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ABSTRACT

Embodiment co-design aims to optimize a robot’s morphology and control si-
multaneously. Previous research has demonstrated its potential for generating
environment-adaptive robots. However, the problem is inherently combinatorial
and the morphology is changeable and agnostic in its vast search space, optimiza-
tion efficiency remains complex and challenging to address. We prove that the
inefficient morphology representation and unbalanced reward signals between
the design and control stages are key obstacles against efficiency. In order to
advance towards efficient embodiment co-design to unlock its full potential, we
propose Genesis, which utilizes (1) a novel topology-aware self-attention archi-
tecture, enabling efficient morphology representation while enjoying lightweight
model sizes; (2) a temporal credit assignment mechanism for co-design that en-
sures balanced reward signals for optimization. With our simple-yet-efficient
methods, Genesis achieves average 60.03% performance improvement against
the strongest baselines. We provide codes and more results on the website:
https://genesisorigin.github.io.

1 INTRODUCTION

(b) Morphologies with Policies(a) Initial Designs

Figure 1: Embodied Agents generated by Genesis

Species in nature are blessed with millions of
years to evolve for remarkable capacities to
adapt to the environment (Pfeifer & Scheier,
2001; Vargas et al., 2014). Time has gifted
them with perfect physical bodies for movement
and navigation, powerful processors for central-
ized information processing, and effective actua-
tors for rapid interaction with their surroundings.
Inspired by this observation, embodiment co-
design (Sims, 1994; Ha, 2019; Yuan et al., 2021;
Wang et al., 2023), where a robot’s morphology
and control are optimized simultaneously, has gained increasing attention, and demonstrates signifi-
cant potential in various downstream fields, such as automated robot design and bio-inspired robot
generation (Kriegman et al., 2020; Nakajima et al., 2018; Judd et al., 2019; Pan et al., 2021; Whitman
et al., 2023). However, this task encounters extreme difficulties: (1) the morphology search space is
quite vast and combinatorial, with each morphology corresponding to unique action and state spaces;
(2) evaluating each candidate design requires an expensive roll-out to find its optimal control policy,
which is almost unfeasible for the expensive computation.

Previous methods (Sims, 1994; Wang et al., 2018b; Zhao et al., 2020; Gupta et al., 2021b) typically
utilize evolutionary search (ES) for embodiment co-design. Specifically, they maintain a fixed-size
population of agents with different morphology designs for random mutations, and only preserve
the top-performing agents’ children for further optimization. These methods inevitably result in
inefficient sampling within a vast design space and prevent the sharing of valuable experiences and
skills across different morphologies.

Substantial efforts have been made to address the shortcomings of ES-based methods. A natural
approach is introducing more human morphology priors, such as symmetry (Gupta et al., 2021b;
Dong et al., 2023), into the design process to reduce the search space. However, these methods can
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Figure 2: Overview of our Genesis, which leverages an RL-based framework for joint evolving of
morphology and control policy, and an attention-based network equipped with Topology Position
Encoding (TopoPE) for centralized message processing.

only offer a constant factor reduction in search space and significantly compromise functionality in
specific scenarios. Meanwhile, a class of methods based on Graph Neural Networks (GNNs) has
been proposed (Wang et al., 2018b; Yuan et al., 2021; Huang et al., 2020) to facilitate weight sharing
across different morphologies. However, these GNN-based methods face inefficiencies in message
transmission between joints due to the limitation of aggregating multi-hop information (Kurin et al.,
2020), reducing final performance.

Notably, Yuan et al. (2021) propose to optimize a robot’s morphology and control concurrently
through reinforcement learning (RL), where an agent first applies a sequence of transform actions
to modify its morphology without environment interaction, then it uses this morphology to interact
with the environment and receive rewards. The introduction of reinforcement learning effectively
facilitates learning, however, it also brings the problem of delayed rewards: compared with the second
phase (control phase), the first phase (design phase) is almost zero-reward guided, and this leads to
an unbalanced reward allocation.

Driven by this analysis, we present Genesis, an end-to-end reinforcement learning framework that
optimizes message and reward delivery during co-design. Genesis utilizes (1) a morphology self-
attention architecture to achieve direct message delivery during optimization, with our proposed
topology-aware positional encoding to achieve message localization and morphological knowledge
sharing; (2) a temporal credit assignment mechanism that ensures an agent receives balanced reward
signals in both the morphology design and control phases.

To summarize, our contributions are as follows:

• We propose Genesis, an end-to-end reinforcement learning framework for efficient embodiment
co-design.

• We design a Morphology Self-Attention architecture (MoSAT) to provide direct message deliv-
ery, featuring our proposed Topological Position Encoding (TopoPE) for efficient morphology
representation.

• We propose a temporal credit assignment mechanism that ensures balanced reward signals in both
the morphology design and control phases, greatly facilitating efficient learning.

Comprehensive experiments across various tasks demonstrate Genesis’s superiority against previ-
ous methods in terms of both convergence speed and performance. Genesis achieves an average
performance improvement of 60.03% against the strongest baselines.

2 RELATED WORK

Universal Morphology Control Embodiment co-design requires controlling robots with changeable
morphologies and adapting to their incompatible action and state spaces. Universal Morphology
Control (UMC), which employs a shared network to control each actuator separately, presents a
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promising solution to this problem. To better perceive the topological structures of various morpholo-
gies, some methods Pathak et al. (2019); Wang et al. (2018a); Huang et al. (2020) employed Graph
Neural Networks (GNNs) to enable communication between neighboring actuators. Recent works
also use Transformers (Vaswani et al., 2017) to overcome the limitations of multi-hop information
aggregation brought by GNNs (Kurin et al., 2020; Hong et al., 2021; Gupta et al., 2021a; Dong
et al., 2022). While most of these methods focus on parametric variations of a limited number
(e.g. 2-3) of predefined morphologies, our approach addresses a much more challenging task, which
not only requires controlling various morphology-agnostic robots within a vast design space but also
needs to concurrently learn for the best morphology. Furthermore, most previous works do not fully
leverage morphology information or only consider its simple form, and even the usefulness of such
information remains controversial (Kurin et al., 2020; Hong et al., 2021; Gupta et al., 2021a; Xiong
et al., 2023). In this work, we prove that morphology information is quite crucial, and the correctness
of morphology representation significantly influences performance. Consequently, we introduce a
novel positional encoding technique called TopoPE that not only facilitates message localization
within the body but also enhances knowledge sharing among similar morphologies.

Embodiment Co-design As for embodied artificial agents, control policy has been well studied
in the robotics community (Lillicrap et al., 2015; Schulman et al., 2015a; Haarnoja et al., 2018;
Schulman et al., 2017; Lowrey et al., 2018), while another critical component, the physical form
of the embodiment, is currently attracting more and more attention (Kriegman et al., 2020; Bhatia
et al., 2021; Xu et al., 2021; Huang et al., 2024). Embodiment co-design aims to optimize a robot’s
morphology and control simultaneously and is considered a promising way to stimulate the embodied
intelligence embedded in morphology. Previous methods (Sims, 1994; Wang et al., 2018b; Gupta
et al., 2021b) typically utilize evolutionary search (ES) to learn directly within the vast design space,
which unavoidably brings inefficient sampling and expensive computation. A line of works (Wang
et al., 2018b; Gupta et al., 2021a) introduces more human morphology priors, such as symmetry, to
reduce the search space. Wang et al. Wang et al. (2018b) utilize GNNs to facilitate weight sharing
across morphologies. Yuan et al. Yuan et al. (2021) proposes to jointly optimize a robot’s morphology
and control policy via reinforcement learning. This paper focuses on the RL-based approach for joint
optimization for both morphology and control. We aim to establish a comprehensive framework for
embodiment co-design, systematically addressing the issues of message and reward delays during the
training process.

3 PRELIMINARIES

Morphology Representation. The morphology of an agent can be formally defined as an undirected
graph G = (V,E,Av, Ae), where each node v ∈ V represents a limb of the robot, and each edge
e = (vi, vj) ∈ E represents a joint connecting two limbs. Av and Ae are two mapping functions that
map the limb node v to its physical attributes Av : V → Λv, and map the edge e = (vi, vj) to its
joint attributes Ae : E → Λe, respectively. Here Λv = {Λvi} is the limb attribute space, consisting
of attributes Λvi like limb lengths, sizes and materials, and Λe = {Λei} is the joint attribute space
consisting of attributes Λei like rotation ranges and maximum motor torques. Consequently, the
design space D is defined on all valid robot morphologies G ∈ D.

Co-Design Optimization. The fitness F of an agent represents its performance in a specific environ-
ment, and is typically evaluated by rewards. In traditional control problems with a fixed morphology
G0, we aim to optimize its control policy π towards the optimal π∗ = argmaxπF (π,G0) for maxi-
mum fitness. In co-design problems, we not only optimize the control policy but also the morphology
design simultaneously. This co-design process is formulated as a bi-level optimization problem:

G∗ = argmax
G

F (π∗
G ,G)

s.t. π∗
G = argmax

πG

F (πG ,G),
(3.1)

where the inner loop defines the optimal control policy of a given morphology, and the outer loop
defines the optimal morphology using its optimal policy. Previous works typically use evolutionary
algorithms (Sims, 1994; Wang et al., 2018b; Gupta et al., 2021b) to solve this problem. In this work,
Genesis leverages an RL-based framework, and jointly optimizes both loops:

π∗(·|G∗),G∗ = argmax
π(·|G),G

F (π(·|G),G), (3.2)

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

using the universal control policy π(·|G), which not only benefits co-design for both morphology and
control, but also promotes knowledge sharing among agents, and greatly improves learning efficiency.

Reinforcement Learning. We formally define the problem formulation of Morphology-Conditioned
Reinforcement Learning for embodiment co-design. We consider the augmented Markov Decision
Process (MDP), which can be described by a 6-element tupleM = (S,A, T ,R,D,Φ). Φ is a flag
to distinguish design and control stages. S denotes the state space. A(Φ) represents the action space,
where a ∈ A(Φ = Design) changes the morphology of the agent, and A(Φ = Control) defines
the action space for motion control. T : S × A(Φ) × S → [0, 1] represents the environmental
transitioning probability from one state st to another st+1, given an action at. R : S ×A× S → R
is the state-action reward, and the fitness function F is defined as the episodic return

∑T
t=1 rt(st, at)

based on rewards. As defined above, D represents the morphology design space, and our goal is to
find some co-design policy π : S × D → A that can maximize the environmental fitness F .

4 METHOD

Embodiment co-design involves optimizing an agent’s morphology and corresponding control policy.
The co-design procedure can be divided into two consecutive stages: (1) Design Stage, where an
agent starts with an initial morphology G0 and iteratively transforms it towards the final design Gdone
through a series of morphology transforming actions via a design policy πD; and (2) Control Stage,
where the agent interacts with the environment with its corresponding control policy πC .

During the co-design process, we identified three key factors that impede optimization efficiency:
(1) Intra-agent message signal transmission decay (Kurin et al., 2020). Coordinated control requires
low-latency transmission and efficient message processing as sensors and actuators are distributed
throughout the agent’s body. (2) Inter-agent morphological structure knowledge transfer delay.
The co-design process leads to diverse morphological structures, and existing methods struggle to
efficiently share knowledge between similar agents. (3) Agent-environment reward delay. Sparse
rewards during the Design Stage result in the agent’s delayed perception of environmental fitness. In
this study, we systematically analyze and address the above issue throughout the co-design process.

In this section, we consistently considers the situation at timestep t to erase the subscript t for clear
formulation.

4.1 ATTENTION-BASED CO-DESIGN NETWORK

Genesis further divides the Design Stage into two sub-stages: Topology Design Stage and Attribute
Design Stage, which transforms the topology (V0, E0) and the corresponding attributes (Av

0, A
e
0) of

the agent’s morphology, respectively. Consequently, the design policy πD is also divided into two
sub-policies πD = (πtopo, πattr) for according action control.

During the Topology Design Stage, the agent can modify the topology through three basic actions:
(1) Addition add(v): add a new child limb vnew to v, along with a new joint enew = (v, vnew)
connecting them. (2) Deletion del(v): delete the limb v and the joint to its parent e = (vp, v) if v
is a leaf node. (3) NoChange pass(v): take no changes for node v. This stage will last up to N topo

steps. The agent’s policy πtopo is conditioned on the current topology (V,E) of timestep t, denoting
as the product of action distributions πtopo

v from all limbs 1:

atopo ∼ πtopo(atopo|G) ≜
∏
v∈V

πtopo
v (atopov |pv,G) (4.1)

where pv represents the topology position of node v.

In the Attribute Design Stage, the agent further generates limb and joint attributes based on the given
topology Gdone = (Vdone, Edone). The agent’s attribution policy πattr can be formulated as:

aattr ∼ πattr(aattr|G) ≜
∏
v∈V

πattr
v (aattrv |pv,G) (4.2)

1We use the limb-level action distribution, where each limb corresponds to its own action distribution,
and the entire agent’s action distribution is composed of all limbs’ distributions. This effectively resolves the
incompatibility of state and action spaces across the changeable topological morphologies.
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(a) MoSAT Architecture (b) Batch Processing for MoSAT

MoSAT

Figure 3: The Morphology Self-Attention (MoSAT) architecture. (a) The sensor observations
from different limbs are projected to hidden tokens for centralized processing with several MoSAT
blocks and generate separate actions. (b) The MoSAT network processes different morphologies in a
batch manner and learns a universal control policy π(·|G), thus improving training efficiency.

Finally, in the Control Stage, the agent uses the morphology generated in the Design Stage to
interact with the environment using the control policy πC .

actrl ∼ πctrl(actrl|s,Gdone) ≜
∏
v∈V

πctrl
v (actrlv |s, pv,Gdone), (4.3)

where s = {sv} denotes the sensor states of every limp, including forces, positions, velocities, etc.
We use actrlv to represent the torque of the joint connecting node v with its parent vp.

The policy network must adapt to different morphologies during training to during the co-design
process. This presents two main challenges: 1) This adaptation is necessary within a single agent to
accommodate the growing body and across different agents to achieve unified control. 2) Although
sensors and actuators are distributed throughout different parts of the agent, we demand coordinated
control over the entire body. Inspired by the centralized signal processing of mammals in real-world
nature, generating remarkable intelligence, we propose the Morphology Self-AttenTion architecture
(MoSAT) for efficient, centralized message processing. Figure 3 (a) provide an overview of MoSAT.

Latent Projection. We encode information from each limb’s sensor to enhance network processing
capabilities and map it into a latent space as message tokens. Specifically, limb sensor states sv are
first processed through a parameter-shared linear mapping layer ϕh(·):

m = ϕh(s) + Epos(V,E) s ∈ RL×d,m ∈ RL×D (4.4)

where d is the input state dimension and D is the hidden dimension. We employ a novel position
encoding, called TopoPE for morphology representation to localize message sources, which will be
further discussed later in Section 4.2. The position encodings ev are added to message tokens mv to
get position-embedded message tokens m̂v .

Centralized Processing. As illustrated in Figure 2, we aim for efficient message interaction. Unlike
previous GNN-based methods (Wang et al., 2018b; Yuan et al., 2021), where information must pass
through several intermediaries before reaching the target location, our model utilizes the scaled
dot-product self-attention Attention(·) for point-to-point, centralized processing. Specifically, each
message m use qvi to query the key of another message kvj weighting its value vvi :

Attention(m) = SoftMax(
QKT

√
dk

)V where Q = mWQ,K = mWK , V = mWV , (4.5)

where WQ,WK ,WV ∈ RD×D are learnable matrices. For MoSAT block design, we adopt Pre-LN
(Xiong et al., 2020) for layer normalization (LN) and add residual connections (He et al., 2016;
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Figure 4: The motivation of our proposed topology-aware position encoding TopoPE. (a) During the
co-design procedure, the agent’s morphology keeps changing. (b) A typical traversal-based PE in
previous works resulted in inconsistency across mythologies. (c) TopoPE can better adapt to similar
morphology structures using a reasonably align-able manner.

Dosovitskiy et al., 2020) to facilitate learning. This procedure can be formulated as:

m′
l+1 = Attention(LN(ml)) + ml l = 0...N − 1 (4.6)

ml+1 = MLP(LN(m′
l), r) + m′

l l = 0...N − 1 (4.7)

where N is the stacked block number, and the MLP(·, r) is an MLP layer with one hidden layer,
which first upscale the token dimension to r ×D, then project it back to D.

Forwarding. In the end, we need to output actions for each actuator. We decode the attended
messages using a linear projector ϕa(·) to generate the action logits for each actuator:

π(a|s) =
{
SoftMax(ϕa(mN )), Discrete Action Space
N (a;ϕa(mN ),Σ), Continuous Action Space.

(4.8)

The above process has equipped MoSAT with the capability to handle various morphologies. To
maximize training efficiency, we further offer MoSAT the ability to process multiple morphologies in
a batch mode. As shown in Figure 3 (b), for a batch of state inputs {st}B , we first pad them to equal
length [st]B ∈ RB×Lm×d, where Lm is the max limb number of morphologies within this batch,
and generate a padding matrix P ∈ RB×Lm , where Pij = 1 for j ≤ Li and Pij = 0 for j > Li. To
keep the messaging logic exactly equivalent to the regular mode, we can eliminate the influence of
padding by modifying the attention operation with an attention mask Θ ∈ RB×Lm×Lm :

Attention([mt]B) = SoftMax(
QKT

√
dk

+Θ)V, (4.9)

where Θijk = log(Pik + ϵ). Finally, we remove the batch padding and re-allocate actions to joints of
different agents via: {a}B = [a]B ⊙ P, where ⊙ represents the bool-selection operation according
to the padding matrix P .

4.2 TOPOLOGY-AWARE POSITION ENCODING FOR MORPHOLOGY REPRESENTATION

So far, we’ve achieved centralized message processing by performing self-attention in latent space.
The vanilla attention operation treats each token equally, neglecting morphology information. How-
ever, it is crucial to inject positional information for co-design decision-making for: (1) Similar
information from different morphology positions has varying meanings, and message source local-
ization is significant; (2) Similar morphology structures may share similar local control policies,
and positional information facilitates knowledge alignment and sharing across different agents. To
better capture the differences between morphological structures and share structural knowledge
among similar morphologies, we propose Topology Position Encoding (TopoPE), a topology-aware
position encoding mechanism to handle the above two issues efficiently.

As demonstrated in Figure 4, the traversal-based limb indexing method (Hong et al., 2021; Gupta
et al., 2021a; Xiong et al., 2023) is less stable, and slight morphological changes can cause global
indexing offsets. To mitigate the effect of offsets due to morphological changes, TopoPE uses a
hash-map H(·) for position encoding, which maps the path between the root limb vroot and the
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current limb vi to a unique embedding evi :
evi = H([vi 7→ vroot])

where [vi 7→ vroot] = [(vi, p(vi)), (p(vi), p
2(vi)), ..., (p

l−1(vi), vroot)],
(4.10)

where pn(v) is the n-th ancestor of v. Practically, if v is the k-th child of its parent p(v), the edge
(v, p(v)) is denoted by the integer k, allowing the path index to be represented as a sequence of
integers. Experiments demonstrate that TopoPE effectively adapts growing morphologies, facilitating
knowledge alignment and sharing across agents, which leads to a better performance.

4.3 CO-DESIGN OPTIMIZATION WITH TEMPORAL CREDIT ASSIGNMENT

MoSAT
…

…
…

𝑎! 𝑎" 𝑎# 𝑎$ 𝑎%

MoSAT
…

…
𝑣

𝑡 𝑡 𝑡 𝑡 𝑡 𝑡

(a) Policy Network (b) Value Network

Figure 5: Genesis leverages an actor-critic
paradigm for policy optimization. The Policy
and value networks are both based on MoSAT.

To achieve efficient reward-driven co-design, Genesis
leverages an actor-critic paradigm based on reinforce-
ment learning, which trains a value function Vθ(st)
and a policy function πθ(at|st) and updates them us-
ing collected trajectories. We employ the Proximal
Policy Optimization (PPO) (Schulman et al., 2017) to
optimize the policy πθ in the actor-critic framework.
PPO uses the advantage function Ât(at, st) to define
how better an action at is for current state st, and
optimizes the following surrogate objective function as:

Lpolicy = −min
{ πθ(at|st)
πθold(at|st)

Ât, clip
( πθ(at|st)
πθold(at|st)

, 1− ϵ, 1 + ϵ
)
Ât

}
(4.11)

For the co-design process, the Vanilla PPO leads to limited performance. We find two main reasons
for this problem: 1) in the co-design process, only the Control Stage can receive direct environmental
rewards, leading to an unbalanced reward distribution; 2) a body-modifying action taken in the
Design Stage will equally affect every future interaction timestep, while a motion-control action
in the Control Stage has decreasing impact on the future. To improve the training performance
of Genesis, we introduce our modified Generalized Advantage Estimation (GAE) (Schulman et al.,
2015b) for enhanced temporal credit assignment for embodiment co-design:

Ât =

{
δt + γλÂt+1 · (1− Tt ∨ Ct), for Control Stage
Ut − Vθ(st), for Design Stage

where δt = rt + γVθ(st+1) · (1− Tt)− Vθ(st)

Ut = rt + Ut+1 · (1− Tt ∨ Ct)

(4.12)

where γ is the discounting factor, λ is the exponentially weighted for GAE and Tt,Ct are two
environment flags denoting environment termination and truncation, respectively. The value loss
function Lvalue is defined as:

Lvalue =
(
Vθ(st)− R̂t

)2
, where R̂t = sg

[
Vθ(st) + Ât

]
, (4.13)

where sg[·] stands for the stop-gradient operator.

As shown in Figure 5, both policy and value networks use MoSAT as the backbone. Inspired by
BERT (Devlin et al., 2018), we use the token output of every limb to generate the action policy in
Equation (4.8) for each actuator (Figure 5 (a)), and use the token output of the root limb for value
prediction of the entire body at timestep t (Figure 5 (b)). Each co-design stage has a separate value
network to avoid potential conflicts in gradient descent (Yu et al., 2020; Liu et al., 2021) due to
different credit assignment strategies.

5 EXPERIMENTAL EVALUATIONS

Our experiments aim to validate our primary hypothesis: that efficient message and reward delivery
can effectively overcome bottlenecks in the co-design process, leading to embodied agents that can
better adapt to the environment. Additional visualization results are presented in Appendix A.7. Visit
our project website for videos and more visualization results 2.

2https://genesisorigin.github.io
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NGE

Genesis (Ours)

Ours w/o MoSAT

Transform2Act

Ours w/o Enhanced-TCA

UMC-Message*

Figure 6: Performance of Genesis, NGE, Transform2Act, UMC-Message*, Genesis w/o MoSAT,
and Genesis w/o Enhanced-TCA on ten co-design environments, with error regions to indicate
standard error over four random seeds.

Environments. We conduct a comprehensive evaluation of Genesis with baselines in ten chal-
lenging co-design environments (CRAWLER, TERRAINCROSSER, CHEETAH, SWIMMER, GLIDER-
REGULAR, GLIDER-MEDIUM, GLIDER-HARD, WALKER-REGULAR, WALKER-MEDIUM and
WALKER-HARD) on MuJoCo (Todorov et al., 2012). These environments encompass a diverse range
of physical world types (2D, 3D), environment tasks, search space complexities, ground terrains, and
initial designs to provide a multilevel evaluation. See Appendix A.1 for detailed descriptions.

5.1 COMPARISON WITH BASELINES

We compare Genesis with the following baselines to highlight Genesis’s performance: 1) Evolution
Based Algorithms: NGE (Wang et al., 2018b) maintains a population of agents with different
morphologies for random mutation and only preserves top-performing agents’ children for further
optimization. 2) RL Based Algorithms: Transform2Act (Yuan et al., 2021) propose to optimize
a robot’s morphology and control concurrently through reinforcement learning and achieve co-
optimization. It utilizes graph neural networks (GNNs) and joint-specific MLPs (JSMLP) to foster
knowledge sharing and specification. 3) Universal Control Algorithms: UMC-Message (Wang et al.,
2018a; Huang et al., 2020) leverages a localized message transition mechanism for information
exchange within the body, which is a typical method for universal morphology control. To make it
suitable for embodiment co-design, we equip it with a policy network and our enhanced temporal
credit assignment using reinforcement learning and denote it as UMC-Message*. The implementation
details and full hyper-parameter of Genesis and all baselines are provided in Appendix A.2 and
Appendix A.3.

As shown in Figure 6, Genesis achieves the highest task performance in all ten environments,
with faster convergence speeds than baselines. Unlike the Universal Morphology Control (UMC)
task, which focuses on limited specific morphologies Wang et al. (2018a); Huang et al. (2020),
embodiment co-design deals with various changeable, morphology-agnostic robots. Consequently,
UMC-Message∗ fails to converge within a limited time for complex tasks such as GLIDER-HARD, and
WALKER-HARD, due to its insufficient knowledge alignment mechanism for complicated, changable
morphologies (e.g. JSMLP in Transform2Act and TopoPE in Genesis). Compared to evolutionary
algorithms like NGE, we also find that RL-based methods demonstrate significant performance
advantage due to a great sampling efficiency improvement within the same number of environmental

8
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Table 1: Comparison of different position encoding choices for morphology representation.

Methods CRAWLER TERRAINCROSSER CHEETAH SWIMMER GLIDER-REGULAR

TopoPE (ours) 10381.96 ± 353.97 5056.01 ± 703.57 11611.52 ± 522.86 1305.17 ± 15.25 11082.29 ± 99.21
w/ Traversal PE 8582.24 ± 987.44 4339.60 ± 260.60 10581.62 ± 846.69 1292.05 ± 16.71 9801.31 ± 748.13
w/o TopoPE 7490.83 ± 267.70 1122.29 ± 659.38 7451.37 ± 2275.37 1371.20 ± 30.74 10137.83 ± 713.60

Methods GLIDER-MEDIUM GLIDER-HARD WALKER-REGULAR WALKER-MEDIUM WALKER-HARD

TopoPE (ours) 11996.82 ± 595.51 10798.06 ± 298.39 12062.49 ± 513.07 12962.08 ± 537.34 11982.07 ± 520.78
w/ Traversal PE 10758.70 ± 401.90 9106.77 ± 679.59 10389.40 ± 1080.94 10972.13 ± 584.04 11255.89 ± 121.04
w/o TopoPE 4099.99 ± 2057.92 109.48 ± 10.03 10149.67 ± 255.99 6730.01 ± 705.06 6529.87 ± 1863.59

interactions, supported by Yuan et al. (2021). By overcoming the bottlenecks in co-design, our
approach goes even further: it achieves an average 60.03% performance improvement over the
strongest baseline in all the ten tasks.

5.2 ABLATION STUDIES

As mentioned in Section 4, our approach addresses inefficiencies in message and reward delivery,
which includes the intra-agent level, inter-agent level, and agent-environment level. To better support
our hypothesis and understand the importance of our key corresponding components (MoSAT,
TopoPE, Enhanced-TCA), we designed four variants of our approach: (i) Ours w/o MoSAT, which
removes the MoSAT structure to remove our attention-based centralized information processing
across different limbs; (ii) Ours w/o Enhanced-TCA, which removes our temporal credit assignment
mechanism and employs original PPO for optimization; (iii) Ours w/o TopoPE, which removes
TopoPE from our methods. For a more comprehensive comparison, we also introduced another
position encoding method from recent UMC methods, as: (iv) Ours w/ Traversal PE, where TopoPE is
replaced with a traversal-based position embedding (Hong et al., 2021; Gupta et al., 2021a). Figure 6
presents the ablation studies for TopoPE and Enhanced-TCA, while Table 1 highlights the differences
for different positional embedding choices. Additional detailed experimental results in are available
in the Appendix (Table 11, Table 12).

(1) Intra-agent level: The MoSAT module provides centralized information processing. Removing
this module results in significant performance degradation. Notably, Transform2Act adds an MLP to
each limb, enhancing local message processing and model performance, but it increases the model
size to 19.64M , which grows linearly with the complexity of the morphology. In contrast, our method
is more lightweight, with each model only with 1.43M parameters, significantly enhancing scalability.
(2) Inter-agent level: TopoPE facilitates morphological knowledge sharing among agents, aiding in
adjusting knowledge for similar morphologies and reducing redundant learning costs. Compared to
"Traversal PE" and "w/o TopoPE", TopoPE enhances agent performance and stabilizes learning. (3)
Agent-environment level: Our proposed temporal credit assignment ensures that an agent receives
balanced reward signals during both morphology design and control phases, markedly improving
final performance across all the environments for embodiment.

6 CONCLUSIONS AND LIMITATIONS

This work proposes Genesis, a general reinforcement learning framework for efficient embodiment
co-design. Our approach achieves efficient message and reward delivery through zero-decay message
processing, effective morphological knowledge sharing, and balanced temporal credit assignment.
Experiments demonstrate that Genesis surpasses previous methods in convergence speed and final
performance while being efficient, lightweight, and scalable.

Limitations and Future Work. We acknowledge at least two limitations. Firstly, our approach
remains focused on simulation environments, and further efforts are needed in transferring learned
strategies to real physical systems. Secondly, our approach is a reward-driven reinforcement learning
method, focusing on improving control effects, yet it lacks the ability to simulate the rich perception
and execution capabilities of real biological intelligent systems. In future research, we expect
embodied intelligence to evolve perception and execution components akin to biological evolutionary
principles, enabling the realization of more efficient tasks for embodied intelligence.

9
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A APPENDIX

The supplementary material provides additional results, discussions, and implementation details.

Our code is available in our supplementary material for reproduction and further study. Visit our
website for videos and more additional visualizations.

A.1 ENVIRONMENT AND TASK DETAILS

Crawler TerrainCrosser Cheetah

Swimmer Glider Walker

Figure 7: Randomly generated agents in six different environments for visualization. Purple ground
indicates agents in a 3D physical world, Green ground represents agents in the xy-plane physical
world, Blue ground denotes agents in the xz-plane physical world, and Brown ground denotes a
physical world with variable terrain.

Initial Type-1 Initial Type-2 Initial Type-3 Initial Type-4

Figure 8: Visualization of four initial designs in the environments. Type-1 consists of a structure with
four limbs. Type-2 and Type-3 each includes two limbs connected by a joint, located in the xy-plane
and xz-plane respectively. Type-4 is composed of three limbs connected by two joints. Note that,
Genesis can support almost arbitrary initial designs, and is not limited to the types specified.

In this section, we provide additional descriptions of the environments and tasks used in our ex-
periments. Figure 7 displays randomly generated agents in six different environments. The first
four environments: CRAWLER, TERRAINCROSSER, CHEETAH, and SWIMMER are derived from
previous work (Yuan et al., 2021) to ensure a fair comparison. We have also introduced two additional
environments, GLIDER and WALKER, to broaden testing scope and provide a more comprehensive
algorithm evaluation.

Each agent consists of multiple limbs connected by joints, each joint equipped with a motor for
controlling movement. Sensors within the limbs monitor positional coordinates, velocity, and angular
velocity. For each limb, its attributes include limb length and limb size. For each joint, its attributes
cover rotation range and maximum motor torque. Each episode starts with a simple initial design,
as demonstrated in Figure 8. Through a series of topological and attribute modifications, the agent
evolves to its final morphology. Meanwhile, the control policy is required to optimize concurrently.
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Crawler The agent inhabits a 3D environment with flat ground at z = 0. The initial design is the
Type-1 in Figure 8. Each limb can have up to two child limbs, except for the root limb. For the root
limb, its height and 3D world velocity are also included in the environment state. The reward function
is defined as:

rt =
|pxt+1 − pxt |

∆t
− w · 1

J

∑
u∈Vt

∥aeu∥2 (A.1)

where w = 0.0001 is the weighting factor for the control penalty term, J is the total number of limbs,
and ∆t = 0.04.

TerrainCrosser The agent evolves in a terrain-variable environment, where the terrain features
varying height differences. The maximum height difference of the terrain is zmax = 0.5. The agent
must navigate these gaps to move forward. The initial design is the Type-3 in Figure 8. The terrain is
generated from a single-channel image, with different values representing different height rates. Each
limb of the agent can have up to three child limbs. For the root limb, its height, 2D world velocity,
and a variable encoding the terrain information are included in the environment state. The reward
function is defined as:

rt =
|pxt+1 − pxt |

∆t
, (A.2)

where ∆t = 0.008, and the episode is terminated when the root limb height is below 1.0.

Cheetah The agent in this environment evolves with flat ground at z = 0. The initial design is the
Type-3 in Figure 8. Each limb of the agent can have up to three child limbs. For the root limb, its
height and 2D world velocity are added to the environment state. The reward function is defined in
Equation (A.2). The episode is terminated when the root height is below 0.7.

Swimmer Swimmer is designed to cover snake-like creatures in water. The agent evolves in water
with a viscosity of vis = 0.1 for water simulation. The initial design is the Type-2 in Figure 8. Each
limb support up to three child joints. For the root limb, its 2D world velocity is incorporated into the
environment state. The reward function is the same as TerrainCrosser in Equation (A.2).

Glider The agent in this environment evolves on flat ground. The initial design is the Type-4, as
shown in Figure 8. In Glider, the agent’s search depth is limited to three times that of the initial design,
encourage fully exploration of a relatively shallow search space. We also provide three different task
levels: regular, medium, and hard, where each limb of the agent can have up to one, two, three child
limbs. The reward function is defined in Equation (A.2).

Walker The agent evolves on flat ground. The starting design is Type-4 in Figure 8. The search
depth for the agent is capped at four times the initial design to promote thorough exploration within a
comparatively shallow search space. Similarly, three levels of task difficulty are offered, which have
the same meaning as described in Glider. The reward function is specified in Equation (A.2).

Note that the reward function are kept simple and consistent in all environments. Unlike common
practices in OpenAI-Gym (Brockman et al., 2016), we do not provide any additional reward pri-
ors (e.g.alive bonus) to facilitate learning, which presents higher requirements to the algorithm
robustness.

A.2 IMPLEMENTATION DETAILS

A.2.1 TRAINING DETAILS

In line with standard reinforcement learning practices, we employed distributed trajectory sampling
across multiple CPU threads to accelerate training. Each model is trained using four random seeds on
a system equipped with 112 Intel® Xeon® Platinum 8280 cores and six Nvidia RTX 3090 GPUs.
Our main code framework is based on Python 3.9.18 and PyTorch 2.0.1. For all the environments
used in our work, it takes approximately only 30 hours to train a model with 20 CPU cores and a
single NVIDIA RTX 3090 GPU on our server.

A.2.2 HYPERPARAMETERS

For Genesis, we ran a grid search over MoSAT layer normalization ∈ {w/o-LN,Pre-LN,Post-LN},
Policy network learning rate ∈ {5e−5, 1e−4, 3e−4}, Value network learning rate ∈ {1e−4, 3e−4},
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and MoSAT hidden dimension ∈ {32, 64, 128, 256}. We did not search further for the environmental
settings, optimizer configurations, PPO-related hyperparameters, or the training batch size and
minibatch size. Instead, we strictly maintained consistency with previous works Wang et al. (2018b);
Yuan et al. (2021); Kurin et al. (2020) to ensure a fair comparison. With further hyperparameter
tuning, our algorithm could achieve higher performance levels. Table 2 displays the hyperparameters
Genesis adopted across all experiments.

For Transform2Act, we followed previous work Yuan et al. (2021) and its official released code
repository 3, and used GraphConv as the GNN layer type, policy GNN size (64, 64, 64), policy
learning rate 5e − 5, value GNN size (64, 64, 64), value learning rate 3e − 4, JSMLP activation
function Tanh, JSMLP size (128, 128, 128) for the policy, MLP size (512, 256) for the value function,
which were the best values they picked using grid searches.

For UMC-Message, to make them suitable for embodiment co-design, we equip them with a policy
network and employ our temporal credit assignment via reinforcement learning. The network
parameters and training settings are kept consistent with those used in Genesis and Transform2Act to
ensure a fair comparison. It adopted GNN layer type of GraphConv, policy GNN size (64, 64, 64),
policy MLP size (128, 128), policy learning rate 5e − 5, value GNN size (64, 64, 64), value MLP
size (512, 256), value learning rate 3e− 4. We followed previous work Huang et al. (2020) and also
referred to the publicly released code 4 for implementation.

For NGE, we follow previous works Wang et al. (2018b); Yuan et al. (2021) according to the public
release code 5, and used number of generations 125, agent population size 20, elimination rate 0.15,
GNN layer type GraphConv, MLP activation Tanh, policy GNN size (64, 64, 64), policy MLP size
(128, 128), value GNN size (64, 64, 64), value MLP size (512, 256), policy learning rate 5e− 5, and
value learning rate 3e− 4, which were the best searched values described by previous work.

Table 2: Hyperparameters of Genesis adopted in all the experiments

Hyperparameter Value

Number of Topology Design N topo 5
Number of Attribute Design Nattr 1
MoSAT Layer Normalization Pre-LN
MoSAT Activation Function SiLu
MoSAT FNN Scaling Ratio r 4
MoSAT Block Number (Policy Network) 3
MoSAT Block Number (Value Network) 3
MoSAT Hidden Dimension (Policy Network) 64
MoSAT Hidden Dimension (Value Network) 64
Optimizer Adam
Policy Learning Rate 5e-5
Value Learning Rate 3e-4
Clip Gradient Norm 40.0
PPO Clip ϵ 0.2
PPO Batch Size 50000
PPO Minibatch Size 2048
PPO Iterations Per Batch 10
Training Epochs 1000
Discount factor γ 0.995
GAE λ 0.95

3https://github.com/Khrylx/Transform2Act
4https://github.com/huangwl18/modular-rl
5https://github.com/WilsonWangTHU/neural_graph_evolution
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A.3 ALGORITHM DETAILS

Algorithm 1 illustrates the overall training process of Genesis, which is based on PPO for efficient
reinforcement learning. We highlight three key components: the interaction process, our temporal
credit assignment based on GAE, and the main loop for iterative optimization.

Algorithm 1: Synchronous Learning Algorithm for Genesis
Input: Replay Buffer B, Batch B, Optimizer optimizer
Initialize :Policy networks: πθ : {πtopo

θ , πattr
θ , πC

θ }; Value networks: Vθ : {V topo
θ , V attr

θ , V C
θ }

B← ∅, B← ∅, Discount factor γ, GAE Exponential Weight λ
1 Function INTERACT(Policy: π, Replay Buffer: B):
2 while B not reaching max buffer size do
3 G0 ← initial design
4 Φ← topo ▷ Topology design stage
5 for t = 0, 1, ..., N topo − 1 do
6 atopo

t ∼ πtopo(atopo
t |Gt) ▷ Sample topology actions from all limps

7 Gt+1 ← apply atopo
t to modify the topology (Vt, Et) of current design Gt

8 rt = 0 ; St = S; store {rt,∅,atopo
t ,Gt,St, 0, 0} into B ▷ Update Buffer B with transition

9 end
10 Φ← attr ▷ Attribute design stage
11 for t = N topo, ..., N topo +Nattr − 1 do
12 aattr

t ∼ πattr(aattr
t |Gt) ▷ Sample attribute actions from all limps

13 Gt+1 ← apply aattr
t to modify the attribute (Av

t , A
e
t ) of current design Gt

14 rt = 0 ; St = S; store {rt,∅,aattr
t ,Gt,St, 0, 0} into B ▷ Update Buffer B with transition

15 end
16 Φ← ctrl ▷ Control stage
17 st ← Env.Reset(0) ▷ st = {sv,t} denotes the sensor states from all limps
18 for t = N topo +Nattr, ..., T − 1 do
19 actrl

t ∼ πctrl(actrl
t |st,Gdone)

20 rt, st+1,Tt,Ct ← Env.Step(actrl
t ) ▷ Tt,Ct denotes termination and trunction

21 St = S; store {rt, st,actrl
t ,Gt,St,Tt,Ct} into B ▷ Update Buffer B with transition

22 end
23 end
24 end
25 Function ENHANCEDGAE(Value Function: Vθ, Replay Buffer: B):
26 for t = T − 1, ..., 0 do
27 Ut = rt + Ut+1 · (1− Tt ∨ Ct) ▷ Calculate return
28 δt = rt + γVθ(st+1) · (1− Tt)− Vθ(st) ▷ Calculate the TD-error term
29 if St = ctrl then
30 Ât = δt + γλÂt+1 · (1− Tt ∨ Ct) ▷ Calculate advantage for the control stage
31 else
32 Ât = Ut − Vθ(st) ▷ Calculate advantage for the design stage
33 end
34 R̂t = Vθ(st) + Ât ▷ Calculate the target value
35 store {Ât, R̂t} into B ▷ Append Ât and R̂t to the corresponding transition item in B.
36 end
37 end
38 Function MAIN():
39 while not reaching max iterations do
40 Thi ← Thread(INTERACT, πθ, B) ▷ We use multiple CPU threads for sampling
41 Thi.join() ▷ Gather trajectories collected from threads
42 ENHANCEDGAE(Vθ, B) ▷ Perform temporal credit assignment for co-design
43 while not reaching max epochs do
44 Update B← B ▷ Sample a random batch B from Buffer B
45 Calculate PPO loss Lppo = Lpolicy + Lvalue ▷ According to Equation (4.11) and (4.13)
46 optimizer← Gradient from Lppo ▷ Gradient descent to update πθ and Vθ

47 end
48 end
49 end
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A.4 MOTIVATIONS

In this section, we will detail the motivations behind designing MoSAT and TopoPE for embodiment
co-design, aiming to provide further insights.

A.4.1 CENTRALIZED MESSAGE PROCESSING AND MOSAT

(a) Localized Message Processing (b) Centralized Message Processing

Neural System of Planarian Neural System of HumanGraph Neural Network Transformer Neural Network

Figure 9: Comparative overview of natural and artificial neural processing systems. (a) Localized
message processing in planarians and GNNs. (b) Centralized message processing in human brains
and Transformers. Relevant images are sourced from Encyclopaedia Britannica (2024); Brain for AI
Fandom (2024).

As demonstrated in Figure 9, GNN-like neural systems are commonly found in simple organisms
such as planarians, where sensory information are connected through neural networks, for distributed
and localized processing. In contrast, advanced creatures such as humans utilize a centralized signal
processing approach, where signals from various body parts are centrally processed in the brain,
leveraging scalability advantages similar to the self-attention mechanism within transformers.

(a) Message via Aggregation and Broadcasting  (b) Messaging via Self-Attention

Received

Step [1] Step [2] Step [3] Step [4]

Figure 10: Comparison of different message delivery mechanisms between GNN and Transformer.

Figure 10 further illustrates the different message delivery mechanisms between GNN and Trans-
former. GNN uses aggregation and broadcasting for message transmission, resulting in a progressive
reduction of information. As demonstrated in Figure 10 (a), the dog-like robot needs to adjust its
posture throughout its motion. The GNN’s localized message processing approach requires signals
from distant locations to propagate multiple times before reaching the target actuator. In contrast,
Transformers can provide faster message transfer and interaction, by employing self-attention to
facilitate direct point-to-point and point-to-multipoint message delivery. Inspired by this, we propose
MoSAT in Section 4.1. MoSAT first maps sensor information to the latent space, and leverage
self-attention for signal interactions for centralized decision making.

Meanwhile, in GNNs, the message propagation mechanism allows for an implicit representation of
morphology. However, while transformers leverage self-attention for direct message delivery, they
do not offer an asymmetric information propagation mechanism to differentiate positions between
different body parts.

A.4.2 MORPHOLOGY POSITION EMBEDDING AND TOPOPE

Position encoding have proven effective in location representation within the natural language
processing field (Vaswani et al., 2017; Shaw et al., 2018; Raffel et al., 2020; Wang et al., 2019).
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An effective representation of the robot’s morphology is crucial for co-designing morphology and
control policies. In our work, we propose the Topology Position Embedding (TopoPE) to encode
the morphology in a way that is compatible with Transformer-based architectures. TopoPE assigns a
unique embedding to each limb based on its topological position within the robot’s morphology tree.
Specifically, the embedding index for a limb is derived from the path from the root node to the limb,
capturing the structural relationships within the morphology.

In previous works (Trabucco et al., 2022; Gupta et al., 2021a), morphology encodings often rely
on traversal sequences like depth-first search (DFS) or manual naming (Trabucco et al., 2022; Li
et al., 2024) conventions based on a “full model” of the robot. When limbs are removed to generate
variants, the names of the remaining limbs remain unchanged, facilitating consistent encoding.

However, in our setting, there is no predefined “full model,” and the robot’s morphology is dynamically
generated during the co-design process. Manually naming limbs is impractical in this context. Our
TopoPE addresses this challenge by using a topology indexing mechanism, which uses the path to the
root as the embedding index. This method naturally extends to dynamically changing morphologies
and ensures that similar substructures share similar embeddings, promoting generalization across
different morphologies.

Moreover, unlike learnable position embeddings that are specific to particular morphologies, our
approach can be extended using non-learnable embeddings, such as sinusoidal embeddings (Vaswani
et al., 2017), which offer better extrapolation to unseen morphologies and eliminate the need for
training the embeddings.

To demonstrate the effectiveness of TopoPE, we conducted ablation studies comparing models with
and without TopoPE. As shown in Table 1 and Figure 11, incorporating TopoPE significantly improves
performance across various tasks. This indicates that TopoPE provides a more informative and stable
encoding of the morphology, facilitating better learning of control policies.

In contrast to other morphology-aware positional encodings, our TopoPE is specifically designed
to handle dynamic and diverse morphologies without relying on a fixed full model or manual limb
naming. Additionally, our approach aligns well with the Transformer architecture, allowing the
use of standard attention mechanisms to capture interactions between different limbs based on their
topological relationships.
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A.5 ADDITIONAL RESULTS

A.5.1 QUANTITATIVE RESULTS

Table 3: Comparison of Genesis, its ablation variants, and baseline methods.

Methods CRAWLER TERRAINCROSSER CHEETAH SWIMMER GLIDER-REGULAR

Genesis (Ours) 10381.96 ± 353.97 5056.01 ± 703.57 11611.52 ± 522.86 1305.17 ± 15.25 11082.29 ± 99.21
- w/o MoSAT 818.92 ± 57.78 407.30 ± 4.50 662.88 ± 74.88 476.26 ± 19.95 447.72 ± 7.56
- w/o Enhanced-TCA 4994.44 ± 160.14 2668.66 ± 844.22 8158.74 ± 55.71 786.32 ± 19.39 8317.88 ± 498.26
Transform2Act 4185.63 ± 334.04 2393.84 ± 692.96 8405.70 ± 815.64 732.20 ± 22.61 6901.68 ± 374.42
NGE 1545.13 ± 626.54 881.71 ± 459.96 2740.79 ± 515.51 395.90 ± 173.85 1567.84 ± 756.74
UMC-Message 6492.90 ± 441.04 1411.51 ± 705.68 5785.40 ± 2110.77 961.20 ± 183.03 7354.34 ± 2145.22

Methods GLIDER-MEDIUM GLIDER-HARD WALKER-REGULAR WALKER-MEDIUM WALKER-HARD

Genesis (Ours) 11996.82 ± 595.51 10798..06 ± 298.39 12062.49 ± 513.07 12962.08 ± 537.34 11982.07 ± 520.78
- w/o MoSAT 489.75 ± 5.74 533.17 ± 14.20 555.33 ± 18.15 708.32 ± 12.72 827.33 ± 47.71
- w/o Enhanced-TCA 7454.55 ± 289.93 7592.03 ± 1023.70 7286.30 ± 735.55 6069.51 ± 652.96 6126.73 ± 572.85
Transform2Act 5573.44 ± 519.22 6120.37 ± 1380.74 8685.47 ± 1008.88 6287.15 ± 426.99 4645.31 ± 294.81
NGE 1649.60 ± 763.55 2339.90 ± 487.22 1402.85 ± 595.54 2600.39 ± 481.74 1575.87 ± 508.11
UMC-Message 4726.44 ± 2406.35 425.49 ± 141.02 5417.14 ± 2019.43 5347.70 ± 2397.85 2783.09 ± 1587.06

As demonstrated in Figure 6, we present the full training curves for Genesis with baselines including
Transform2Act, UMC-Message, NGE, and ablation variants of ours w/o MoSAT and ours w/o
Enhanced-TCA across ten co-design environments. Each model was trained using four random seeds.
For all baselines, we employed the best performance configurations reported by previous works, as is
detailed in Section A.2. Table 3 further presents related metrics, with each cell showing the mean and
standard deviation of episode rewards for the corresponding algorithm in each environment.

A.6 ADDITIONAL ABLATION STUDIES ON TOPOPE AND ENHANCED-TCA

We provide additional ablation studies on our proposed TopoPE and Enhanced-TCA to provide more
insights, which is demonstrated in Figure 11 and Figure 12.

GNN + TopoPE + Enhanced-TCAMoSAT + TopoPE + Enhanced-TCA (Ours)
GNN + Enhanced-TCA MoSAT + Enhanced-TCA

Figure 11: Extensive experiments on our proposed simple-yet-effective Topology Position Encoding
(TopoPE) across different architectures of MoSAT and GNN, validating TopoPE as an efficient
and general method for morphology representation. (1) MoSAT: w/o TopoPE→ with TopoPE; (2)
GNN: w/o TopoPE→ with TopoPE; Both sets demonstrated the obvious performance improvements
brought by TopoPE.
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GNN + TopoPE + Enhanced-TCAMoSAT + TopoPE + Enhanced-TCA (Ours)
GNN + TopoPEMoSAT + TopoPE

Figure 12: Extensive experiments on our proposed Temporal Credit Assignment Mechanism
(Enhanced-TCA) across different architectures of MoSAT and GNN, validating Enhanced-TCA
mechanism as an efficient method for enhancing bi-level optimization. (1) MoSAT: w/o Enhanced-
TCA → with Enhanced-TCA; (2) GNN: w/o Enhanced-TCA → with Enhanced-TCA; Both sets
demonstrated the obvious performance improvements brought by our Enhanced-TCA mechanism.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

A.7 MORE VISUALIZATION RESULTS

In this section, we provide additional visualization results for embodied agents generated by Genesis
across ten co-design environments, presenting their poses in motion. All the agents are randomly
captured from the simulator.

Crawler TerrainCrosser

Cheetah Swimmer

Glider-Regular Glider-Medium

Glider-Hard Walker-Regular

Walker-Medium Walker-Hard

Figure 13: Visualization of embodied agents generated by Genesis on different environments.
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Figure 14: Visualization for Genesis’s design process on Cheetah.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Figure 15: Visualization for Genesis’s attention map during the control process on Cheetah.
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