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ABSTRACT

The training of neural networks has been extensively studied from both algorith-
mic and complexity-theoretic perspectives, yet recent results in this direction al-
most exclusively concern real-valued networks. In contrast, advances in machine
learning practice highlight the benefits of quantization, where network parame-
ters and data are restricted to finite integer domains, yielding significant improve-
ments in speed and energy efficiency. Motivated by this gap, we initiate a sys-
tematic complexity-theoretic study of ReLU Neural Network Training in the full
quantization mode. We establish strong lower bounds by showing that hardness
already arises in the binary setting and under highly restrictive structural assump-
tions on the architecture, thereby excluding parameterized tractability for natural
measures such as depth and width. On the positive side, we identify nontrivial
fixed-parameter tractable cases when parameterizing by input dimensionality in
combination with width and either output dimensionality or error bound, and fur-
ther strengthen these results by replacing width with the more general treewidth.

1 INTRODUCTION

A crucial task tied to the use of neural networks is their training. On a high level, this training task
can be characterized as follows: given a neural network architecture G and a data set D of input-
output pairs, compute weights and biases of G which minimize the error achieved by the network
on D. While we have powerful heuristics for solving this problem (Sze et al., 2017; Li et al., 2022),
it also exhibits highly interesting behavior on the complexity-theoretical level and has been studied
from this perspective in a series of recent foundational papers (Dey et al., 2020; Abrahamsen et al.,
2021; Goel et al., 2021; Boob et al., 2022; Froese & Hertrich, 2023; Bertschinger et al., 2023; Brand
et al., 2023). A detailed discussion of the state of the art is deferred to the end of this section;
nevertheless, it will be useful to note that for a crisper complexity analysis one typically considers
the equivalent decision formulation of the problem—i.e., where the input also includes an error
bound ℓ and the algorithm is allowed to output “no” if such an error bound cannot be achieved by
any combination of weights and biases.1

A common feature of all the above-mentioned complexity-theoretical works targeting the above
NEURAL NETWORK TRAINING (NNT) problem is that they assume the numbers occurring in the
network to be reals. This is a natural perspective that matches the classical formalization of neural
networks. However, a series of recent advances have shown that one can significantly improve speed
and energy efficiency by quantizing the neural network, i.e., forcing the numbers to lie in a specified
domain of integers (Kilic et al., 2022). For example, Wang et al. (2025) recently showed that one can
achieve accuracy results comparable to the real-valued setting when quantizing to 4 bits, i.e., with a
domain size of 16; see also the preceding works of Yang et al. (2020) and Lin et al. (2022). Other
works have also considered even stronger degrees of quantization, such as using binary domains (Lin
et al., 2017; Zhu et al., 2019; Liu et al., 2020). In fact, several different methods have been developed
to obtain high-quality quantized neural networks such as fully-quantized training (Zhou et al., 2016),

1Technically, in decision problems one is not required to output the weights and biases for positive instances;
however, every algorithm obtained or mentioned in this article is constructive and capable of doing so. We note
that the optimization task can be reduced to the decision formulation via a trivial search routine on ℓ.
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mixed-precision training (Micikevicius et al., 2018), post-training quantization (Banner et al., 2019),
and quantization-aware training (Jacob et al., 2018).

Yet, the recent developments outlined above are not at all reflected in our understanding of the
underlying foundational problem: neither the complexity-theoretic lower bounds (Dey et al., 2020;
Abrahamsen et al., 2021; Goel et al., 2021; Froese & Hertrich, 2023; Bertschinger et al., 2023), nor
the algorithms underpinning our upper bounds for solving the training problem (Arora et al., 2018;
Boob et al., 2022; Brand et al., 2023) can be translated into the quantized setting. We note that
this does not seem to be merely the case of a missing “bridge” that would allow one to translate
knowledge from one setting to the other—the training problem in the real-valued setting is ∃R-
complete (Abrahamsen et al., 2021; Bertschinger et al., 2023) but with quantization it is easily seen
to lie in NP (see Section 2), pointing to a fundamental difference between the two settings. Until
now, we lacked any complexity-theoretic study targeting NNT in the fully quantized setting.

The aim of this article is to fill the aforementioned gap by developing a comprehensive understanding
of QUANTIZED RELU-NNT (see Section 2 for formal details and a discussion of the error bound):

d-QUANTIZED RELU-ACTIVATED NEURAL NETWORK TRAINING (d-QNNT)

Input: An architecture G with α input and ω output nodes, a multiset D of d-quantized data
points, and an error bound ℓ.

Output: A d-quantized neural network Ḡ over G such that the error of D on Ḡ is at most ℓ,
or a correct conclusion that no such network exists.

We remark that here we focus on the ReLU activation function, as it is widely used in practice and
has been the target of almost all foundational studies of non-quantized NNT to date (Dey et al., 2020;
Abrahamsen et al., 2021; Goel et al., 2021; Boob et al., 2022; Froese & Hertrich, 2023; Bertschinger
et al., 2023; Brand et al., 2023). Our results include not only lower bounds, but also the identification
of tractable cases via the development of theoretical algorithms. All our lower bounds apply already
to the simplest binary quantization, while our tractability results hold for arbitrary choices of the
quantization constant d.

In order to construct a more detailed complexity map of d-QNNT, we perform our analysis also tak-
ing into account the parameterized complexity paradigm (Cygan et al., 2015; Downey & Fellows,
2013) which associates problem instances with a suitably defined parameter, i.e., a numerical mea-
sure that captures various aspects of the instance. In the classical perspective, one would typically
ask whether restricting the parameter k to a constant allows us to solve instances in time polynomial
w.r.t. the input size n. By contrast, the most desirable notion of tractability in the more refined pa-
rameterized paradigm is fixed-parameter tractability (FPT), meaning that the problem can be solved
in time f(k) · nO(1) for some computable function f . To exclude inclusion in FPT, one can either
show that the problem is W[1]- or W[2]-hard (which still allows for the existence of algorithms
running in time, e.g., nO(k)), or NP-hard for a fixed value of k.

Contributions. For convenience, Figure 1 provides a mindmap of results that is intended to com-
plement the description of our contributions.

parameter
referenceFPT W[2]-hard NP-hard

tw + α+ ℓ
Theorem 6

tw + α+ ω
Theorem 5

α+ ℓ+ depth
Theorem 4

α+ width + depth
Theorem 3

ω+ ℓ+width+ depth
Theorem 1

ℓ+∆
Theorem 2

Figure 1: Overview of our results for d-QNNT. A combined parameter p consisting of single pa-
rameters p1, p2, p3 has an edge to a lower combined parameter q if dropping one of the single
parameters pi yields hardness. We use ∆ to denote the maximum degree of any neuron. Our main
open question concerns the complexity w.r.t. α+ ω—see the Technical Overview and Section 5.

Well-studied properties of the architecture G that might, at first glance, seem as natural choices for
parameters are its depth (the number of hidden layers) and width (the size of the largest hidden
layer)—a direction which we explore in our first set of contributions.
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As a baseline result, we exclude any notion of parameterized tractability w.r.t. these two measures
even when combined with the error bound ℓ and the output dimensionality ω. In particular, in
Theorem 1 we show that 2-QNNT remains NP-hard even when restricted to instances where ℓ = 0,
there is only a single output node and no hidden layer—a result which shows that even training very
simple quantized architectures is computationally intractable and forms a counterpart to the well-
known intractability of training a single neuron in the non-quantized setting (Goel et al., 2021; Dey
et al., 2020). Naturally, the reduction underlying Theorem 1 relies on the single output neuron having
large indegree—however, in our second Theorem 2 we establish the NP-hardness of 2-QNNT even
on constant-degree architectures with a single hidden layer and ℓ = 0. This latter result can be seen
as a constant-degree counterpart to the ∃R-hardness of training shallow non-quantized networks to
optimality (Abrahamsen et al., 2021).

While the above lower bounds paint a negative picture of the complexity of d-QNNT, there is a
silver lining: both reductions inherently require the input dimensionality α to be large. As our
second set of contributions, we show that parameterizing by α enables fixed-parameter neural
network training in the quantized setting—but only when combined with additional restrictions. In
particular, our results imply that for every fixed d, d-QNNT is fixed-parameter tractable w.r.t. the
combined parameterizations:

1. input dimensionality α, the width of G and output dimensionality ω (Corollary 2);
2. input dimensionality α, the width of G and the error bound ℓ (Corollary 1).

The above results naturally lead to the question of whether all of the parameters are required to
achieve fixed-parameter tractability—in other words, could any of the parameters be dropped from
the statement? For α, we already know that this is not the case: Theorem 1 rules out polynomial-time
algorithms even if the width, ω and ℓ are small constants.

Given the fact that both positive results rely on parameterizing by the width and α, it would be
tempting to think that d-QNNT is fixed-parameter tractable w.r.t. α and the width alone—i.e., that
the third parameter can be dropped in both statements. As our third contribution, in Theorem 3
we rule this out by establishing the W[2]-hardness of 2-QNNT w.r.t. α even on networks with no
hidden layer. This means that neither ω, nor ℓ can be dropped from our algorithmic upper bounds.

The above considerations leave the width as the only possible “weak point” in Corollaries 1 and 2.
As our fourth contribution, we show that—at least if one wishes to preserve both positive results—
it is neither possible to drop the width, nor replace it with the depth of G. In particular, our Theorem 4
shows that 2-QNNT is NP-hard even when α = 2, there is a single hidden layer and ℓ = 0.

While the width cannot be dropped or replaced by depth, as our final fifth contribution we show
that Corollaries 1 and 2 can be strengthened: in particular, we prove that the results hold even if
one replaces the width of architecture G with its treewidth tw(G) (Robertson & Seymour, 1984).
The latter is a well-established measure of the tree-likeness of a graph; on architectures with hidden
neurons it never exceeds the width, but can be arbitrarily smaller. For example, an architecture
consisting of layers whose width alternates between small and large will have large width, but small
treewidth. Thus, while non-trivial to prove, the following two results supersede and directly imply
Corollaries 1 and 2:

1⋆. d-QNNT is fixed-parameter tractable w.r.t. α+ tw(G) + ω (Theorem 5);
2⋆. d-QNNT is fixed-parameter tractable w.r.t. α+ tw(G) + ℓ (Theorem 6).

Technical Overview. To obtain our lower bounds, we develop targeted reductions from a variety
of problems, including BOOLEAN SATISFIABILITY, HITTING SET, and SET COVER. While each
of the reductions is distinct, the constructed architectures are often very dense and have simple graph
structures. In other words, our results show that the difficulty of training in the quantized setting does
not stem from the complexity of the architecture, but rather from the presence of high-dimensional
data on the input or output. In fact, the main open question arising from our work is whether the con-
verse is true: can we efficiently solve instances of d-QNNT with possibly complicated architectures,
but constant input and output data dimensionality (i.e., α+ ω)?

For our positive results—specifically, Theorems 5 and 6—the main technical difficulty is that the
trained n-node networks could contain hidden neurons with Θ(n) incoming arcs from the pre-
ceding layer that have non-zero weights. Indeed, it is not difficult to construct instances with
such solutions—and yet the dynamic programming techniques that form the cornerstone of most
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treewidth-based algorithms are incapable of efficiently searching for them. To deal with this issue,
we make a detour and first establish a structural insight that we believe is of independent interest:
every YES-instance of d-QNNT admits at least one solution where the number of activated arcs en-
tering any node is upper-bounded by a function of the parameters. This is formalized in Lemma 1,
and relies on an involved proof that builds on Steinitz’ Lemma.

Full proofs and details deferred to the Appendix are marked with (⋆).

Related Work. Beyond the related articles mentioned in the second paragraph, several of the ear-
lier works in the field also studied (the complexity of) NNT in the partially quantized setting (Judd,
1988; Blum & Rivest, 1992; Parberry, 1992; Courbariaux et al., 2015; Zhu et al., 2017) or with
different activation functions (Judd, 1990; Schmitt, 2004; Doron-Arad, 2025). In particular, the
NP-hardness of 2-QNNT can be inferred from the reduction in the seminal work of Judd (1990,
Theorem 24) on training Boolean neural networks with AND and OR gates, and separately also
from the reduction in Schmitt (2004, Theorem 7) using linear threshold activation functions. How-
ever, our Theorems 1 to 4 obtain lower bounds in conjunction with additional restrictions on the
inputs that are required for our parameterized lower bounds. Crucially, we are aware of neither
any in-depth multivariate complexity analysis in this setting, nor any works directly targeting the
complexity of quantized neural network training with ReLU activation functions. (⋆)

2 PRELIMINARIES

For an integer d ≥ 1, we define the d-quantized integer domain Zd as {z ∈ Z | −⌊d−1
2 ⌋ ≤ z ≤

⌈d−1
2 ⌉}, that is, Z2 = {0, 1}, Z3 = {−1, 0, 1}, Z4 = {−1, 0, 1, 2} and so forth2. The d-domain

ReLU activation function ReLUd : Zd → Zd is the restriction of the well-known rectified linear unit
to Zd—that is, all negative values are mapped to 0 while on positive values ReLUd is the identity
except that inputs outside of Zd become maxZd.

We say that a network architecture is a directed acyclic graph (a DAG) G whose vertex sets are
partitioned into layers, where layer 0 consists solely of sources, and such that an arc ab may only go
from a vertex in layer i (for i ∈ N) to a vertex in layer i + 1 and all sinks lie in the same layer. We
will refer to the sources and sinks the input and output neurons of G, respectively, while all other
nodes of G are referred to as hidden neurons. We assume that the sources are equipped with a fixed
ordering, and the same also for the sinks. The maximum size of a layer with only hidden neurons is
called the width of G, while we refer to the number of layers as the depth of G.

Let us fix a d-quantized integer domain Zd. A neural network Ḡ over an architecture G is a tuple
(G,weight,bias) where the weight function weight assigns each arc of G a weight from Zd,
and the bias function bias assigns each non-source node of G a bias from Zd. Let the number
of input and output neurons of G be α and ω, respectively. The evaluation of an input data vector
x⃗ ∈ (Zd)

α is a mapping f which assigns each node of G a value (or activation) computed as follows:

• The i-th input neuron receives the value x⃗[i];
• For each neuron v ∈ V (G) with predecessors z1, . . . , zq , we set its value as3

ReLUd

(
(
∑

i∈[q] f(zi) · weight(ziv))− bias(v)
)
.

The input to ReLUd above is sometimes called the pre-activation value. Given a data point p ∈ D,
we say that a neuron q is active in Ḡ if in the evaluation of p, the neuron q receives a positive
activation; otherwise, it is inactive. We denote the restriction of f to the output nodes, represented
as a vector of integers in (Zd)

ω ordered by the output neurons, as the output of the neural network
on x⃗. In the training setting, we will be dealing with d-quantized data points from (Zd)

α × (Zd)
ω .

The error of a multiset of such data points is equal to the number of misaligned data points, i.e.,

2Our model matches, e.g., the so-called “E1M2” format of the 4-bit floating point standard FP4. Other
low-bit number encodings have also been considered in the quantized setting (Wang et al., 2025), but we focus
our exposition on this theoretically cleanest model. While we do not formally prove this, all obtained results
seem to readily carry over to different low-bit number encodings with only minor modifications to the proofs.

3We note that the bias is subtracted instead of added to the result due to the fact that, in the Boolean-domain
case, subtracting allows the bias to actually interact with the weights (see also Kilic et al. (2022)). For larger
domains, the distinction is inconsequential since we can flip the sign of the bias.
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Figure 2: An illustration of the reduction behind Theorem 1 for the universe U = [6] and the set
family F with sets S1 = {1, 4, 5}, S2 = {2, 3}, S3 = {1, 6}, S4 = {2, 5}, S5 = {3, 5}, S6 = {6}
with an exact set cover S = {S1, S2, S6}. In the solution corresponding to S, each red arc has
weight 0 and each blue arc has weight 1. The orange number is the bias of the output neuron.

the number of pairs (x⃗, y⃗) in the multiset such that the output of (G,weight,bias) on x⃗ differs
from y⃗. With these definitions in place, we study d-QNNT as formalized in Section 1.

d-QNNT is in NP (a certificate consists of a linear number of integers from Zd), which contrasts
the ∃R-completeness of the training problem in the non-quantized setting. In the non-quantized
setting, one typically uses a wide variety of loss functions tailored to real-valued errors such as
ℓ22 (Brand et al., 2023)—here, we focus on a simple error count (as also used, e.g., by Judd (1990))
in order to facilitate a cleaner analysis. The majority of our proofs could nevertheless be directly
and straightforwardly translated to other loss functions (this is easiest to see for Theorems 1, 2, 4, 5).

Treewidth. A tree decomposition T of an undirected graph G (or the underlying undirected graph
of a directed graph) is a pair (T, χ), where T is a tree and χ is a function that assigns each tree
node t a set χ(t) ⊆ V (G) of vertices such that the following conditions hold: (P1) for every edge
e ∈ E(G) there is a tree node t such that e ⊆ χ(t); and (P2) for every vertex v ∈ V (G), the set
of tree nodes t with v ∈ χ(t) induces a non-empty subtree of T . The sets χ(t) are called bags
of the decomposition T , and χ(t) is the bag associated with the tree node t. The width of a tree
decomposition (T, χ) is the size of a largest bag minus 1. The treewidth of a graph G, denoted by
tw(G), is the minimum width over all tree decompositions of G.

A detailed treatment of parameterized complexity and treewidth is provided in the appendix (⋆).

3 LOWER BOUNDS FOR d-QNNT

In this section, we show that 2-QNNT remains intractable in highly restrictive settings. First, in
Theorem 1, we establish NP-hardness even if the architecture has no hidden neuron, only one out-
put neuron, and for training without error. Note that Theorem 1 implies NP-hardness even when the
combined parameter width + depth + ℓ + ω is upper-bounded by a constant. Naturally, the corre-
sponding reduction requires the output neurons to have an arbitrarily large degree. One could hence
hope that architectures with constant maximum degree can be trained efficiently. In Theorem 2, we
show that this is not possible by establishing NP-hardness for this setting.

In both the reductions that underlie Theorems 1 and 2 the number of input neurons is large and in
particular not upper-bounded by a function of the parameters. Hence, one could hope that a small or
even constant number of inputs allows for efficient training. We show that this is not the case either.
First, in Theorem 3, we provide W[2]-hardness for α even if there is no hidden layer. Second, in
Theorem 4, we show that 2-QNNT remains NP-hard even if there are only 2 inputs and 1 hidden
layer. Altogether, these results yield the lower bounds depicted in Figure 1.
Theorem 1 (⋆). 2-QNNT is NP-hard even when restricted to instances where ℓ = 0 and architec-
tures with a single output neuron and no hidden neuron.

Proof Sketch. We provide a reduction from the NP-hard EXACT SET COVER problem (Karp, 1972)
where the input consists of a universe U , and a family F of subsets over U . The goal is to find a
subset S ⊆ F such that S is a partition of U , that is, 1)

⋃
S∈S S = U and 2) S1 ∩ S2 = ∅ for

each S1, S2 ∈ S.

We construct an equivalent instance I of 2-QNNT as follows; see Figure 2 for an illustration.
Description of the architecture G. Abusing notation, for each set F ∈ F we create a set input
neuron F . Moreover, we add 3 more dummy input neurons S∗, x1, and x2, respectively. Finally, we
add one output neuron z and add an arc from each input neuron to the unique output neuron z.
Description of the data set. For each element u ∈ U we add two element data points: d1u and d2u:
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Figure 3: An illustration of the reduction behind Theorem 3 for the universe U = [6] and the set
family F with sets S1 = {1, 4, 5}, S2 = {2, 3}, S3 = {1, 6}, S4 = {2, 5}, S5 = {3, 5}, S6 = {6}
and k = 3 and with a hitting set S = {2, 5, 6}. In the solution corresponding to S, inputs p1, p2 and
p3 are associated with elements 2, 5 and 6, respectively. Moreover, each red arc has weight 0 and
each blue arc has weight 1. The orange numbers are the biases of the output neurons.

both have value 1 in each input corresponding to a set containing u and value 0 in dummy inputs x1

and x2. Moreover, d1u has value 0 in dummy input S∗ and value 0 in output z, and d2u has value 1
in dummy input S∗ and value 1 in output z. Finally, we add three further data points: dummy data
points d01, d10, and d11. All three have value 0 in each set input and in dummy input S∗. Moreover,
d01 has values x1 = 0, x2 = 1 and output value 0, d10 has values x1 = 1, x2 = 0 and output
value 0, and d11 has values x1 = 1, x2 = 1 and output value 1.

Finally, we set ℓ = 0. To complete the proof, it remains to establish correctness. (⋆)

We note that one could also obtain Theorem 1 by carefully adapting the hardness proof of Schmitt
(2004, Theorem 7) to our setting. However, the reduction we provide here is simpler, self-contained,
and additionally also implies W[1]-hardness with respect to the number of arcs with weight one in
the solution. We continue by stating the hardness for constant-degree architectures; since this result
is not central to our complexity landscape (see Figure 1), we defer its proof to the appendix.
Theorem 2 (⋆). 2-QNNT is NP-hard even when restricted to instances where ℓ = 0, |D| ≤ 4, and
architectures with only one hidden layer, maximum outdegree 3, and maximum indegree 2.

Next, we establish W-hardness w.r.t. the number α of inputs even if there is no hidden layer.
Theorem 3 (⋆). Even if the network has no hidden neuron, 2-QNNT is W[2]-hard when parameter-
ized by the number α of input nodes, even when restricted to architectures with no hidden neurons.

Proof Sketch. We present a reduction from the HITTING SET (HS) problem where the input consists
of a universe U , a family F of subsets over U , and an integer k. The goal is to find a subset S ⊆ U
(called a hitting set) of size k such that S contains at least one element of each set in the family, that
is, S ∩ F ̸= ∅ for any F ∈ F . HS is W[2]-hard parameterized by k (Cygan et al., 2015).

We construct an instance I of 2-QNNT as follows. For an illustration, see Figure 3.
Description of the architecture G. We create k input neurons p1, . . . , pk. Abusing notation, for each
set F ∈ F we create one set output neuron F . We add arcs between every input and output neuron.
Description of the data set. For each element u ∈ U we add k element u data points d1u, . . . , d

k
u.

Element u data point diu has value 1 in input pi and value 0 in each other input. Moreover, diu
has value 1 in each set output F such that u ∈ F . Thus, diu has value 0 in each set output F ′ such
that u /∈ F ′. Observe that the k element u data points all have the same output but they have pairwise
different inputs. Then, we add a verifier data point d∗ which has value 1 in each input and in each
output. In the following, we say that two data points d1 and d2 have the same type if the input values
of d1 and d2 are pairwise identical. Note that we have exactly k + 1 distinct types of data points.

Finally, we set ℓ := k · (|U |− 1). To complete the proof, it remains to establish correctness. (⋆)

For our fourth lower bound, we use a “compressed” version of the construction behind Theorem 2
to obtain NP-hardness for only 2 input nodes and 3 data points.
Theorem 4 (⋆). 2-QNNT is NP-hard even if α = 2, ℓ = 0, |D| = 3, and depth = 1.

Proof Sketch. We present a reduction from 3-SAT (Karp, 1972), where one is given a CNF for-
mula Φ on variables x1, . . . , xn and a set of m clauses each consisting of precisely three literals.

We construct an equivalent instance I of 2-QNNT as follows; see Figure 4 for an illustration.
Description of architecture G. We create two input neurons z1 and z2. For each of the two literals
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Figure 4: An illustration of the reduction behind Theorem 4 for the formula Φ with clauses c1 =
x1 ∨ x2 ∨ x3, c2 = x1 ∨ x3 ∨ x4, c3 = x1 ∨ x2 ∨ x4, and c4 = x2 ∨ x3 ∨ x4 with a satisfying
assignment A with {x2, x4} 7→ true and {x1, x3} 7→ false. In an optimal solution all arcs have
weight 1. The biases of of a solution corresponding to A are shown in orange.

of a variable xi with i ∈ [n], we create two hidden neurons xi and xi associated with variable xi.
Thus, we create 2n hidden neurons. Moreover, we create a variable output neuron vi associated with
variable xi for each variable xi. Also, we add one clause output neuron cj for each clause of Φ.
Thus, we create n+m output neurons. We add an arc from each input neuron to each hidden neuron.
Next, we add an arc from each of the two hidden neurons xi and xi associated with variable xi to
the variable output neuron vi associated with variable xi. Finally, for each clause cj consisting of
literals p1, p2, and p3, we add the arcs (ph, cj) for each h ∈ [3].
Description of data set. Here, we use the notation (z1, z2) 7→ (V,C) for the data points, where z1
and z2 are numbers referring to the inputs, and V and C are vectors referring to the outputs. More
precisely, V has length n, and the i-th entry corresponds to the variable output neuron vi, and C has
length m, and the j-th entry corresponds to the clause output neuron cj . Whenever we put a 0 or a 1
in any of the three vectors, we mean that all corresponding outputs receive value 0 or 1, respectively.

We add 3 data points: (1) The verifier 1 data point with (1, 0) 7→ (0, 1), (2) the verifier 2 data point
with (0, 1) 7→ (0, 1), and (3) the choice data point with (1, 1) 7→ (1, 1). Finally, we set ℓ := 0.

Intuition. Recall that we say that given a data point p a neuron q is active if in the evaluation of p, the
neuron q receives a positive activation; otherwise, it is inactive. The idea is that when considering
the verifier 1 data point, the active hidden neurons correspond to a satisfying variable assignment.
We achieve this with the variable output neurons: If both hidden neurons xi and xi associated with a
variable xi are active for the verifier 1 data point, then since the value of the variable output neuron vi
associated with xi needs to be 0 and since xi and xi are the unique neighbors of vi this then implies
that the value of vi for the choice data point is also 0, and not 1 as desired, yielding an error.

To complete the proof, it remains to use the above intuition to formally establish correctness. (⋆)

4 FIXED-PARAMETER TRACTABILITY

In this section we prove our tractability results for parameter combinations that include the width,
treewidth, and number α of input neurons. We begin by showing a structural result (Lemma 1)
that states that there is always a solution that has upper-bounded degree in the sense that, for
each neuron, there is only a bounded number of incoming arcs with nonzero weights. We then
use Lemma 1 to prove tractability of d-QUANTIZED RELU-ACTIVATED NEURAL NETWORK
TRAINING (d-QNNT) without error with respect to the treewidth and number α of input neurons
(Lemma 3). Then we show how to lift this result to training with nonzero error bounds and how the
treewidth results imply the corresponding results for the width.

Consider a neuron v in a neural network. Define the non-zero in-neighbors of v to be the in-
neighbors u of v such that weight(uv) ̸= 0. The non-zero indegree of v is the number of non-zero
in-neighbors.

Lemma 1 (⋆). Let G be an architecture and D a data set with p distinct input vectors. If there is a
neural network over G with zero error on D, then there is a neural network Ḡ over G with zero error
on D such that for each neuron v in Ḡ the number of non-zero in-neighbors of v is at most (dp)O(p).

We prove Lemma 1 by using Steinitz’ Lemma, stated as follows.
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Lemma 2 (Steinitz’ Lemma (Steinitz, 1913; Sevast’janov, 1994)). Let ∥ · ∥ be an arbitrary norm
on Rd. Let x1, . . . , xm ∈ Rd such that

∑
i∈[m] xi = 0 and for each i ∈ [m] we have ∥xi∥ ≤ 1.

Then there exists a permutation π ∈ Sm such that all prefix sums have norm at most d. That is, for
each k ∈ [m] we have ∥

∑
j∈[k] xπ(j)∥ ≤ d.

Proof Sketch for Lemma 1. Consider a neuron v in a solution network. We can collect the activations
of v for each input vector in a vector s⃗ ∈ (Zd)

p. Assume for simplicity that we don’t have ReLU
activations and instead simply pass through the weighted sum of the activations of the in-neighbors
and, furthermore, each of the summed activations is in (Zd)

p. Then, s⃗ is a small-norm vector and it
is obtained as a sum of small-norm vectors. Steinitz’ Lemma tells us that we can reorder the vectors
such that each prefix sum has small norm. This means that, if there are many non-zero in-neighbors
to v, then at least one prefix sum occurs twice. This means that the vectors in between these two
identical sums sum to zero and we can simply set their corresponding arc weights to zero without
changing the activation of v. Care must be taken to preserve the ReLU activations and boundaries
of (Zd)

p and to ensure that all vectors in the sum have small norm.

We next show how the degree bound above can be used to efficiently train neural networks for
low-treewidth architectures and small number of input neurons. We will use a dynamic program
over a tree decomposition. Essentially this means that we need to maintain for small separators
what the status of partial solutions on one side, say the left side, of the separator is and this status
needs to be encoded in a small number of states. Consider a neuron v in such a separator. We
want to maintain as a state of the partial solution which pre-activation values v has already received
on the left side of the separator. If the non-zero indegree of a solution is large, then we may have
already seen an unbounded number of negative pre-activation values, but on the right side we may
still see an equally large number of positive pre-activation values, in total summing to a small value
in Zd. To properly maintain the activation of v, we would thus need to maintain unboundedly large
pre-activation values, leading to a large, unbounded number of dynamic-programming states. In
contrast, using the indegree bound established in Lemma 1, we can assume that the sums of pre-
activation values are bounded and only look for such solutions.
Lemma 3 (⋆). d-QNNT with ℓ = 0 is FPT w.r.t. the treewidth of G and the number of input nodes.

Proof Sketch. Let (G,α, ω, d,D, 0) be an instance of d-QNNT with error bound ℓ = 0 and α input
nodes (i.e., neurons). Let X be the set of distinct input vectors in D and tw be the treewidth of
the input architecture G. First, we compute a tree decomposition T = (T, χ) of the underlying
undirected graph of the architecture G that has width at most 2tw + 1 (Korhonen, 2022). We then
proceed by dynamic programming on T . Without loss of generality, there are at most dα different
input vectors (otherwise either there are multiple pairs of equal pairs of input and output vectors,
of which we can drop one arbitrarily, or one input vector is associated with two different output
vectors, and we have a trivial no-instance). Thus, by Lemma 1 we know that, if there is a solution
neural network, then there is a solution with non-zero indegree at most (d(dα))O(dα) = dO(αdα).
We hence try to find a solution with non-zero indegree at most some integer ∆ := dO(αdα). (Indeed,
we won’t enforce this indegree bound, but we are guaranteed to find a solution, potentially with
larger non-zero indegree, if there is one.)

Partial neural networks and evaluations thereof. To define the dynamic-programming table, we
need to define what a partial solution is for the part of the architecture we have already seen in the
dynamic program. Let W ⊆ V (G). A W -partial neural network over architecture G is a tuple
(G,weight,bias), where weight and bias are defined in the same way as for neural networks
except that the domain of bias is W and the domain of weight is the set of arcs of G with both
endpoints in W . Note that the activation value for a neuron v on a certain input vector is defined
if for each path P in G from an input neuron to v all biases and weights of neurons and arcs on
P are defined. Below we will additionally refer to activation values for further neurons based on
assuming that they receive certain given weighted activation values from in-neighbors where biases
or weights are not defined. More precisely, for a W -partial neural network, consider an input vector
x. For some neurons v, including all of those whose in-neighbors are not all contained in W ,
we additionally specify the weighted activation value future(x, v) that they receive from the in-
neighbors not contained in W . This is sufficient to compute the activation values (as defined for
non-partial neural networks) for all neurons in W , based on assuming the values future(x, v).
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Below we will omit explicit mention of this assumption when referring to the activation values as
long as it is clear from the context.

The dynamic programming table. Below, for a node t ∈ V (T ) in the tree decomposition we define
Vt to be the union of all bags of nodes that are either t or descendants of t in T . The dynamic-
programming table D is defined as follows. (Recall that X is the set of input vectors.) Consider a
node t ∈ V (T ) in the tree decomposition, a function bias : χ(t) → Zd assigning a bias to each
neuron in t’s bag, a function weight : {(u, v) ∈ E(G) | u, v ∈ χ(t)} → Zd assigning a weight
to each arc in t’s bag, a function seen : X × χ(t) → Zd2∆ assigning each neuron in t’s bag a set
of pre-activation values received from neurons in Vt, and a function future : X × χ(t) → Zd2∆

assigning each neuron in t’s bag a set of pre-activation values to be received from neurons in V \Vt.
We put D[t,bias,weight,seen,future] = 1 if there is a Vt-partial neural network Ḡ over G
with the following properties, where all references to activation values are with respect to Ḡ:

(i) For each neuron v in χ(t) its bias in Ḡ is bias(v), and for each arc (u, v) ∈ E(G) with
u, v ∈ χ(t) the arc weight in Ḡ is weight(u, v).

(ii) For each input vector x ∈ X , assuming that for each neuron v ∈ χ(t) the pre-activation value
received from in-neighbors in V (G) \ Vt is future(x, v), then for each neuron v ∈ χ(t) the
pre-activation value received from in-neighbors in Vt is seen(x, v).

(iii) For each input vector x ∈ X , for each input neuron in Vt \ χ(t) the activation value is exactly
the one specified in x.

(iv) For each input-output pair (x, y), for each output neuron v ∈ Vt \ χ(t), the activation of v on
input x is exactly as specified in y.

If there is no such neural network Ḡ then we put D[t,bias,weight,seen,future] = 0.

The computation of the table D for each node of T and the running time is in the appendix.

Instances with nonzero error bounds can be reduced to the ℓ = 0 setting in order to apply Lemma 3.

Theorem 5 (⋆). d-QNNT is FPT wrt. the treewidth of G, the number α of input dimensions, and
the number ω of output dimensions.

Theorem 6 (⋆). d-QNNT is FPT w.r.t. the treewidth of G, the number α of input dimensions, and
the error bound ℓ.

Finally, we show that the treewidth tw can be replaced by the width. If there is at least one hidden
layer, then we can show that indeed the width is an upper bound for tw and Theorems 5 and 6 directly
apply. Otherwise, we design two simple ad-hoc strategies that learn the neural networks optimally.

Corollary 1 (⋆). d-QNNT is FPT with respect to α+ ℓ+ width.

Corollary 2 (⋆). d-QNNT is FPT with respect to α+ ω + width.

5 CONCLUDING REMARKS

Our work initiates the study of fully quantized ReLU neural network training from the classical as
well as parameterized complexity perspectives. We show that the problem remains NP-hard even
in highly restricted settings, but also provide positive results through the identification of non-trivial
fixed-parameter tractable fragments. We remark that the latter outcome contrasts the state of the
art for neural network training in the non-quantized setting. Indeed, in spite of being targeted by
several recent complexity-theoretic studies (Dey et al., 2020; Abrahamsen et al., 2021; Goel et al.,
2021; Boob et al., 2022; Froese & Hertrich, 2023; Bertschinger et al., 2023; Brand et al., 2023), to
date we do not know a single non-trivial4 parameterization that yields fixed-parameter tractability
for training non-quantized neural networks. Moreover, we believe that settling the parameterized
complexity of d-QNNT w.r.t. the input and output dimensionality (i.e., α+ ω) will require insights
beyond the current state of the art and pose this as the main open question arising from our work.
Other important avenues of future work include whether our results can be extended to distillation,
and whether they could be used to obtain more efficient empirical algorithms.

4By non-trivial, we mean that the parameter does not simply bound the input size.
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Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett (eds.),
Proceedings of the 32nd Annual Conference on Neural Information Processing Sys-
tems Advances in Neural Information Processing Systems (NeurIPS 2019), pp. 7948–
7956, 2019. URL https://proceedings.neurips.cc/paper/2019/hash/
c0a62e133894cdce435bcb4a5df1db2d-Abstract.html.

Daniel Bertschinger, Christoph Hertrich, Paul Jungeblut, Tillmann Miltzow, and Simon
Weber. Training fully connected neural networks is ∃r-complete. In Proceed-
ings of the Thirty-Seventh Annual Conference on Neural Information Processing Systems
(NeurIPS ’23), 2023. URL http://papers.nips.cc/paper_files/paper/2023/
hash/71c31ebf577ffdad5f4a74156daad518-Abstract-Conference.html.

Avrim Blum and Ronald L. Rivest. Training a 3-node neural network is np-complete. Neural
Networks, 5(1):117–127, 1992. doi: 10.1016/S0893-6080(05)80010-3. URL https://doi.
org/10.1016/S0893-6080(05)80010-3.

Digvijay Boob, Santanu S. Dey, and Guanghui Lan. Complexity of training relu neural network.
Discret. Optim., 44(Part):100620, 2022. doi: 10.1016/J.DISOPT.2020.100620. URL https:
//doi.org/10.1016/j.disopt.2020.100620.

Cornelius Brand, Robert Ganian, and Mathis Rocton. New complexity-theoretic fron-
tiers of tractability for neural network training. In Proceedings of the Thirty-
Seventh Annual Conference on Neural Information Processing Systems (NeurIPS ’23),
2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/
b07091c16719ad3990e3d1ccee6641f1-Abstract-Conference.html.

Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. Binaryconnect: Training deep
neural networks with binary weights during propagations. In Proceedings of the Twenty-
Ninth Annual Conference on Neural Information Processing Systems (NeurIPS ’15), pp.
3123–3131, 2015. URL https://proceedings.neurips.cc/paper/2015/hash/
3e15cc11f979ed25912dff5b0669f2cd-Abstract.html.

Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer,
2015. doi: 10.1007/978-3-319-21275-3. URL https://doi.org/10.1007/
978-3-319-21275-3.

Santanu S. Dey, Guanyi Wang, and Yao Xie. Approximation algorithms for training one-node relu
neural networks. IEEE Trans. Signal Process., 68:6696–6706, 2020. doi: 10.1109/TSP.2020.
3039360. URL https://doi.org/10.1109/TSP.2020.3039360.

Ilan Doron-Arad. On the hardness of training deep neural networks discretely. In Proceedings
of the Thirty-Ninth AAAI Conference on Artificial Intelligence (AAAI ’25), pp. 16363–16371.
AAAI Press, 2025. doi: 10.1609/AAAI.V39I15.33797. URL https://doi.org/10.1609/
aaai.v39i15.33797.

Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity. Texts in
Computer Science. Springer, 2013. doi: 10.1007/978-1-4471-5559-1. URL https://doi.
org/10.1007/978-1-4471-5559-1.

10

https://proceedings.neurips.cc/paper/2021/hash/9813b270ed0288e7c0388f0fd4ec68f5-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/9813b270ed0288e7c0388f0fd4ec68f5-Abstract.html
https://openreview.net/forum?id=B1J_rgWRW
https://openreview.net/forum?id=B1J_rgWRW
https://proceedings.neurips.cc/paper/2019/hash/c0a62e133894cdce435bcb4a5df1db2d-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/c0a62e133894cdce435bcb4a5df1db2d-Abstract.html
http://papers.nips.cc/paper_files/paper/2023/hash/71c31ebf577ffdad5f4a74156daad518-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/71c31ebf577ffdad5f4a74156daad518-Abstract-Conference.html
https://doi.org/10.1016/S0893-6080(05)80010-3
https://doi.org/10.1016/S0893-6080(05)80010-3
https://doi.org/10.1016/j.disopt.2020.100620
https://doi.org/10.1016/j.disopt.2020.100620
http://papers.nips.cc/paper_files/paper/2023/hash/b07091c16719ad3990e3d1ccee6641f1-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/b07091c16719ad3990e3d1ccee6641f1-Abstract-Conference.html
https://proceedings.neurips.cc/paper/2015/hash/3e15cc11f979ed25912dff5b0669f2cd-Abstract.html
https://proceedings.neurips.cc/paper/2015/hash/3e15cc11f979ed25912dff5b0669f2cd-Abstract.html
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1109/TSP.2020.3039360
https://doi.org/10.1609/aaai.v39i15.33797
https://doi.org/10.1609/aaai.v39i15.33797
https://doi.org/10.1007/978-1-4471-5559-1
https://doi.org/10.1007/978-1-4471-5559-1


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Vincent Froese and Christoph Hertrich. Training neural networks is np-hard in fixed dimension. In
Proceedings of the Thirty-Seventh Annual Conference on Neural Information Processing Systems
(NeurIPS ’23), 2023. URL http://papers.nips.cc/paper_files/paper/2023/
hash/8948a8d039ed52d1031db6c7c2373378-Abstract-Conference.html.

Surbhi Goel, Adam R. Klivans, Pasin Manurangsi, and Daniel Reichman. Tight hardness re-
sults for training depth-2 relu networks. In Proceedings of the 12th Innovations in Theoreti-
cal Computer Science Conference (ITCS ’21), volume 185 of LIPIcs, pp. 22:1–22:14. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2021. doi: 10.4230/LIPICS.ITCS.2021.22. URL
https://doi.org/10.4230/LIPIcs.ITCS.2021.22.

Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew G.
Howard, Hartwig Adam, and Dmitry Kalenichenko. Quantization and training of neu-
ral networks for efficient integer-arithmetic-only inference. In Proceedings of the 2018
IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2018), pp. 2704–
2713. Computer Vision Foundation / IEEE Computer Society, 2018. doi: 10.1109/CVPR.
2018.00286. URL http://openaccess.thecvf.com/content_cvpr_2018/html/
Jacob_Quantization_and_Training_CVPR_2018_paper.html.

J. Stephen Judd. On the complexity of loading shallow neural networks. J. Complex., 4(3):177–
192, 1988. doi: 10.1016/0885-064X(88)90019-2. URL https://doi.org/10.1016/
0885-064X(88)90019-2.

J. Stephen Judd. Neural network design and the complexity of learning. Neural network modeling
and connectionism. MIT Press, 1990. ISBN 978-0-262-10045-8.

Richard M. Karp. Reducibility among combinatorial problems. In Proceedings of a symposium
on the Complexity of Computer Computations, The IBM Research Symposia Series, pp. 85–103.
Plenum Press, New York, 1972. doi: 10.1007/978-1-4684-2001-2\ 9. URL https://doi.
org/10.1007/978-1-4684-2001-2_9.

Kordag Mehmet Kilic, Jin Sima, and Jehoshua Bruck. On algebraic constructions of neural networks
with small weights. In Proceedings of the 2022 IEEE International Symposium on Information
Theory (ISIT ’22), pp. 3007–3012. IEEE, 2022. doi: 10.1109/ISIT50566.2022.9834401. URL
https://doi.org/10.1109/ISIT50566.2022.9834401.

Tuukka Korhonen. A single-exponential time 2-approximation algorithm for treewidth. In Proceed-
ings of the 62nd IEEE Annual Symposium on Foundations of Computer Science (FOCS ’21), pp.
184–192. IEEE, 2022. doi: 10.1109/FOCS52979.2021.00026. URL https://doi.org/10.
1109/FOCS52979.2021.00026.

Zewen Li, Fan Liu, Wenjie Yang, Shouheng Peng, and Jun Zhou. A survey of convolutional neural
networks: Analysis, applications, and prospects. IEEE Trans. Neural Networks Learn. Syst., 33
(12):6999–7019, 2022. doi: 10.1109/TNNLS.2021.3084827. URL https://doi.org/10.
1109/TNNLS.2021.3084827.

Xiaofan Lin, Cong Zhao, and Wei Pan. Towards accurate binary convolutional neural network. In
Proceedings of the Thirthy-First Annual Conference on Neural Information Processing Systems
(NeurIPS ’17), pp. 345–353, 2017. URL https://proceedings.neurips.cc/paper/
2017/hash/b1a59b315fc9a3002ce38bbe070ec3f5-Abstract.html.

Yang Lin, Tianyu Zhang, Peiqin Sun, Zheng Li, and Shuchang Zhou. Fq-vit: Post-training quanti-
zation for fully quantized vision transformer. In Proceedings of the Thirty-First International
Joint Conference on Artificial Intelligence (IJCAI ’22), pp. 1173–1179. ijcai.org, 2022. doi:
10.24963/IJCAI.2022/164. URL https://doi.org/10.24963/ijcai.2022/164.

Chunlei Liu, Wenrui Ding, Yuan Hu, Xin Xia, Baochang Zhang, Jianzhuang Liu, and David S.
Doermann. Circulant binary convolutional networks for object recognition. IEEE J. Sel. Top.
Signal Process., 14(4):884–893, 2020. doi: 10.1109/JSTSP.2020.2969516. URL https://
doi.org/10.1109/JSTSP.2020.2969516.

11

http://papers.nips.cc/paper_files/paper/2023/hash/8948a8d039ed52d1031db6c7c2373378-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/8948a8d039ed52d1031db6c7c2373378-Abstract-Conference.html
https://doi.org/10.4230/LIPIcs.ITCS.2021.22
http://openaccess.thecvf.com/content_cvpr_2018/html/Jacob_Quantization_and_Training_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Jacob_Quantization_and_Training_CVPR_2018_paper.html
https://doi.org/10.1016/0885-064X(88)90019-2
https://doi.org/10.1016/0885-064X(88)90019-2
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1109/ISIT50566.2022.9834401
https://doi.org/10.1109/FOCS52979.2021.00026
https://doi.org/10.1109/FOCS52979.2021.00026
https://doi.org/10.1109/TNNLS.2021.3084827
https://doi.org/10.1109/TNNLS.2021.3084827
https://proceedings.neurips.cc/paper/2017/hash/b1a59b315fc9a3002ce38bbe070ec3f5-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/b1a59b315fc9a3002ce38bbe070ec3f5-Abstract.html
https://doi.org/10.24963/ijcai.2022/164
https://doi.org/10.1109/JSTSP.2020.2969516
https://doi.org/10.1109/JSTSP.2020.2969516


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Paulius Micikevicius, Sharan Narang, Jonah Alben, Gregory F. Diamos, Erich Elsen, David Garcı́a,
Boris Ginsburg, Michael Houston, Oleksii Kuchaiev, Ganesh Venkatesh, and Hao Wu. Mixed
precision training. In Proceedings of the 6th International Conference on Learning Representa-
tions (ICLR 2018). OpenReview.net, 2018. URL https://openreview.net/forum?id=
r1gs9JgRZ.

Ian Parberry. On the complexity of learning with a small number of nodes. In Proceedings of the
International Joint Conference on Neural Networks, volume 3, pp. 893–898, 1992.

Neil Robertson and Paul D. Seymour. Graph minors. III. planar tree-width. J. Comb. Theory B, 36
(1):49–64, 1984. doi: 10.1016/0095-8956(84)90013-3. URL https://doi.org/10.1016/
0095-8956(84)90013-3.

Michael Schmitt. Some dichotomy theorems for neural learning problems. J. Mach. Learn.
Res., 5:891–912, 2004. URL https://jmlr.org/papers/volume5/schmitt04a/
schmitt04a.pdf.

Sergey Vasil’evich Sevast’janov. On some geometric methods in scheduling theory: A survey.
Discret. Appl. Math., 55(1):59–82, 1994. doi: 10.1016/0166-218X(94)90036-1. URL https:
//doi.org/10.1016/0166-218X(94)90036-1.

Ernst Steinitz. Bedingt konvergente Reihen und konvexe Systeme. Journal für die reine und ange-
wandte Mathematik, 143:128–176, 1913. doi: 10.1515/crll.1913.143.128.

Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, and Joel S. Emer. Efficient processing of deep neural
networks: A tutorial and survey. Proc. IEEE, 105(12):2295–2329, 2017. doi: 10.1109/JPROC.
2017.2761740. URL https://doi.org/10.1109/JPROC.2017.2761740.

Ruizhe Wang, Yeyun Gong, Xiao Liu, Guoshuai Zhao, Ziyue Yang, Baining Guo, Zhengjun Zha,
and Peng Cheng. Optimizing large language model training using FP4 quantization. In Proceed-
ings of the Forty-Second International Conference on Machine Learning (ICML ’25), Proceedings
of Machine Learning Research. PMLR, 2025. URL https://openreview.net/forum?
id=uK7JArZEJM. to appear.

Zhaohui Yang, Yunhe Wang, Kai Han, Chunjing Xu, Chao Xu, Dacheng Tao, and
Chang Xu. Searching for low-bit weights in quantized neural networks. In Proceed-
ings of the Thirty-Fourth Annual Conference on Neural Information Processing Systems
(NeurIPS ’20), 2020. URL https://proceedings.neurips.cc/paper/2020/
hash/2a084e55c87b1ebcdaad1f62fdbbac8e-Abstract.html.

Shuchang Zhou, Zekun Ni, Xinyu Zhou, He Wen, Yuxin Wu, and Yuheng Zou. Dorefa-net: Training
low bitwidth convolutional neural networks with low bitwidth gradients. CoRR, abs/1606.06160,
2016. URL http://arxiv.org/abs/1606.06160.

Chenzhuo Zhu, Song Han, Huizi Mao, and William J. Dally. Trained ternary quantization. In
Proceedings of the 5th International Conference on Learning Representations (ICLR ’17). Open-
Review.net, 2017. URL https://openreview.net/forum?id=S1_pAu9xl.

Shilin Zhu, Xin Dong, and Hao Su. Binary ensemble neural network: More bits per network
or more networks per bit? In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR ’19), pp. 4923–4932. Computer Vision Foundation / IEEE, 2019.
doi: 10.1109/CVPR.2019.00506. URL http://openaccess.thecvf.com/content_
CVPR_2019/html/Zhu_Binary_Ensemble_Neural_Network_More_Bits_per_
Network_or_More_CVPR_2019_paper.html.

12

https://openreview.net/forum?id=r1gs9JgRZ
https://openreview.net/forum?id=r1gs9JgRZ
https://doi.org/10.1016/0095-8956(84)90013-3
https://doi.org/10.1016/0095-8956(84)90013-3
https://jmlr.org/papers/volume5/schmitt04a/schmitt04a.pdf
https://jmlr.org/papers/volume5/schmitt04a/schmitt04a.pdf
https://doi.org/10.1016/0166-218X(94)90036-1
https://doi.org/10.1016/0166-218X(94)90036-1
https://doi.org/10.1109/JPROC.2017.2761740
https://openreview.net/forum?id=uK7JArZEJM
https://openreview.net/forum?id=uK7JArZEJM
https://proceedings.neurips.cc/paper/2020/hash/2a084e55c87b1ebcdaad1f62fdbbac8e-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/2a084e55c87b1ebcdaad1f62fdbbac8e-Abstract.html
http://arxiv.org/abs/1606.06160
https://openreview.net/forum?id=S1_pAu9xl
http://openaccess.thecvf.com/content_CVPR_2019/html/Zhu_Binary_Ensemble_Neural_Network_More_Bits_per_Network_or_More_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Zhu_Binary_Ensemble_Neural_Network_More_Bits_per_Network_or_More_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Zhu_Binary_Ensemble_Neural_Network_More_Bits_per_Network_or_More_CVPR_2019_paper.html


000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

TRACTABILITY VIA LOW DIMENSIONALITY:
THE PARAMETERIZED COMPLEXITY OF
TRAINING QUANTIZED NEURAL NETWORKS

(APPENDIX: FULL VERSION)

Anonymous authors
Paper under double-blind review

ABSTRACT

The training of neural networks has been extensively studied from both algorith-
mic and complexity-theoretic perspectives, yet recent results in this direction al-
most exclusively concern real-valued networks. In contrast, advances in machine
learning practice highlight the benefits of quantization, where network parame-
ters and data are restricted to finite integer domains, yielding significant improve-
ments in speed and energy efficiency. Motivated by this gap, we initiate a sys-
tematic complexity-theoretic study of ReLU Neural Network Training in the full
quantization mode. We establish strong lower bounds by showing that hardness
already arises in the binary setting and under highly restrictive structural assump-
tions on the architecture, thereby excluding parameterized tractability for natural
measures such as depth and width. On the positive side, we identify nontrivial
fixed-parameter tractable cases when parameterizing by input dimensionality in
combination with width and either output dimensionality or error bound, and fur-
ther strengthen these results by replacing width with the more general treewidth.

1 INTRODUCTION

A crucial task tied to the use of neural networks is their training. On a high level, this training task
can be characterized as follows: given a neural network architecture G and a data set D of input-
output pairs, compute weights and biases of G which minimize the error achieved by the network
on D. While we have powerful heuristics for solving this problem (Sze et al., 2017; Li et al., 2022),
it also exhibits highly interesting behavior on the complexity-theoretical level and has been studied
from this perspective in a series of recent foundational papers (Dey et al., 2020; Abrahamsen et al.,
2021; Goel et al., 2021; Boob et al., 2022; Froese & Hertrich, 2023; Bertschinger et al., 2023; Brand
et al., 2023). A detailed discussion of the state of the art is deferred to the end of this section;
nevertheless, it will be useful to note that for a crisper complexity analysis one typically considers
the equivalent decision formulation of the problem—i.e., where the input also includes an error
bound ℓ and the algorithm is allowed to output “no” if such an error bound cannot be achieved by
any combination of weights and biases.1

A common feature of all the above-mentioned complexity-theoretical works targeting the above
NEURAL NETWORK TRAINING (NNT) problem is that they assume the numbers occurring in the
network to be reals. This is a natural perspective that matches the classical formalization of neural
networks. However, a series of recent advances have shown that one can significantly improve speed
and energy efficiency by quantizing the neural network, i.e., forcing the numbers to lie in a specified
domain of integers (Kilic et al., 2022). For example, Wang et al. (2025) recently showed that one can
achieve accuracy results comparable to the real-valued setting when quantizing to 4 bits, i.e., with a
domain size of 16; see also the preceding works of Yang et al. (2020) and Lin et al. (2022). Other

1Technically, in decision problems one is not required to output the weights and biases for positive instances;
however, every algorithm obtained or mentioned in this article is constructive and capable of doing so. We note
that the optimization task can be reduced to the decision formulation via a trivial search routine on ℓ.
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works have also considered even stronger degrees of quantization, such as using binary domains (Lin
et al., 2017; Zhu et al., 2019; Liu et al., 2020). In fact, several different methods have been developed
to obtain high-quality quantized neural networks such as fully-quantized training (Zhou et al., 2016),
mixed-precision training (Micikevicius et al., 2018), post-training quantization (Banner et al., 2019),
and quantization-aware training (Jacob et al., 2018).

Yet, the recent developments outlined above are not at all reflected in our understanding of the
underlying foundational problem: neither the complexity-theoretic lower bounds (Dey et al., 2020;
Abrahamsen et al., 2021; Goel et al., 2021; Froese & Hertrich, 2023; Bertschinger et al., 2023), nor
the algorithms underpinning our upper bounds for solving the training problem (Arora et al., 2018;
Boob et al., 2022; Brand et al., 2023) can be translated into the quantized setting. We note that
this does not seem to be merely the case of a missing “bridge” that would allow one to translate
knowledge from one setting to the other—the training problem in the real-valued setting is ∃R-
complete (Abrahamsen et al., 2021; Bertschinger et al., 2023) but with quantization it is easily seen
to lie in NP (see Section 2), pointing to a fundamental difference between the two settings. Until
now, we lacked any complexity-theoretic study targeting NNT in the fully quantized setting.

The aim of this article is to fill the aforementioned gap by developing a comprehensive understanding
of QUANTIZED RELU-NNT (see Section 2 for formal details and a discussion of the error bound):

d-QUANTIZED RELU-ACTIVATED NEURAL NETWORK TRAINING (d-QNNT)

Input: An architecture G with α input and ω output nodes, a multiset D of d-quantized data
points, and an error bound ℓ.

Output: A d-quantized neural network Ḡ over G such that the error of D on Ḡ is at most ℓ,
or a correct conclusion that no such network exists.

We remark that here we focus on the ReLU activation function, as it is widely used in practice and
has been the target of almost all foundational studies of non-quantized NNT to date (Dey et al., 2020;
Abrahamsen et al., 2021; Goel et al., 2021; Boob et al., 2022; Froese & Hertrich, 2023; Bertschinger
et al., 2023; Brand et al., 2023). Our results include not only lower bounds, but also the identification
of tractable cases via the development of theoretical algorithms. All our lower bounds apply already
to the simplest binary quantization, while our tractability results hold for arbitrary choices of the
quantization constant d.

In order to construct a more detailed complexity map of d-QNNT, we perform our analysis also tak-
ing into account the parameterized complexity paradigm (Cygan et al., 2015; Downey & Fellows,
2013) which associates problem instances with a suitably defined parameter, i.e., a numerical mea-
sure that captures various aspects of the instance. In the classical perspective, one would typically
ask whether restricting the parameter k to a constant allows us to solve instances in time polynomial
w.r.t. the input size n. By contrast, the most desirable notion of tractability in the more refined pa-
rameterized paradigm is fixed-parameter tractability (FPT), meaning that the problem can be solved
in time f(k) · nO(1) for some computable function f . To exclude inclusion in FPT, one can either
show that the problem is W[1]- or W[2]-hard (which still allows for the existence of algorithms
running in time, e.g., nO(k)), or NP-hard for a fixed value of k.

Contributions. For convenience, Figure 1 provides a mindmap of results that is intended to com-
plement the description of our contributions.

parameter
referenceFPT W[2]-hard NP-hard

tw + α+ ℓ
Theorem 6

tw + α+ ω
Theorem 5

α+ ℓ+ depth
Theorem 4

α+ width + depth
Theorem 3

ω+ ℓ+width+ depth
Theorem 1

ℓ+∆
Theorem 2

Figure 1: Overview of our results for d-QNNT. A combined parameter p consisting of single pa-
rameters p1, p2, p3 has an edge to a lower combined parameter q if dropping one of the single
parameters pi yields hardness. We use ∆ to denote the maximum degree of any neuron. Our main
open question concerns the complexity w.r.t. α+ ω—see the Technical Overview and Section 5.
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Well-studied properties of the architecture G that might, at first glance, seem as natural choices for
parameters are its depth (the number of hidden layers) and width (the size of the largest hidden
layer)—a direction which we explore in our first set of contributions.

As a baseline result, we exclude any notion of parameterized tractability w.r.t. these two measures
even when combined with the error bound ℓ and the output dimensionality ω. In particular, in
Theorem 1 we show that 2-QNNT remains NP-hard even when restricted to instances where ℓ = 0,
there is only a single output node and no hidden layer—a result which shows that even training very
simple quantized architectures is computationally intractable and forms a counterpart to the well-
known intractability of training a single neuron in the non-quantized setting (Goel et al., 2021; Dey
et al., 2020). Naturally, the reduction underlying Theorem 1 relies on the single output neuron having
large indegree—however, in our second Theorem 2 we establish the NP-hardness of 2-QNNT even
on constant-degree architectures with a single hidden layer and ℓ = 0. This latter result can be seen
as a constant-degree counterpart to the ∃R-hardness of training shallow non-quantized networks to
optimality (Abrahamsen et al., 2021).

While the above lower bounds paint a negative picture of the complexity of d-QNNT, there is a
silver lining: both reductions inherently require the input dimensionality α to be large. As our
second set of contributions, we show that parameterizing by α enables fixed-parameter neural
network training in the quantized setting—but only when combined with additional restrictions. In
particular, our results imply that for every fixed d, d-QNNT is fixed-parameter tractable w.r.t. the
combined parameterizations:

1. input dimensionality α, the width of G and output dimensionality ω (Corollary 2);
2. input dimensionality α, the width of G and the error bound ℓ (Corollary 1).

The above results naturally lead to the question of whether all of the parameters are required to
achieve fixed-parameter tractability—in other words, could any of the parameters be dropped from
the statement? For α, we already know that this is not the case: Theorem 1 rules out polynomial-time
algorithms even if the width, ω and ℓ are small constants.

Given the fact that both positive results rely on parameterizing by the width and α, it would be
tempting to think that d-QNNT is fixed-parameter tractable w.r.t. α and the width alone—i.e., that
the third parameter can be dropped in both statements. As our third contribution, in Theorem 3
we rule this out by establishing the W[2]-hardness of 2-QNNT w.r.t. α even on networks with no
hidden layer. This means that neither ω, nor ℓ can be dropped from our algorithmic upper bounds.

The above considerations leave the width as the only possible “weak point” in Corollaries 1 and 2.
As our fourth contribution, we show that—at least if one wishes to preserve both positive results—
it is neither possible to drop the width, nor replace it with the depth of G. In particular, our Theorem 4
shows that 2-QNNT is NP-hard even when α = 2, there is a single hidden layer and ℓ = 0.

While the width cannot be dropped or replaced by depth, as our final fifth contribution we show
that Corollaries 1 and 2 can be strengthened: in particular, we prove that the results hold even if
one replaces the width of architecture G with its treewidth tw(G) (Robertson & Seymour, 1984).
The latter is a well-established measure of the tree-likeness of a graph; on architectures with hidden
neurons it never exceeds the width, but can be arbitrarily smaller(see Section 4). For example, an
architecture consisting of layers whose width alternates between small and large will have large
width, but small treewidth. Thus, while non-trivial to prove, the following two results supersede and
directly imply Corollaries 1 and 2:

1⋆. d-QNNT is fixed-parameter tractable w.r.t. α+ tw(G) + ω (Theorem 5);
2⋆. d-QNNT is fixed-parameter tractable w.r.t. α+ tw(G) + ℓ (Theorem 6).

Technical Overview. To obtain our lower bounds, we develop targeted reductions from a variety
of problems, including BOOLEAN SATISFIABILITY, HITTING SET, and SET COVER. While each
of the reductions is distinct, the constructed architectures are often very dense and have simple graph
structures. In other words, our results show that the difficulty of training in the quantized setting does
not stem from the complexity of the architecture, but rather from the presence of high-dimensional
data on the input or output. In fact, the main open question arising from our work is whether the con-
verse is true: can we efficiently solve instances of d-QNNT with possibly complicated architectures,
but constant input and output data dimensionality (i.e., α+ ω)?
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For our positive results—specifically, Theorems 5 and 6—the main technical difficulty is that the
trained n-node networks could contain hidden neurons with Θ(n) incoming arcs from the pre-
ceding layer that have non-zero weights. Indeed, it is not difficult to construct instances with
such solutions—and yet the dynamic programming techniques that form the cornerstone of most
treewidth-based algorithms are incapable of efficiently searching for them. To deal with this issue,
we make a detour and first establish a structural insight that we believe is of independent interest:
every YES-instance of d-QNNT admits at least one solution where the number of activated arcs en-
tering any node is upper-bounded by a function of the parameters. This is formalized in Lemma 1,
and relies on an involved proof that builds on Steinitz’ Lemma.

Related Work. The complexity of non-quantized NEURAL NETWORK TRAINING has been stud-
ied predominantly in the ReLU-activated setting (i.e., the one targeted in our article). The only other
setting considered in complexity-theoretic studies to date is the one with linearly activated neu-
rons; there, the non-quantized problem was shown to be ∃R-complete (Abrahamsen et al., 2021) but
polynomial-time solvable for certain special classes of architectures (Brand et al., 2023). For ReLU-
activated neurons, the non-quantized training problem is known to be ∃R-complete even when re-
stricted to exact training on architectures with two input neurons, two output neurons and two hidden
layers (Bertschinger et al., 2023). A series of works have shown that the same training problem is
computationally intractable also when restricted to architectures with a single hidden neuron (Dey
et al., 2020; Goel et al., 2021; Froese et al., 2022; Froese & Hertrich, 2023). In terms of upper
bounds, Arora et al. (2018) established polynomial-time tractability when training non-quantized
instances with a single non-activated output neuron; their result was subsequently improved to an
activated output neuron (Boob et al., 2022), and most recently generalized to architectures with
maximum output degree of at most one (Brand et al., 2023).

Apart from the articles on fully-quantized neural networks mentioned in the second paragraph, we
remark that several of the earlier works in the field also considered models where only the activa-
tions are quantized but not the data (Courbariaux et al., 2015; Zhu et al., 2017). Moreover, Judd
(1988), Blum & Rivest (1992), and Parberry (1992) established the NP-hardness of training par-
tially quantized networks over 30 years ago; in their models, the data/signals are quantized but not
the activations. These latter results also hold for highly restricted architectures, including planar
architectures (Judd, 1988) and architectures of constant internal width (Blum & Rivest, 1992).

We note that algorithms and lower bounds for training fully quantized neural networks have been
studied in a handful of past works, but not for the standard ReLU activation function considered
here. In his dissertation, Judd (1990) established lower bounds for Boolean NNT with activations
modeled as AND and OR gates rather than ReLU. Schmitt (2004) studied fully quantized NNT
with linear activations and also quantized NNT where the thresholds (i.e., biases) are not restricted
by quantization. Finally, the very recent work of Doron-Arad (2025) considers quantized NNT with
division-based activation functions. In particular, the NP-hardness of 2-QNNT can be inferred from
the reduction in the seminal work of Judd (1990, Theorem 24) on training Boolean neural networks
with AND and OR gates, and separately also from the reduction in Schmitt (2004, Theorem 7) us-
ing linear activation functions. However, our Theorems 1 to 4 obtain lower bounds in conjunction
with additional restrictions on the inputs that are required for our parameterized lower bounds. Cru-
cially, we are aware of neither any in-depth multivariate complexity analysis in this setting, nor any
works directly targeting the complexity of quantized neural network training with ReLU activation
functions.

2 PRELIMINARIES

For an integer d ≥ 1, we define the d-quantized integer domain Zd as {z ∈ Z | −⌊d−1
2 ⌋ ≤ z ≤

⌈d−1
2 ⌉}, that is, Z2 = {0, 1}, Z3 = {−1, 0, 1}, Z4 = {−1, 0, 1, 2} and so forth2. The d-domain

ReLU activation function ReLUd : Zd → Zd is the restriction of the well-known rectified linear unit
to Zd—that is, all negative values are mapped to 0 while on positive values ReLUd is the identity
except that inputs outside of Zd become maxZd.

2Our model matches, e.g., the so-called “E1M2” format of the 4-bit floating point standard FP4. Other
low-bit number encodings have also been considered in the quantized setting (Wang et al., 2025), but we focus
our exposition on this theoretically cleanest model. While we do not formally prove this, all obtained results
seem to readily carry over to different low-bit number encodings with only minor modifications to the proofs.
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We say that a network architecture is a directed acyclic graph (a DAG) G whose vertex sets are
partitioned into layers, where layer 0 consists solely of sources, and such that an arc ab may only go
from a vertex in layer i (for i ∈ N) to a vertex in layer i + 1 and all sinks lie in the same layer. We
will refer to the sources and sinks the input and output neurons of G, respectively, while all other
nodes of G are referred to as hidden neurons. We assume that the sources are equipped with a fixed
ordering, and the same also for the sinks. The maximum size of a layer with only hidden neurons is
called the width of G, while we refer to the number of layers as the depth of G.

Let us fix a d-quantized integer domain Zd. A neural network Ḡ over an architecture G is a tuple
(G,weight,bias) where the weight function weight assigns each arc of G a weight from Zd,
and the bias function bias assigns each non-source node of G a bias from Zd. Let the number
of input and output neurons of G be α and ω, respectively. The evaluation of an input data vector
x⃗ ∈ (Zd)

α is a mapping f which assigns each node of G a value (or activation) computed as follows:

• The i-th input neuron receives the value x⃗[i];
• For each neuron v ∈ V (G) with predecessors z1, . . . , zq , we set its value as3

ReLUd

(
(
∑

i∈[q] f(zi) · weight(ziv))− bias(v)
)
.

The input to ReLUd above is sometimes called the pre-activation value. Given a data point p ∈ D,
we say that a neuron q is active in Ḡ if in the evaluation of p, the neuron q receives a positive
activation; otherwise, it is inactive. We denote the restriction of f to the output nodes, represented
as a vector of integers in (Zd)

ω ordered by the output neurons, as the output of the neural network
on x⃗. In the training setting, we will be dealing with d-quantized data points from (Zd)

α × (Zd)
ω .

The error of a multiset of such data points is equal to the number of misaligned data points, i.e.,
the number of pairs (x⃗, y⃗) in the multiset such that the output of (G,weight,bias) on x⃗ differs
from y⃗. With these definitions in place, we can restate our problem of interest:

d-QUANTIZED RELU-ACTIVATED NEURAL NETWORK TRAINING (d-QNNT)

Input: An architecture G with α input and ω output nodes, a multiset D of d-quantized data
points, and an error bound ℓ.

Output: A d-quantized neural network Ḡ over G such that the error of D on Ḡ is at most ℓ,
or a correct conclusion that no such network exists.

d-QNNT is in NP (a certificate consists of a linear number of integers from Zd), which contrasts
the ∃R-completeness of the training problem in the non-quantized setting. In the non-quantized
setting, one typically uses a wide variety of loss functions tailored to real-valued errors such as
ℓ22 (Brand et al., 2023)—here, we focus on a simple error count (as also used, e.g., by Judd (1990))
in order to facilitate a cleaner analysis. The majority of our proofs could nevertheless be directly
and straightforwardly translated to other loss functions (this is easiest to see for Theorems 1, 2, 4, 5).

Treewidth. A tree decomposition T of an undirected graph G is a pair (T, χ), where T is a tree
and χ is a function that assigns each tree node t a set χ(t) ⊆ V (G) of vertices such that the following
conditions hold:

(P1) For every edge e ∈ E(G) there is a tree node t such that e ⊆ χ(t).
(P2) For every vertex v ∈ V (G), the set of tree nodes t with v ∈ χ(t) induces a non-empty subtree

of T .

The sets χ(t) are called bags of the decomposition T , and χ(t) is the bag associated with the tree
node t. The width of a tree decomposition (T, χ) is the size of a largest bag minus 1. The treewidth
of a graph G, denoted by tw(G), is the minimum width over all tree decompositions of G.

For presenting our dynamic-programming algorithms, it is convenient to consider tree decomposi-
tions in the following normal form Kloks (1994): A tree decomposition (T, χ) is a nice tree decom-
position of a graph G if the tree T is rooted at a node r, and each node of T is of one of the following
four types:

1. a leaf node: a node t having no children and |χ(t)| = 1;

3We note that the bias is subtracted instead of added to the result due to the fact that, in the Boolean-domain
case, subtracting allows the bias to actually interact with the weights (see also Kilic et al. (2022)). For larger
domains, the distinction is inconsequential since we can flip the sign of the bias.
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2. an introduce node: a node t having exactly one child t′, and χ(t) = χ(t′) ∪ {v} for a node
v of G;

3. a forget node: a node t having exactly one child t′, and χ(t) = χ(t′) \ {v} for a node v of
G;

4. a join node: a node t having exactly two children t1, t2, and χ(t) = χ(t1) = χ(t2).

For convenience we will also assume that χ(r) = ∅ for the root r of T . We can achieve this
straightforwardly by introducing forget nodes above the root until its bag is empty.

Given a graph G with treewidth tw, a tree decomposition of width at most 2tw+1 can be computed in
2O(tw) ·|V (G)| time (Korhonen, 2022). A tree decomposition T of width tw can be turned into a nice
tree decomposition of the same width and with O(tw|V (G)|) nodes in O(tw·max(|V (G)|, |V (T )|))
time (Cygan et al., 2015, Lemma 7.4).

As mentioned in the introduction, our fixed-parameter algorithms that utilize treewidth (Theorems 5
and 6) generalize and imply the corresponding results for width. To see this, we prove the following
structural observation:

Observation 1. For each architecture G containing at least one hidden neuron, tw(G) is upper-
bounded by twice the width of G.

Proof. Let Vin, Vi, Vout denote the input neurons, hidden neurons in layer i ∈ [q] where q is the
depth, and the output neurons, respectively. We construct a tree decomposition T with the desired
width as follows: (1) For each vin ∈ Vin we create a bag consisting of vin ∪ V1 (in-bags), (2) for
each i ∈ [q− 1] we create a bag consisting of Vi ∪Vi+1 (inner-bags), and (3) for each vout ∈ Vout we
create a bag consisting of vout ∪ Vq (out-bags). The bags are connected as follows: (1) Each in-bag
is adjacent to the inner-bag V1∪V2, (2) inner-bag Vi∪Vi+1 is adjacent to the inner bag Vi+1∪Vi+2,
and (3) each out-bag is adjacent to the inner-bag Vq−1 ∪ Vq . The claim follows by the fact that each
bag in T either forms a subset of two hidden layers, or is a hidden layer plus a single neuron.

On the other hand, note that tw(G) can be arbitrarily smaller than the width since very large hidden
layers can alternate with very small hidden layers (in which case one can construct a tree decompo-
sition whose width is twice the size of the smaller hidden layers).

Parameterized Complexity. In parameterized complexity (Downey & Fellows, 2013; Cygan
et al., 2015), the running-times of algorithms are studied with respect to a parameter p ∈ N and
input size n. It is normally used for NP-hard problems, with the aim of finding a parameter de-
scribing a feature of the instance such that the combinatorial explosion is confined to this parameter.
A parameterized problem is fixed-parameter tractable (FPT) if it can be solved by an algorithm
running in time f(p) · nO(1), where f is a computable function

Proving that a problem is W[2]-hard (or W[1]-hard) via a parameterized reduction from a W[2]-
hard (W12]-hard, respectively) problem P rules out the existence of a fixed-parameter algorithm
under the well-established hypothesis that W[1] ̸= FPT. A parameterized reduction from P to a
parameterized problem Q is a function which:

• maps YES-instances to YES-instances and NO-instances to NO-instances,
• is computable in time f(p) · nO(1), where f is a computable function, and
• ensures the parameter of the output instance can be upper-bounded by some function of the

parameter of the input instance.

3 LOWER BOUNDS FOR d-QNNT

In this section, we show that 2-QNNT remains intractable in highly restrictive settings. First, in
Theorem 1, we establish NP-hardness even if the architecture has no hidden neuron, only one out-
put neuron, and for training without error. Note that Theorem 1 implies NP-hardness even when the
combined parameter width + depth + ℓ + ω is upper-bounded by a constant. Naturally, the corre-
sponding reduction requires the output neurons to have an arbitrarily large degree. One could hence
hope that architectures with constant maximum degree can be trained efficiently. In Theorem 2, we
show that this is not possible by establishing NP-hardness for this setting.
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Figure 2: An illustration of the reduction behind Theorem 1 for the universe U = [6] and the set
family F with sets S1 = {1, 4, 5}, S2 = {2, 3}, S3 = {1, 6}, S4 = {2, 5}, S5 = {3, 5}, S6 = {6}
with an exact set cover S = {S1, S2, S6}. In the solution corresponding to S, each red arc has
weight 0 and each blue arc has weight 1. The orange number is the bias of the output neuron.

In both the reductions that underlie Theorems 1 and 2 the number of input neurons is large and in
particular not upper-bounded by a function of the parameters. Hence, one could hope that a small or
even constant number of inputs allows for efficient training. We show that this is not the case either.
First, in Theorem 3, we provide W[2]-hardness for α even if there is no hidden layer. Second, in
Theorem 4, we show that 2-QNNT remains NP-hard even if there are only 2 inputs and 1 hidden
layer. Altogether, these results yield the lower bounds depicted in Figure 1.
Theorem 1. 2-QNNT is NP-hard even when restricted to instances where ℓ = 0 and architectures
with a single output neuron and no hidden neuron.

Proof. We provide a reduction from the NP-hard EXACT SET COVER problem (Karp, 1972) where
the input consists of a universe U , and a family F of subsets over U . The goal is to find a subset S ⊆
F such that S is a partition of U , that is, 1)

⋃
S∈S S = U and 2) S1 ∩ S2 = ∅ for each S1, S2 ∈ S.

Construction. We construct an equivalent instance I of 2-QNNT as follows; see Figure 2 for an
illustration.

Description of the architecture G. Abusing notation, for each set F ∈ F we create a set input
neuron F . Moreover, we add 3 more dummy input neurons S∗, x1, and x2, respectively. Finally, we
add one output neuron z and add an arc from each input neuron to the unique output neuron z.

Description of the data set. For each element u ∈ U we add two element data points: d1u and d2u:
both have value 1 in each input corresponding to a set containing u and value 0 in dummy inputs x1

and x2. Moreover, d1u has value 0 in dummy input S∗ and value 0 in output z, and d2u has value 1
in dummy input S∗ and value 1 in output z. Finally, we add three further data points: dummy data
points d01, d10, and d11. All three have value 0 in each set input and in dummy input S∗. Moreover,
d01 has values x1 = 0, x2 = 1 and output value 0, d10 has values x1 = 1, x2 = 0 and output
value 0, and d11 has values x1 = 1, x2 = 1 and output value 1.

Finally, we set ℓ = 0. To complete the proof, it remains to establish correctness. (⋆)

Correctness. We verify that (U,F) has an exact set cover S if and only if I is a yes-instance of
2-QNNT.

(⇒) Let S be an exact cover for (U,F). We now argue that assigning the unique output neuron z a
bias of −1, a weight of 1 to each arc starting from a set S ∈ S or any dummy input, and weight 0 to
any remaining arc, yields a solution to I . The dummy data points clearly yield the desired output.
Moreover, for any element u ∈ U the output of data point d1u is 0 since there is exactly one set S ∈ S
containing u. By the same argument data point d2u yields output 1 since additionally dummy input S∗

has value 1.

(⇐) First observe that all dummy data points can only yield the desired outputs if the bias of the
unique output z is 1, and the weights of the arcs (x1, z) and (x2, z) is 1. Now, we set S := {S ∈ F :
weight(S, z) = 1} and we claim that S is an exact set cover for (U,F): 1) Since set data point d1u
yields output 0, at most one set can contain element u. 2) Since set data point d2u yields output 1
and the unique input which has value 1 for d2u which is not a set input is the dummy input S∗, we
observe that at least one set has to contain element u. This now implies that each element is covered
exactly once and thus S is an exact set cover.

We note that one could also obtain Theorem 1 by carefully adapting the hardness proof of Schmitt
(2004, Theorem 7) to our setting. However, the reduction we provide here is simpler, self-contained,
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Figure 3: An illustration of the reduction behind Theorem 2 for the formula Φ with clauses c1 =
x1 ∨ x2 ∨ x3, c2 = x1 ∨ x3 ∨ x4, c3 = x1 ∨ x2 ∨ x4, and c4 = x2 ∨ x3 ∨ x4 (here the property that
each literal appears exactly twice is dropped) with a satisfying assignment A with {x2, x4} 7→ true
and {x1, x3} 7→ false. In an optimal solution S the blue arcs are the edges of the fake variable
gadgets. The all/true/false fake data point imply that all these blue arcs have weight 1 and also that
the biases shown in orange. These gadget enforce the selection of an assignment of the variables.
Moreover, in S we can assume without loss of generality that the weight of the red arcs is 1 and that
the biases shown in red are 0. The cyan arcs correspond to the assignment A and have weight 1 and
the dashed black arcs have weight 0. Moreover, A needs to be satisfying because of the red part.

and additionally also implies W[1]-hardness with respect to the number of arcs with weight one in
the solution. We continue by stating the hardness for constant-degree architectures; since this result
is not central to our complexity landscape (see Figure 1), we defer its proof to the appendix.

Theorem 2. 2-QNNT is NP-hard even when restricted to instances where ℓ = 0, |D| ≤ 4, and
architectures with only one hidden layer, maximum outdegree 3, and maximum indegree 2.

Proof. We present a reduction from the NP-complete (3, B2)-SAT problem (Berman et al., 2003),
a variant of 3-SAT where one is given a CNF formula Φ on variables x1, . . . , xn where each of the
m clauses contains exactly three literals and each literal xi and xi occurs exactly twice in Φ.

Construction. We construct an equivalent instance I of d-QNNT as follows. For an illustration,
see Figure 3.

Description of architecture G. For each literal ℓi (note that ℓi = xi or ℓi = xi) we create 3 neurons:
an original input neuron ℓ1i , a fake input neuron ℓ2i , and a hidden neuron ℓ3i . The inputs are the union
of all original and fake input neurons. Moreover, for each variable xi we create a variable output
neuron x∗

i and for each clause cj we create a clause output neuron cj . The outputs are the union of
all variable and clause output neurons. Note that we have 7n +m neurons in total and 4n of those
are inputs and n+m of them are outputs.

We connect the neurons as follows: We add the arcs (ℓ1i , ℓ
3
i ) and (ℓ2i , ℓ

3
i ). Let xi be the variable cor-

responding to literal ℓi and let C be the set of literals containing literal ℓi. We add the arcs (ℓ3i , x
∗
i ),

and (ℓ3i , c) for any c ∈ C. This completes the construction of the architecture G. Note that any
neuron in G has an indegree of at most 3, matched by any clause output and out-degree at most 3,
matched by any hidden neuron since by our assumption each literal occurs exactly twice in Φ, re-
spectively.

Description of data set. In the following, we use the notation (a1, a2, a3, a4) 7→ (a5, a6) for the data
points. Entries a1 to a4 correspond to the inputs and entries a5 and a6 correspond to the outputs.
More precisely, (1) a1 corresponds to all original inputs corresponding to a positive literal, (2) a2
corresponds to all original inputs corresponding to a negative literal, (3) a3 corresponds to all fake
inputs corresponding to a positive literal, (4) a4 corresponds to all fake inputs corresponding to a
negative literal, (5) a5 corresponds to all variable outputs, and (6) a6 corresponds to all clause out-
puts. Whenever we put a 0 or 1 in any of these entries, we mean that all corresponding inputs/outputs
receive value 0 or 1, respectively.

We add 4 data points: (1) The all fake data point with (0, 0, 1, 1) 7→ (1, 1). (2) The true fake data
point with (0, 0, 1, 0) 7→ (0, ctrue), where an output entry cj of ctrue is 1 if and only if clause cj
contains at least one positive literal, and 0 otherwise. (3) The false fake data point with (0, 0, 0, 1) 7→
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(0, cfalse), where an output entry cj of cfalse is 1 if and only if clause cj contains at least one
negative literal, and 0 otherwise. (4) The assignment data point with (1, 1, 0, 0) 7→ (0, 1).

Finally, we set ℓ = 0. This finishes the description of our d-QNNT instance I .

Intuition. The arcs from the original inputs to the hidden neurons model a variable assignment, that
is, at most one of the arcs (x1

i , x
3
i ) and (xi

1, xi
3) can have weight 1. This is enforced with the fake

inputs, the hidden neurons, and the variable outputs together with the all/true/fake data points. More
precisely, these neurons imply that all blue arcs of Figure 3 have weight 1, that the hidden neurons
have bias 0, and that the variable output neurons have bias −1. Moreover, it is safe to assume that
any red arc of Figure 3 has weight 1 and that the bias of any clause output neuron is 0, as we show.
This then implies that the variable assignment needs to satisfy formula Φ.

Correctness. We now verify that Φ is satisfiable if and only if I is a yes-instance of d-QNNT.

(⇒) Let A : (xi)i∈[n] → {true,false} an assignment to the variables which satisfies Φ. We now
show how to set the functions weight and bias such that there is no error, also see Figure 3. (1)
We start with the weight function: The arcs incident to any fake input neuron, as well as the arcs
incident to any output neuron have weight 1. It remains to consider the arcs incident to original input
neurons. If A(xi) = true, then the arc (x1

i , x
3
i ) gets weight 1 and the arc (xi

1, xi
3) gets weight 0,

and otherwise if A(xi) = false, then the arc (x1
i , x

3
i ) gets weight 0 and the arc (xi

1, xi
3) gets

weight 1. (2) We continue with the bias function: The bias of any hidden neuron and any clause
output neuron is 0, and the bias of any variable output neuron is −1.

It remains to verify that there is no error. We consider each data point individually:

1. Consider the all fake data point. Since all arcs incident to any fake input have weight 1 and
since any hidden neuron has bias 0, we observe that any hidden neuron is active. Conse-
quently, also all output neurons are active, which is correct.

2. Consider the true fake data point. Similarly to the all fake data point, we observe that all
hidden neurons corresponding to positive literals are active but all hidden neurons corre-
sponding to negative literals are inactive. Consequently, each variable output is 0. More-
over, a clause output neuron cj is active if and only if clause cj contains a positive literal
which matched the definition of vector ctrue. Thus, the true fake data point is evaluated
correctly.

3. The argumentation for the false fake data point is analog to the true fake data point by
swapping the roles of positive and negative literals.

4. Consider the assignment data point. If A(xi) = true, then hidden neuron x3
i is active and

hidden neuron xi
3 is inactive, and otherwise if A(xi) = false, then hidden neuron x3

i
is inactive and hidden neuron xi

3 is active. Consequently, all variable output neurons are
inactive. Moreover, since A is satisfying, all clause output neurons are active and thus the
assignment data point is evaluated correctly.

Hence, there is no error.

(⇐) Let weight and bias be functions such that the resulting neural network Ḡ has no errors.
We now argue how to construct a satisfying assignment for Φ. By the fake variable gadget of xi we
mean the induced subnetwork of the 5 neurons corresponding to variable xi and the two associated
fake literals xi and xi, that is, the neurons xz

i , xi
z for z ∈ {2, 3}, and x∗

i ; see also Figure 3.

We proceed as follows: In the first step, we argue that all arc weights in any fake variable gadget has
to be 1, that the bias of any hidden neuron is 0, and that the bias of any variable output neuron is −1.
Second, we show that we can safely assume that all arcs from any hidden neuron to any clause output
neuron have weight 1, and that all clause output neurons have bias 0. In the final step, we argue that
the weights of the arcs incident to the original inputs correspond to a satisfying assignment of Φ.

Step 1. Consider the all fake input point q. Recall that in q only all fake inputs have value 1 and that
all variable outputs have value 1. Now, consider an arbitrary but fixed variable xi and its associated
fake variable gadget. Note that there are exactly two paths from active input neurons to the active
variable output neuron x∗

i : p1 := (x2
i , x

3
i , x

∗
i ) and p2 := (xi

2, xi
3, x∗

i ). Since in q the variable
output neuron x∗

i is active, one at least one of the paths p1 or p2 all arc weights are 1 and the
bias of the hidden neuron is 0. Without loss of generality, we assume that this is the case for p1.
Next, observe that in the true fake data point the fake input x2

i is also active, but the variable output
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Figure 4: An illustration of the reduction behind Theorem 3 for the universe U = [6] and the set
family F with sets S1 = {1, 4, 5}, S2 = {2, 3}, S3 = {1, 6}, S4 = {2, 5}, S5 = {3, 5}, S6 = {6}
and k = 3 and with a hitting set S = {2, 5, 6}. In the solution corresponding to S, inputs p1, p2 and
p3 are associated with elements 2, 5 and 6, respectively. Moreover, each red arc has weight 0 and
each blue arc has weight 1. The orange numbers are the biases of the output neurons.

neuron x∗
i is inactive. Consequently, neuron x∗

i has a bias of −1. Now, again consider the all fake
data point q: In order to activate neuron x∗

i also the weights of all arcs in p2 have to be 1 and also
the bias of neuron xi

3 needs to be 0. Thus, Step 1 is accomplished.

Step 2. We now argue that we can safely change the weight of any arc incident to a clause output
neuron cj from 0 to 1 and that we can also safely change the bias of any clause output neuron cj
from −1 to 0: Note that such a change can only be unfavorable for a data point where cj has value 0.
Consequently, this can only affect the true (and the false) fake data point. More precisely, only
clause output neurons corresponding to clauses which do not contain any true (false) literal have
value 0 in the true (false) fake data point. Hence, the two changes to not change the value of 0 of
any such clause output neuron and thus Step 2 is accomplished.

Step 3. Consider the arcs (x1
i , x

3
i ) and (xi

1, xi
3) incident to the original inputs, and the assignment

data point q. Note that at most one of these arcs can have weight 1: If both have weight 1 then for
data point q both hidden neurons x3

i and xi
3 are active, and thus also the variable output neuron x∗

i ,
contradicting the correct value of 0 for that output neuron. We now define a variable assignment A:
A(xi) := true if weight(x1

i , x
3
i ) = 1, and A(xi) := false otherwise.

Observe that A is satisfying Φ: Consider an arbitrary but fixed clause with literals ℓ1, ℓ2, and ℓ3.
Note that pz := (ℓ1z, ℓ

3
z, cj) is the path from the original input neuron ℓ1z to the clause output neu-

ron cj for any z ∈ [3] and that there is no other path from any input neuron to output neuron cj . Since
in the assignment data point q the clause output neuron cj has value one, the weight of all arcs on
one path pz has to be 1. Without loss of generality, we assume that is the case for p1. Consequently,
by our definition of A, literal ℓ1 satisfies cj and hence the statement is proven.

Next, we establish W-hardness w.r.t. the number α of inputs even if there is no hidden layer.

Theorem 3. Even if the network has no hidden neuron, 2-QNNT is W[2]-hard when parameterized
by the number α of input nodes, even when restricted to architectures with no hidden neurons.

Proof. We present a reduction from the HITTING SET (HS) problem where the input consists of a
universe U , a family F of subsets over U , and an integer k. The goal is to find a subset S ⊆ U
(called a hitting set) of size k such that S contains at least one element of each set in the family, that
is, S ∩ F ̸= ∅ for any F ∈ F . HS is W[2]-hard parameterized by k (Cygan et al., 2015).

Construction. We construct an instance I of 2-QNNT as follows. For an illustration, see Figure 4.
Description of the architecture G. We create k input neurons p1, . . . , pk. Abusing notation, for each
set F ∈ F we create one set output neuron F . We add arcs between every input and output neuron.
Description of the data set. For each element u ∈ U we add k element u data points d1u, . . . , d

k
u.

Element u data point diu has value 1 in input pi and value 0 in each other input. Moreover, diu
has value 1 in each set output F such that u ∈ F . Thus, diu has value 0 in each set output F ′ such
that u /∈ F ′. Observe that the k element u data points all have the same output but they have pairwise
different inputs. Then, we add a verifier data point d∗ which has value 1 in each input and in each
output. In the following, we say that two data points d1 and d2 have the same type if the input values
of d1 and d2 are pairwise identical. Note that we have exactly k + 1 distinct types of data points.

Finally, we set ℓ := k · (|U | − 1). To complete the proof, it remains to establish correctness. (⋆)

Correctness. We verify that (U,F) has a hitting set S of size k if and only if I is a yes-instance
of 2-QNNT. Before we prove the correctness, we make the following crucial observation about I:
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Figure 5: An illustration of the reduction behind Theorem 4 for the formula Φ with clauses c1 =
x1 ∨ x2 ∨ x3, c2 = x1 ∨ x3 ∨ x4, c3 = x1 ∨ x2 ∨ x4, and c4 = x2 ∨ x3 ∨ x4 with a satisfying
assignment A with {x2, x4} 7→ true and {x1, x3} 7→ false. In an optimal solution all arcs have
weight 1. The biases of of a solution corresponding to A are shown in orange.

Since at most one data point of any type of data points can be correctly computed, in total at most
k+1 data points can be correctly computed. Since we have k·|U |+1 data points, and ℓ = k·(|U |−1),
exactly one data point of each type has to be classified correctly.

The intuition is that k element data points need to be computed correctly. These then correspond
to a set S of elements. Since also the verifier data point needs to be correctly computed, this then
implies that S has to be a hitting set.

We let F(ui) := {F ∈ F : ui ∈ F} denote the family of subsets of F which contain element ui ∈
U .

(⇒) Let S be a hitting set of size at most k for (U,F). Let u1, . . . , uk be the elements of S in
some arbitrary but fixed order. For any ui ∈ S we set weight(ui, xi) = 1 for any xi ∈ F(ui).
For any other arc e, we set weight(e) = 0. Observe that this yields a correct computation of
element ui data point diui

for any ui ∈ S. Moreover, since S is a hitting set, also the verifier data
points gets computed correctly. Consequently, k + 1 data points are computed correctly, and using
the observation we conclude that I is a yes-instance.

(⇐) According to the observation, exactly one data point of each type has to be computed correctly.
Thus, the verifier data point d∗ has to be computed correctly, and for any i ∈ [k] exactly one
data point which has value 1 in input pi and value 0 in each other input. Since each data point
having these inputs, is an element u′ data point diu′ for some u′ ∈ U , we conclude that there
exists some element u ∈ U such that diu gets correctly computed. By ui we denote the element
corresponding to the correctly computed data point diu. Consequently, we have weight(ui, Fi) = 1
for each Fi ∈ F(ui) and weight(ui, Fi) = 0 for each F ′

i /∈ F(ui). Due to the correct computation
of the verifier data point d∗, we observe that weight(u, F ) = 1 for each F ∈ F and thus the
set S := {ui ∈ U : diu is correctly computed} is a hitting set of size k for (U,F).

For our fourth lower bound, we use a “compressed” version of the construction behind Theorem 2
to obtain NP-hardness for only 2 input nodes and 3 data points.

Theorem 4. 2-QNNT is NP-hard even if α = 2, ℓ = 0, |D| = 3, and depth = 1.

Proof. We present a reduction from 3-SAT (Karp, 1972), where one is given a CNF formula Φ on
variables x1, . . . , xn and a set of m clauses each consisting of precisely three literals.

Construction. We construct an equivalent instance I of 2-QNNT as follows; see Figure 5 for an
illustration.
Description of architecture G. We create two input neurons z1 and z2. For each of the two literals
of a variable xi with i ∈ [n], we create two hidden neurons xi and xi associated with variable xi.
Thus, we create 2n hidden neurons. Moreover, we create a variable output neuron vi associated
with variable xi for each variable xi. Also, we add one clause output neuron cj for each clause
of Φ. Thus, we create n+m output neurons.

We add an arc from each input neuron to each hidden neuron. Next, we add an arc from each
of the two hidden neurons xi and xi associated with variable xi to the variable output neuron vi
associated with variable xi. Finally, for each clause cj consisting of literals p1, p2, and p3, we add
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the arcs (ph, cj) for each h ∈ [3].
Description of data set. Here, we use the notation (z1, z2) 7→ (V,C) for the data points, where z1
and z2 are numbers referring to the inputs, and V and C are vectors referring to the outputs. More
precisely, V has length n, and the i-th entry corresponds to the variable output neuron vi, and C has
length m, and the j-th entry corresponds to the clause output neuron cj . Whenever we put a 0 or a 1
in any of the three vectors, we mean that all corresponding outputs receive value 0 or 1, respectively.

We add 3 data points: (1) The verifier 1 data point with (1, 0) 7→ (0, 1), (2) the verifier 2 data point
with (0, 1) 7→ (0, 1), and (3) the choice data point with (1, 1) 7→ (1, 1).

Finally, we set ℓ := 0.

Recall that we say that given a data point p a neuron q is active if in the evaluation of p, the neuron q
receives a positive activation; otherwise, it is inactive.

Intuition. The idea is that when considering the verifier 1 data point, the active hidden neurons
correspond to a satisfying variable assignment. We achieve this with the variable output neurons: If
both hidden neurons xi and xi associated with a variable xi are active for the verifier 1 data point,
then since the value of the variable output neuron vi associated with xi needs to be 0 and since xi

and xi are the unique neighbors of vi this then implies that the value of vi for the choice data point
is also 0, and not 1 as desired, yielding an error.

Correctness. We now verify that Φ is satisfiable if and only if I is a yes-instance of 2-QNNT.

(⇒) Let A : (xi)i∈[n] → {true,false} be an assignment to the variables which satisfies Φ.
We now show how to set the functions weight and bias such that there is no error, also see
Figure 5. (1) First, we set the weight of any arc in G to 1. (2) Second, we set the biases: (a) For
each clause output neuron cj , we set bias(cj) = 0. (b) For each variable output neuron v1i , we
set bias(v1i ) = 0. (c) For each clause output neuron v2i , we set bias(v2i ) = −1. (d) Finally, for the
two hidden neurons xi and xi associated with variable xi, we set bias(xi) = 0 and bias(xi) =
−1 if A(xi) = true, and otherwise we set bias(xi) = −1 and bias(xi) = 0 if A(xi) =
false. By Ḡ we denote the resulting network.

It remains to verify that all 3 data points get computed correctly.

First, we consider the verifier 1 and verifier 2 data points: Observe that the hidden neuron xi is active
and the hidden neuron xi is inactive if A(xi) = true and, the hidden neuron xi is inactive and the
hidden neuron xi is active otherwise if A(xi) = false, respectively. Consequently, each variable
output vi yields output 0. Moreover, since A satisfied Φ, we conclude that also each clause output
yields output 1. Consequently, the verifier 1 and verifier 2 data points are computed correctly.

Second, we consider the choice data point: Observe that all hidden neurons are active and con-
sequently also all output neurons are active showing that also the choice data point in correctly
computed. Thus, Ḡ has no errors.

(⇐) Let weight and bias be functions such that the resulting network Ḡ has no errors. We now
argue how to construct a satisfying assignment A for Φ. Since there is no error, the verifier 1 data
point needs to be computed correctly. Observe that for any variable xi at most one of the two hidden
neurons xi and xi associated with variable xi is active for the verifier 1 data point: Assume towards
a contradiction that this is not that case, that is, that there exists a variable xi such that both hidden
neurons xi and xi associated with variable xi are both active for the verifier 1 data point. Again,
since the verifier 1 data point is correctly computed, the variable output neuron vi has value 0. Recall
that vi is incident with the arcs (xi, vi) and (xi, vi) and that both are active for the verifier 1 data
point. Thus, for the choice data point the variable output neuron vi will also yield value 0, yielding
a contradiction to the fact that there is no error since the output of vi should be 1 for the choice data
point.

Let X ⊆ [n] be the set of indices such that exactly one hidden neuron xi or xi associated with
variable xi is active for the verifier 1 data point. We now define a partial assignment A for the
variables with indices in X as follows: We set A(xi) = true is and only if xi is active, and we
set A(xi) = false is and only if xi is active. To see that A satisfies Φ, note that for the verifier 1
data point each clause output needs to have value 1. Also, recall that clause cj is incident with the
arcs (ph, cj) where ph for h ∈ [3] are the 3 literals of cj . Since there is no error, at least one of
the hidden neurons ph needs to be active for the verifier 1 data point and weight(ph, cj) = 1 for
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at least one h ∈ [3], showing that clause cj is satisfied by literal ph. Note that A can be extended
to an assignment A′ of all variables by simply assigning true to any remaining variable. Since
already A was satisfying Φ, assignment A′ satisfies Φ as well.

4 FIXED-PARAMETER TRACTABILITY

In this section we prove our tractability results for parameter combinations that include the width,
treewidth, and number α of input neurons. We begin by showing a structural result (Lemma 1)
that states that there is always a solution that has upper-bounded degree in the sense that, for
each neuron, there is only a bounded number of incoming arcs with nonzero weights. We then
use Lemma 1 to prove tractability of d-QUANTIZED RELU-ACTIVATED NEURAL NETWORK
TRAINING (d-QNNT) without error with respect to the treewidth and number α of input neurons
(Lemma 3). Then we show how to lift this result to training with nonzero error bounds and how the
treewidth results imply the corresponding results for the width.

Consider a neuron v in a neural network. Define the non-zero in-neighbors of v to be the in-
neighbors u of v such that weight(uv) ̸= 0. The non-zero indegree of v is the number of non-zero
in-neighbors.
Lemma 1. Let G be an architecture and D a data set with p distinct input vectors. If there is a neural
network over G with zero error on D, then there is a neural network Ḡ over G with zero error on D
such that for each neuron v in Ḡ the number of non-zero in-neighbors of v is at most (dp)O(p).

We prove Lemma 1 by using Steinitz’ Lemma, stated as follows.
Lemma 2 (Steinitz’ Lemma (Steinitz, 1913; Sevast’janov, 1994)). Let ∥ · ∥ be an arbitrary norm
on Rd. Let x1, . . . , xm ∈ Rd such that

∑
i∈[m] xi = 0 and for each i ∈ [m] we have ∥xi∥ ≤ 1.

Then there exists a permutation π ∈ Sm such that all prefix sums have norm at most d. That is, for
each k ∈ [m] we have ∥

∑
j∈[k] xπ(j)∥ ≤ d.

The idea of the proof of Lemma 1 is as follows. Consider a neuron v in a solution network. We can
collect the activations of v for each input vector in a vector s⃗ ∈ (Zd)

p. Assume for simplicity that
we don’t have ReLU activations and instead simply pass through the weighted sum of the activations
of the in-neighbors and, furthermore, each of the summed activations is in (Zd)

p. Then, s⃗ is a small-
norm vector and it is obtained as a sum of small-norm vectors. Steinitz’ Lemma tells us that we can
reorder the vectors such that each prefix sum has small norm. This means that, if there are many
non-zero in-neighbors to v, then at least one prefix sum occurs twice. This means that the vectors in
between these two identical sums sum to zero and we can simply set their corresponding arc weights
to zero without changing the activation of v. Care must be taken to preserve the ReLU activations
and boundaries of (Zd)

p and to ensure that all vectors in the sum have small norm.

Proof of Lemma 1. Assume that there is a neural network Ḡ′ over G with zero error on D. Consider
an arbitrary neuron v with more than 2 · (2d2p+1)p+1 non-zero in-neighbors. Let q be the number
of such in-neighbors of v and label them u1, . . . , uq . We show that we can set the weight of at least
one arc from a non-zero in-neighbor to 0 without changing the activation value of v for each input
vector.

For each non-zero in-neighbor ui, i ∈ [q], let y⃗(i) ∈ (Zd)
p be a vector such that for each j ∈ [p]

the jth entry y
(i)
j of y⃗(i) is the activation value of ui on input of the jth input vector multiplied

with weight(uiv). Similarly, let s⃗ ∈ Zp be the vector containing the pre-activation values that v
receives from all in-neighbors for each input vector.

We have
∑q

i=1 y⃗
(i) = s⃗. Note that s⃗ may contain arbitrarily large values. To obtain a sum of small-

norm vectors we replace s⃗ by a sequence of unit vectors and t⃗ which we define now. Intuitively,
for each large or small entry s⃗j , entry t⃗j will contain a lower or upper bound for the pre-activation
value of v received from in-neighbors such that the value of v remains the same, even if the pre-
activation value is reduced or increased to the corresponding bound. Precisely, for each j ∈ [p], if
s⃗j is negative we put entry t⃗j := max{−d, s⃗j} and otherwise we put entry t⃗j := min{d, s⃗j}. (We
could replace d in the maximum and minimum by a floor or ceiling of d−1

2 but the change in the
bound is immaterial and the expressions are simpler.) Note that, indeed, if the pre-activation value
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of v received from in-neighbors for each input vector is as defined in t⃗, then the value of v will be
the same as if the pre-activation value of v received from in-neighbors would be s⃗ because the bias
of v is between −⌊d−1

2 ⌋ and ⌈d−1
2 ⌉.

We now replace s⃗ by unit vectors and t⃗. For each j ∈ [p] such that s⃗j < t⃗j (in particular, this
means s⃗j < 0) define |s⃗j − t⃗j | dummy vectors whose jth entry is −1 and all other entries are 0.
Analogously, for each j ∈ [p] such that s⃗j > t⃗j (in particular, 0 > s⃗j) define s⃗j − t⃗j dummy vectors
whose jth entry is 1 and all other entries are 0. We say that these dummy vectors correspond to the
jth input vector. Let e⃗(1), . . . , e⃗(r) be the so-defined dummy vectors. We have

q∑
i=1

(y⃗(i))−
r∑

ℓ=1

(e⃗(ℓ))− t⃗ = 0. (1)

We now apply Steinitz’ Lemma (Lemma 2). As the norm ∥ · ∥ we pick the infinity norm divided
by d2 (note that this results in a norm). Thus, since entries of all vectors in Eq. (1) are in absolute at
most d2, all these vectors have norm at most 1. By Steinitz’ Lemma there is thus a permutation π of
the vectors in Eq. (1) such that each prefix sum has norm at most p. That is, each entry in a vector
corresponding to a prefix sum is an integer between −d2 ·p and d2 ·p (as before, these bounds could
be tightened at the cost of readability).

Let z⃗(1), z⃗(2), . . . , be the sequence of vectors in Eq. (1) reordered according to π. Recall that each
prefix sum is a p-dimensional vector with one of 2d2p + 1 entries in each dimension. Since the
indegree of v is at least 2 · (2d2p+ 1)p + 1, there are at least that many vectors in the sum in total,
giving that many prefix sums as well. Thus there are three prefix sums that are exactly the same. Let
h1, h2, h3 be the corresponding indices, that is,

∑h1

ℓ=1 z⃗
(ℓ) =

∑h2

ℓ=1 z⃗
(ℓ) =

∑h3

ℓ=1 z⃗
(ℓ). Observe that

we have
∑h2

ℓ=h1+1 z⃗
(ℓ) =

∑h3

ℓ=h2+1 z⃗
(ℓ) = 0. We now aim to set to zero the weights of the arcs to v

from the in-neighbors that correspond to one of these two intervals.

Since the above are two disjoint sequences of vectors, there is one sequence, say the first one, such
that −t⃗ is not contained in it. Thus, all vectors in z⃗(h1+1), . . . , z⃗(h2) are either dummy vectors or
weighted activation values of in-neighbors of v. Let Q ⊆ [q] be the index set of those y⃗(i) that are
not in z⃗(h1+1), . . . , z⃗(h2) and let R be the index set of those e⃗(ℓ) not in z⃗(h1+1), . . . , z⃗(h2). Thus,∑

i∈Q

y⃗(i) = t⃗+
∑
ℓ∈R

e⃗(ℓ). (2)

Now modify the neural network Ḡ′ by setting to zero all weights of arcs uiv where ui is an in-
neighbor of v with i /∈ Q. In this way, we obtain a neural network Ḡ. The pre-activation vector s⃗Ḡ
of v in Ḡ (that is, the vector containing the pre-activation values that v receives from in-neighbors
for each input vector) satisfies

∑
i∈Q y⃗(i) = s⃗Ḡ and thus by Eq. (2) s⃗Ḡ = t⃗+

∑
ℓ∈R e⃗(ℓ).

The dummy vectors contain −1 in dimensions j where s⃗j < −d = t⃗j and 1 where s⃗j > d = t⃗j .
Hence, in dimensions j where s⃗j < −d we have (s⃗Ḡ)j ≤ t⃗j , where s⃗j > d we have (s⃗Ḡ)j ≥ t⃗j ,
and otherwise there are no dummy vectors corresponding to j and thus we have (s⃗Ḡ)j = t⃗j . Thus,
the activation for each input vector of v is the same in Ḡ and in Ḡ′.

By repeating the argument for each neuron with large number of non-zero in-neighbors we obtain
a neural network in which each neuron has less than 2 · (2d2p + 1)p + 1 non-zero in-neighbors, as
required.

We next show how the degree bound above can be used to efficiently train neural networks for
low-treewidth architectures and small number of input neurons. We will use a dynamic program
over a tree decomposition. Essentially this means that we need to maintain for small separators
what the status of partial solutions on one side, say the left side, of the separator is and this status
needs to be encoded in a small number of states. Consider a neuron v in such a separator. We
want to maintain as a state of the partial solution which pre-activation values v has already received
on the left side of the separator. If the non-zero indegree of a solution is large, then we may have
already seen an unbounded number of negative pre-activation values, but on the right side we may
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still see an equally large number of positive pre-activation values, in total summing to a small value
in Zd. To properly maintain the activation of v, we would thus need to maintain unboundedly large
pre-activation values, leading to a large, unbounded number of dynamic-programming states. In
contrast, using the indegree bound established in Lemma 1, we can assume that the sums of pre-
activation values are bounded and only look for such solutions.

Lemma 3. d-QNNT with ℓ = 0 is FPT w.r.t. the treewidth of G and the number of input nodes.

Proof. Let (G,α, ω, d,D, 0) be an instance of d-QNNT with error bound ℓ = 0 and α input nodes
(i.e., neurons). Let X be the set of distinct input vectors in D and tw be the treewidth of the input
architecture G. We first compute in 2O(tw) · |V (G)| time a nice tree decomposition T = (T, χ) of
the underlying undirected graph of the architecture G that has width at most 2tw+1 (see Section 2).
We then proceed by dynamic programming on T . Without loss of generality, there are at most dα
different input vectors (otherwise either there are multiple pairs of equal pairs of input and output
vectors, of which we can drop one arbitrarily, or one input vector is associated with two different
output vectors, and we have a trivial no-instance). Thus, by Lemma 1 we know that, if there is
a solution neural network, then there is a solution with non-zero indegree at most (d(dα))O(dα) =
dO(αdα). We hence try to find a solution with non-zero indegree at most some integer ∆ := dO(αdα).
(Indeed, we won’t enforce this indegree bound, but we are guaranteed to find a solution, potentially
with larger non-zero indegree, if there is one.)

Partial neural networks and evaluations thereof. To define the dynamic-programming table, we
need to define what a partial solution is for the part of the architecture we have already seen in the
dynamic program. Let W ⊆ V (G). A W -partial neural network over architecture G is a tuple
(G,weight,bias), where weight and bias are defined in the same way as for neural networks
except that the domain of bias is W and the domain of weight is the set of arcs of G with both
endpoints in W . Note that the activation value for a neuron v on a certain input vector is defined
if for each path P in G from an input neuron to v all biases and weights of neurons and arcs on
P are defined. Below we will additionally refer to activation values for further neurons based on
assuming that they receive certain given weighted activation values from in-neighbors where biases
or weights are not defined. More precisely, for a W -partial neural network, consider an input vector
x. For some neurons v, including all of those whose in-neighbors are not all contained in W ,
we additionally specify the weighted activation value future(x, v) that they receive from the in-
neighbors not contained in W . This is sufficient to compute the activation values (as defined for
non-partial neural networks) for all neurons in W , based on assuming the values future(x, v).
Below we will omit explicit mention of this assumption when referring to the activation values as
long as it is clear from the context.

The dynamic programming table. Below, for a node t ∈ V (T ) in the tree decomposition we define
Vt to be the union of all bags of nodes that are either t or descendants of t in T . The dynamic-
programming table D is defined as follows. (Recall that X is the set of input vectors.) Consider a
node t ∈ V (T ) in the tree decomposition, a function bias : χ(t) → Zd assigning a bias to each
neuron in t’s bag, a function weight : {(u, v) ∈ E(G) | u, v ∈ χ(t)} → Zd assigning a weight
to each arc in t’s bag, a function seen : X × χ(t) → Zd2∆ assigning each neuron in t’s bag a set
of pre-activation values received from neurons in Vt, and a function future : X × χ(t) → Zd2∆

assigning each neuron in t’s bag a set of pre-activation values to be received from neurons in V \Vt.
We put D[t,bias,weight,seen,future] = 1 if there is a Vt-partial neural network Ḡ over G
with the following properties, where all references to activation values are with respect to Ḡ:

(i) For each neuron v in χ(t) its bias in Ḡ is bias(v), and for each arc (u, v) ∈ E(G) with
u, v ∈ χ(t) the arc weight in Ḡ is weight(u, v).

(ii) For each input vector x ∈ X , assuming that for each neuron v ∈ χ(t) the pre-activation value
received from in-neighbors in V (G) \ Vt is future(x, v), then for each neuron v ∈ χ(t) the
pre-activation value received from in-neighbors in Vt is seen(x, v).

(iii) For each input vector x ∈ X , for each input neuron in Vt \ χ(t) the activation value is exactly
the one specified in x.

(iv) For each input-output pair (x, y), for each output neuron v ∈ Vt \ χ(t), the activation of v on
input x is exactly as specified in y.

If there is no such neural network Ḡ then we put D[t,bias,weight,seen,future] = 0.
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If we can compute the table D for each node of T then we can decide whether there is a neural
network over G that learned all input-output pairs correctly by checking whether D[r, ∅, ∅, ∅, ∅] = 1
(recall that χ(r) = ∅). We now sketch how to correctly compute D for each node of T in a bottom-up
fashion; the full details are straightforward and partly omitted.

Leaf node. If t is a leaf node, let χ(t) = {v}. Then D[t,bias,weight,seen,future] = 1 if
and only if for each x ∈ X we have seen(x, v) = 0 (weight is empty). (We do not need to verify
the correct input and zero-bias of input neurons and the output of output neurons before they are
forgotten by the definition of D.)

Introduce node. Let t be an introduce node with child t′ and χ(t) = χ(t′) ∪ {v}.
We put D[t,bias,weight,seen,future] = 1 if and only if there exists a state
(bias′,weight′,seen′,future′) with D[t′,bias′,weight′,seen′,future′] = 1 such
that the following conditions hold.

• Consistency on old vertices and arcs. For all u ∈ χ(t′) and all x ∈ X we have bias(u) =
bias′(u), seen(x, u) = seen′(x, u), and future(x, u) = future′(x, u); and for all
arcs (a, b) ∈ E(G) with a, b ∈ χ(t′) we have weight(a, b) = weight′(a, b).

• Correct seen activation of new neuron. For all x ∈ X we have

seen(x, v) =
∑

u∈(χ(t′)∩N−(v))

weight(u, v) · au(x),

where N−(v) are the in-neighbors of v and au(x) denotes the activation value of neuron u.
Note that, since G is a DAG, the values au(x) for u ∈ χ(t) can be computed in topological
order from bias and the totals seen and future. Observe that, since seen(x, u) ∈
Zd2∆ the sum is thus capped between −d2∆ and d2∆. This is correct, since, if there is a
solution with non-zero indegree bounded by ∆, restricting this solution to Vt will give a
sum that is also within these bounds.

Again, verification of input, output, and bias of input and output neurons is only required when we
forget them.

Forget node. Let t be a forget node with child t′ and χ(t) = χ(t′) \ {v}.
We put D[t,bias,weight,seen,future] = 1 if and only if there exists a state
(bias′,seen′,future′,weight′) with D[t′,bias′,weight′,seen′,future′] = 1 such
that:

• Projection. For all u ∈ χ(t) and all x ∈ X ,

bias(u) = bias′(u), seen(x, u) = seen′(x, u), future(x, u) = future′(x, u).

Moreover, for every arc (a, b) ∈ E(G) with a, b ∈ χ(t) we have weight(a, b) =
weight′(a, b); all entries of weight′ incident to v are dropped.

• Ensuring all input seen. For each x ∈ X the value future′(x, v) = 0.
• Ensuring correct inputs. If v is an input neuron, then bias′(v) = 0 and for each x ∈ X

we have seen′(x, v) equal to the activation value specified in x.
• Ensuring correct outputs. If v is an output neuron, then with total pre-activation
seen′(x, v) and bias bias′(v), the activation of v equals the required value, i.e., for
all x ∈ X the activation of v coincides with the value specified in the output vector corre-
sponding to x.

Join node. Let t be a join node with children t1, t2 and χ(t) =
χ(t1) = χ(t2). We put D[t,bias,weight,seen,future] = 1
if and only if there exist states (bias1,weight1,seen1,future1) and
(bias2,weight2,seen2,future2) with D[t1,bias1,weight1,seen1,future1] = 1
and D[t2,bias2,weight2,seen2,future2] = 1 such that for all u ∈ χ(t) and all x ∈ X :

• Agreement on interface. bias(u) = bias1(u) = bias2(u) and future(x, u) =
future1(x, u) = future2(x, u).

• Agreement of in-bag weights. For every arc (a, b) ∈ E(G) with a, b ∈ χ(t) we have
weight(a, b) = weight1(a, b) = weight2(a, b).
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• Additivity of in-subtree contributions. If we combine a Vt1 -partial and a Vt2 -partial neural
network, then the seen pre-activation values are disjoint except for values received from
neuron in the bag of t. Thus, we require that

seen(x, u) = seen1(x, u) + seen2(x, u)−
∑

w∈(χ(t′)∩N−(u))

weight(w, u) · aw(x),

(note that seen includes activations received from the current bag). As before, aw(x) is
the activation of neuron w. Note that, because of the agreement conditions, this value is
consistent among the three bags and, as before, can be computed in topological order from
bias and the totals seen and future.

• Consistency of out-of-subtree contributions. The future pre-activation values of a Vt1 -
partial neural network distribute over the pre-activation values seen in Vt2 \ Vt1 and those
in V \ (Vt1 ∪ Vt2). Analogously for a Vt2 -partial neural network. Thus, we require:

future1(x, u) + seen1(x, u) = future2(x, u) + seen2(x, u).

Running time. Let b := |χ(t)| ≤ 2tw + 1 and p := |X | (recall that χ(t) is the bag of t and X is the
set of input vectors). A state at t now consists of:

• bias : χ(t) → Zd (d b choices),
• weight : {(u, v) ∈ E(G) | u, v ∈ χ(t)} → Zd (dmt choices, where mt :=
|E(G[χ(t)])| ≤ b2),

• seen,future : X × χ(t) → Zd2∆ (((2d2∆))pb choices each).

Thus the number of table entries per bag is at most

d b+mt · (2d2∆)2pb ≤ d b+b2 · (2d2∆)2pb.

It is not hard to see that each table entry for leaf, introduce, and forget nodes can be computed in
polynomial time in p, b. Two entries of children of join nodes define an entry of a join node. Thus,
the total running time is

2O(tw) · |V (G)| + O(tw · |V (G)|) · d 2b+2b2 · (2d2∆)4pb · poly(pb) = dO(tw·dO(α)) · |V (G)|

where ∆ = dO(αdα). Hence the algorithm runs in time f(tw, α, ω, d) ·poly(|V (G)|+ |E(G)|), i.e.,
it is FPT with respect to tw, α, and ω. This completes the proof of Lemma 3.

Instances with nonzero error bounds can be reduced to the ℓ = 0 setting in order to apply Lemma 3.

Theorem 5. d-QNNT is FPT wrt. the treewidth of G, the number α of input dimensions, and the
number ω of output dimensions.

Proof. First, in O(2d
α+ω

) time we determine (by trying all possibilities) which input-output pairs
will not be learned correctly. Note that these can simply be ignored during training. Hence, we may
now assume that the error bound ℓ is 0 and we need to learn all input-output pairs correctly. Thus,
we can apply Lemma 3 to obtain the desired running time.

Theorem 6. d-QNNT is FPT w.r.t. the treewidth of G, the number α of input dimensions, and the
error bound ℓ.

Proof. Let (G,α, ω, d,D, ℓ) be an instance of d-QNNT. First, observe that for each input vector x
there are at most ℓ+1 distinct output vectors as, otherwise, the error bound ℓ could not be achieved.
Thus, we may first, in O(2ℓd

α

) time, determine by trying all possibilities which input-output pairs
will not be learned correctly. Note that these can simply be ignored during training. Hence, we may
now assume that the error bound ℓ is 0 and we need to learn all input-output pairs correctly. Thus,
we can apply Lemma 3 to obtain the desired running time.

For an illustration that there exist architectures in which the treewidth is much smaller than the
width, we refer to Figure 6.

Corollary 1. d-QNNT is FPT with respect to α+ ℓ+ width.
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Figure 6: An illustration of an architecture in which the treewidth is significantly smaller than the
width. More precisely, tw = 2 and width = 8. Moreover, if the second hidden layer were to consist
of p neurons, then we would have width = p while preserving tw = 2.

Proof. If there is at least one hidden neuron, by Observation 1, we have that the treewidth is at
most two times the width of the architecture. Hence, in this case the result follows from Theorem 6.
Otherwise, the architecture is a bipartite graph consisting only of the input and output neurons. The
weights of arcs to one output neuron do not influence the activations of other output neurons and
hence the problem reduces to solving ω pairwise independent instances in which there is exactly
one output neuron. That is, the original instance is a yes-instance if and only if all of these instances
are yes-instances. Each of the single-neuron instances has an architecture of size O(α) and thus can
be solved by brute force in f(α) · |D| time. Thus, if there are no hidden neurons, we can solve the
problem in f(α) · |D| · ω · |V (G)| time, as required.

Corollary 2. d-QNNT is FPT with respect to α+ ω + width.

Proof. If there is at least one hidden neuron, by Observation 1, we have that the treewidth is at
most two times the width of the architecture. Hence, in this case the result follows from Theorem 5.
Otherwise, the architecture is a bipartite graph consisting only of the input and output neurons. It
thus has size O(α · ω) and the corresponding instance can be solved by brute force in f(α, ω) · |D|
time.

5 CONCLUDING REMARKS

Our work initiates the study of fully quantized ReLU neural network training from the classical as
well as parameterized complexity perspectives. We show that the problem remains NP-hard even
in highly restricted settings, but also provide positive results through the identification of non-trivial
fixed-parameter tractable fragments. We remark that the latter outcome contrasts the state of the
art for neural network training in the non-quantized setting. Indeed, in spite of being targeted by
several recent complexity-theoretic studies (Dey et al., 2020; Abrahamsen et al., 2021; Goel et al.,
2021; Boob et al., 2022; Froese & Hertrich, 2023; Bertschinger et al., 2023; Brand et al., 2023), to
date we do not know a single non-trivial4 parameterization that yields fixed-parameter tractability
for training non-quantized neural networks. Moreover, we believe that settling the parameterized
complexity of d-QNNT w.r.t. the input and output dimensionality (i.e., α+ ω) will require insights
beyond the current state of the art and pose this as the main open question arising from our work.
Other important avenues of future work include whether our results can be extended to distillation,
and whether they could be used to obtain more efficient empirical algorithms.
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