
000
001
002
003
004
005
006
007
008
009
010
011
012

TRACTABILITY VIA LOW DIMENSIONALITY: THE PARAMETERIZED COMPLEXITY OF TRAINING QUANTIZED NEURAL NETWORKS

008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Anonymous authors

Paper under double-blind review

ABSTRACT

The training of neural networks has been extensively studied from both algorithmic and complexity-theoretic perspectives, yet recent results in this direction almost exclusively concern real-valued networks. In contrast, advances in machine learning practice highlight the benefits of *quantization*, where network parameters and data are restricted to finite integer domains, yielding significant improvements in speed and energy efficiency. Motivated by this gap, we initiate a systematic complexity-theoretic study of ReLU Neural Network Training in the full quantization mode. We establish strong lower bounds by showing that hardness already arises in the binary setting and under highly restrictive structural assumptions on the architecture, thereby excluding parameterized tractability for natural measures such as depth and width. On the positive side, we identify nontrivial fixed-parameter tractable cases when parameterizing by input dimensionality in combination with width and either output dimensionality or error bound, and further strengthen these results by replacing width with the more general treewidth.

1 INTRODUCTION

A crucial task tied to the use of neural networks is their training. On a high level, this training task can be characterized as follows: given a neural network architecture G and a data set \mathcal{D} of input-output pairs, compute weights and biases of G which minimize the error achieved by the network on \mathcal{D} . While we have powerful heuristics for solving this problem (Sze et al., 2017; Li et al., 2022), it also exhibits highly interesting behavior on the complexity-theoretical level and has been studied from this perspective in a series of recent foundational papers (Dey et al., 2020; Abrahamsen et al., 2021; Goel et al., 2021; Boob et al., 2022; Froese & Hertrich, 2023; Bertschinger et al., 2023; Brand et al., 2023). A detailed discussion of the state of the art is deferred to the end of this section; nevertheless, it will be useful to note that for a crisper complexity analysis one typically considers the equivalent *decision* formulation of the problem—i.e., where the input also includes an error bound ℓ and the algorithm is allowed to output “no” if such an error bound cannot be achieved by any combination of weights and biases.¹

A common feature of all the above-mentioned complexity-theoretical works targeting the above NEURAL NETWORK TRAINING (NNT) problem is that they assume the numbers occurring in the network to be reals. This is a natural perspective that matches the classical formalization of neural networks. However, a series of recent advances have shown that one can significantly improve speed and energy efficiency by *quantizing* the neural network, i.e., forcing the numbers to lie in a specified domain of integers (Kilic et al., 2022). For example, Wang et al. (2025) recently showed that one can achieve accuracy results comparable to the real-valued setting when quantizing to 4 bits, i.e., with a domain size of 16; see also the preceding works of Yang et al. (2020) and Lin et al. (2022). Other works have also considered even stronger degrees of quantization, such as using binary domains (Lin et al., 2017; Zhu et al., 2019; Liu et al., 2020). In fact, several different methods have been developed to obtain high-quality quantized neural networks such as fully-quantized training (Zhou et al., 2016),

¹Technically, in decision problems one is not required to output the weights and biases for positive instances; however, every algorithm obtained or mentioned in this article is constructive and capable of doing so. We note that the optimization task can be reduced to the decision formulation via a trivial search routine on ℓ .

054 mixed-precision training (Micikevicius et al., 2018), post-training quantization (Banner et al., 2019),
 055 and quantization-aware training (Jacob et al., 2018).
 056

057 Yet, the recent developments outlined above are not at all reflected in our understanding of the
 058 underlying foundational problem: neither the complexity-theoretic lower bounds (Dey et al., 2020;
 059 Abrahamsen et al., 2021; Goel et al., 2021; Froese & Hertrich, 2023; Bertschinger et al., 2023), nor
 060 the algorithms underpinning our upper bounds for solving the training problem (Arora et al., 2018;
 061 Boob et al., 2022; Brand et al., 2023) can be translated into the quantized setting. We note that
 062 this does not seem to be merely the case of a missing “bridge” that would allow one to translate
 063 knowledge from one setting to the other—the training problem in the real-valued setting is $\exists\mathbb{R}$ -
 064 complete (Abrahamsen et al., 2021; Bertschinger et al., 2023) but with quantization it is easily seen
 065 to lie in NP (see Section 2), pointing to a fundamental difference between the two settings. Until
 066 now, we lacked any complexity-theoretic study targeting NNT in the fully quantized setting.

067 The aim of this article is to fill the aforementioned gap by developing a comprehensive understanding
 068 of QUANTIZED RELU-NNT (see Section 2 for formal details and a discussion of the error bound):
 069

***d*-QUANTIZED RELU-ACTIVATED NEURAL NETWORK TRAINING (*d*-QNNT)**

070 **Input:** An architecture G with α input and ω output nodes, a multiset \mathcal{D} of d -quantized data
 071 points, and an error bound ℓ .
 072 **Output:** A d -quantized neural network \bar{G} over G such that the error of \mathcal{D} on \bar{G} is at most ℓ ,
 073 or a correct conclusion that no such network exists.

074 We remark that here we focus on the ReLU activation function, as it is widely used in practice and
 075 has been the target of almost all foundational studies of non-quantized NNT to date (Dey et al., 2020;
 076 Abrahamsen et al., 2021; Goel et al., 2021; Boob et al., 2022; Froese & Hertrich, 2023; Bertschinger
 077 et al., 2023; Brand et al., 2023). Our results include not only lower bounds, but also the identification
 078 of tractable cases via the development of theoretical algorithms. All our lower bounds apply already
 079 to the simplest binary quantization, while our tractability results hold for arbitrary choices of the
 080 quantization constant d .
 081

082 In order to construct a more detailed complexity map of *d*-QNNT, we perform our analysis also tak-
 083 ing into account the *parameterized complexity* paradigm (Cygan et al., 2015; Downey & Fellows,
 084 2013) which associates problem instances with a suitably defined parameter, i.e., a numerical mea-
 085 sure that captures various aspects of the instance. In the classical perspective, one would typically
 086 ask whether restricting the parameter k to a constant allows us to solve instances in time polynomial
 087 w.r.t. the input size n . By contrast, the most desirable notion of tractability in the more refined pa-
 088 rameterized paradigm is *fixed-parameter tractability* (FPT), meaning that the problem can be solved
 089 in time $f(k) \cdot n^{\mathcal{O}(1)}$ for some computable function f . To exclude inclusion in FPT, one can either
 090 show that the problem is W[1]- or W[2]-hard (which still allows for the existence of algorithms
 091 running in time, e.g., $n^{\mathcal{O}(k)}$), or NP-hard for a fixed value of k .
 092

093 **Contributions.** For convenience, Figure 1 provides a mindmap of results that is intended to com-
 094 plement the description of our contributions.

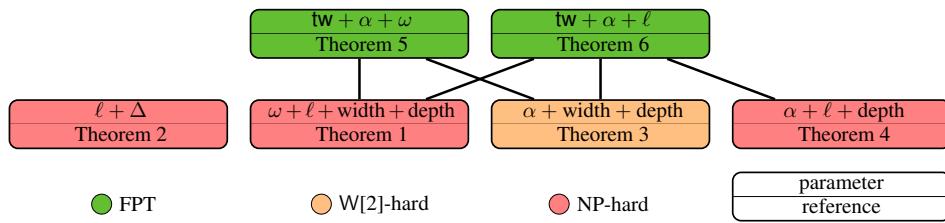


Figure 1: Overview of our results for *d*-QNNT. A combined parameter p consisting of single pa-
 rameters p_1, p_2, p_3 has an edge to a lower combined parameter q if dropping one of the single
 parameters p_i yields hardness. We use Δ to denote the maximum degree of any neuron. Our main
 open question concerns the complexity w.r.t. $\alpha + \omega$ —see the Technical Overview and Section 5.

Well-studied properties of the architecture G that might, at first glance, seem as natural choices for
 parameters are its *depth* (the number of hidden layers) and *width* (the size of the largest hidden
 layer)—a direction which we explore in our **first set of contributions**.

108 As a baseline result, we exclude any notion of parameterized tractability w.r.t. these two measures
109 even when combined with the error bound ℓ and the output dimensionality ω . In particular, in
110 Theorem 1 we show that 2-QNNT remains NP-hard even when restricted to instances where $\ell = 0$,
111 there is only a single output node and no hidden layer—a result which shows that even training very
112 simple quantized architectures is computationally intractable and forms a counterpart to the well-
113 known intractability of training a single neuron in the non-quantized setting (Goel et al., 2021; Dey
114 et al., 2020). Naturally, the reduction underlying Theorem 1 relies on the single output neuron having
115 large indegree—however, in our second Theorem 2 we establish the NP-hardness of 2-QNNT even
116 on constant-degree architectures with a single hidden layer and $\ell = 0$. This latter result can be seen
117 as a constant-degree counterpart to the $\exists R$ -hardness of training shallow non-quantized networks to
118 optimality (Abrahamsen et al., 2021).

119 While the above lower bounds paint a negative picture of the complexity of d -QNNT, there is a
120 silver lining: both reductions inherently require the input dimensionality α to be large. As our
121 **second set of contributions**, we show that parameterizing by α enables fixed-parameter neural
122 network training in the quantized setting—but only when combined with additional restrictions. In
123 particular, our results imply that for every fixed d , d -QNNT is fixed-parameter tractable w.r.t. the
124 combined parameterizations:

- 125 1. input dimensionality α , the width of G and output dimensionality ω (Corollary 2);
126 2. input dimensionality α , the width of G and the error bound ℓ (Corollary 1).

127 The above results naturally lead to the question of whether all of the parameters are required to
128 achieve fixed-parameter tractability—in other words, could any of the parameters be dropped from
129 the statement? For α , we already know that this is not the case: Theorem 1 rules out polynomial-time
130 algorithms even if the width, ω and ℓ are small constants.

131 Given the fact that both positive results rely on parameterizing by the width and α , it would be
132 tempting to think that d -QNNT is fixed-parameter tractable w.r.t. α and the width alone—i.e., that
133 the third parameter can be dropped in both statements. As our **third contribution**, in Theorem 3
134 we rule this out by establishing the $W[2]$ -hardness of 2-QNNT w.r.t. α even on networks with no
135 hidden layer. This means that neither ω , nor ℓ can be dropped from our algorithmic upper bounds.

136 The above considerations leave the width as the only possible “weak point” in Corollaries 1 and 2.
137 As our **fourth contribution**, we show that—at least if one wishes to preserve both positive results—
138 it is neither possible to drop the width, nor replace it with the depth of G . In particular, our Theorem 4
139 shows that 2-QNNT is NP-hard even when $\alpha = 2$, there is a single hidden layer and $\ell = 0$.

140 While the width cannot be dropped or replaced by depth, as our **final fifth contribution** we show
141 that Corollaries 1 and 2 can be strengthened: in particular, we prove that the results hold even if
142 one replaces the width of architecture G with its *treewidth* $\text{tw}(G)$ (Robertson & Seymour, 1984).
143 The latter is a well-established measure of the tree-likeness of a graph; on architectures with hidden
144 neurons it never exceeds the width, but can be arbitrarily smaller. For example, an architecture
145 consisting of layers whose width alternates between small and large will have large width, but small
146 treewidth. Thus, while non-trivial to prove, the following two results supersede and directly imply
147 Corollaries 1 and 2:

148 1*. d -QNNT is fixed-parameter tractable w.r.t. $\alpha + \text{tw}(G) + \omega$ (Theorem 5);
149 2*. d -QNNT is fixed-parameter tractable w.r.t. $\alpha + \text{tw}(G) + \ell$ (Theorem 6).

150 **Technical Overview.** To obtain our lower bounds, we develop targeted reductions from a variety
151 of problems, including **BOOLEAN SATISFIABILITY**, **HITTING SET**, and **SET COVER**. While each
152 of the reductions is distinct, the constructed architectures are often very dense and have simple graph
153 structures. In other words, our results show that the difficulty of training in the quantized setting does
154 not stem from the complexity of the architecture, but rather from the presence of high-dimensional
155 data on the input or output. In fact, the main open question arising from our work is whether the
156 converse is true: can we efficiently solve instances of d -QNNT with possibly complicated architectures,
157 but constant input and output data dimensionality (i.e., $\alpha + \omega$)?

158 For our positive results—specifically, Theorems 5 and 6—the main technical difficulty is that the
159 trained n -node networks could contain hidden neurons with $\Theta(n)$ incoming arcs from the pre-
160 ceding layer that have non-zero weights. Indeed, it is not difficult to construct instances with
161 such solutions—and yet the dynamic programming techniques that form the cornerstone of most

162 treewidth-based algorithms are incapable of efficiently searching for them. To deal with this issue,
 163 we make a detour and first establish a structural insight that we believe is of independent interest:
 164 every YES-instance of d -QNNT admits at least one solution where the number of activated arcs en-
 165 tering any node is upper-bounded by a function of the parameters. This is formalized in Lemma 1,
 166 and relies on an involved proof that builds on Steinitz’ Lemma.

167 *Full proofs and details deferred to the Appendix are marked with (\star) .*

168 **Related Work.** Beyond the related articles mentioned in the second paragraph, several of the ear-
 169 lier works in the field also studied (the complexity of) NNT in the partially quantized setting (Judd,
 170 1988; Blum & Rivest, 1992; Parberry, 1992; Courbariaux et al., 2015; Zhu et al., 2017) or with
 171 different activation functions (Judd, 1990; Schmitt, 2004; Doron-Arad, 2025). In particular, the
 172 NP-hardness of 2-QNNT can be inferred from the reduction in the seminal work of Judd (1990,
 173 Theorem 24) on training Boolean neural networks with AND and OR gates, and separately also
 174 from the reduction in Schmitt (2004, Theorem 7) using linear threshold activation functions. How-
 175 ever, our Theorems 1 to 4 obtain lower bounds in conjunction with additional restrictions on the
 176 inputs that are required for our parameterized lower bounds. Crucially, we are aware of neither
 177 any in-depth multivariate complexity analysis in this setting, nor any works directly targeting the
 178 complexity of quantized neural network training with ReLU activation functions. (\star)

180 2 PRELIMINARIES

181 For an integer $d \geq 1$, we define the d -quantized integer domain \mathbb{Z}_d as $\{z \in \mathbb{Z} \mid -\lfloor \frac{d-1}{2} \rfloor \leq z \leq$
 182 $\lceil \frac{d-1}{2} \rceil\}$, that is, $\mathbb{Z}_2 = \{0, 1\}$, $\mathbb{Z}_3 = \{-1, 0, 1\}$, $\mathbb{Z}_4 = \{-1, 0, 1, 2\}$ and so forth². The d -domain
 183 *ReLU activation function* $\text{ReLU}_d : \mathbb{Z}_d \rightarrow \mathbb{Z}_d$ is the restriction of the well-known rectified linear unit
 184 to \mathbb{Z}_d —that is, all negative values are mapped to 0 while on positive values ReLU_d is the identity
 185 except that inputs outside of \mathbb{Z}_d become $\max \mathbb{Z}_d$.

186 We say that a *network architecture* is a directed acyclic graph (a *DAG*) G whose vertex sets are
 187 partitioned into *layers*, where layer 0 consists solely of sources, and such that an arc ab may only go
 188 from a vertex in layer i (for $i \in \mathbb{N}$) to a vertex in layer $i + 1$ and all sinks lie in the same layer. We
 189 will refer to the *sources* and *sinks* the *input* and *output* neurons of G , respectively, while all other
 190 nodes of G are referred to as *hidden neurons*. We assume that the sources are equipped with a fixed
 191 ordering, and the same also for the sinks. The maximum size of a layer with only hidden neurons is
 192 called the *width* of G , while we refer to the number of layers as the *depth* of G .

193 Let us fix a d -quantized integer domain \mathbb{Z}_d . A neural network \bar{G} over an architecture G is a tuple
 194 $(G, \text{weight}, \text{bias})$ where the weight function *weight* assigns each arc of G a weight from \mathbb{Z}_d ,
 195 and the bias function *bias* assigns each non-source node of G a bias from \mathbb{Z}_d . Let the number
 196 of input and output neurons of \bar{G} be α and ω , respectively. The *evaluation* of an input data vector
 197 $\vec{x} \in (\mathbb{Z}_d)^\alpha$ is a mapping f which assigns each node of G a *value* (or *activation*) computed as follows:

- 201 • The i -th input neuron receives the value $\vec{x}[i]$;
- 202 • For each neuron $v \in V(G)$ with predecessors z_1, \dots, z_q , we set its value as³

$$\text{ReLU}_d\left(\left(\sum_{i \in [q]} f(z_i) \cdot \text{weight}(z_i v)\right) - \text{bias}(v)\right).$$

203 The input to ReLU_d above is sometimes called the *pre-activation value*. Given a data point $p \in \mathcal{D}$,
 204 we say that a neuron q is *active* in \bar{G} if in the evaluation of p , the neuron q receives a positive
 205 activation; otherwise, it is *inactive*. We denote the restriction of f to the output nodes, represented
 206 as a vector of integers in $(\mathbb{Z}_d)^\omega$ ordered by the output neurons, as the *output* of the neural network
 207 on \vec{x} . In the training setting, we will be dealing with d -quantized data points from $(\mathbb{Z}_d)^\alpha \times (\mathbb{Z}_d)^\omega$.
 208 The *error* of a multiset of such data points is equal to the number of misaligned data points, i.e.,
 209

210
 211 ²Our model matches, e.g., the so-called “E1M2” format of the 4-bit floating point standard FP4. Other
 212 low-bit number encodings have also been considered in the quantized setting (Wang et al., 2025), but we focus
 213 our exposition on this theoretically cleanest model. While we do not formally prove this, all obtained results
 214 seem to readily carry over to different low-bit number encodings with only minor modifications to the proofs.

215 ³We note that the bias is subtracted instead of added to the result due to the fact that, in the Boolean-domain
 216 case, subtracting allows the bias to actually interact with the weights (see also Kilic et al. (2022)). For larger
 217 domains, the distinction is inconsequential since we can flip the sign of the bias.

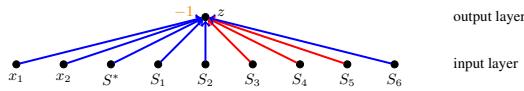


Figure 2: An illustration of the reduction behind Theorem 1 for the universe $U = [6]$ and the set family \mathcal{F} with sets $S_1 = \{1, 4, 5\}$, $S_2 = \{2, 3\}$, $S_3 = \{1, 6\}$, $S_4 = \{2, 5\}$, $S_5 = \{3, 5\}$, $S_6 = \{6\}$ with an exact set cover $\mathcal{S} = \{S_1, S_2, S_6\}$. In the solution corresponding to \mathcal{S} , each red arc has weight 0 and each blue arc has weight 1. The orange number is the bias of the output neuron.

the number of pairs (\vec{x}, \vec{y}) in the multiset such that the output of $(G, \text{weight}, \text{bias})$ on \vec{x} differs from \vec{y} . With these definitions in place, we study d -QNNT as formalized in Section 1.

d -QNNT is in NP (a certificate consists of a linear number of integers from \mathbb{Z}_d), which contrasts the $\exists R$ -completeness of the training problem in the non-quantized setting. In the non-quantized setting, one typically uses a wide variety of loss functions tailored to real-valued errors such as ℓ_2^2 (Brand et al., 2023)—here, we focus on a simple error count (as also used, e.g., by Judd (1990)) in order to facilitate a cleaner analysis. The majority of our proofs could nevertheless be directly and straightforwardly translated to other loss functions (this is easiest to see for Theorems 1, 2, 4, 5).

Treewidth. A *tree decomposition* \mathcal{T} of an undirected graph G (or the underlying undirected graph of a directed graph) is a pair (T, χ) , where T is a tree and χ is a function that assigns each tree node t a set $\chi(t) \subseteq V(G)$ of vertices such that the following conditions hold: **(P1)** for every edge $e \in E(G)$ there is a tree node t such that $e \subseteq \chi(t)$; and **(P2)** for every vertex $v \in V(G)$, the set of tree nodes t with $v \in \chi(t)$ induces a non-empty subtree of T . The sets $\chi(t)$ are called *bags* of the decomposition \mathcal{T} , and $\chi(t)$ is the bag associated with the tree node t . The *width* of a tree decomposition (T, χ) is the size of a largest bag minus 1. The *treewidth* of a graph G , denoted by $\text{tw}(G)$, is the minimum width over all tree decompositions of G .

A detailed treatment of parameterized complexity and treewidth is provided in the appendix (★).

3 LOWER BOUNDS FOR d -QNNT

In this section, we show that 2-QNNT remains intractable in highly restrictive settings. First, in Theorem 1, we establish NP-hardness even if the architecture has no hidden neuron, only one output neuron, and for training without error. Note that Theorem 1 implies NP-hardness even when the combined parameter width + depth + $\ell + \omega$ is upper-bounded by a constant. Naturally, the corresponding reduction requires the output neurons to have an arbitrarily large degree. One could hence hope that architectures with constant maximum degree can be trained efficiently. In Theorem 2, we show that this is not possible by establishing NP-hardness for this setting.

In both the reductions that underlie Theorems 1 and 2 the number of input neurons is large and in particular not upper-bounded by a function of the parameters. Hence, one could hope that a small or even constant number of inputs allows for efficient training. We show that this is not the case either. First, in Theorem 3, we provide W[2]-hardness for α even if there is no hidden layer. Second, in Theorem 4, we show that 2-QNNT remains NP-hard even if there are only 2 inputs and 1 hidden layer. Altogether, these results yield the lower bounds depicted in Figure 1.

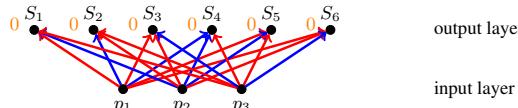
Theorem 1 (★). 2-QNNT is NP-hard even when restricted to instances where $\ell = 0$ and architectures with a single output neuron and no hidden neuron.

Proof Sketch. We provide a reduction from the NP-hard EXACT SET COVER problem (Karp, 1972) where the input consists of a universe U , and a family \mathcal{F} of subsets over U . The goal is to find a subset $\mathcal{S} \subseteq \mathcal{F}$ such that \mathcal{S} is a partition of U , that is, 1) $\bigcup_{S \in \mathcal{S}} S = U$ and 2) $S_1 \cap S_2 = \emptyset$ for each $S_1, S_2 \in \mathcal{S}$.

We construct an equivalent instance I of 2-QNNT as follows; see Figure 2 for an illustration.

Description of the architecture G . Abusing notation, for each set $F \in \mathcal{F}$ we create a *set input neuron* F . Moreover, we add 3 more *dummy input neurons* S^* , x_1 , and x_2 , respectively. Finally, we add one output neuron z and add an arc from each input neuron to the unique output neuron z .

Description of the data set. For each element $u \in U$ we add two *element data points*: d_u^1 and d_u^2 :



270
271
272
273
274
275 Figure 3: An illustration of the reduction behind Theorem 3 for the universe $U = [6]$ and the set
276 family \mathcal{F} with sets $S_1 = \{1, 4, 5\}$, $S_2 = \{2, 3\}$, $S_3 = \{1, 6\}$, $S_4 = \{2, 5\}$, $S_5 = \{3, 5\}$, $S_6 = \{6\}$
277 and $k = 3$ and with a hitting set $S = \{2, 5, 6\}$. In the solution corresponding to S , inputs p_1 , p_2 and
278 p_3 are associated with elements 2, 5 and 6, respectively. Moreover, each red arc has weight 0 and
279 each blue arc has weight 1. The orange numbers are the biases of the output neurons.
280

281 both have value 1 in each input corresponding to a set containing u and value 0 in dummy inputs x_1
282 and x_2 . Moreover, d_u^1 has value 0 in dummy input S^* and value 0 in output z , and d_u^2 has value 1
283 in dummy input S^* and value 1 in output z . Finally, we add three further data points: *dummy data*
284 *points* d_{01} , d_{10} , and d_{11} . All three have value 0 in each set input and in dummy input S^* . Moreover,
285 d_{01} has values $x_1 = 0$, $x_2 = 1$ and output value 0, d_{10} has values $x_1 = 1$, $x_2 = 0$ and output
286 value 0, and d_{11} has values $x_1 = 1$, $x_2 = 1$ and output value 1.

287 Finally, we set $\ell = 0$. To complete the proof, it remains to establish correctness. (\star) \square
288

289 We note that one could also obtain Theorem 1 by carefully adapting the hardness proof of Schmitt
290 (2004, Theorem 7) to our setting. However, the reduction we provide here is simpler, self-contained,
291 and additionally also implies W[1]-hardness with respect to the number of arcs with weight one in
292 the solution. We continue by stating the hardness for constant-degree architectures; since this result
293 is not central to our complexity landscape (see Figure 1), we defer its proof to the appendix.

294 **Theorem 2 (\star) .** 2-QNNT is NP-hard even when restricted to instances where $\ell = 0$, $|\mathcal{D}| \leq 4$, and
295 architectures with only one hidden layer, maximum outdegree 3, and maximum indegree 2.

296 Next, we establish W-hardness w.r.t. the number α of inputs even if there is no hidden layer.

297 **Theorem 3 (\star) .** Even if the network has no hidden neuron, 2-QNNT is W[2]-hard when parameter-
298 ized by the number α of input nodes, even when restricted to architectures with no hidden neurons.

300 *Proof Sketch.* We present a reduction from the HITTING SET (HS) problem where the input consists
301 of a universe U , a family \mathcal{F} of subsets over U , and an integer k . The goal is to find a subset $S \subseteq U$
302 (called a *hitting set*) of size k such that S contains at least one element of each set in the family, that
303 is, $S \cap F \neq \emptyset$ for any $F \in \mathcal{F}$. HS is W[2]-hard parameterized by k (Cygan et al., 2015).

304 We construct an instance I of 2-QNNT as follows. For an illustration, see Figure 3.

305 *Description of the architecture G .* We create k input neurons p_1, \dots, p_k . Abusing notation, for each
306 set $F \in \mathcal{F}$ we create one *set output neuron* F . We add arcs between every input and output neuron.
307 *Description of the data set.* For each element $u \in U$ we add k *element u data points* d_u^1, \dots, d_u^k .
308 Element u data point d_u^i has value 1 in input p_i and value 0 in each other input. Moreover, d_u^i
309 has value 1 in each set output F such that $u \in F$. Thus, d_u^i has value 0 in each set output F' such
310 that $u \notin F'$. Observe that the k element u data points all have the same output but they have pairwise
311 different inputs. Then, we add a *verifier data point* d^* which has value 1 in each input and in each
312 output. In the following, we say that two data points d_1 and d_2 have the same *type* if the input values
313 of d_1 and d_2 are pairwise identical. Note that we have exactly $k + 1$ distinct types of data points.

314 Finally, we set $\ell := k \cdot (|U| - 1)$. To complete the proof, it remains to establish correctness. (\star) \square
315

316 For our fourth lower bound, we use a “compressed” version of the construction behind Theorem 2
317 to obtain NP-hardness for only 2 input nodes and 3 data points.

318 **Theorem 4 (\star) .** 2-QNNT is NP-hard even if $\alpha = 2$, $\ell = 0$, $|\mathcal{D}| = 3$, and depth = 1.

320 *Proof Sketch.* We present a reduction from 3-SAT (Karp, 1972), where one is given a CNF for-
321 mula Φ on variables x_1, \dots, x_n and a set of m clauses each consisting of precisely three literals.

322 We construct an equivalent instance I of 2-QNNT as follows; see Figure 4 for an illustration.

323 *Description of architecture G .* We create two input neurons z_1 and z_2 . For each of the two literals

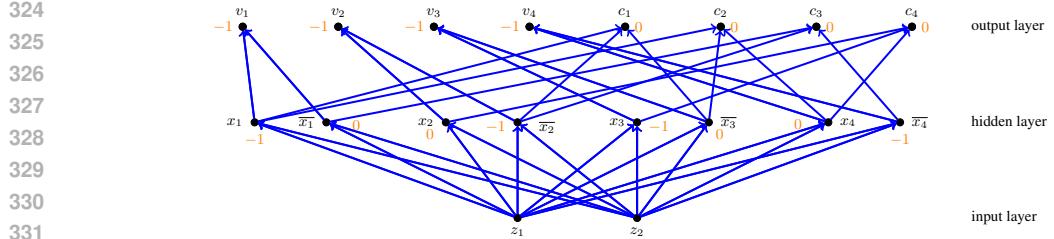


Figure 4: An illustration of the reduction behind Theorem 4 for the formula Φ with clauses $c_1 = x_1 \vee \overline{x_2} \vee \overline{x_3}$, $c_2 = x_1 \vee \overline{x_3} \vee x_4$, $c_3 = \overline{x_1} \vee \overline{x_2} \vee \overline{x_4}$, and $c_4 = x_2 \vee x_3 \vee x_4$ with a satisfying assignment \mathcal{A} with $\{x_2, x_4\} \mapsto \text{true}$ and $\{x_1, x_3\} \mapsto \text{false}$. In an optimal solution all arcs have weight 1. The biases of a solution corresponding to \mathcal{A} are shown in orange.

of a variable x_i with $i \in [n]$, we create two *hidden neurons* x_i and $\overline{x_i}$ associated with variable x_i . Thus, we create $2n$ hidden neurons. Moreover, we create a *variable output neuron* v_i associated with variable x_i for each variable x_i . Also, we add one *clause output neuron* c_j for each clause of Φ . Thus, we create $n+m$ output neurons. We add an arc from each input neuron to each hidden neuron. Next, we add an arc from each of the two hidden neurons x_i and $\overline{x_i}$ associated with variable x_i to the variable output neuron v_i associated with variable x_i . Finally, for each clause c_j consisting of literals p_1, p_2 , and p_3 , we add the arcs (p_h, c_j) for each $h \in [3]$.

Description of data set. Here, we use the notation $(z_1, z_2) \mapsto (V, C)$ for the data points, where z_1 and z_2 are numbers referring to the inputs, and V and C are vectors referring to the outputs. More precisely, V has length n , and the i -th entry corresponds to the variable output neuron v_i , and C has length m , and the j -th entry corresponds to the clause output neuron c_j . Whenever we put a 0 or a 1 in any of the three vectors, we mean that all corresponding outputs receive value 0 or 1, respectively.

We add 3 data points: (1) The *verifier 1 data point* with $(1, 0) \mapsto (0, 1)$, (2) the *verifier 2 data point* with $(0, 1) \mapsto (0, 1)$, and (3) the *choice data point* with $(1, 1) \mapsto (1, 1)$. Finally, we set $\ell := 0$.

Intuition. Recall that we say that given a data point p a neuron q is *active* if in the evaluation of p , the neuron q receives a positive activation; otherwise, it is *inactive*. The idea is that when considering the verifier 1 data point, the active hidden neurons correspond to a satisfying variable assignment. We achieve this with the variable output neurons: If both hidden neurons x_i and $\overline{x_i}$ associated with a variable x_i are active for the verifier 1 data point, then since the value of the variable output neuron v_i associated with x_i needs to be 0 and since x_i and $\overline{x_i}$ are the unique neighbors of v_i this then implies that the value of v_i for the choice data point is also 0, and not 1 as desired, yielding an error.

To complete the proof, it remains to use the above intuition to formally establish correctness. (\star) \square

4 FIXED-PARAMETER TRACTABILITY

In this section we prove our tractability results for parameter combinations that include the width, treewidth, and number α of input neurons. We begin by showing a structural result (Lemma 1) that states that there is always a solution that has upper-bounded degree in the sense that, for each neuron, there is only a bounded number of incoming arcs with nonzero weights. We then use Lemma 1 to prove tractability of *d*-QUANTIZED RELU-ACTIVATED NEURAL NETWORK TRAINING (*d*-QNNT) without error with respect to the treewidth and number α of input neurons (Lemma 3). Then we show how to lift this result to training with nonzero error bounds and how the treewidth results imply the corresponding results for the width.

Consider a neuron v in a neural network. Define the *non-zero in-neighbors* of v to be the in-neighbors u of v such that $\text{weight}(uv) \neq 0$. The *non-zero indegree* of v is the number of non-zero in-neighbors.

Lemma 1 (\star) . *Let G be an architecture and \mathcal{D} a data set with p distinct input vectors. If there is a neural network over G with zero error on \mathcal{D} , then there is a neural network \bar{G} over G with zero error on \mathcal{D} such that for each neuron v in \bar{G} the number of non-zero in-neighbors of v is at most $(dp)^{\mathcal{O}(p)}$.*

We prove Lemma 1 by using Steinitz' Lemma, stated as follows.

378 **Lemma 2** (Steinitz' Lemma (Steinitz, 1913; Sevast'janov, 1994)). *Let $\|\cdot\|$ be an arbitrary norm
 379 on \mathbb{R}^d . Let $x_1, \dots, x_m \in \mathbb{R}^d$ such that $\sum_{i \in [m]} x_i = 0$ and for each $i \in [m]$ we have $\|x_i\| \leq 1$.
 380 Then there exists a permutation $\pi \in S_m$ such that all prefix sums have norm at most d . That is, for
 381 each $k \in [m]$ we have $\|\sum_{j \in [k]} x_{\pi(j)}\| \leq d$.*

383 *Proof Sketch for Lemma 1.* Consider a neuron v in a solution network. We can collect the activations
 384 of v for each input vector in a vector $\vec{s} \in (\mathbb{Z}_d)^p$. Assume for simplicity that we don't have ReLU
 385 activations and instead simply pass through the weighted sum of the activations of the in-neighbors
 386 and, furthermore, each of the summed activations is in $(\mathbb{Z}_d)^p$. Then, \vec{s} is a small-norm vector and it
 387 is obtained as a sum of small-norm vectors. Steinitz' Lemma tells us that we can reorder the vectors
 388 such that each prefix sum has small norm. This means that, if there are many non-zero in-neighbors
 389 to v , then at least one prefix sum occurs twice. This means that the vectors in between these two
 390 identical sums sum to zero and we can simply set their corresponding arc weights to zero without
 391 changing the activation of v . Care must be taken to preserve the ReLU activations and boundaries
 392 of $(\mathbb{Z}_d)^p$ and to ensure that all vectors in the sum have small norm. \square

393 We next show how the degree bound above can be used to efficiently train neural networks for
 394 low-treewidth architectures and small number of input neurons. We will use a dynamic program
 395 over a tree decomposition. Essentially this means that we need to maintain for small separators
 396 what the status of partial solutions on one side, say the left side, of the separator is and this status
 397 needs to be encoded in a small number of states. Consider a neuron v in such a separator. We
 398 want to maintain as a state of the partial solution which pre-activation values v has already received
 399 on the left side of the separator. If the non-zero indegree of a solution is large, then we may have
 400 already seen an unbounded number of negative pre-activation values, but on the right side we may
 401 still see an equally large number of positive pre-activation values, in total summing to a small value
 402 in \mathbb{Z}_d . To properly maintain the activation of v , we would thus need to maintain unboundedly large
 403 pre-activation values, leading to a large, unbounded number of dynamic-programming states. In
 404 contrast, using the indegree bound established in Lemma 1, we can assume that the sums of pre-
 405 activation values are bounded and only look for such solutions.

406 **Lemma 3 (★).** *d -QNNT with $\ell = 0$ is FPT w.r.t. the treewidth of G and the number of input nodes.*

407 *Proof Sketch.* Let $(G, \alpha, \omega, d, \mathcal{D}, 0)$ be an instance of d -QNNT with error bound $\ell = 0$ and α input
 408 nodes (i.e., neurons). Let \mathcal{X} be the set of distinct input vectors in \mathcal{D} and tw be the treewidth of
 409 the input architecture G . First, we compute a tree decomposition $\mathcal{T} = (T, \chi)$ of the underlying
 410 undirected graph of the architecture G that has width at most $2\text{tw} + 1$ (Korhonen, 2022). We then
 411 proceed by dynamic programming on \mathcal{T} . Without loss of generality, there are at most d^α different
 412 input vectors (otherwise either there are multiple pairs of equal pairs of input and output vectors,
 413 of which we can drop one arbitrarily, or one input vector is associated with two different output
 414 vectors, and we have a trivial no-instance). Thus, by Lemma 1 we know that, if there is a solution
 415 neural network, then there is a solution with non-zero indegree at most $(d(d^\alpha))^{\mathcal{O}(d^\alpha)} = d^{\mathcal{O}(\alpha d^\alpha)}$.
 416 We hence try to find a solution with non-zero indegree at most some integer $\Delta := d^{\mathcal{O}(\alpha d^\alpha)}$. (Indeed,
 417 we won't enforce this indegree bound, but we are guaranteed to find a solution, potentially with
 418 larger non-zero indegree, if there is one.)

419 *Partial neural networks and evaluations thereof.* To define the dynamic-programming table, we
 420 need to define what a partial solution is for the part of the architecture we have already seen in the
 421 dynamic program. Let $W \subseteq V(G)$. A W -partial neural network over architecture G is a tuple
 422 $(G, \text{weight}, \text{bias})$, where weight and bias are defined in the same way as for neural networks
 423 except that the domain of bias is W and the domain of weight is the set of arcs of G with both
 424 endpoints in W . Note that the activation value for a neuron v on a certain input vector is defined
 425 if for each path P in G from an input neuron to v all biases and weights of neurons and arcs on
 426 P are defined. Below we will additionally refer to activation values for further neurons based on
 427 assuming that they receive certain given weighted activation values from in-neighbors where biases
 428 or weights are not defined. More precisely, for a W -partial neural network, consider an input vector
 429 x . For some neurons v , including all of those whose in-neighbors are not all contained in W , we
 430 additionally specify the weighted activation value $\text{future}(x, v)$ that they receive from the in-
 431 neighbors not contained in W . This is sufficient to compute the activation values (as defined for
 non-partial neural networks) for all neurons in W , based on assuming the values $\text{future}(x, v)$.

432 Below we will omit explicit mention of this assumption when referring to the activation values as
433 long as it is clear from the context.
434

435 *The dynamic programming table.* Below, for a node $t \in V(T)$ in the tree decomposition we define
436 V_t to be the union of all bags of nodes that are either t or descendants of t in T . The dynamic-
437 programming table D is defined as follows. (Recall that \mathcal{X} is the set of input vectors.) Consider a
438 node $t \in V(T)$ in the tree decomposition, a function $\text{bias}: \chi(t) \rightarrow \mathbb{Z}_d$ assigning a bias to each
439 neuron in t 's bag, a function $\text{weight}: \{(u, v) \in E(G) \mid u, v \in \chi(t)\} \rightarrow \mathbb{Z}_d$ assigning a weight
440 to each arc in t 's bag, a function $\text{seen}: \mathcal{X} \times \chi(t) \rightarrow \mathbb{Z}_{d^2\Delta}$ assigning each neuron in t 's bag a set
441 of pre-activation values received from neurons in V_t , and a function $\text{future}: \mathcal{X} \times \chi(t) \rightarrow \mathbb{Z}_{d^2\Delta}$
442 assigning each neuron in t 's bag a set of pre-activation values to be received from neurons in $V \setminus V_t$.
443 We put $D[t, \text{bias}, \text{weight}, \text{seen}, \text{future}] = 1$ if there is a V_t -partial neural network \bar{G} over G
444 with the following properties, where all references to activation values are with respect to \bar{G} :
445

- (i) For each neuron v in $\chi(t)$ its bias in \bar{G} is $\text{bias}(v)$, and for each arc $(u, v) \in E(G)$ with
 $u, v \in \chi(t)$ the arc weight in \bar{G} is $\text{weight}(u, v)$.
- (ii) For each input vector $x \in \mathcal{X}$, assuming that for each neuron $v \in \chi(t)$ the pre-activation value
received from in-neighbors in $V(G) \setminus V_t$ is $\text{future}(x, v)$, then for each neuron $v \in \chi(t)$ the
pre-activation value received from in-neighbors in V_t is $\text{seen}(x, v)$.
- (iii) For each input vector $x \in \mathcal{X}$, for each input neuron in $V_t \setminus \chi(t)$ the activation value is exactly
the one specified in x .
- (iv) For each input-output pair (x, y) , for each output neuron $v \in V_t \setminus \chi(t)$, the activation of v on
input x is exactly as specified in y .

453 If there is no such neural network \bar{G} then we put $D[t, \text{bias}, \text{weight}, \text{seen}, \text{future}] = 0$.
454

455 The computation of the table D for each node of T and the running time is in the appendix. \square
456

457 Instances with nonzero error bounds can be reduced to the $\ell = 0$ setting in order to apply Lemma 3.
458

459 **Theorem 5 (★).** *d-QNNT is FPT wrt. the treewidth of G , the number α of input dimensions, and
460 the number ω of output dimensions.*

461 **Theorem 6 (★).** *d-QNNT is FPT w.r.t. the treewidth of G , the number α of input dimensions, and
462 the error bound ℓ .*

463 Finally, we show that the treewidth tw can be replaced by the width. If there is at least one hidden
464 layer, then we can show that indeed the width is an upper bound for tw and Theorems 5 and 6 directly
465 apply. Otherwise, we design two simple ad-hoc strategies that learn the neural networks optimally.
466

467 **Corollary 1 (★).** *d-QNNT is FPT with respect to $\alpha + \ell + \text{width}$.*

468 **Corollary 2 (★).** *d-QNNT is FPT with respect to $\alpha + \omega + \text{width}$.*
469

470 5 CONCLUDING REMARKS

471 Our work initiates the study of fully quantized ReLU neural network training from the classical as
472 well as parameterized complexity perspectives. We show that the problem remains NP-hard even
473 in highly restricted settings, but also provide positive results through the identification of non-trivial
474 fixed-parameter tractable fragments. We remark that the latter outcome contrasts the state of the
475 art for neural network training in the non-quantized setting. Indeed, in spite of being targeted by
476 several recent complexity-theoretic studies (Dey et al., 2020; Abrahamsen et al., 2021; Goel et al.,
477 2021; Boob et al., 2022; Froese & Hertrich, 2023; Bertschinger et al., 2023; Brand et al., 2023), to
478 date we do not know a single *non-trivial*⁴ parameterization that yields fixed-parameter tractability
479 for training non-quantized neural networks. Moreover, we believe that settling the parameterized
480 complexity of *d*-QNNT w.r.t. the input and output dimensionality (i.e., $\alpha + \omega$) will require insights
481 beyond the current state of the art and pose this as the main open question arising from our work.
482 Other important avenues of future work include whether our results can be extended to distillation,
483 and whether they could be used to obtain more efficient empirical algorithms.
484

485 ⁴By non-trivial, we mean that the parameter does not simply bound the input size.

486 REFERENCES
487

488 Mikkel Abrahamsen, Linda Kleist, and Tillmann Miltzow. Training neural networks is er-complete.
489 In *Proceedings of the Thirty-Fifth Annual Conference on Neural Information Processing Systems*
490 (*NeurIPS* '21), pp. 18293–18306, 2021. URL <https://proceedings.neurips.cc/paper/2021/hash/9813b270ed0288e7c0388f0fd4ec68f5-Abstract.html>.
491

492 Raman Arora, Amitabh Basu, Poorya Mianjy, and Anirbit Mukherjee. Understanding deep neural
493 networks with rectified linear units. In *Proceedings of the 6th International Conference on Learn-
494 ing Representations (ICLR '18)*. OpenReview.net, 2018. URL https://openreview.net/forum?id=B1J_rgWRW.
495

496 Ron Banner, Yury Nahshan, and Daniel Soudry. Post training 4-bit quantization of con-
497 volutional networks for rapid-deployment. In Hanna M. Wallach, Hugo Larochelle,
498 Alina Beygelzimer, Florence d'Alché-Buc, Emily B. Fox, and Roman Garnett (eds.),
499 *Proceedings of the 32nd Annual Conference on Neural Information Processing Systems* (*NeurIPS* 2019), pp. 7948–
500 7956, 2019. URL <https://proceedings.neurips.cc/paper/2019/hash/c0a62e133894cdce435bcb4a5df1db2d-Abstract.html>.
501

502

503 Daniel Bertschinger, Christoph Hertrich, Paul Jungeblut, Tillmann Miltzow, and Simon
504 Weber. Training fully connected neural networks is $\exists r$ -complete. In *Proceed-
505 ings of the Thirty-Seventh Annual Conference on Neural Information Processing Systems*
506 (*NeurIPS* '23), 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/71c31ebf577ffdad5f4a74156daad518-Abstract-Conference.html.
507

508

509 Avrim Blum and Ronald L. Rivest. Training a 3-node neural network is np-complete. *Neural
510 Networks*, 5(1):117–127, 1992. doi: 10.1016/S0893-6080(05)80010-3. URL [https://doi.org/10.1016/S0893-6080\(05\)80010-3](https://doi.org/10.1016/S0893-6080(05)80010-3).
511

512 Digvijay Boob, Santanu S. Dey, and Guanghui Lan. Complexity of training relu neural network.
513 *Discret. Optim.*, 44(Part):100620, 2022. doi: 10.1016/J.DISOPT.2020.100620. URL <https://doi.org/10.1016/j.disopt.2020.100620>.
514

515 Cornelius Brand, Robert Ganian, and Mathis Rocton. New complexity-theoretic fron-
516 tiers of tractability for neural network training. In *Proceedings of the Thirty-
517 Seventh Annual Conference on Neural Information Processing Systems* (*NeurIPS* '23),
518 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/b07091c16719ad3990e3d1ccee6641f1-Abstract-Conference.html.
519

520

521 Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. Binaryconnect: Training deep
522 neural networks with binary weights during propagations. In *Proceedings of the Twenty-
523 Ninth Annual Conference on Neural Information Processing Systems* (*NeurIPS* '15), pp.
524 3123–3131, 2015. URL <https://proceedings.neurips.cc/paper/2015/hash/3e15cc11f979ed25912dff5b0669f2cd-Abstract.html>.
525

526

527 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
528 Pilipczuk, Michal Pilipczuk, and Saket Saurabh. *Parameterized Algorithms*. Springer,
529 2015. doi: 10.1007/978-3-319-21275-3. URL <https://doi.org/10.1007/978-3-319-21275-3>.

530

531 Santanu S. Dey, Guanyi Wang, and Yao Xie. Approximation algorithms for training one-node relu
532 neural networks. *IEEE Trans. Signal Process.*, 68:6696–6706, 2020. doi: 10.1109/TSP.2020.
533 3039360. URL <https://doi.org/10.1109/TSP.2020.3039360>.

534

535 Ilan Doron-Arad. On the hardness of training deep neural networks discretely. In *Proceedings*
536 of the Thirty-Ninth AAAI Conference on Artificial Intelligence (AAAI '25), pp. 16363–16371.
537 AAAI Press, 2025. doi: 10.1609/AAAI.V39I15.33797. URL <https://doi.org/10.1609/aaai.v39i15.33797>.

538

539 Rodney G. Downey and Michael R. Fellows. *Fundamentals of Parameterized Complexity*. Texts in
Computer Science. Springer, 2013. doi: 10.1007/978-1-4471-5559-1. URL <https://doi.org/10.1007/978-1-4471-5559-1>.

540 Vincent Froese and Christoph Hertrich. Training neural networks is np-hard in fixed dimension. In
541 *Proceedings of the Thirty-Seventh Annual Conference on Neural Information Processing Systems*
542 (*NeurIPS '23*), 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/8948a8d039ed52d1031db6c7c2373378-Abstract-Conference.html.
543

544 Surbhi Goel, Adam R. Klivans, Pasin Manurangsi, and Daniel Reichman. Tight hardness re-
545 sults for training depth-2 relu networks. In *Proceedings of the 12th Innovations in Theoreti-
546 cal Computer Science Conference (ITCS '21)*, volume 185 of *LIPICS*, pp. 22:1–22:14. Schloss
547 Dagstuhl - Leibniz-Zentrum für Informatik, 2021. doi: 10.4230/LIPICS.ITCS.2021.22. URL
548 <https://doi.org/10.4230/LIPICS.ITCS.2021.22>.
549

550 Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew G.
551 Howard, Hartwig Adam, and Dmitry Kalenichenko. Quantization and training of neu-
552 ral networks for efficient integer-arithmetic-only inference. In *Proceedings of the 2018*
553 *IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2018)*, pp. 2704–
554 2713. Computer Vision Foundation / IEEE Computer Society, 2018. doi: 10.1109/CVPR.
555 2018.00286. URL http://openaccess.thecvf.com/content_cvpr_2018/html/Jacob_Quantization_and_Training_CVPR_2018_paper.html.
556

557 J. Stephen Judd. On the complexity of loading shallow neural networks. *J. Complex.*, 4(3):177–
558 192, 1988. doi: 10.1016/0885-064X(88)90019-2. URL [https://doi.org/10.1016/0885-064X\(88\)90019-2](https://doi.org/10.1016/0885-064X(88)90019-2).
559

560 J. Stephen Judd. *Neural network design and the complexity of learning*. Neural network modeling
561 and connectionism. MIT Press, 1990. ISBN 978-0-262-10045-8.
562

563 Richard M. Karp. Reducibility among combinatorial problems. In *Proceedings of a symposium*
564 *on the Complexity of Computer Computations*, The IBM Research Symposia Series, pp. 85–103.
565 Plenum Press, New York, 1972. doi: 10.1007/978-1-4684-2001-2_9. URL https://doi.org/10.1007/978-1-4684-2001-2_9.
566

567 Kordag Mehmet Kilic, Jin Sima, and Jehoshua Bruck. On algebraic constructions of neural networks
568 with small weights. In *Proceedings of the 2022 IEEE International Symposium on Information*
569 *Theory (ISIT '22)*, pp. 3007–3012. IEEE, 2022. doi: 10.1109/ISIT50566.2022.9834401. URL
570 <https://doi.org/10.1109/ISIT50566.2022.9834401>.
571

572 Tuukka Korhonen. A single-exponential time 2-approximation algorithm for treewidth. In *Proceed-
573 ings of the 62nd IEEE Annual Symposium on Foundations of Computer Science (FOCS '21)*, pp.
574 184–192. IEEE, 2022. doi: 10.1109/FOCS52979.2021.00026. URL <https://doi.org/10.1109/FOCS52979.2021.00026>.
575

576 Zewen Li, Fan Liu, Wenjie Yang, Shouheng Peng, and Jun Zhou. A survey of convolutional neural
577 networks: Analysis, applications, and prospects. *IEEE Trans. Neural Networks Learn. Syst.*, 33
578 (12):6999–7019, 2022. doi: 10.1109/TNNLS.2021.3084827. URL <https://doi.org/10.1109/TNNLS.2021.3084827>.
579

580 Xiaofan Lin, Cong Zhao, and Wei Pan. Towards accurate binary convolutional neural network. In
581 *Proceedings of the Thirity-First Annual Conference on Neural Information Processing Systems*
582 (*NeurIPS '17*), pp. 345–353, 2017. URL <https://proceedings.neurips.cc/paper/2017/hash/b1a59b315fc9a3002ce38bbe070ec3f5-Abstract.html>.
583

584 Yang Lin, Tianyu Zhang, Peiqin Sun, Zheng Li, and Shuchang Zhou. Fq-vit: Post-training quanti-
585 zation for fully quantized vision transformer. In *Proceedings of the Thirity-First International*
586 *Joint Conference on Artificial Intelligence (IJCAI '22)*, pp. 1173–1179. ijcai.org, 2022. doi:
587 10.24963/IJCAI.2022/164. URL <https://doi.org/10.24963/ijcai.2022/164>.
588

589 Chunlei Liu, Wenrui Ding, Yuan Hu, Xin Xia, Baochang Zhang, Jianzhuang Liu, and David S.
590 Doermann. Circulant binary convolutional networks for object recognition. *IEEE J. Sel. Top.*
591 *Signal Process.*, 14(4):884–893, 2020. doi: 10.1109/JSTSP.2020.2969516. URL <https://doi.org/10.1109/JSTSP.2020.2969516>.
592

593

594 Paulius Micikevicius, Sharan Narang, Jonah Alben, Gregory F. Diamos, Erich Elsen, David García,
595 Boris Ginsburg, Michael Houston, Oleksii Kuchaiev, Ganesh Venkatesh, and Hao Wu. Mixed
596 precision training. In *Proceedings of the 6th International Conference on Learning Representa-*
597 *tions (ICLR 2018)*. OpenReview.net, 2018. URL <https://openreview.net/forum?id=r1gs9JgRZ>.

598

599 Ian Parberry. On the complexity of learning with a small number of nodes. In *Proceedings of the*
600 *International Joint Conference on Neural Networks*, volume 3, pp. 893–898, 1992.

601

602 Neil Robertson and Paul D. Seymour. Graph minors. III. planar tree-width. *J. Comb. Theory B*, 36
603 (1):49–64, 1984. doi: 10.1016/0095-8956(84)90013-3. URL [https://doi.org/10.1016/0095-8956\(84\)90013-3](https://doi.org/10.1016/0095-8956(84)90013-3).

604

605 Michael Schmitt. Some dichotomy theorems for neural learning problems. *J. Mach. Learn.*
606 *Res.*, 5:891–912, 2004. URL <https://jmlr.org/papers/volume5/schmitt04a/schmitt04a.pdf>.

607

608

609 Sergey Vasil'evich Sevast'janov. On some geometric methods in scheduling theory: A survey.
610 *Discret. Appl. Math.*, 55(1):59–82, 1994. doi: 10.1016/0166-218X(94)90036-1. URL [https://doi.org/10.1016/0166-218X\(94\)90036-1](https://doi.org/10.1016/0166-218X(94)90036-1).

611

612 Ernst Steinitz. Bedingt konvergente Reihen und konvexe Systeme. *Journal für die reine und ange-*
613 *wandte Mathematik*, 143:128–176, 1913. doi: 10.1515/crll.1913.143.128.

614

615 Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, and Joel S. Emer. Efficient processing of deep neural
616 networks: A tutorial and survey. *Proc. IEEE*, 105(12):2295–2329, 2017. doi: 10.1109/JPROC.
617 2017.2761740. URL <https://doi.org/10.1109/JPROC.2017.2761740>.

618 Ruizhe Wang, Yeyun Gong, Xiao Liu, Guoshuai Zhao, Ziyue Yang, Baining Guo, Zhengjun Zha,
619 and Peng Cheng. Optimizing large language model training using FP4 quantization. In *Proceed-*
620 *ings of the Forty-Second International Conference on Machine Learning (ICML '25)*, Proceedings
621 of Machine Learning Research. PMLR, 2025. URL <https://openreview.net/forum?id=uK7JArZEJM>. to appear.

622

623 Zhaohui Yang, Yunhe Wang, Kai Han, Chunjing Xu, Chao Xu, Dacheng Tao, and
624 Chang Xu. Searching for low-bit weights in quantized neural networks. In *Proceed-*
625 *ings of the Thirty-Fourth Annual Conference on Neural Information Processing Systems*
626 (*NeurIPS '20*), 2020. URL <https://proceedings.neurips.cc/paper/2020/hash/2a084e55c87b1ebcdaad1f62fdbbac8e-Abstract.html>.

627

628

629 Shuchang Zhou, Zekun Ni, Xinyu Zhou, He Wen, Yuxin Wu, and Yuheng Zou. Dorefa-net: Training
630 low bitwidth convolutional neural networks with low bitwidth gradients. *CoRR*, abs/1606.06160,
631 2016. URL <http://arxiv.org/abs/1606.06160>.

632

633 Chenzhuo Zhu, Song Han, Huizi Mao, and William J. Dally. Trained ternary quantization. In
634 *Proceedings of the 5th International Conference on Learning Representations (ICLR '17)*. Open-
635 Review.net, 2017. URL https://openreview.net/forum?id=S1_pAu9x1.

636

637 Shilin Zhu, Xin Dong, and Hao Su. Binary ensemble neural network: More bits per network
638 or more networks per bit? In *Proceedings of the IEEE Conference on Computer Vision and*
639 *Pattern Recognition (CVPR '19)*, pp. 4923–4932. Computer Vision Foundation / IEEE, 2019.
640 doi: 10.1109/CVPR.2019.00506. URL http://openaccess.thecvf.com/content_CVPR_2019/html/Zhu_Binary_Ensemble_Neural_Network_More_Bits_per_Network_or_More_CVPR_2019_paper.html.

641

642

643

644

645

646

647

000
001
002
003
004
005
006
007
008
009

TRACTABILITY VIA LOW DIMENSIONALITY: THE PARAMETERIZED COMPLEXITY OF TRAINING QUANTIZED NEURAL NETWORKS

010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

(APPENDIX: FULL VERSION)

Anonymous authors

Paper under double-blind review

ABSTRACT

The training of neural networks has been extensively studied from both algorithmic and complexity-theoretic perspectives, yet recent results in this direction almost exclusively concern real-valued networks. In contrast, advances in machine learning practice highlight the benefits of *quantization*, where network parameters and data are restricted to finite integer domains, yielding significant improvements in speed and energy efficiency. Motivated by this gap, we initiate a systematic complexity-theoretic study of ReLU Neural Network Training in the full quantization mode. We establish strong lower bounds by showing that hardness already arises in the binary setting and under highly restrictive structural assumptions on the architecture, thereby excluding parameterized tractability for natural measures such as depth and width. On the positive side, we identify nontrivial fixed-parameter tractable cases when parameterizing by input dimensionality in combination with width and either output dimensionality or error bound, and further strengthen these results by replacing width with the more general treewidth.

1 INTRODUCTION

A crucial task tied to the use of neural networks is their training. On a high level, this training task can be characterized as follows: given a neural network architecture G and a data set \mathcal{D} of input-output pairs, compute weights and biases of G which minimize the error achieved by the network on \mathcal{D} . While we have powerful heuristics for solving this problem (Sze et al., 2017; Li et al., 2022), it also exhibits highly interesting behavior on the complexity-theoretical level and has been studied from this perspective in a series of recent foundational papers (Dey et al., 2020; Abrahamsen et al., 2021; Goel et al., 2021; Boob et al., 2022; Froese & Hertrich, 2023; Bertschinger et al., 2023; Brand et al., 2023). A detailed discussion of the state of the art is deferred to the end of this section; nevertheless, it will be useful to note that for a crisper complexity analysis one typically considers the equivalent *decision* formulation of the problem—i.e., where the input also includes an error bound ℓ and the algorithm is allowed to output “no” if such an error bound cannot be achieved by any combination of weights and biases.¹

A common feature of all the above-mentioned complexity-theoretical works targeting the above NEURAL NETWORK TRAINING (NNT) problem is that they assume the numbers occurring in the network to be reals. This is a natural perspective that matches the classical formalization of neural networks. However, a series of recent advances have shown that one can significantly improve speed and energy efficiency by *quantizing* the neural network, i.e., forcing the numbers to lie in a specified domain of integers (Kilic et al., 2022). For example, Wang et al. (2025) recently showed that one can achieve accuracy results comparable to the real-valued setting when quantizing to 4 bits, i.e., with a domain size of 16; see also the preceding works of Yang et al. (2020) and Lin et al. (2022). Other

¹Technically, in decision problems one is not required to output the weights and biases for positive instances; however, every algorithm obtained or mentioned in this article is constructive and capable of doing so. We note that the optimization task can be reduced to the decision formulation via a trivial search routine on ℓ .

054 works have also considered even stronger degrees of quantization, such as using binary domains (Lin
055 et al., 2017; Zhu et al., 2019; Liu et al., 2020). In fact, several different methods have been developed
056 to obtain high-quality quantized neural networks such as fully-quantized training (Zhou et al., 2016),
057 mixed-precision training (Micikevicius et al., 2018), post-training quantization (Banner et al., 2019),
058 and quantization-aware training (Jacob et al., 2018).

059 Yet, the recent developments outlined above are not at all reflected in our understanding of the
060 underlying foundational problem: neither the complexity-theoretic lower bounds (Dey et al., 2020;
061 Abrahamsen et al., 2021; Goel et al., 2021; Froese & Hertrich, 2023; Bertschinger et al., 2023), nor
062 the algorithms underpinning our upper bounds for solving the training problem (Arora et al., 2018;
063 Boob et al., 2022; Brand et al., 2023) can be translated into the quantized setting. We note that
064 this does not seem to be merely the case of a missing “bridge” that would allow one to translate
065 knowledge from one setting to the other—the training problem in the real-valued setting is $\exists\mathbb{R}$ -
066 complete (Abrahamsen et al., 2021; Bertschinger et al., 2023) but with quantization it is easily seen
067 to lie in NP (see Section 2), pointing to a fundamental difference between the two settings. Until
068 now, we lacked any complexity-theoretic study targeting NNT in the fully quantized setting.

069 The aim of this article is to fill the aforementioned gap by developing a comprehensive understanding
070 of QUANTIZED RELU-NNT (see Section 2 for formal details and a discussion of the error bound):

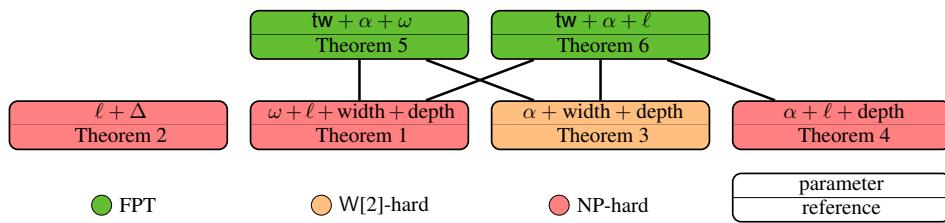
071 ***d*-QUANTIZED RELU-ACTIVATED NEURAL NETWORK TRAINING (*d*-QNNNT)**

072 **Input:** An architecture G with α input and ω output nodes, a multiset \mathcal{D} of d -quantized data
073 points, and an error bound ℓ .
074 **Output:** A d -quantized neural network \bar{G} over G such that the error of \mathcal{D} on \bar{G} is at most ℓ ,
075 or a correct conclusion that no such network exists.

076 We remark that here we focus on the ReLU activation function, as it is widely used in practice and
077 has been the target of almost all foundational studies of non-quantized NNT to date (Dey et al., 2020;
078 Abrahamsen et al., 2021; Goel et al., 2021; Boob et al., 2022; Froese & Hertrich, 2023; Bertschinger
079 et al., 2023; Brand et al., 2023). Our results include not only lower bounds, but also the identification
080 of tractable cases via the development of theoretical algorithms. All our lower bounds apply already
081 to the simplest binary quantization, while our tractability results hold for arbitrary choices of the
082 quantization constant d .

083 In order to construct a more detailed complexity map of d -QNNNT, we perform our analysis also taking
084 into account the *parameterized complexity* paradigm (Cygan et al., 2015; Downey & Fellows,
085 2013) which associates problem instances with a suitably defined parameter, i.e., a numerical measure
086 that captures various aspects of the instance. In the classical perspective, one would typically
087 ask whether restricting the parameter k to a constant allows us to solve instances in time polynomial
088 w.r.t. the input size n . By contrast, the most desirable notion of tractability in the more refined para-
089 meterized paradigm is *fixed-parameter tractability* (FPT), meaning that the problem can be solved
090 in time $f(k) \cdot n^{\mathcal{O}(1)}$ for some computable function f . To exclude inclusion in FPT, one can either
091 show that the problem is W[1]- or W[2]-hard (which still allows for the existence of algorithms
092 running in time, e.g., $n^{\mathcal{O}(k)}$), or NP-hard for a fixed value of k .

093 **Contributions.** For convenience, Figure 1 provides a mindmap of results that is intended to complement
094 the description of our contributions.



105 Figure 1: Overview of our results for d -QNNNT. A combined parameter p consisting of single pa-
106 rameters p_1, p_2, p_3 has an edge to a lower combined parameter q if dropping one of the single
107 parameters p_i yields hardness. We use Δ to denote the maximum degree of any neuron. Our main
open question concerns the complexity w.r.t. $\alpha + \omega$ —see the Technical Overview and Section 5.

108 Well-studied properties of the architecture G that might, at first glance, seem as natural choices for
109 parameters are its *depth* (the number of hidden layers) and *width* (the size of the largest hidden
110 layer)—a direction which we explore in our **first set of contributions**.

111 As a baseline result, we exclude any notion of parameterized tractability w.r.t. these two measures
112 even when combined with the error bound ℓ and the output dimensionality ω . In particular, in
113 Theorem 1 we show that 2-QNNT remains NP-hard even when restricted to instances where $\ell = 0$,
114 there is only a single output node and no hidden layer—a result which shows that even training very
115 simple quantized architectures is computationally intractable and forms a counterpart to the well-
116 known intractability of training a single neuron in the non-quantized setting (Goel et al., 2021; Dey
117 et al., 2020). Naturally, the reduction underlying Theorem 1 relies on the single output neuron having
118 large indegree—however, in our second Theorem 2 we establish the NP-hardness of 2-QNNT even
119 on constant-degree architectures with a single hidden layer and $\ell = 0$. This latter result can be seen
120 as a constant-degree counterpart to the $\exists R$ -hardness of training shallow non-quantized networks to
121 optimality (Abrahamsen et al., 2021).

122 While the above lower bounds paint a negative picture of the complexity of d -QNNT, there is a
123 silver lining: both reductions inherently require the input dimensionality α to be large. As our
124 **second set of contributions**, we show that parameterizing by α enables fixed-parameter neural
125 network training in the quantized setting—but only when combined with additional restrictions. In
126 particular, our results imply that for every fixed d , d -QNNT is fixed-parameter tractable w.r.t. the
127 combined parameterizations:

- 128 1. input dimensionality α , the width of G and output dimensionality ω (Corollary 2);
129 2. input dimensionality α , the width of G and the error bound ℓ (Corollary 1).

130 The above results naturally lead to the question of whether all of the parameters are required to
131 achieve fixed-parameter tractability—in other words, could any of the parameters be dropped from
132 the statement? For α , we already know that this is not the case: Theorem 1 rules out polynomial-time
133 algorithms even if the width, ω and ℓ are small constants.

134 Given the fact that both positive results rely on parameterizing by the width and α , it would be
135 tempting to think that d -QNNT is fixed-parameter tractable w.r.t. α and the width alone—i.e., that
136 the third parameter can be dropped in both statements. As our **third contribution**, in Theorem 3
137 we rule this out by establishing the $W[2]$ -hardness of 2-QNNT w.r.t. α even on networks with no
138 hidden layer. This means that neither ω , nor ℓ can be dropped from our algorithmic upper bounds.

139 The above considerations leave the width as the only possible “weak point” in Corollaries 1 and 2.
140 As our **fourth contribution**, we show that—at least if one wishes to preserve both positive results—
141 it is neither possible to drop the width, nor replace it with the depth of G . In particular, our Theorem 4
142 shows that 2-QNNT is NP-hard even when $\alpha = 2$, there is a single hidden layer and $\ell = 0$.

143 While the width cannot be dropped or replaced by depth, as our **final fifth contribution** we show
144 that Corollaries 1 and 2 can be strengthened: in particular, we prove that the results hold even if
145 one replaces the width of architecture G with its *treewidth* $\text{tw}(G)$ (Robertson & Seymour, 1984).
146 The latter is a well-established measure of the tree-likeness of a graph; on architectures with hidden
147 neurons it never exceeds the width, but can be arbitrarily smaller (see Section 4). For example, an
148 architecture consisting of layers whose width alternates between small and large will have large
149 width, but small treewidth. Thus, while non-trivial to prove, the following two results supersede and
150 directly imply Corollaries 1 and 2:

151 1*. d -QNNT is fixed-parameter tractable w.r.t. $\alpha + \text{tw}(G) + \omega$ (Theorem 5);
152 2*. d -QNNT is fixed-parameter tractable w.r.t. $\alpha + \text{tw}(G) + \ell$ (Theorem 6).

153
154
155 **Technical Overview.** To obtain our lower bounds, we develop targeted reductions from a variety
156 of problems, including BOOLEAN SATISFIABILITY, HITTING SET, and SET COVER. While each
157 of the reductions is distinct, the constructed architectures are often very dense and have simple graph
158 structures. In other words, our results show that the difficulty of training in the quantized setting does
159 not stem from the complexity of the architecture, but rather from the presence of high-dimensional
160 data on the input or output. In fact, the main open question arising from our work is whether the con-
161 verse is true: can we efficiently solve instances of d -QNNT with possibly complicated architectures,
but constant input and output data dimensionality (i.e., $\alpha + \omega$)?

162 For our positive results—specifically, Theorems 5 and 6—the main technical difficulty is that the
163 trained n -node networks could contain hidden neurons with $\Theta(n)$ incoming arcs from the pre-
164 ceding layer that have non-zero weights. Indeed, it is not difficult to construct instances with
165 such solutions—and yet the dynamic programming techniques that form the cornerstone of most
166 treewidth-based algorithms are incapable of efficiently searching for them. To deal with this issue,
167 we make a detour and first establish a structural insight that we believe is of independent interest:
168 every YES-instance of d -QNNT admits at least one solution where the number of activated arcs en-
169 tering any node is upper-bounded by a function of the parameters. This is formalized in Lemma 1,
170 and relies on an involved proof that builds on Steinitz’ Lemma.

171 **Related Work.** The complexity of non-quantized NEURAL NETWORK TRAINING has been stud-
172 ied predominantly in the ReLU-activated setting (i.e., the one targeted in our article). The only other
173 setting considered in complexity-theoretic studies to date is the one with linearly activated neu-
174 rons; there, the non-quantized problem was shown to be $\exists R$ -complete (Abrahamsen et al., 2021) but
175 polynomial-time solvable for certain special classes of architectures (Brand et al., 2023). For ReLU-
176 activated neurons, the non-quantized training problem is known to be $\exists R$ -complete even when re-
177 stricted to exact training on architectures with two input neurons, two output neurons and two hidden
178 layers (Bertschinger et al., 2023). A series of works have shown that the same training problem is
179 computationally intractable also when restricted to architectures with a single hidden neuron (Dey
180 et al., 2020; Goel et al., 2021; Froese et al., 2022; Froese & Hertwich, 2023). In terms of upper
181 bounds, Arora et al. (2018) established polynomial-time tractability when training non-quantized
182 instances with a single non-activated output neuron; their result was subsequently improved to an
183 activated output neuron (Boob et al., 2022), and most recently generalized to architectures with
184 maximum output degree of at most one (Brand et al., 2023).

185 Apart from the articles on fully-quantized neural networks mentioned in the second paragraph, we
186 remark that several of the earlier works in the field also considered models where only the activa-
187 tions are quantized but not the data (Courbariaux et al., 2015; Zhu et al., 2017). Moreover, Judd
188 (1988), Blum & Rivest (1992), and Parberry (1992) established the NP-hardness of training par-
189 tially quantized networks over 30 years ago; in their models, the data/signals are quantized but not
190 the activations. These latter results also hold for highly restricted architectures, including planar
191 architectures (Judd, 1988) and architectures of constant internal width (Blum & Rivest, 1992).

192 We note that algorithms and lower bounds for training fully quantized neural networks have been
193 studied in a handful of past works, but not for the standard ReLU activation function considered
194 here. In his dissertation, Judd (1990) established lower bounds for Boolean NNT with activations
195 modeled as AND and OR gates rather than ReLU. Schmitt (2004) studied fully quantized NNT
196 with linear activations and also quantized NNT where the thresholds (i.e., biases) are not restricted
197 by quantization. Finally, the very recent work of Doron-Arad (2025) considers quantized NNT with
198 division-based activation functions. In particular, the NP-hardness of 2-QNNT can be inferred from
199 the reduction in the seminal work of Judd (1990, Theorem 24) on training Boolean neural networks
200 with AND and OR gates, and separately also from the reduction in Schmitt (2004, Theorem 7) us-
201 ing linear activation functions. However, our Theorems 1 to 4 obtain lower bounds in conjunction
202 with additional restrictions on the inputs that are required for our parameterized lower bounds. Cru-
203 cially, we are aware of neither any in-depth multivariate complexity analysis in this setting, nor any
204 works directly targeting the complexity of quantized neural network training with ReLU activation
205 functions.

2 PRELIMINARIES

208 For an integer $d \geq 1$, we define the d -quantized integer domain \mathbb{Z}_d as $\{z \in \mathbb{Z} \mid -\lfloor \frac{d-1}{2} \rfloor \leq z \leq$
209 $\lceil \frac{d-1}{2} \rceil\}$, that is, $\mathbb{Z}_2 = \{0, 1\}$, $\mathbb{Z}_3 = \{-1, 0, 1\}$, $\mathbb{Z}_4 = \{-1, 0, 1, 2\}$ and so forth². The d -domain
210 ReLU activation function $\text{ReLU}_d : \mathbb{Z}_d \rightarrow \mathbb{Z}_d$ is the restriction of the well-known rectified linear unit
211 to \mathbb{Z}_d —that is, all negative values are mapped to 0 while on positive values ReLU_d is the identity
212 except that inputs outside of \mathbb{Z}_d become $\max \mathbb{Z}_d$.

213 ²Our model matches, e.g., the so-called “E1M2” format of the 4-bit floating point standard FP4. Other
214 low-bit number encodings have also been considered in the quantized setting (Wang et al., 2025), but we focus
215 our exposition on this theoretically cleanest model. While we do not formally prove this, all obtained results
seem to readily carry over to different low-bit number encodings with only minor modifications to the proofs.

We say that a *network architecture* is a directed acyclic graph (a *DAG*) G whose vertex sets are partitioned into *layers*, where layer 0 consists solely of sources, and such that an arc ab may only go from a vertex in layer i (for $i \in \mathbb{N}$) to a vertex in layer $i + 1$ and all sinks lie in the same layer. We will refer to the *sources* and *sinks* the *input* and *output* neurons of G , respectively, while all other nodes of G are referred to as *hidden neurons*. We assume that the sources are equipped with a fixed ordering, and the same also for the sinks. The maximum size of a layer with only hidden neurons is called the *width* of G , while we refer to the number of layers as the *depth* of G .

Let us fix a d -quantized integer domain \mathbb{Z}_d . A neural network \bar{G} over an architecture G is a tuple $(G, \text{weight}, \text{bias})$ where the weight function *weight* assigns each arc of G a weight from \mathbb{Z}_d , and the bias function *bias* assigns each non-source node of G a bias from \mathbb{Z}_d . Let the number of input and output neurons of G be α and ω , respectively. The *evaluation* of an input data vector $\vec{x} \in (\mathbb{Z}_d)^\alpha$ is a mapping f which assigns each node of G a *value* (or *activation*) computed as follows:

- The i -th input neuron receives the value $\vec{x}[i]$;
- For each neuron $v \in V(G)$ with predecessors z_1, \dots, z_q , we set its value as³ $\text{ReLU}_d((\sum_{i \in [q]} f(z_i) \cdot \text{weight}(z_i v)) - \text{bias}(v))$.

The input to ReLU_d above is sometimes called the *pre-activation value*. Given a data point $p \in \mathcal{D}$, we say that a neuron q is *active* in \bar{G} if in the evaluation of p , the neuron q receives a positive activation; otherwise, it is *inactive*. We denote the restriction of f to the output nodes, represented as a vector of integers in $(\mathbb{Z}_d)^\omega$ ordered by the output neurons, as the *output* of the neural network on \vec{x} . In the training setting, we will be dealing with d -quantized data points from $(\mathbb{Z}_d)^\alpha \times (\mathbb{Z}_d)^\omega$. The *error* of a multiset of such data points is equal to the number of misaligned data points, i.e., the number of pairs (\vec{x}, \vec{y}) in the multiset such that the output of $(G, \text{weight}, \text{bias})$ on \vec{x} differs from \vec{y} . With these definitions in place, we can restate our problem of interest:

d -QUANTIZED RELU-ACTIVATED NEURAL NETWORK TRAINING (d -QNNT)

Input: An architecture G with α input and ω output nodes, a multiset \mathcal{D} of d -quantized data points, and an error bound ℓ .
Output: A d -quantized neural network \bar{G} over G such that the error of \mathcal{D} on \bar{G} is at most ℓ , or a correct conclusion that no such network exists.

d -QNNT is in NP (a certificate consists of a linear number of integers from \mathbb{Z}_d), which contrasts the $\exists R$ -completeness of the training problem in the non-quantized setting. In the non-quantized setting, one typically uses a wide variety of loss functions tailored to real-valued errors such as ℓ_2^2 (Brand et al., 2023)—here, we focus on a simple error count (as also used, e.g., by Judd (1990)) in order to facilitate a cleaner analysis. The majority of our proofs could nevertheless be directly and straightforwardly translated to other loss functions (this is easiest to see for Theorems 1, 2, 4, 5).

Treewidth. A *tree decomposition* \mathcal{T} of an undirected graph G is a pair (T, χ) , where T is a tree and χ is a function that assigns each tree node t a set $\chi(t) \subseteq V(G)$ of vertices such that the following conditions hold:

(P1) For every edge $e \in E(G)$ there is a tree node t such that $e \subseteq \chi(t)$.
(P2) For every vertex $v \in V(G)$, the set of tree nodes t with $v \in \chi(t)$ induces a non-empty subtree of T .

The sets $\chi(t)$ are called *bags* of the decomposition \mathcal{T} , and $\chi(t)$ is the bag associated with the tree node t . The *width* of a tree decomposition (T, χ) is the size of a largest bag minus 1. The *treewidth* of a graph G , denoted by $\text{tw}(G)$, is the minimum width over all tree decompositions of G .

For presenting our dynamic-programming algorithms, it is convenient to consider tree decompositions in the following normal form Kloks (1994): A tree decomposition (T, χ) is a *nice tree decomposition* of a graph G if the tree T is rooted at a node r , and each node of T is of one of the following four types:

1. a *leaf node*: a node t having no children and $|\chi(t)| = 1$;

³We note that the bias is subtracted instead of added to the result due to the fact that, in the Boolean-domain case, subtracting allows the bias to actually interact with the weights (see also Kilic et al. (2022)). For larger domains, the distinction is inconsequential since we can flip the sign of the bias.

270 2. an *introduce node*: a node t having exactly one child t' , and $\chi(t) = \chi(t') \cup \{v\}$ for a node
 271 v of G ;
 272 3. a *forget node*: a node t having exactly one child t' , and $\chi(t) = \chi(t') \setminus \{v\}$ for a node v of
 273 G ;
 274 4. a *join node*: a node t having exactly two children t_1, t_2 , and $\chi(t) = \chi(t_1) = \chi(t_2)$.

275 For convenience we will also assume that $\chi(r) = \emptyset$ for the root r of T . We can achieve this
 276 straightforwardly by introducing forget nodes above the root until its bag is empty.

278 Given a graph G with treewidth tw , a tree decomposition of width at most $2\text{tw}+1$ can be computed in
 279 $2^{\mathcal{O}(\text{tw})} \cdot |V(G)|$ time (Korhonen, 2022). A tree decomposition \mathcal{T} of width tw can be turned into a nice
 280 tree decomposition of the same width and with $\mathcal{O}(\text{tw}|V(G)|)$ nodes in $\mathcal{O}(\text{tw} \cdot \max(|V(G)|, |V(T)|))$
 281 time (Cygan et al., 2015, Lemma 7.4).

282 As mentioned in the introduction, our fixed-parameter algorithms that utilize treewidth (Theorems 5
 283 and 6) generalize and imply the corresponding results for width. To see this, we prove the following
 284 structural observation:

285 **Observation 1.** *For each architecture G containing at least one hidden neuron, $\text{tw}(G)$ is upper-
 286 bounded by twice the width of G .*

288 *Proof.* Let $V_{\text{in}}, V_i, V_{\text{out}}$ denote the input neurons, hidden neurons in layer $i \in [q]$ where q is the
 289 depth, and the output neurons, respectively. We construct a tree decomposition \mathcal{T} with the desired
 290 width as follows: (1) For each $v_{\text{in}} \in V_{\text{in}}$ we create a bag consisting of $v_{\text{in}} \cup V_1$ (in-bags), (2) for
 291 each $i \in [q-1]$ we create a bag consisting of $V_i \cup V_{i+1}$ (inner-bags), and (3) for each $v_{\text{out}} \in V_{\text{out}}$ we
 292 create a bag consisting of $v_{\text{out}} \cup V_q$ (out-bags). The bags are connected as follows: (1) Each in-bag
 293 is adjacent to the inner-bag $V_1 \cup V_2$, (2) inner-bag $V_i \cup V_{i+1}$ is adjacent to the inner bag $V_{i+1} \cup V_{i+2}$,
 294 and (3) each out-bag is adjacent to the inner-bag $V_{q-1} \cup V_q$. The claim follows by the fact that each
 295 bag in \mathcal{T} either forms a subset of two hidden layers, or is a hidden layer plus a single neuron. \square

297 On the other hand, note that $\text{tw}(G)$ can be arbitrarily smaller than the width since very large hidden
 298 layers can alternate with very small hidden layers (in which case one can construct a tree decompo-
 299 sition whose width is twice the size of the smaller hidden layers).

300 **Parameterized Complexity.** In parameterized complexity (Downey & Fellows, 2013; Cygan
 301 et al., 2015), the running-times of algorithms are studied with respect to a parameter $p \in \mathbb{N}$ and
 302 input size n . It is normally used for NP-hard problems, with the aim of finding a parameter de-
 303 scribing a feature of the instance such that the combinatorial explosion is confined to this parameter.
 304 A parameterized problem is *fixed-parameter tractable* (FPT) if it can be solved by an algorithm
 305 running in time $f(p) \cdot n^{\mathcal{O}(1)}$, where f is a computable function

306 Proving that a problem is W[2]-hard (or W[1]-hard) via a *parameterized reduction* from a W[2]-
 307 hard (W12)-hard, respectively) problem \mathcal{P} rules out the existence of a fixed-parameter algorithm
 308 under the well-established hypothesis that $\text{W}[1] \neq \text{FPT}$. A parameterized reduction from \mathcal{P} to a
 309 parameterized problem \mathcal{Q} is a function which:

311 • maps YES-instances to YES-instances and NO-instances to NO-instances,
 312 • is computable in time $f(p) \cdot n^{\mathcal{O}(1)}$, where f is a computable function, and
 313 • ensures the parameter of the output instance can be upper-bounded by some function of the
 314 parameter of the input instance.

315 3 LOWER BOUNDS FOR d -QNNT

318 In this section, we show that 2-QNNT remains intractable in highly restrictive settings. First, in
 319 Theorem 1, we establish NP-hardness even if the architecture has no hidden neuron, only one out-
 320 put neuron, and for training without error. Note that Theorem 1 implies NP-hardness even when the
 321 combined parameter width + depth + $\ell + \omega$ is upper-bounded by a constant. Naturally, the corre-
 322 sponding reduction requires the output neurons to have an arbitrarily large degree. One could hence
 323 hope that architectures with constant maximum degree can be trained efficiently. In Theorem 2, we
 324 show that this is not possible by establishing NP-hardness for this setting.

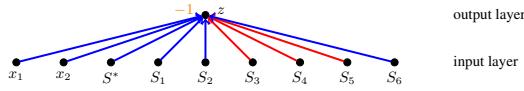


Figure 2: An illustration of the reduction behind Theorem 1 for the universe $U = [6]$ and the set family \mathcal{F} with sets $S_1 = \{1, 4, 5\}$, $S_2 = \{2, 3\}$, $S_3 = \{1, 6\}$, $S_4 = \{2, 5\}$, $S_5 = \{3, 5\}$, $S_6 = \{6\}$ with an exact set cover $\mathcal{S} = \{S_1, S_2, S_6\}$. In the solution corresponding to \mathcal{S} , each red arc has weight 0 and each blue arc has weight 1. The orange number is the bias of the output neuron.

In both the reductions that underlie Theorems 1 and 2 the number of input neurons is large and in particular not upper-bounded by a function of the parameters. Hence, one could hope that a small or even constant number of inputs allows for efficient training. We show that this is not the case either. First, in Theorem 3, we provide $W[2]$ -hardness for α even if there is no hidden layer. Second, in Theorem 4, we show that 2-QNNT remains NP-hard even if there are only 2 inputs and 1 hidden layer. Altogether, these results yield the lower bounds depicted in Figure 1.

Theorem 1. 2-QNNT is NP-hard even when restricted to instances where $\ell = 0$ and architectures with a single output neuron and no hidden neuron.

Proof. We provide a reduction from the NP-hard EXACT SET COVER problem (Karp, 1972) where the input consists of a universe U , and a family \mathcal{F} of subsets over U . The goal is to find a subset $\mathcal{S} \subseteq \mathcal{F}$ such that \mathcal{S} is a partition of U , that is, 1) $\bigcup_{S \in \mathcal{S}} S = U$ and 2) $S_1 \cap S_2 = \emptyset$ for each $S_1, S_2 \in \mathcal{S}$.

Construction. We construct an equivalent instance I of 2-QNNT as follows; see Figure 2 for an illustration.

Description of the architecture G . Abusing notation, for each set $F \in \mathcal{F}$ we create a *set input neuron* F . Moreover, we add 3 more *dummy input neurons* S^* , x_1 , and x_2 , respectively. Finally, we add one output neuron z and add an arc from each input neuron to the unique output neuron z .

Description of the data set. For each element $u \in U$ we add two *element data points*: d_u^1 and d_u^2 : both have value 1 in each input corresponding to a set containing u and value 0 in dummy inputs x_1 and x_2 . Moreover, d_u^1 has value 0 in dummy input S^* and value 0 in output z , and d_u^2 has value 1 in dummy input S^* and value 1 in output z . Finally, we add three further data points: *dummy data points* d_{01} , d_{10} , and d_{11} . All three have value 0 in each set input and in dummy input S^* . Moreover, d_{01} has values $x_1 = 0$, $x_2 = 1$ and output value 0, d_{10} has values $x_1 = 1$, $x_2 = 0$ and output value 0, and d_{11} has values $x_1 = 1$, $x_2 = 1$ and output value 1.

Finally, we set $\ell = 0$. To complete the proof, it remains to establish correctness. (\star)

Correctness. We verify that (U, \mathcal{F}) has an exact set cover \mathcal{S} if and only if I is a yes-instance of 2-QNNT.

(\Rightarrow) Let \mathcal{S} be an exact cover for (U, \mathcal{F}) . We now argue that assigning the unique output neuron z a bias of -1 , a weight of 1 to each arc starting from a set $S \in \mathcal{S}$ or any dummy input, and weight 0 to any remaining arc, yields a solution to I . The dummy data points clearly yield the desired output. Moreover, for any element $u \in U$ the output of data point d_u^1 is 0 since there is exactly one set $S \in \mathcal{S}$ containing u . By the same argument data point d_u^2 yields output 1 since additionally dummy input S^* has value 1.

(\Leftarrow) First observe that all dummy data points can only yield the desired outputs if the bias of the unique output z is 1, and the weights of the arcs (x_1, z) and (x_2, z) is 1. Now, we set $\mathcal{S} := \{S \in \mathcal{F} : \text{weight}(S, z) = 1\}$ and we claim that \mathcal{S} is an exact set cover for (U, \mathcal{F}) : 1) Since set data point d_u^1 yields output 0, at most one set can contain element u . 2) Since set data point d_u^2 yields output 1 and the unique input which has value 1 for d_u^2 which is not a set input is the dummy input S^* , we observe that at least one set has to contain element u . This now implies that each element is covered exactly once and thus \mathcal{S} is an exact set cover. \square

We note that one could also obtain Theorem 1 by carefully adapting the hardness proof of Schmitt (2004, Theorem 7) to our setting. However, the reduction we provide here is simpler, self-contained,

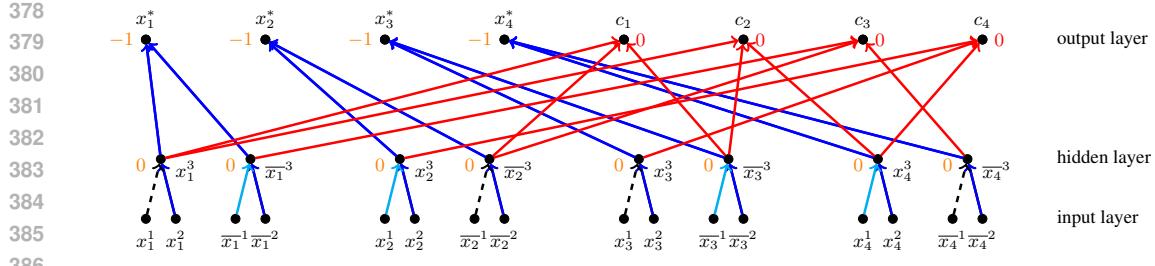


Figure 3: An illustration of the reduction behind Theorem 2 for the formula Φ with clauses $c_1 = x_1 \vee \overline{x_2} \vee \overline{x_3}$, $c_2 = x_1 \vee \overline{x_3} \vee x_4$, $c_3 = \overline{x_1} \vee \overline{x_2} \vee \overline{x_4}$, and $c_4 = x_2 \vee x_3 \vee x_4$ (here the property that each literal appears exactly twice is dropped) with a satisfying assignment \mathcal{A} with $\{x_2, x_4\} \mapsto \text{true}$ and $\{x_1, x_3\} \mapsto \text{false}$. In an optimal solution S the blue arcs are the edges of the fake variable gadgets. The all/true/false fake data point imply that all these blue arcs have weight 1 and also that the biases shown in orange. These gadget enforce the selection of an assignment of the variables. Moreover, in S we can assume without loss of generality that the weight of the red arcs is 1 and that the biases shown in red are 0. The cyan arcs correspond to the assignment \mathcal{A} and have weight 1 and the dashed black arcs have weight 0. Moreover, \mathcal{A} needs to be satisfying because of the red part.

and additionally also implies W[1]-hardness with respect to the number of arcs with weight one in the solution. We continue by stating the hardness for constant-degree architectures; since this result is not central to our complexity landscape (see Figure 1), we defer its proof to the appendix.

Theorem 2. 2-QNNT is NP-hard even when restricted to instances where $\ell = 0$, $|\mathcal{D}| \leq 4$, and architectures with only one hidden layer, maximum outdegree 3, and maximum indegree 2.

Proof. We present a reduction from the NP-complete (3, B2)-SAT problem (Berman et al., 2003), a variant of 3-SAT where one is given a CNF formula Φ on variables x_1, \dots, x_n where each of the m clauses contains exactly three literals and each literal x_i and $\overline{x_i}$ occurs exactly twice in Φ .

Construction. We construct an equivalent instance I of d -QNNT as follows. For an illustration, see Figure 3.

Description of architecture G . For each literal ℓ_i (note that $\ell_i = x_i$ or $\ell_i = \overline{x_i}$) we create 3 neurons: an *original input neuron* ℓ_i^1 , a *fake input neuron* ℓ_i^2 , and a *hidden neuron* ℓ_i^3 . The inputs are the union of all original and fake input neurons. Moreover, for each variable x_i we create a *variable output neuron* x_i^* and for each clause c_j we create a *clause output neuron* c_j . The outputs are the union of all variable and clause output neurons. Note that we have $7n + m$ neurons in total and $4n$ of those are inputs and $n + m$ of them are outputs.

We connect the neurons as follows: We add the arcs (ℓ_i^1, ℓ_i^3) and (ℓ_i^2, ℓ_i^3) . Let x_i be the variable corresponding to literal ℓ_i and let C be the set of literals containing literal ℓ_i . We add the arcs (ℓ_i^3, x_i^*) , and (ℓ_i^3, c) for any $c \in C$. This completes the construction of the architecture G . Note that any neuron in G has an indegree of at most 3, matched by any clause output and out-degree at most 3, matched by any hidden neuron since by our assumption each literal occurs exactly twice in Φ , respectively.

Description of data set. In the following, we use the notation $(a_1, a_2, a_3, a_4) \mapsto (a_5, a_6)$ for the data points. Entries a_1 to a_4 correspond to the inputs and entries a_5 and a_6 correspond to the outputs. More precisely, (1) a_1 corresponds to all original inputs corresponding to a positive literal, (2) a_2 corresponds to all original inputs corresponding to a negative literal, (3) a_3 corresponds to all fake inputs corresponding to a positive literal, (4) a_4 corresponds to all fake inputs corresponding to a negative literal, (5) a_5 corresponds to all variable outputs, and (6) a_6 corresponds to all clause outputs. Whenever we put a 0 or 1 in any of these entries, we mean that all corresponding inputs/outputs receive value 0 or 1, respectively.

We add 4 data points: (1) The *all fake data point* with $(0, 0, 1, 1) \mapsto (1, 1)$. (2) The *true fake data point* with $(0, 0, 1, 0) \mapsto (0, c_{\text{true}})$, where an output entry c_j of c_{true} is 1 if and only if clause c_j contains at least one positive literal, and 0 otherwise. (3) The *false fake data point* with $(0, 0, 0, 1) \mapsto$

432 $(0, c_{\text{false}})$, where an output entry c_j of c_{false} is 1 if and only if clause c_j contains at least one
433 negative literal, and 0 otherwise. **(4)** The *assignment data point* with $(1, 1, 0, 0) \mapsto (0, 1)$.

434 Finally, we set $\ell = 0$. This finishes the description of our d -QNNT instance I .

436 **Intuition.** The arcs from the original inputs to the hidden neurons model a variable assignment, that
437 is, at most one of the arcs (x_i^1, x_i^3) and $(\bar{x}_i^1, \bar{x}_i^3)$ can have weight 1. This is enforced with the fake
438 inputs, the hidden neurons, and the variable outputs together with the all/true/fake data points. More
439 precisely, these neurons imply that all blue arcs of Figure 3 have weight 1, that the hidden neurons
440 have bias 0, and that the variable output neurons have bias -1 . Moreover, it is safe to assume that
441 any red arc of Figure 3 has weight 1 and that the bias of any clause output neuron is 0, as we show.
442 This then implies that the variable assignment needs to satisfy formula Φ .

443 **Correctness.** We now verify that Φ is satisfiable if and only if I is a yes-instance of d -QNNT.

444 (\Rightarrow) Let $\mathcal{A} : (x_i)_{i \in [n]} \rightarrow \{\text{true}, \text{false}\}$ an assignment to the variables which satisfies Φ . We now
445 show how to set the functions *weight* and *bias* such that there is no error, also see Figure 3. **(1)** We start with the *weight* function: The arcs incident to any fake input neuron, as well as the arcs
446 incident to any output neuron have weight 1. It remains to consider the arcs incident to original input
447 neurons. If $\mathcal{A}(x_i) = \text{true}$, then the arc (x_i^1, x_i^3) gets weight 1 and the arc $(\bar{x}_i^1, \bar{x}_i^3)$ gets weight 0,
448 and otherwise if $\mathcal{A}(x_i) = \text{false}$, then the arc (x_i^1, x_i^3) gets weight 0 and the arc $(\bar{x}_i^1, \bar{x}_i^3)$ gets
449 weight 1. **(2)** We continue with the *bias* function: The bias of any hidden neuron and any clause
450 output neuron is 0, and the bias of any variable output neuron is -1 .

451 It remains to verify that there is no error. We consider each data point individually:

- 452 1. Consider the all fake data point. Since all arcs incident to any fake input have weight 1 and
453 since any hidden neuron has bias 0, we observe that any hidden neuron is active. Conse-
454 quently, also all output neurons are active, which is correct.
- 455 2. Consider the true fake data point. Similarly to the all fake data point, we observe that all
456 hidden neurons corresponding to positive literals are active but all hidden neurons corre-
457 sponding to negative literals are inactive. Consequently, each variable output is 0. More-
458 over, a clause output neuron c_j is active if and only if clause c_j contains a positive literal
459 which matched the definition of vector c_{true} . Thus, the true fake data point is evaluated
460 correctly.
- 461 3. The argumentation for the false fake data point is analog to the true fake data point by
462 swapping the roles of positive and negative literals.
- 463 4. Consider the assignment data point. If $\mathcal{A}(x_i) = \text{true}$, then hidden neuron x_i^3 is active and
464 hidden neuron \bar{x}_i^3 is inactive, and otherwise if $\mathcal{A}(x_i) = \text{false}$, then hidden neuron x_i^3
465 is inactive and hidden neuron \bar{x}_i^3 is active. Consequently, all variable output neurons are
466 inactive. Moreover, since \mathcal{A} is satisfying, all clause output neurons are active and thus the
467 assignment data point is evaluated correctly.

468 Hence, there is no error.

469 (\Leftarrow) Let *weight* and *bias* be functions such that the resulting neural network \bar{G} has no errors.
470 We now argue how to construct a satisfying assignment for Φ . By the *fake variable gadget* of x_i we
471 mean the induced subnetwork of the 5 neurons corresponding to variable x_i and the two associated
472 fake literals x_i and \bar{x}_i , that is, the neurons x_i^z, \bar{x}_i^z for $z \in \{2, 3\}$, and x_i^* ; see also Figure 3.

473 We proceed as follows: In the first step, we argue that all arc weights in any fake variable gadget has
474 to be 1, that the bias of any hidden neuron is 0, and that the bias of any variable output neuron is -1 .
475 Second, we show that we can safely assume that all arcs from any hidden neuron to any clause output
476 neuron have weight 1, and that all clause output neurons have bias 0. In the final step, we argue that
477 the weights of the arcs incident to the original inputs correspond to a satisfying assignment of Φ .

478 *Step 1.* Consider the all fake input point q . Recall that in q only all fake inputs have value 1 and that
479 all variable outputs have value 1. Now, consider an arbitrary but fixed variable x_i and its associated
480 fake variable gadget. Note that there are exactly two paths from active input neurons to the active
481 variable output neuron x_i^* : $p_1 := (x_i^2, x_i^3, x_i^*)$ and $p_2 := (\bar{x}_i^2, \bar{x}_i^3, x_i^*)$. Since in q the variable
482 output neuron x_i^* is active, one at least one of the paths p_1 or p_2 all arc weights are 1 and the
483 bias of the hidden neuron is 0. Without loss of generality, we assume that this is the case for p_1 .
484 Next, observe that in the true fake data point the fake input x_i^2 is also active, but the variable output

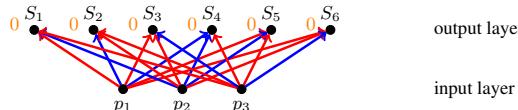


Figure 4: An illustration of the reduction behind Theorem 3 for the universe $U = [6]$ and the set family \mathcal{F} with sets $S_1 = \{1, 4, 5\}$, $S_2 = \{2, 3\}$, $S_3 = \{1, 6\}$, $S_4 = \{2, 5\}$, $S_5 = \{3, 5\}$, $S_6 = \{6\}$ and $k = 3$ and with a hitting set $S = \{2, 5, 6\}$. In the solution corresponding to S , inputs p_1 , p_2 and p_3 are associated with elements 2, 5 and 6, respectively. Moreover, each red arc has weight 0 and each blue arc has weight 1. The orange numbers are the biases of the output neurons.

neuron x_i^* is inactive. Consequently, neuron x_i^* has a bias of -1 . Now, again consider the all fake data point q : In order to activate neuron x_i^* also the weights of all arcs in p_2 have to be 1 and also the bias of neuron \bar{x}_i^3 needs to be 0. Thus, Step 1 is accomplished.

Step 2. We now argue that we can safely change the weight of any arc incident to a clause output neuron c_j from 0 to 1 and that we can also safely change the bias of any clause output neuron c_j from -1 to 0: Note that such a change can only be unfavorable for a data point where c_j has value 0. Consequently, this can only affect the true (and the false) fake data point. More precisely, only clause output neurons corresponding to clauses which do not contain any true (false) literal have value 0 in the true (false) fake data point. Hence, the two changes to not change the value of 0 of any such clause output neuron and thus Step 2 is accomplished.

Step 3. Consider the arcs (x_i^1, x_i^3) and $(\bar{x}_i^1, \bar{x}_i^3)$ incident to the original inputs, and the assignment data point q . Note that at most one of these arcs can have weight 1: If both have weight 1 then for data point q both hidden neurons x_i^3 and \bar{x}_i^3 are active, and thus also the variable output neuron x_i^* , contradicting the correct value of 0 for that output neuron. We now define a variable assignment \mathcal{A} : $\mathcal{A}(x_i) := \text{true if weight}(x_i^1, x_i^3) = 1, \text{ and } \mathcal{A}(x_i) := \text{false otherwise.}$

Observe that \mathcal{A} is satisfying Φ : Consider an arbitrary but fixed clause with literals ℓ_1, ℓ_2 , and ℓ_3 . Note that $p_z := (\ell_z^1, \ell_z^3, c_j)$ is the path from the original input neuron ℓ_z^1 to the clause output neuron c_j for any $z \in [3]$ and that there is no other path from any input neuron to output neuron c_j . Since in the assignment data point q the clause output neuron c_j has value one, the weight of all arcs on one path p_z has to be 1. Without loss of generality, we assume that is the case for p_1 . Consequently, by our definition of \mathcal{A} , literal ℓ_1 satisfies c_j and hence the statement is proven. \square

Next, we establish W-hardness w.r.t. the number α of inputs even if there is no hidden layer.

Theorem 3. *Even if the network has no hidden neuron, 2-QNNT is W[2]-hard when parameterized by the number α of input nodes, even when restricted to architectures with no hidden neurons.*

Proof. We present a reduction from the HITTING SET (HS) problem where the input consists of a universe U , a family \mathcal{F} of subsets over U , and an integer k . The goal is to find a subset $S \subseteq U$ (called a *hitting set*) of size k such that S contains at least one element of each set in the family, that is, $S \cap F \neq \emptyset$ for any $F \in \mathcal{F}$. HS is W[2]-hard parameterized by k (Cygan et al., 2015).

Construction. We construct an instance I of 2-QNNT as follows. For an illustration, see Figure 4. *Description of the architecture G .* We create k input neurons p_1, \dots, p_k . Abusing notation, for each set $F \in \mathcal{F}$ we create one *set output neuron* F . We add arcs between every input and output neuron. *Description of the data set.* For each element $u \in U$ we add k *element u data points* d_u^1, \dots, d_u^k . Element u data point d_u^i has value 1 in input p_i and value 0 in each other input. Moreover, d_u^i has value 1 in each set output F such that $u \in F$. Thus, d_u^i has value 0 in each set output F' such that $u \notin F'$. Observe that the k element u data points all have the same output but they have pairwise different inputs. Then, we add a *verifier data point* d^* which has value 1 in each input and in each output. In the following, we say that two data points d_1 and d_2 have the same *type* if the input values of d_1 and d_2 are pairwise identical. Note that we have exactly $k + 1$ distinct types of data points.

Finally, we set $\ell := k \cdot (|U| - 1)$. To complete the proof, it remains to establish correctness. (\star)

Correctness. We verify that (U, \mathcal{F}) has a hitting set S of size k if and only if I is a yes-instance of 2-QNNT. Before we prove the correctness, we make the following crucial observation about I :

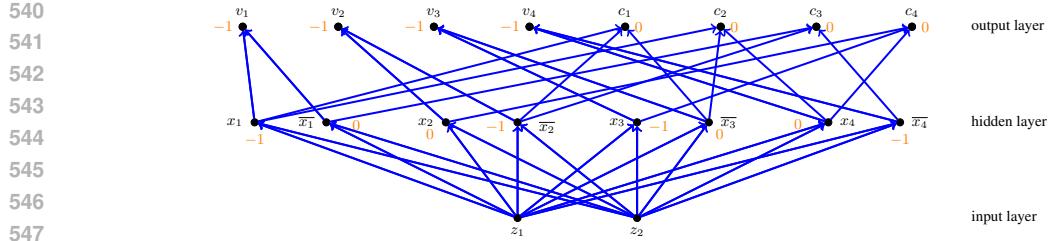


Figure 5: An illustration of the reduction behind Theorem 4 for the formula Φ with clauses $c_1 = x_1 \vee \overline{x_2} \vee \overline{x_3}$, $c_2 = x_1 \vee \overline{x_3} \vee x_4$, $c_3 = \overline{x_1} \vee \overline{x_2} \vee \overline{x_4}$, and $c_4 = x_2 \vee x_3 \vee x_4$ with a satisfying assignment \mathcal{A} with $\{x_2, x_4\} \mapsto \text{true}$ and $\{x_1, x_3\} \mapsto \text{false}$. In an optimal solution all arcs have weight 1. The biases of a solution corresponding to \mathcal{A} are shown in orange.

Since at most one data point of any type of data points can be correctly computed, in total at most $k+1$ data points can be correctly computed. Since we have $k \cdot |U| + 1$ data points, and $\ell = k \cdot (|U| - 1)$, exactly one data point of each type has to be classified correctly.

The intuition is that k element data points need to be computed correctly. These then correspond to a set S of elements. Since also the verifier data point needs to be correctly computed, this then implies that S has to be a hitting set.

We let $\mathcal{F}(u_i) := \{F \in \mathcal{F} : u_i \in F\}$ denote the family of subsets of \mathcal{F} which contain element $u_i \in U$.

(\Rightarrow) Let S be a hitting set of size at most k for (U, \mathcal{F}) . Let u_1, \dots, u_k be the elements of S in some arbitrary but fixed order. For any $u_i \in S$ we set $\text{weight}(u_i, x_i) = 1$ for any $x_i \in \mathcal{F}(u_i)$. For any other arc e , we set $\text{weight}(e) = 0$. Observe that this yields a correct computation of element u_i data point $d_{u_i}^i$ for any $u_i \in S$. Moreover, since S is a hitting set, also the verifier data points gets computed correctly. Consequently, $k+1$ data points are computed correctly, and using the observation we conclude that I is a yes-instance.

(\Leftarrow) According to the observation, exactly one data point of each type has to be computed correctly. Thus, the verifier data point d^* has to be computed correctly, and for any $i \in [k]$ exactly one data point which has value 1 in input p_i and value 0 in each other input. Since each data point having these inputs, is an element u' data point $d_{u'}^i$ for some $u' \in U$, we conclude that there exists some element $u \in U$ such that d_u^i gets correctly computed. By u_i we denote the element corresponding to the correctly computed data point d_u^i . Consequently, we have $\text{weight}(u_i, F_i) = 1$ for each $F_i \in \mathcal{F}(u_i)$ and $\text{weight}(u_i, F_i) = 0$ for each $F'_i \notin \mathcal{F}(u_i)$. Due to the correct computation of the verifier data point d^* , we observe that $\text{weight}(u, F) = 1$ for each $F \in \mathcal{F}$ and thus the set $S := \{u_i \in U : d_u^i \text{ is correctly computed}\}$ is a hitting set of size k for (U, \mathcal{F}) . \square

For our fourth lower bound, we use a “compressed” version of the construction behind Theorem 2 to obtain NP-hardness for only 2 input nodes and 3 data points.

Theorem 4. 2-QNNT is NP-hard even if $\alpha = 2$, $\ell = 0$, $|\mathcal{D}| = 3$, and $\text{depth} = 1$.

Proof. We present a reduction from 3-SAT (Karp, 1972), where one is given a CNF formula Φ on variables x_1, \dots, x_n and a set of m clauses each consisting of precisely three literals.

Construction. We construct an equivalent instance I of 2-QNNT as follows; see Figure 5 for an illustration.

Description of architecture G . We create two input neurons z_1 and z_2 . For each of the two literals of a variable x_i with $i \in [n]$, we create two *hidden neurons* x_i and \overline{x}_i associated with variable x_i . Thus, we create $2n$ hidden neurons. Moreover, we create a *variable output neuron* v_i associated with variable x_i for each variable x_i . Also, we add one *clause output neuron* c_j for each clause of Φ . Thus, we create $n + m$ output neurons.

We add an arc from each input neuron to each hidden neuron. Next, we add an arc from each of the two hidden neurons x_i and \overline{x}_i associated with variable x_i to the variable output neuron v_i associated with variable x_i . Finally, for each clause c_j consisting of literals p_1, p_2 , and p_3 , we add

594 the arcs (p_h, c_j) for each $h \in [3]$.

595 *Description of data set.* Here, we use the notation $(z_1, z_2) \mapsto (V, C)$ for the data points, where z_1
596 and z_2 are numbers referring to the inputs, and V and C are vectors referring to the outputs. More
597 precisely, V has length n , and the i -th entry corresponds to the variable output neuron v_i , and C has
598 length m , and the j -th entry corresponds to the clause output neuron c_j . Whenever we put a 0 or a 1
599 in any of the three vectors, we mean that all corresponding outputs receive value 0 or 1, respectively.

600 We add 3 data points: **(1)** The *verifier 1 data point* with $(1, 0) \mapsto (0, 1)$, **(2)** the *verifier 2 data point*
601 with $(0, 1) \mapsto (0, 1)$, and **(3)** the *choice data point* with $(1, 1) \mapsto (1, 1)$.

602 Finally, we set $\ell := 0$.

604 Recall that we say that given a data point p a neuron q is *active* if in the evaluation of p , the neuron q
605 receives a positive activation; otherwise, it is *inactive*.

606 **Intuition.** The idea is that when considering the verifier 1 data point, the active hidden neurons
607 correspond to a satisfying variable assignment. We achieve this with the variable output neurons: If
608 both hidden neurons x_i and \bar{x}_i associated with a variable x_i are active for the verifier 1 data point,
609 then since the value of the variable output neuron v_i associated with x_i needs to be 0 and since x_i
610 and \bar{x}_i are the unique neighbors of v_i this then implies that the value of v_i for the choice data point
611 is also 0, and not 1 as desired, yielding an error.

612 **Correctness.** We now verify that Φ is satisfiable if and only if I is a yes-instance of 2-QNNT.

613 (\Rightarrow) Let $\mathcal{A} : (x_i)_{i \in [n]} \rightarrow \{\text{true}, \text{false}\}$ be an assignment to the variables which satisfies Φ .
614 We now show how to set the functions `weight` and `bias` such that there is no error, also see
615 Figure 5. **(1)** First, we set the `weight` of any arc in G to 1. **(2)** Second, we set the biases: **(a)** For
616 each clause output neuron c_j , we set `bias`(c_j) = 0. **(b)** For each variable output neuron v_i^1 , we
617 set `bias`(v_i^1) = 0. **(c)** For each clause output neuron v_i^2 , we set `bias`(v_i^2) = -1. **(d)** Finally, for the
618 two hidden neurons x_i and \bar{x}_i associated with variable x_i , we set `bias`(x_i) = 0 and `bias`(\bar{x}_i) =
619 -1 if $\mathcal{A}(x_i) = \text{true}$, and otherwise we set `bias`(x_i) = -1 and `bias`(\bar{x}_i) = 0 if $\mathcal{A}(x_i) =$
620 false . By \bar{G} we denote the resulting network.

621 It remains to verify that all 3 data points get computed correctly.

623 First, we consider the verifier 1 and verifier 2 data points: Observe that the hidden neuron x_i is active
624 and the hidden neuron \bar{x}_i is inactive if $\mathcal{A}(x_i) = \text{true}$ and, the hidden neuron x_i is inactive and the
625 hidden neuron \bar{x}_i is active otherwise if $\mathcal{A}(x_i) = \text{false}$, respectively. Consequently, each variable
626 output v_i yields output 0. Moreover, since \mathcal{A} satisfied Φ , we conclude that also each clause output
627 yields output 1. Consequently, the verifier 1 and verifier 2 data points are computed correctly.

628 Second, we consider the choice data point: Observe that all hidden neurons are active and con-
629sequently also all output neurons are active showing that also the choice data point is correctly
630 computed. Thus, \bar{G} has no errors.

631 (\Leftarrow) Let `weight` and `bias` be functions such that the resulting network \bar{G} has no errors. We now
632 argue how to construct a satisfying assignment \mathcal{A} for Φ . Since there is no error, the verifier 1 data
633 point needs to be computed correctly. Observe that for any variable x_i at most one of the two hidden
634 neurons x_i and \bar{x}_i associated with variable x_i is active for the verifier 1 data point: Assume towards
635 a contradiction that this is not the case, that is, that there exists a variable x_i such that both hidden
636 neurons x_i and \bar{x}_i associated with variable x_i are both active for the verifier 1 data point. Again,
637 since the verifier 1 data point is correctly computed, the variable output neuron v_i has value 0. Recall
638 that v_i is incident with the arcs (x_i, v_i) and (\bar{x}_i, v_i) and that both are active for the verifier 1 data
639 point. Thus, for the choice data point the variable output neuron v_i will also yield value 0, yielding
640 a contradiction to the fact that there is no error since the output of v_i should be 1 for the choice data
641 point.

642 Let $X \subseteq [n]$ be the set of indices such that exactly one hidden neuron x_i or \bar{x}_i associated with
643 variable x_i is active for the verifier 1 data point. We now define a partial assignment \mathcal{A} for the
644 variables with indices in X as follows: We set $\mathcal{A}(x_i) = \text{true}$ if and only if x_i is active, and we
645 set $\mathcal{A}(x_i) = \text{false}$ if and only if \bar{x}_i is active. To see that \mathcal{A} satisfies Φ , note that for the verifier 1
646 data point each clause output needs to have value 1. Also, recall that clause c_j is incident with the
647 arcs (p_h, c_j) where p_h for $h \in [3]$ are the 3 literals of c_j . Since there is no error, at least one of
the hidden neurons p_h needs to be active for the verifier 1 data point and `weight`(p_h, c_j) = 1 for

648 at least one $h \in [3]$, showing that clause c_j is satisfied by literal p_h . Note that \mathcal{A} can be extended
649 to an assignment \mathcal{A}' of all variables by simply assigning `true` to any remaining variable. Since
650 already \mathcal{A} was satisfying Φ , assignment \mathcal{A}' satisfies Φ as well. \square

651

652 4 FIXED-PARAMETER TRACTABILITY

653

654 In this section we prove our tractability results for parameter combinations that include the width,
655 treewidth, and number α of input neurons. We begin by showing a structural result (Lemma 1)
656 that states that there is always a solution that has upper-bounded degree in the sense that, for
657 each neuron, there is only a bounded number of incoming arcs with nonzero weights. We then
658 use Lemma 1 to prove tractability of d -QUANTIZED RELU-ACTIVATED NEURAL NETWORK
659 TRAINING (d -QNNT) without error with respect to the treewidth and number α of input neurons
660 (Lemma 3). Then we show how to lift this result to training with nonzero error bounds and how the
661 treewidth results imply the corresponding results for the width.

662 Consider a neuron v in a neural network. Define the *non-zero in-neighbors* of v to be the in-
663 neighbors u of v such that $\text{weight}(uv) \neq 0$. The *non-zero indegree* of v is the number of non-zero
664 in-neighbors.

665 **Lemma 1.** *Let G be an architecture and \mathcal{D} a data set with p distinct input vectors. If there is a neural
666 network over G with zero error on \mathcal{D} , then there is a neural network \bar{G} over G with zero error on \mathcal{D}
667 such that for each neuron v in \bar{G} the number of non-zero in-neighbors of v is at most $(dp)^{\mathcal{O}(p)}$.*

668 We prove Lemma 1 by using Steinitz' Lemma, stated as follows.

669 **Lemma 2** (Steinitz' Lemma (Steinitz, 1913; Sevast'janov, 1994)). *Let $\|\cdot\|$ be an arbitrary norm
670 on \mathbb{R}^d . Let $x_1, \dots, x_m \in \mathbb{R}^d$ such that $\sum_{i \in [m]} x_i = 0$ and for each $i \in [m]$ we have $\|x_i\| \leq 1$.
671 Then there exists a permutation $\pi \in S_m$ such that all prefix sums have norm at most d . That is, for
672 each $k \in [m]$ we have $\|\sum_{j \in [k]} x_{\pi(j)}\| \leq d$.*

673 The idea of the proof of Lemma 1 is as follows. Consider a neuron v in a solution network. We can
674 collect the activations of v for each input vector in a vector $\vec{s} \in (\mathbb{Z}_d)^p$. Assume for simplicity that
675 we don't have ReLU activations and instead simply pass through the weighted sum of the activations
676 of the in-neighbors and, furthermore, each of the summed activations is in $(\mathbb{Z}_d)^p$. Then, \vec{s} is a small-
677 norm vector and it is obtained as a sum of small-norm vectors. Steinitz' Lemma tells us that we can
678 reorder the vectors such that each prefix sum has small norm. This means that, if there are many
679 non-zero in-neighbors to v , then at least one prefix sum occurs twice. This means that the vectors in
680 between these two identical sums sum to zero and we can simply set their corresponding arc weights
681 to zero without changing the activation of v . Care must be taken to preserve the ReLU activations
682 and boundaries of $(\mathbb{Z}_d)^p$ and to ensure that all vectors in the sum have small norm.

683 *Proof of Lemma 1.* Assume that there is a neural network \bar{G}' over G with zero error on \mathcal{D} . Consider
684 an arbitrary neuron v with more than $2 \cdot (2d^2p + 1)^p + 1$ non-zero in-neighbors. Let q be the number
685 of such in-neighbors of v and label them u_1, \dots, u_q . We show that we can set the weight of at least
686 one arc from a non-zero in-neighbor to 0 without changing the activation value of v for each input
687 vector.

688 For each non-zero in-neighbor u_i , $i \in [q]$, let $\vec{y}^{(i)} \in (\mathbb{Z}_d)^p$ be a vector such that for each $j \in [p]$
689 the j th entry $y_j^{(i)}$ of $\vec{y}^{(i)}$ is the activation value of u_i on input of the j th input vector multiplied
690 with $\text{weight}(u_i v)$. Similarly, let $\vec{s} \in \mathbb{Z}^p$ be the vector containing the pre-activation values that v
691 receives from all in-neighbors for each input vector.

692 We have $\sum_{i=1}^q \vec{y}^{(i)} = \vec{s}$. Note that \vec{s} may contain arbitrarily large values. To obtain a sum of small-
693 norm vectors we replace \vec{s} by a sequence of unit vectors and \vec{t} which we define now. Intuitively,
694 for each large or small entry \vec{s}_j , entry \vec{t}_j will contain a lower or upper bound for the pre-activation
695 value of v received from in-neighbors such that the value of v remains the same, even if the pre-
696 activation value is reduced or increased to the corresponding bound. Precisely, for each $j \in [p]$, if
697 \vec{s}_j is negative we put entry $\vec{t}_j := \max\{-d, \vec{s}_j\}$ and otherwise we put entry $\vec{t}_j := \min\{d, \vec{s}_j\}$. (We
698 could replace d in the maximum and minimum by a floor or ceiling of $\frac{d-1}{2}$ but the change in the
699 bound is immaterial and the expressions are simpler.) Note that, indeed, if the pre-activation value
700 701

702 of v received from in-neighbors for each input vector is as defined in \vec{t} , then the value of v will be
 703 the same as if the pre-activation value of v received from in-neighbors would be \vec{s} because the bias
 704 of v is between $-\lfloor \frac{d-1}{2} \rfloor$ and $\lceil \frac{d-1}{2} \rceil$.
 705

706 We now replace \vec{s} by unit vectors and \vec{t} . For each $j \in [p]$ such that $\vec{s}_j < \vec{t}_j$ (in particular, this
 707 means $\vec{s}_j < 0$) define $|\vec{s}_j - \vec{t}_j|$ *dummy vectors* whose j th entry is -1 and all other entries are 0 .
 708 Analogously, for each $j \in [p]$ such that $\vec{s}_j > \vec{t}_j$ (in particular, $0 > \vec{s}_j$) define $\vec{s}_j - \vec{t}_j$ *dummy vectors*
 709 whose j th entry is 1 and all other entries are 0 . We say that these dummy vectors *correspond to* the
 710 j th input vector. Let $\vec{e}^{(1)}, \dots, \vec{e}^{(r)}$ be the so-defined dummy vectors. We have

$$\sum_{i=1}^q (\vec{y}^{(i)}) - \sum_{\ell=1}^r (\vec{e}^{(\ell)}) - \vec{t} = 0. \quad (1)$$

711 We now apply Steinitz' Lemma (Lemma 2). As the norm $\|\cdot\|$ we pick the infinity norm divided
 712 by d^2 (note that this results in a norm). Thus, since entries of all vectors in Eq. (1) are in absolute at
 713 most d^2 , all these vectors have norm at most 1. By Steinitz' Lemma there is thus a permutation π of
 714 the vectors in Eq. (1) such that each prefix sum has norm at most p . That is, each entry in a vector
 715 corresponding to a prefix sum is an integer between $-d^2 \cdot p$ and $d^2 \cdot p$ (as before, these bounds could
 716 be tightened at the cost of readability).
 717

718 Let $\vec{z}^{(1)}, \vec{z}^{(2)}, \dots$ be the sequence of vectors in Eq. (1) reordered according to π . Recall that each
 719 prefix sum is a p -dimensional vector with one of $2d^2p + 1$ entries in each dimension. Since the
 720 indegree of v is at least $2 \cdot (2d^2p + 1)^p + 1$, there are at least that many vectors in the sum in total,
 721 giving that many prefix sums as well. Thus there are three prefix sums that are exactly the same. Let
 722 h_1, h_2, h_3 be the corresponding indices, that is, $\sum_{\ell=1}^{h_1} \vec{z}^{(\ell)} = \sum_{\ell=1}^{h_2} \vec{z}^{(\ell)} = \sum_{\ell=1}^{h_3} \vec{z}^{(\ell)}$. Observe that
 723 we have $\sum_{\ell=h_1+1}^{h_2} \vec{z}^{(\ell)} = \sum_{\ell=h_2+1}^{h_3} \vec{z}^{(\ell)} = 0$. We now aim to set to zero the weights of the arcs to v
 724 from the in-neighbors that correspond to one of these two intervals.
 725

726 Since the above are two disjoint sequences of vectors, there is one sequence, say the first one, such
 727 that $-\vec{t}$ is not contained in it. Thus, all vectors in $\vec{z}^{(h_1+1)}, \dots, \vec{z}^{(h_2)}$ are either dummy vectors or
 728 weighted activation values of in-neighbors of v . Let $Q \subseteq [q]$ be the index set of those $\vec{y}^{(i)}$ that are
 729 not in $\vec{z}^{(h_1+1)}, \dots, \vec{z}^{(h_2)}$ and let R be the index set of those $\vec{e}^{(\ell)}$ not in $\vec{z}^{(h_1+1)}, \dots, \vec{z}^{(h_2)}$. Thus,
 730

$$\sum_{i \in Q} \vec{y}^{(i)} = \vec{t} + \sum_{\ell \in R} \vec{e}^{(\ell)}. \quad (2)$$

731 Now modify the neural network \bar{G}' by setting to zero all weights of arcs $u_i v$ where u_i is an in-
 732 neighbor of v with $i \notin Q$. In this way, we obtain a neural network \bar{G} . The pre-activation vector $\vec{s}_{\bar{G}}$
 733 of v in \bar{G} (that is, the vector containing the pre-activation values that v receives from in-neighbors
 734 for each input vector) satisfies $\sum_{i \in Q} \vec{y}^{(i)} = \vec{s}_{\bar{G}}$ and thus by Eq. (2) $\vec{s}_{\bar{G}} = \vec{t} + \sum_{\ell \in R} \vec{e}^{(\ell)}$.
 735

736 The dummy vectors contain -1 in dimensions j where $\vec{s}_j < -d = \vec{t}_j$ and 1 where $\vec{s}_j > d = \vec{t}_j$.
 737 Hence, in dimensions j where $\vec{s}_j < -d$ we have $(\vec{s}_{\bar{G}})_j \leq \vec{t}_j$, where $\vec{s}_j > d$ we have $(\vec{s}_{\bar{G}})_j \geq \vec{t}_j$,
 738 and otherwise there are no dummy vectors corresponding to j and thus we have $(\vec{s}_{\bar{G}})_j = \vec{t}_j$. Thus,
 739 the activation for each input vector of v is the same in \bar{G} and in \bar{G}' .
 740

741 By repeating the argument for each neuron with large number of non-zero in-neighbors we obtain
 742 a neural network in which each neuron has less than $2 \cdot (2d^2p + 1)^p + 1$ non-zero in-neighbors, as
 743 required. \square
 744

745 We next show how the degree bound above can be used to efficiently train neural networks for
 746 low-treewidth architectures and small number of input neurons. We will use a dynamic program
 747 over a tree decomposition. Essentially this means that we need to maintain for small separators
 748 what the status of partial solutions on one side, say the left side, of the separator is and this status
 749 needs to be encoded in a small number of states. Consider a neuron v in such a separator. We
 750 want to maintain as a state of the partial solution which pre-activation values v has already received
 751 on the left side of the separator. If the non-zero indegree of a solution is large, then we may have
 752 already seen an unbounded number of negative pre-activation values, but on the right side we may
 753

756 still see an equally large number of positive pre-activation values, in total summing to a small value
757 in \mathbb{Z}_d . To properly maintain the activation of v , we would thus need to maintain unboundedly large
758 pre-activation values, leading to a large, unbounded number of dynamic-programming states. In
759 contrast, using the indegree bound established in Lemma 1, we can assume that the sums of pre-
760 activation values are bounded and only look for such solutions.

761 **Lemma 3.** *d -QNN with $\ell = 0$ is FPT w.r.t. the treewidth of G and the number of input nodes.*

764 *Proof.* Let $(G, \alpha, \omega, d, \mathcal{D}, 0)$ be an instance of d -QNN with error bound $\ell = 0$ and α input nodes
765 (i.e., neurons). Let \mathcal{X} be the set of distinct input vectors in \mathcal{D} and tw be the treewidth of the input
766 architecture G . We first compute in $2^{\mathcal{O}(\text{tw})} \cdot |V(G)|$ time a *nice* tree decomposition $\mathcal{T} = (T, \chi)$ of
767 the underlying undirected graph of the architecture G that has width at most $2\text{tw} + 1$ (see Section 2).
768 We then proceed by dynamic programming on \mathcal{T} . Without loss of generality, there are at most d^α
769 different input vectors (otherwise either there are multiple pairs of equal pairs of input and output
770 vectors, of which we can drop one arbitrarily, or one input vector is associated with two different
771 output vectors, and we have a trivial no-instance). Thus, by Lemma 1 we know that, if there is
772 a solution neural network, then there is a solution with non-zero indegree at most $(d(d^\alpha))^{\mathcal{O}(d^\alpha)} =$
773 $d^{\mathcal{O}(\alpha d^\alpha)}$. We hence try to find a solution with non-zero indegree at most some integer $\Delta := d^{\mathcal{O}(\alpha d^\alpha)}$.
774 (Indeed, we won't enforce this indegree bound, but we are guaranteed to find a solution, potentially
775 with larger non-zero indegree, if there is one.)

776 *Partial neural networks and evaluations thereof.* To define the dynamic-programming table, we
777 need to define what a partial solution is for the part of the architecture we have already seen in the
778 dynamic program. Let $W \subseteq V(G)$. A W -*partial* neural network over architecture G is a tuple
779 $(G, \text{weight}, \text{bias})$, where *weight* and *bias* are defined in the same way as for neural networks
780 except that the domain of *bias* is W and the domain of *weight* is the set of arcs of G with both
781 endpoints in W . Note that the activation value for a neuron v on a certain input vector is defined
782 if for each path P in G from an input neuron to v all biases and weights of neurons and arcs on
783 P are defined. Below we will additionally refer to activation values for further neurons based on
784 assuming that they receive certain given weighted activation values from in-neighbors where biases
785 or weights are not defined. More precisely, for a W -partial neural network, consider an input vector
786 x . For some neurons v , including all of those whose in-neighbors are not all contained in W , we
787 additionally specify the weighted activation value $\text{future}(x, v)$ that they receive from the in-
788 neighbors not contained in W . This is sufficient to compute the activation values (as defined for
789 non-partial neural networks) for all neurons in W , based on assuming the values $\text{future}(x, v)$.
790 Below we will omit explicit mention of this assumption when referring to the activation values as
791 long as it is clear from the context.

792 *The dynamic programming table.* Below, for a node $t \in V(T)$ in the tree decomposition we define
793 V_t to be the union of all bags of nodes that are either t or descendants of t in T . The dynamic-
794 programming table D is defined as follows. (Recall that \mathcal{X} is the set of input vectors.) Consider a
795 node $t \in V(T)$ in the tree decomposition, a function *bias*: $\chi(t) \rightarrow \mathbb{Z}_d$ assigning a bias to each
796 neuron in t 's bag, a function *weight*: $\{(u, v) \in E(G) \mid u, v \in \chi(t)\} \rightarrow \mathbb{Z}_d$ assigning a weight
797 to each arc in t 's bag, a function *seen*: $\mathcal{X} \times \chi(t) \rightarrow \mathbb{Z}_{d^2\Delta}$ assigning each neuron in t 's bag a set
798 of pre-activation values received from neurons in V_t , and a function *future*: $\mathcal{X} \times \chi(t) \rightarrow \mathbb{Z}_{d^2\Delta}$
799 assigning each neuron in t 's bag a set of pre-activation values to be received from neurons in $V \setminus V_t$.
800 We put $D[t, \text{bias}, \text{weight}, \text{seen}, \text{future}] = 1$ if there is a V_t -partial neural network \bar{G} over G
801 with the following properties, where all references to activation values are with respect to \bar{G} :

802 (i) For each neuron v in $\chi(t)$ its bias in \bar{G} is $\text{bias}(v)$, and for each arc $(u, v) \in E(G)$ with
803 $u, v \in \chi(t)$ the arc weight in \bar{G} is $\text{weight}(u, v)$.
804 (ii) For each input vector $x \in \mathcal{X}$, assuming that for each neuron $v \in \chi(t)$ the pre-activation value
805 received from in-neighbors in $V(G) \setminus V_t$ is $\text{future}(x, v)$, then for each neuron $v \in \chi(t)$ the
806 pre-activation value received from in-neighbors in V_t is $\text{seen}(x, v)$.
807 (iii) For each input vector $x \in \mathcal{X}$, for each input neuron in $V_t \setminus \chi(t)$ the activation value is exactly
808 the one specified in x .
809 (iv) For each input-output pair (x, y) , for each output neuron $v \in V_t \setminus \chi(t)$, the activation of v on
810 input x is exactly as specified in y .

If there is no such neural network \bar{G} then we put $D[t, \text{bias}, \text{weight}, \text{seen}, \text{future}] = 0$.

810 If we can compute the table D for each node of T then we can decide whether there is a neural
 811 network over G that learned all input-output pairs correctly by checking whether $D[r, \emptyset, \emptyset, \emptyset, \emptyset] = 1$
 812 (recall that $\chi(r) = \emptyset$). We now sketch how to correctly compute D for each node of T in a bottom-up
 813 fashion; the full details are straightforward and partly omitted.

814
 815 *Leaf node.* If t is a leaf node, let $\chi(t) = \{v\}$. Then $D[t, \text{bias}, \text{weight}, \text{seen}, \text{future}] = 1$ if
 816 and only if for each $x \in \mathcal{X}$ we have $\text{seen}(x, v) = 0$ (weight is empty). (We do not need to verify
 817 the correct input and zero-bias of input neurons and the output of output neurons before they are
 818 forgotten by the definition of D .)

819
 820 *Introduce node.* Let t be an introduce node with child t' and $\chi(t) = \chi(t') \cup \{v\}$.
 821 We put $D[t, \text{bias}, \text{weight}, \text{seen}, \text{future}] = 1$ if and only if there exists a state
 822 $(\text{bias}', \text{weight}', \text{seen}', \text{future}')$ with $D[t', \text{bias}', \text{weight}', \text{seen}', \text{future}'] = 1$ such
 823 that the following conditions hold.

- *Consistency on old vertices and arcs.* For all $u \in \chi(t')$ and all $x \in \mathcal{X}$ we have $\text{bias}(u) = \text{bias}'(u)$, $\text{seen}(x, u) = \text{seen}'(x, u)$, and $\text{future}(x, u) = \text{future}'(x, u)$; and for all arcs $(a, b) \in E(G)$ with $a, b \in \chi(t')$ we have $\text{weight}(a, b) = \text{weight}'(a, b)$.
- *Correct seen activation of new neuron.* For all $x \in \mathcal{X}$ we have

$$\text{seen}(x, v) = \sum_{u \in (\chi(t') \cap N^-(v))} \text{weight}(u, v) \cdot a_u(x),$$

830 where $N^-(v)$ are the in-neighbors of v and $a_u(x)$ denotes the activation value of neuron u .
 831 Note that, since G is a DAG, the values $a_u(x)$ for $u \in \chi(t)$ can be computed in topological
 832 order from bias and the totals seen and future . Observe that, since $\text{seen}(x, u) \in \mathbb{Z}_{d^2\Delta}$ the sum is thus capped between $-d^2\Delta$ and $d^2\Delta$. This is correct, since, if there is a
 833 solution with non-zero indegree bounded by Δ , restricting this solution to V_t will give a
 834 sum that is also within these bounds.

835 Again, verification of input, output, and bias of input and output neurons is only required when we
 836 forget them.

837 *Forget node.* Let t be a forget node with child t' and $\chi(t) = \chi(t') \setminus \{v\}$.
 838 We put $D[t, \text{bias}, \text{weight}, \text{seen}, \text{future}] = 1$ if and only if there exists a state
 839 $(\text{bias}', \text{seen}', \text{future}', \text{weight}')$ with $D[t', \text{bias}', \text{weight}', \text{seen}', \text{future}'] = 1$ such
 840 that:

- *Projection.* For all $u \in \chi(t)$ and all $x \in \mathcal{X}$,

$$\text{bias}(u) = \text{bias}'(u), \quad \text{seen}(x, u) = \text{seen}'(x, u), \quad \text{future}(x, u) = \text{future}'(x, u).$$

841 Moreover, for every arc $(a, b) \in E(G)$ with $a, b \in \chi(t)$ we have $\text{weight}(a, b) = \text{weight}'(a, b)$; all entries of weight' incident to v are dropped.

- *Ensuring all input seen.* For each $x \in \mathcal{X}$ the value $\text{future}'(x, v) = 0$.
- *Ensuring correct inputs.* If v is an input neuron, then $\text{bias}'(v) = 0$ and for each $x \in \mathcal{X}$ we have $\text{seen}'(x, v)$ equal to the activation value specified in x .
- *Ensuring correct outputs.* If v is an output neuron, then with total pre-activation $\text{seen}'(x, v)$ and bias $\text{bias}'(v)$, the activation of v equals the required value, i.e., for all $x \in \mathcal{X}$ the activation of v coincides with the value specified in the output vector corresponding to x .

842
 843 *Join node.* Let t be a join node with children t_1, t_2 and $\chi(t) = \chi(t_1) = \chi(t_2)$. We put $D[t, \text{bias}, \text{weight}, \text{seen}, \text{future}] = 1$
 844 if and only if there exist states $(\text{bias}_1, \text{weight}_1, \text{seen}_1, \text{future}_1)$ and
 845 $(\text{bias}_2, \text{weight}_2, \text{seen}_2, \text{future}_2)$ with $D[t_1, \text{bias}_1, \text{weight}_1, \text{seen}_1, \text{future}_1] = 1$ and
 846 $D[t_2, \text{bias}_2, \text{weight}_2, \text{seen}_2, \text{future}_2] = 1$ such that for all $u \in \chi(t)$ and all $x \in \mathcal{X}$:

- *Agreement on interface.* $\text{bias}(u) = \text{bias}_1(u) = \text{bias}_2(u)$ and $\text{future}(x, u) = \text{future}_1(x, u) = \text{future}_2(x, u)$.
- *Agreement of in-bag weights.* For every arc $(a, b) \in E(G)$ with $a, b \in \chi(t)$ we have $\text{weight}(a, b) = \text{weight}_1(a, b) = \text{weight}_2(a, b)$.

864 • *Additivity of in-subtree contributions.* If we combine a V_{t_1} -partial and a V_{t_2} -partial neural
 865 network, then the seen pre-activation values are disjoint except for values received from
 866 neuron in the bag of t . Thus, we require that
 867

868 $\text{seen}(x, u) = \text{seen}_1(x, u) + \text{seen}_2(x, u) - \sum_{w \in (\chi(t') \cap N^-(u))} \text{weight}(w, u) \cdot a_w(x),$
 869

870 (note that `seen` includes activations received from the current bag). As before, $a_w(x)$ is
 871 the activation of neuron w . Note that, because of the agreement conditions, this value is
 872 consistent among the three bags and, as before, can be computed in topological order from
 873 bias and the totals `seen` and `future`.

874 • *Consistency of out-of-subtree contributions.* The future pre-activation values of a V_{t_1} -
 875 partial neural network distribute over the pre-activation values seen in $V_{t_2} \setminus V_{t_1}$ and those
 876 in $V \setminus (V_{t_1} \cup V_{t_2})$. Analogously for a V_{t_2} -partial neural network. Thus, we require:

877 $\text{future}_1(x, u) + \text{seen}_1(x, u) = \text{future}_2(x, u) + \text{seen}_2(x, u).$
 878

879 *Running time.* Let $b := |\chi(t)| \leq 2\text{tw} + 1$ and $p := |\mathcal{X}|$ (recall that $\chi(t)$ is the bag of t and \mathcal{X} is the
 880 set of input vectors). A state at t now consists of:

881 • `bias` : $\chi(t) \rightarrow \mathbb{Z}_d$ (d^b choices),
 882 • `weight` : $\{(u, v) \in E(G) \mid u, v \in \chi(t)\} \rightarrow \mathbb{Z}_d$ (d^{m_t} choices, where $m_t :=$
 883 $|E(G[\chi(t)])| \leq b^2$),
 884 • `seen, future` : $\mathcal{X} \times \chi(t) \rightarrow \mathbb{Z}_{d^2\Delta}$ ($((2d^2\Delta))^{pb}$ choices each).

885 Thus the number of table entries per bag is at most

886
$$d^{b+m_t} \cdot (2d^2\Delta)^{2pb} \leq d^{b+b^2} \cdot (2d^2\Delta)^{2pb}.$$

887 It is not hard to see that each table entry for leaf, introduce, and forget nodes can be computed in
 888 polynomial time in p, b . Two entries of children of join nodes define an entry of a join node. Thus,
 889 the total running time is

890
$$2^{\mathcal{O}(\text{tw})} \cdot |V(G)| + \mathcal{O}(\text{tw} \cdot |V(G)|) \cdot d^{2b+2b^2} \cdot (2d^2\Delta)^{4pb} \cdot \text{poly}(pb) = d^{\mathcal{O}(\text{tw} \cdot d^{\mathcal{O}(\alpha)})} \cdot |V(G)|$$

891 where $\Delta = d^{\mathcal{O}(\alpha d^\alpha)}$. Hence the algorithm runs in time $f(\text{tw}, \alpha, \omega, d) \cdot \text{poly}(|V(G)| + |E(G)|)$, i.e.,
 892 it is FPT with respect to tw , α , and ω . This completes the proof of Lemma 3. \square

893 Instances with nonzero error bounds can be reduced to the $\ell = 0$ setting in order to apply Lemma 3.

894 **Theorem 5.** *d -QNNT is FPT wrt. the treewidth of G , the number α of input dimensions, and the
 895 number ω of output dimensions.*

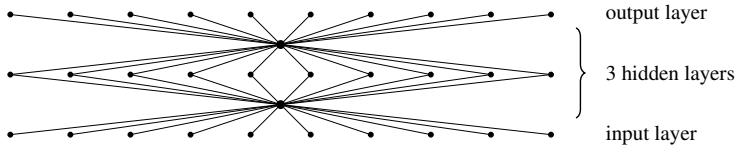
896 *Proof.* First, in $\mathcal{O}(2^{d^{\alpha+\omega}})$ time we determine (by trying all possibilities) which input-output pairs
 897 will not be learned correctly. Note that these can simply be ignored during training. Hence, we may
 898 now assume that the error bound ℓ is 0 and we need to learn all input-output pairs correctly. Thus,
 899 we can apply Lemma 3 to obtain the desired running time. \square

900 **Theorem 6.** *d -QNNT is FPT wrt. the treewidth of G , the number α of input dimensions, and the
 901 error bound ℓ .*

902 *Proof.* Let $(G, \alpha, \omega, d, \mathcal{D}, \ell)$ be an instance of d -QNNT. First, observe that for each input vector x
 903 there are at most $\ell + 1$ distinct output vectors as, otherwise, the error bound ℓ could not be achieved.
 904 Thus, we may first, in $\mathcal{O}(2^{\ell d^\alpha})$ time, determine by trying all possibilities which input-output pairs
 905 will not be learned correctly. Note that these can simply be ignored during training. Hence, we may
 906 now assume that the error bound ℓ is 0 and we need to learn all input-output pairs correctly. Thus,
 907 we can apply Lemma 3 to obtain the desired running time. \square

908 For an illustration that there exist architectures in which the treewidth is much smaller than the
 909 width, we refer to Figure 6.

910 **Corollary 1.** *d -QNNT is FPT with respect to $\alpha + \ell + \text{width}$.*



918
919
920
921
922
923
924 Figure 6: An illustration of an architecture in which the treewidth is significantly smaller than the
925 width. More precisely, $\text{tw} = 2$ and width = 8. Moreover, if the second hidden layer were to consist
926 of p neurons, then we would have width = p while preserving $\text{tw} = 2$.
927
928

929 *Proof.* If there is at least one hidden neuron, by Observation 1, we have that the treewidth is at
930 most two times the width of the architecture. Hence, in this case the result follows from Theorem 6.
931 Otherwise, the architecture is a bipartite graph consisting only of the input and output neurons. The
932 weights of arcs to one output neuron do not influence the activations of other output neurons and
933 hence the problem reduces to solving ω pairwise independent instances in which there is exactly
934 one output neuron. That is, the original instance is a yes-instance if and only if all of these instances
935 are yes-instances. Each of the single-neuron instances has an architecture of size $\mathcal{O}(\alpha)$ and thus can
936 be solved by brute force in $f(\alpha) \cdot |\mathcal{D}|$ time. Thus, if there are no hidden neurons, we can solve the
937 problem in $f(\alpha) \cdot |\mathcal{D}| \cdot \omega \cdot |V(G)|$ time, as required. \square
938
939

940 **Corollary 2.** *d -QNNT is FPT with respect to $\alpha + \omega + \text{width}$.*
941
942

943 *Proof.* If there is at least one hidden neuron, by Observation 1, we have that the treewidth is at
944 most two times the width of the architecture. Hence, in this case the result follows from Theorem 5.
945 Otherwise, the architecture is a bipartite graph consisting only of the input and output neurons. It
946 thus has size $\mathcal{O}(\alpha \cdot \omega)$ and the corresponding instance can be solved by brute force in $f(\alpha, \omega) \cdot |\mathcal{D}|$
947 time. \square
948

949 5 CONCLUDING REMARKS

950 Our work initiates the study of fully quantized ReLU neural network training from the classical as
951 well as parameterized complexity perspectives. We show that the problem remains NP-hard even
952 in highly restricted settings, but also provide positive results through the identification of non-trivial
953 fixed-parameter tractable fragments. We remark that the latter outcome contrasts the state of the
954 art for neural network training in the non-quantized setting. Indeed, in spite of being targeted by
955 several recent complexity-theoretic studies (Dey et al., 2020; Abrahamsen et al., 2021; Goel et al.,
956 2021; Boob et al., 2022; Froese & Hertrich, 2023; Bertschinger et al., 2023; Brand et al., 2023), to
957 date we do not know a single *non-trivial*⁴ parameterization that yields fixed-parameter tractability
958 for training non-quantized neural networks. Moreover, we believe that settling the parameterized
959 complexity of d -QNNT w.r.t. the input and output dimensionality (i.e., $\alpha + \omega$) will require insights
960 beyond the current state of the art and pose this as the main open question arising from our work.
961 Other important avenues of future work include whether our results can be extended to distillation,
962 and whether they could be used to obtain more efficient empirical algorithms.
963

964 REFERENCES

965 Mikkel Abrahamsen, Linda Kleist, and Tillmann Miltzow. Training neural networks is er-complete.
966 In *Proceedings of the Thirty-Fifth Annual Conference on Neural Information Processing Systems*
(*NeurIPS* '21), pp. 18293–18306, 2021. URL <https://proceedings.neurips.cc/paper/2021/hash/9813b270ed0288e7c0388f0fd4ec68f5-Abstract.html>.
967 Raman Arora, Amitabh Basu, Poorya Mianjy, and Anirbit Mukherjee. Understanding deep neural
968 networks with rectified linear units. In *Proceedings of the 6th International Conference on Learn-*
969 *ing Representations (ICLR '18)*. OpenReview.net, 2018. URL https://openreview.net/forum?id=B1J_rgWRW.
970

971 ⁴By non-trivial, we mean that the parameter does not simply bound the input size.

972 Ron Banner, Yury Nahshan, and Daniel Soudry. Post training 4-bit quantization of con-
973 volutional networks for rapid-deployment. In Hanna M. Wallach, Hugo Larochelle,
974 Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett (eds.),
975 *Proceedings of the 32nd Annual Conference on Neural Information Processing Sys-*
976 *tems Advances in Neural Information Processing Systems (NeurIPS 2019)*, pp. 7948–
977 7956, 2019. URL <https://proceedings.neurips.cc/paper/2019/hash/c0a62e133894cdce435bcb4a5df1db2d-Abstract.html>.

978
979 Piotr Berman, Marek Karpinski, and Alex D. Scott. Approximation hardness of short sym-
980 metric instances of MAX-3SAT. *Electron. Colloquium Comput. Complex.*, TR03-049,
981 2003. URL <https://eccc.weizmann.ac.il/eccc-reports/2003/TR03-049/index.html>.

982
983 Daniel Bertschinger, Christoph Hertrich, Paul Jungeblut, Tillmann Miltzow, and Simon
984 Weber. Training fully connected neural networks is $\exists r$ -complete. In *Proceed-*
985 *ings of the Thirty-Seventh Annual Conference on Neural Information Processing Systems*
986 *(NeurIPS ’23)*, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/71c31ebf577ffdad5f4a74156daad518-Abstract-Conference.html.

987
988 Avrim Blum and Ronald L. Rivest. Training a 3-node neural network is np-complete. *Neural*
989 *Networks*, 5(1):117–127, 1992. doi: 10.1016/S0893-6080(05)80010-3. URL [https://doi.org/10.1016/S0893-6080\(05\)80010-3](https://doi.org/10.1016/S0893-6080(05)80010-3).

990
991 Digvijay Boob, Santanu S. Dey, and Guanghui Lan. Complexity of training relu neural network.
992 *Discret. Optim.*, 44(Part):100620, 2022. doi: 10.1016/J.DISOPT.2020.100620. URL <https://doi.org/10.1016/j.disopt.2020.100620>.

993
994 Cornelius Brand, Robert Ganian, and Mathis Rocton. New complexity-theoretic fron-
995 tiers of tractability for neural network training. In *Proceedings of the Thirty-
996 Seventh Annual Conference on Neural Information Processing Systems (NeurIPS ’23)*,
997 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/b07091c16719ad3990e3d1ccee6641f1-Abstract-Conference.html.

998
999 Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. Binaryconnect: Training deep
1000 neural networks with binary weights during propagations. In *Proceedings of the Twenty-
1001 Ninth Annual Conference on Neural Information Processing Systems (NeurIPS ’15)*, pp.
1002 3123–3131, 2015. URL <https://proceedings.neurips.cc/paper/2015/hash/3e15cc11f979ed25912dff5b0669f2cd-Abstract.html>.

1003
1004 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
1005 Pilipczuk, Michal Pilipczuk, and Saket Saurabh. *Parameterized Algorithms*. Springer,
1006 2015. doi: 10.1007/978-3-319-21275-3. URL <https://doi.org/10.1007/978-3-319-21275-3>.

1007
1008 Santanu S. Dey, Guanyi Wang, and Yao Xie. Approximation algorithms for training one-node relu
1009 neural networks. *IEEE Trans. Signal Process.*, 68:6696–6706, 2020. doi: 10.1109/TSP.2020.
1010 3039360. URL <https://doi.org/10.1109/TSP.2020.3039360>.

1011
1012 Ilan Doron-Arad. On the hardness of training deep neural networks discretely. In *Proceedings*
1013 *of the Thirty-Ninth AAAI Conference on Artificial Intelligence (AAAI ’25)*, pp. 16363–16371.
1014 AAAI Press, 2025. doi: 10.1609/AAAI.V39I15.33797. URL <https://doi.org/10.1609/aaai.v39i15.33797>.

1015
1016 Rodney G. Downey and Michael R. Fellows. *Fundamentals of Parameterized Complexity*. Texts in
1017 Computer Science. Springer, 2013. doi: 10.1007/978-1-4471-5559-1. URL <https://doi.org/10.1007/978-1-4471-5559-1>.

1018
1019 Vincent Froese and Christoph Hertrich. Training neural networks is np-hard in fixed dimension. In
1020 *Proceedings of the Thirty-Seventh Annual Conference on Neural Information Processing Systems*
1021 *(NeurIPS ’23)*, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/8948a8d039ed52d1031db6c7c2373378-Abstract-Conference.html.

1022
1023

1026 Vincent Froese, Christoph Hertrich, and Rolf Niedermeier. The computational complexity of relu
1027 network training parameterized by data dimensionality. *J. Artif. Intell. Res.*, 74:1775–1790, 2022.
1028 doi: 10.1613/JAIR.1.13547. URL <https://doi.org/10.1613/jair.1.13547>.

1029 Surbhi Goel, Adam R. Klivans, Pasin Manurangsi, and Daniel Reichman. Tight hardness re-
1030 sults for training depth-2 relu networks. In *Proceedings of the 12th Innovations in Theoreti-
1031 cal Computer Science Conference (ITCS '21)*, volume 185 of *LIPICS*, pp. 22:1–22:14. Schloss
1032 Dagstuhl - Leibniz-Zentrum für Informatik, 2021. doi: 10.4230/LIPICS.ITCS.2021.22. URL
1033 <https://doi.org/10.4230/LIPICS.ITCS.2021.22>.

1034 Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew G.
1035 Howard, Hartwig Adam, and Dmitry Kalenichenko. Quantization and training of neu-
1036 ral networks for efficient integer-arithmetic-only inference. In *Proceedings of the 2018
1037 IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2018)*, pp. 2704–
1038 2713. Computer Vision Foundation / IEEE Computer Society, 2018. doi: 10.1109/CVPR.
1039 2018.00286. URL http://openaccess.thecvf.com/content_cvpr_2018/html/Jacob_Quantization_and_Training_CVPR_2018_paper.html.

1040 J. Stephen Judd. On the complexity of loading shallow neural networks. *J. Complex.*, 4(3):177–
1041 192, 1988. doi: 10.1016/0885-064X(88)90019-2. URL [https://doi.org/10.1016/0885-064X\(88\)90019-2](https://doi.org/10.1016/0885-064X(88)90019-2).

1042 J. Stephen Judd. *Neural network design and the complexity of learning*. Neural network modeling
1043 and connectionism. MIT Press, 1990. ISBN 978-0-262-10045-8.

1044 Richard M. Karp. Reducibility among combinatorial problems. In *Proceedings of a symposium
1045 on the Complexity of Computer Computations*, The IBM Research Symposia Series, pp. 85–103.
1046 Plenum Press, New York, 1972. doi: 10.1007/978-1-4684-2001-2_9. URL https://doi.org/10.1007/978-1-4684-2001-2_9.

1047 Kordag Mehmet Kilic, Jin Sima, and Jehoshua Bruck. On algebraic constructions of neural networks
1048 with small weights. In *Proceedings of the 2022 IEEE International Symposium on Information
1049 Theory (ISIT '22)*, pp. 3007–3012. IEEE, 2022. doi: 10.1109/ISIT50566.2022.9834401. URL
1050 <https://doi.org/10.1109/ISIT50566.2022.9834401>.

1051 Ton Kloks. *Treewidth, Computations and Approximations*, volume 842 of *Lecture Notes in Com-
1052 puter Science*. Springer, 1994.

1053 Tuukka Korhonen. A single-exponential time 2-approximation algorithm for treewidth. In *Proceed-
1054 ings of the 62nd IEEE Annual Symposium on Foundations of Computer Science (FOCS '21)*, pp.
1055 184–192. IEEE, 2022. doi: 10.1109/FOCS52979.2021.00026. URL <https://doi.org/10.1109/FOCS52979.2021.00026>.

1056 Zewen Li, Fan Liu, Wenjie Yang, Shouheng Peng, and Jun Zhou. A survey of convolutional neural
1057 networks: Analysis, applications, and prospects. *IEEE Trans. Neural Networks Learn. Syst.*, 33
1058 (12):6999–7019, 2022. doi: 10.1109/TNNLS.2021.3084827. URL <https://doi.org/10.1109/TNNLS.2021.3084827>.

1059 Xiaofan Lin, Cong Zhao, and Wei Pan. Towards accurate binary convolutional neural network. In
1060 *Proceedings of the Thirity-First Annual Conference on Neural Information Processing Systems
1061 (NeurIPS '17)*, pp. 345–353, 2017. URL <https://proceedings.neurips.cc/paper/2017/hash/b1a59b315fc9a3002ce38bbe070ec3f5-Abstract.html>.

1062 Yang Lin, Tianyu Zhang, Peiqin Sun, Zheng Li, and Shuchang Zhou. Fq-vit: Post-training quanti-
1063 zation for fully quantized vision transformer. In *Proceedings of the Thirty-First International
1064 Joint Conference on Artificial Intelligence (IJCAI '22)*, pp. 1173–1179. ijcai.org, 2022. doi:
1065 10.24963/IJCAI.2022/164. URL <https://doi.org/10.24963/ijcai.2022/164>.

1066 Chunlei Liu, Wenrui Ding, Yuan Hu, Xin Xia, Baochang Zhang, Jianzhuang Liu, and David S.
1067 Doermann. Circulant binary convolutional networks for object recognition. *IEEE J. Sel. Top.
1068 Signal Process.*, 14(4):884–893, 2020. doi: 10.1109/JSTSP.2020.2969516. URL <https://doi.org/10.1109/JSTSP.2020.2969516>.

1080 Paulius Micikevicius, Sharan Narang, Jonah Alben, Gregory F. Diamos, Erich Elsen, David García,
1081 Boris Ginsburg, Michael Houston, Oleksii Kuchaiev, Ganesh Venkatesh, and Hao Wu. Mixed
1082 precision training. In *Proceedings of the 6th International Conference on Learning Representa-*
1083 *tions (ICLR 2018)*. OpenReview.net, 2018. URL <https://openreview.net/forum?id=r1gs9JgRZ>.

1084

1085 Ian Parberry. On the complexity of learning with a small number of nodes. In *Proceedings of the*
1086 *International Joint Conference on Neural Networks*, volume 3, pp. 893–898, 1992.

1087

1088 Neil Robertson and Paul D. Seymour. Graph minors. III. planar tree-width. *J. Comb. Theory B*, 36
1089 (1):49–64, 1984. doi: 10.1016/0095-8956(84)90013-3. URL [https://doi.org/10.1016/0095-8956\(84\)90013-3](https://doi.org/10.1016/0095-8956(84)90013-3).

1090

1091 Michael Schmitt. Some dichotomy theorems for neural learning problems. *J. Mach. Learn.*
1092 *Res.*, 5:891–912, 2004. URL <https://jmlr.org/papers/volume5/schmitt04a/schmitt04a.pdf>.

1093

1094

1095 Sergey Vasil'evich Sevast'janov. On some geometric methods in scheduling theory: A survey.
1096 *Discret. Appl. Math.*, 55(1):59–82, 1994. doi: 10.1016/0166-218X(94)90036-1. URL [https://doi.org/10.1016/0166-218X\(94\)90036-1](https://doi.org/10.1016/0166-218X(94)90036-1).

1097

1098 Ernst Steinitz. Bedingt konvergente Reihen und konvexe Systeme. *Journal für die reine und ange-*
1099 *wandte Mathematik*, 143:128–176, 1913. doi: 10.1515/crll.1913.143.128.

1100

1101 Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, and Joel S. Emer. Efficient processing of deep neural
1102 networks: A tutorial and survey. *Proc. IEEE*, 105(12):2295–2329, 2017. doi: 10.1109/JPROC.
1103 2017.2761740. URL <https://doi.org/10.1109/JPROC.2017.2761740>.

1104

1105 Ruizhe Wang, Yeyun Gong, Xiao Liu, Guoshuai Zhao, Ziyue Yang, Baining Guo, Zhengjun Zha,
1106 and Peng Cheng. Optimizing large language model training using FP4 quantization. In *Proceed-*
1107 *ings of the Forty-Second International Conference on Machine Learning (ICML '25)*, Proceedings
1108 of Machine Learning Research. PMLR, 2025. URL <https://openreview.net/forum?id=uK7JArZEJM>. to appear.

1109

1110 Zhaohui Yang, Yunhe Wang, Kai Han, Chunjing Xu, Chao Xu, Dacheng Tao, and
1111 Chang Xu. Searching for low-bit weights in quantized neural networks. In *Proceed-*
1112 *ings of the Thirty-Fourth Annual Conference on Neural Information Processing Systems*
1113 (*NeurIPS '20*), 2020. URL <https://proceedings.neurips.cc/paper/2020/hash/2a084e55c87b1ebcdaad1f62fdbbac8e-Abstract.html>.

1114

1115 Shuchang Zhou, Zekun Ni, Xinyu Zhou, He Wen, Yuxin Wu, and Yuheng Zou. Dorefa-net: Training
1116 low bitwidth convolutional neural networks with low bitwidth gradients. *CoRR*, abs/1606.06160,
1117 2016. URL <http://arxiv.org/abs/1606.06160>.

1118

1119 Chenzhuo Zhu, Song Han, Huizi Mao, and William J. Dally. Trained ternary quantization. In
1120 *Proceedings of the 5th International Conference on Learning Representations (ICLR '17)*. Open-
1121 Review.net, 2017. URL https://openreview.net/forum?id=S1_pAu9x1.

1122

1123 Shilin Zhu, Xin Dong, and Hao Su. Binary ensemble neural network: More bits per network
1124 or more networks per bit? In *Proceedings of the IEEE Conference on Computer Vision and*
1125 *Pattern Recognition (CVPR '19)*, pp. 4923–4932. Computer Vision Foundation / IEEE, 2019.
1126 doi: 10.1109/CVPR.2019.00506. URL http://openaccess.thecvf.com/content_CVPR_2019/html/Zhu_Binary_Ensemble_Neural_Network_More_Bits_per_Network_or_More_CVPR_2019_paper.html.

1127

1128

1129

1130

1131

1132

1133