the response variance experiment here. First, we use a consistent prompt
instruction format to minimize any misunderstanding by LMMs and standardize the output. Addi-
tionally, we set the model’s temperature parameter to 0, meaning the LMM’s output will no longer
be affected by randomness. As a result, the model will give the same response to the same question
each time, eliminating variance.

It’s also worth noting that increasing the model’s temperature to encourage more diverse and ex-
ploratory answers is indeed an interesting consideration. To further address the concern about the
statistical significance of the experiment, we repeat the A-Bench experiment for 5 rounds with dif-
ferent temperature settings across several popular 7B-8B LMMs. The performance is listed in the
table below, with the results presented as the mean accuracy ± standard error.

Based on the results, we can observe that when the temperature is set to zero, the accuracy results
for all LMMs remain consistent across all 5 rounds. As the temperature increases, the average
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Temperature DeepSeek-VL-7B LLaVA-NeXT-8B LLaVA-v1.5-7B Qwen-VL-7B

0.0 66.58±0.00 67.75±0.00 62.97±0.00 60.41±0.00
0.5 65.11±1.72 66.43±2.09 60.61±2.23 58.17±1.89
1.0 62.04±4.51 63.77±3.86 59.22±4.01 55.22±6.04

Table 4: Performance comparison at different temperatures for various LMM models.

performance declines and the results become more unstable, with higher standard errors. Therefore,
to ensure reproducibility and performance stability, we prefer the zero-temperature setting, as it more
accurately and reliably reflects the performance of LMMs, making it more suitable for practical
applications.

A.9 DATA STATEMENT

The A-Bench dataset is released under the CC BY 4.0 license. This includes all associated AIGIs,
questions, and answer candidates. However, to prevent incorporation into the training sets of any
LMMs, the correct answers remain confidential. We believe this precaution will ensure that A-
Bench retains its long-term value as a benchmark for assessing AIGI evaluation capabilities.

A.10 LIMITATIONS AND SOCIAL IMPACT

Limitations While A-Bench uses a diverse set of generative models and LMMs for evaluation, the
choice and number of models might still limit the generalizability of the results. The performance
of untested models or newer generative approaches might differ significantly. The rapid advance-
ment in AI and generative models may quickly outpace the current setup of A-Bench, necessitating
frequent updates or redesigns of the benchmark to stay relevant.

Social Impact By improving the evaluation metrics for AIGIs, A-Bench could lead to more re-
liable and trustworthy AI-generated content, which is crucial as these technologies increasingly
intersect with areas like media, entertainment, and education. Moreover, improved benchmarks and
evaluation methods can drive industry standards, potentially lowering the barrier to entry for smaller
developers and promoting innovation through clearer performance targets.
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