
Make Large Language Model a Better Ranker

Anonymous EMNLP submission

Abstract

Large Language Models (LLMs) demonstrate001
robust capabilities across various fields, lead-002
ing to a paradigm shift in LLM-enhanced Rec-003
ommender System (RS). Research to date fo-004
cuses on point-wise and pair-wise recommen-005
dation paradigms, which are inefficient for006
LLM-based recommenders due to high com-007
putational costs. However, existing list-wise008
approaches also fall short in ranking tasks due009
to misalignment between ranking objectives010
and next-token prediction. Moreover, these011
LLM-based methods struggle to effectively ad-012
dress the order relation among candidates, par-013
ticularly given the scale of ratings. To address014
these challenges, this paper introduces the large015
language model framework with Aligned List-016
wise Ranking Objectives (ALRO). ALRO is017
designed to bridge the gap between the capabil-018
ities of LLMs and the nuanced requirements of019
ranking tasks. Specifically, ALRO employs ex-020
plicit feedback in a listwise manner by introduc-021
ing soft lambda loss, a customized adaptation022
of lambda loss designed for optimizing order023
relations. This mechanism provides more ac-024
curate optimization goals, enhancing the rank-025
ing process. Additionally, ALRO incorporates026
a permutation-sensitive learning mechanism027
that addresses position bias, a prevalent issue028
in generative models, without imposing addi-029
tional computational burdens during inference.030
Our evaluative studies reveal that ALRO out-031
performs both existing embedding-based rec-032
ommendation methods and LLM-based recom-033
mendation baselines.034

1 Introduction035

The rapid advancement in Large Language Models036

(LLMs), known by GPT-4 (OpenAI, 2023), has037

marked a significant milestone in demonstrating038

their versatility in zero-shot and few-shot learn-039

ing across various domains. These models, effec-040

tively employed in domains like Question Answer-041

ing and Information Retrieval, have shown remark-042

List-wise RankingPoint-wise Ranking

User Interaction
History

0.9

x N

Task Description

A

+

Pair-wise Ranking

Candidate Items Outputs

+

User Interaction
History

A>B

x Nlog(N)

Task Description

A

+

+
B

User Interaction
History

A>B>…>N

Task Description

A

+

+
B N…

Figure 1: The comparison of point-wise, pair-wise, and
list-wise ranking in LLM-based recommendation.

able adaptability and reliability. Their ability to 043

efficiently handle tasks usually requiring extensive 044

domain-specific training has sparked a surge in re- 045

search aimed at exploring their potential across 046

diverse applications, e.g. Recommender System. 047

In the context of recommender systems, the ap- 048

plication of LLMs has attracted considerable at- 049

tention. Wu et al. (2023) demonstrates a novel 050

paradigm in using Large Language Models as rec- 051

ommender systems. This approach leverages the 052

natural language processing strengths for context- 053

sensitive recommendations. Concurrently, investi- 054

gations conducted in Bao et al. (2023) and Li et al. 055

(2023) explore the capability of LLM in point-wise 056

recommendation, revealing how language models 057

can be adapted for suggesting products. Qin et al. 058

(2023) investigate pairwise ranking prompts to en- 059

hance recommendation systems. Despite these ad- 060

vancements, as depicted in Figure 1, a significant 061

limitation of these methods is their high compu- 062

tational cost, stemming from the iterative call of 063

LLMs to evaluate each candidate item. Moreover, 064

existing approaches focus on implicit feedback, 065

filtering rating signals with predefined thresholds. 066

This practice fails to effectively address partial or- 067

der relations inherent in the magnitude of ratings. 068

In leveraging LLMs for recommendation sys- 069

tems, the list-wise ranking method stands out for 070

1

its computational efficiency (Yue et al., 2023; Chen,071

2023). However, executing list-wise ranking with072

explicit feedback effectively is fraught with chal-073

lenges (Dai et al., 2023). The core issue lies in the074

objective misalignment between LLMs’ natural lan-075

guage generation and ranking tasks. Specifically,076

ranking demands a sophisticated reasoning process077

to understand partial order relation within the se-078

quence of candidates based on the ratings, which079

cannot be addressed by supervised fine-tuning with080

cross-entropy (Dai et al., 2023; Xu et al., 2024). Op-081

timizing Large Language Models to interpret the082

magnitude of these ratings and the order relation083

among candidates remains a critical challenge in084

enhancing the ranking performance. Additionally,085

the inherent position bias in LLM-generated lists086

further complicates the matter. This bias indicates087

that the initial input ordering of the candidates sig-088

nificantly influences the final ranking of potential089

outputs. Although techniques like bootstrapping,090

suggested by Hou et al. (2023), offer a solution by091

iteratively querying the LLM with permuted can-092

didate sequences to obtain unbiased arrangements,093

this method significantly increases computational094

demands. Such an increase is particularly prob-095

lematic given the substantial resources required by096

Large Language Model operation, thereby high-097

lighting a crucial trade-off between the precision098

and practicality of employing LLMs as recom-099

mender systems.100

To overcome the aforementioned challenges,101

we propose the Large Language Model learning102

Framework with Aligned Listwise Ranking Objec-103

tives (ALRO), which integrates explicit feedback104

and soft lambda loss and permutation-sensitive105

learning into the training process to enhance the106

ranking capabilities of Large Language Models107

(LLMs). This enhancement is achieved through108

supervised fine-tuning and Low-Rank Adaptation109

(LoRA) (Hu et al., 2022). Specifically, ALRO em-110

ploys a soft lambda loss that effectively bridges111

the gap between the objectives of ranking and112

language generation. This transformation empha-113

sizes the significance of item orders within the pre-114

dicted list, augmenting their impact during the lan-115

guage generation task. Furthermore, we introduce a116

permutation-sensitive learning framework designed117

to enhance ranking consistency by evaluating the118

distance between outputs from permuted candidate119

lists, thereby ensuring stable ranking outcomes re-120

gardless of candidates’ input order. This strategy121

boosts the permutation invariance capability of the122

model, which is essential for reducing position bias. 123

Through aligning distance metrics across original 124

and permuted lists, our model effectively identifies 125

and mitigates bias, enhancing the robustness and 126

efficacy of the ranking process. The contributions 127

of this paper are: 128

• We harmonize the goals of language genera- 129

tion and ranking tasks within a listwise frame- 130

work using a novel soft lambda rank approach 131

that incorporates explicit feedback, ensuring 132

seamless integration of these objectives. 133

• We introduce a permutation-sensitive learning 134

methodology that addresses position bias ef- 135

ficiently, without adding extra computational 136

load during inference. 137

• We assess the performance of our model 138

across four extensively used datasets, demon- 139

strating its effectiveness. 140

2 Related Works 141

2.1 Large Language Model for 142

Recommendation 143

Recent advancements in Large Language Models 144

have showcased their formidable capabilities across 145

a spectrum of tasks, drawing interest towards their 146

potential in recommender systems (Qiu et al., 2021; 147

Bao et al., 2023; Dai et al., 2023; Zhi et al., 2024). 148

A comprehensive survey by Wu et al. (2023) listed 149

the existing works on LLM-based Recommenda- 150

tions, particularly focusing on LLMs as agents that 151

directly generate predictive outcomes. We delin- 152

eated them into three paradigms, point-wise, pair- 153

wise, and list-wise approaches. 154

The point-wise paradigm is characterized by the 155

LLM processing each historical and candidate item 156

pair individually. (Sachan et al., 2022; Zhi et al., 157

2024) For example, Bao et al. (2023) adapted the 158

recommendation template to frame it as a yes-no 159

question, requiring the LLM to evaluate each candi- 160

date sequentially. Another significant contribution 161

is by Li et al. (2023) and Yue et al. (2023), who 162

leveraged LLMs to recommend items through an 163

adapter module that computes the probability of 164

each item for recommendation. In the pair-wise 165

paradigm, the LLM determines the preferable op- 166

tion between two candidate items. Qin et al. (2023) 167

introduced a pair-wise prompting strategy employ- 168

ing a sliding window technique to identify the rec- 169

ommended items. Nonetheless, the point-wise and 170

pair-wise approaches are notably inefficient due 171

to the necessity of repeatedly calling the LLM, 172

2

escalating the time cost as the number of candi-173

dates increases (Bao et al., 2023; Li et al., 2023;174

Kang et al., 2023) . In contrast, the listwise ap-175

proach offers a more efficient solution by ranking176

the entire list of candidates in a single inference177

phase. Although some studies propose a listwise178

approach (Sun et al., 2023; Dai et al., 2023; Chen,179

2023; Ma et al., 2023; Drozdov et al., 2023; Yue180

et al., 2023), they often address the problem with181

supervised fine-tuning, while falling short in han-182

dling the rating magnitude with metric-oriented183

LLM-based recommendation.184

2.2 Learning to Rank185

Learning to Rank (LTR) constitutes a fundamental186

component in information retrieval systems, aimed187

at ordering entities by their relevance. This do-188

main is categorized into three main methodologies189

according to the design of the loss function: point-190

wise, pairwise, and listwise approaches. Pointwise191

methods focus on predicting the absolute relevance192

of individual items, typically framed as classifica-193

tion or regression tasks (Li et al., 2007; Crammer194

and Singer, 2001). Pairwise strategies, in contrast,195

emphasize the relative importance between item196

pairs, to accurately determine the more relevant197

item in a pair (Freund et al., 2003; Burges et al.,198

2005; Chapelle and Keerthi, 2010). The listwise199

approaches extend this concept by considering the200

entire item list as the training unit, aiming to di-201

rectly optimize the overall item ordering to align202

with ranking objectives (Xu and Li, 2007; Cao203

et al., 2007; Taylor et al., 2008; Xia et al., 2008;204

Burges, 2010). In this paper, we present an innova-205

tive adaptation of the lambda loss function (Wang206

et al., 2018) tailored for natural language genera-207

tion, leveraging the pairwise approach to enhance208

the coherence of generated texts. This adaptation209

underscores the potential of LTR methodologies to210

extend beyond traditional retrieval tasks.211

3 Problem Statement212

We define the sequential recommendation ranking213

problem as follows. Let U represent the set of214

users and I denote the set of items. For any given215

user u ∈ U , their historical interactions with items216

are represented by Hu = {h1, h2, . . . , hk}, where217

each hi ∈ I signifies an item that user u has previ-218

ously interacted with. With this notation in place,219

the ranking problem is formalized as follows:220

Definition 1 For a user u, consider Cu =221

{c1, c2, . . . , cm} as the set of candidate items for 222

recommendation, where each ci ∈ I and m ≤ 223

|I|. The goal is to devise a ranking function 224

F : Hu × Cu → Sm that accurately predicts the 225

permutation τ ∈ Sm that best orders the items 226

in Cu. The set Sm is the symmetric group of all 227

m-element permutations, encapsulating every pos- 228

sible arrangement of the candidate items. 229

4 Methodology 230

In this section, we elucidate the constraints in- 231

herent in prevailing prompting paradigms when 232

addressing list-wise recommendation tasks. Our 233

learning framework is developed with four dis- 234

tinct components: Template Design, Supervised 235

Fine-Tuning, Soft Lambda Loss, and Permutation- 236

Sensitive Learning. 237

4.1 Template Design 238

Before delving into the specifics of our learning 239

module, we delineate the process of transforming 240

the ranking task into a language generation prob- 241

lem. Drawing inspiration from Instruction Tuning 242

(Taori et al., 2023), we employ a natural language 243

prompt template, denoted as Tsrc(Hu, Cu), which 244

transmutes the input user history Hu and context 245

Cu, inclusive of item attributes such as names, cat- 246

egories, and descriptions and their explicit rating 247

from user, into a structured format. This trans- 248

formation additionally aids in creating target text 249

templates Ttgt(τ), representing the permutation that 250

arranges candidate items according to user prefer- 251

ences. The detailed template design and example 252

are provided in Appendix A.1. 253

4.2 Supervised Fine-Tuning 254

With the language generation problem that given 255

Tsrc(Hu, Cu) that aims to predict Ttgt(τ), we imple- 256

ment a supervised fine-tuning paradigm that lever- 257

ages the Low-Rank Adaptation (LoRA) approach, 258

as introduced by Hu et al. (2022). The core idea 259

behind LoRA is to adapt pre-trained models in a 260

parameter-efficient manner, enabling effective fine- 261

tuning on downstream tasks with minimal modi- 262

fications to the original model parameters. The 263

fine-tuning process is formulated by the following 264

loss function: 265

Lsft = −
|y|∑
t=1

log (Pθ(yt|x, y<t)) , (1) 266

3

where Lsft denotes the supervised fine-tuning loss,267

and Pθ(yt|x, y<t) represents the conditional prob-268

ability of predicting the token yt given the input269

tokens x and the preceding tokens y<t. In this270

context, x and y correspond to the tokenized repre-271

sentations of Tsrc(Hu, Cu) and Ttgt(τ), respectively.272

This supervised fine-tuning process utilizes target273

tokens that correspond to the correctly ranked list274

of candidate answers, which are subsequently ad-275

justed to reflect user preferences.276

4.3 Soft Lambda Loss (SLL)277

The widely adopted cross-entropy loss in language278

generation, derived from next-token prediction dur-279

ing supervised fine-tuning, faces a fundamental280

misalignment with the objectives of ranking. Such281

a discrepancy undermines the efficacy of cross-282

entropy loss when applied to the specific demands283

of ranking, leading to suboptimal performance in284

these contexts. To empower the Language Model285

with the capability to identify partial order rela-286

tions, learning to rank (LTR) objectives serves as287

an effective supervised signal. Unlike the exist-288

ing LTR framework (Wang et al., 2018), this is289

not straightforward to directly optimize on Normal-290

ized Discounted Cumulative Gain (NDCG) when291

dealing with language models that generate ranked292

token probabilities incrementally. Traditional rank-293

ing losses, such as Lambda loss (Wang et al., 2018)294

or SoftRank (Taylor et al., 2008), are not directly295

applicable. The Lambda loss, is defined as:296

Lrank =

|τ |∑
i=1

∑
j:τj<τi

δi,j |Gi −Gj |·

log2

(
1 + e−σ(si−sj)

)
,

(2)297

where298

δij =

∣∣∣∣ 1

D|i−j|
− 1

D|i−j|+1

∣∣∣∣ , (3)299

with Gi and Di following the definitions from300

NDCG, and si representing the model-derived pre-301

diction score. In large language models, the rank-302

ing order is typically determined by using the303

argmax function on the output probabilities of304

tokens, which is non-differentiable and thus unsuit-305

able for the training process.306

To overcome this, we propose a method that com-307

bines the soft-argmax function with Lambda loss308

to calculate the deviation of predicted probabilities309

0 5 10 15 20 25

Input Order of Candidate Items

8

10

12

14

16

18

20

Ra
nk

Avg. Predictions

Avg. Labels

Figure 2: Demonstration of position bias. The figure
shows how the placement of candidate items in the in-
put sequence can significantly alter the ranking results
produced by a Language Model.

from the ideal ranking order. We define a differ- 310

entiable ranking score for the generative model by 311

substituting the traditional argmax function in si 312

with the soft-argmax, expressed as: 313

si = max
j

eγyj,i∑
k e

γyj,k
· j, (4) 314

where yi,j denotes the output probability of the lan- 315

guage model for the jth position and token i, and 316

γ represents the scaled value that adjusts the dis- 317

tribution of softmax. By making the computation 318

of si differentiable with the soft-argmax method, 319

we align the objectives of language generation with 320

those of the ranking task. Overall, Soft Lambda 321

Loss follows the Equation 2, which is derived from 322

Wang et al. (2018), by replacing si with Equation 4 323

to get a differentiable objective. 324

4.4 Permutation-Sensitive Loss (PSL) 325

In list-wise recommendation tasks with Large 326

Language Models, position bias emerges as a 327

formidable challenge, with the order of the can- 328

didate input sequence notably swaying the ranking 329

outcomes. As depicted in Figure 2, language mod- 330

els exhibit a propensity to assign higher rankings 331

to candidates positioned at the beginning of the 332

list. This tendency highlights the significant influ- 333

ence of candidate positioning on model evaluations, 334

underscoring the imperative of developing method- 335

ologies to counteract these biases. 336

It is worth noting that the observed phenomenon 337

depends exclusively on natural language generation 338

tasks with the sequence of input candidates. This 339

contrasts with embedding-based recommendation 340

systems, where the order of inputs does not influ- 341

ence outcomes by calculating the score of the user 342

and item pair separately. The effect of permutation 343

4

on the output is described by the inequation:344

F (T (Hu, Cu)) ̸= F (T (Hu, C′
u)), (5)345

where F (·) denotes the logits output by large lan-346

guage model, and C′
u = {cπ(0) cπ(1), · · · , cπ(m)}347

represents a permuted candidate list from the origi-348

nal candidate list Cu, with π(·) as the random per-349

mutation function that rearranges the candidates.350

This equation highlights the dependency of the351

model on the sequence in which inputs are pro-352

vided, distinguishing it from conventional recom-353

mendation approaches which are order invariant.354

Although Hou et al. (2023) proposed the boot-355

strapping method, which shuffles the candidate356

items multiple times and takes average scores as the357

final ranking result, it is inefficient as it repetitively358

calls language models in the inference stage to get359

average ranking. To alleviate this issue without bur-360

dening the inference in the recommendation, we361

propose a permutation-sensitive loss that aims to362

minimize the output distribution distance between363

the original candidate list Cu and the random per-364

mutated candidate list C′
u within the fine-tuning365

stage. . By adopting Kullback–Leibler divergence366

that minimizes the distance between two distribu-367

tions, we empower the model with permutation368

invariant capability. The loss function could be369

formulated as:370

Lperm =
∑
t

KL
(
Pθ(yt|x, y<t)∥Pθ(y

′
t|x′, y′<t)

)
,

(6)371

where x and x′ are the prompt derived from372

T (Hu, Cu) and T (Hu, C′
u) respectively, and y and373

y′ are the labels for the given prompts. The de-374

tails of C′
u, y′t and corresponding Pθ(y

′
t|x′, y′<t) are375

provided in Appendix A.2.376

4.5 Training Objective377

Overall, we provide the soft lambda loss Lrank with378

permutation-sensitive framework Lperm to address379

the issues mentioned above, which goes beyond380

the naive supervised fine-tuning. The objective381

function is reformulated as:382

L = Lsft + αLrank + βLperm, (7)383

where α, β are hyperparameters that adjust the im-384

portance of each loss.385

5 Experiment386

In our study, we conducted a comprehensive evalu-387

ation of our model across two real-world datasets.388

This was complemented by an ablation study, ro- 389

bustness tests, and efficiency evaluations. Our ex- 390

periment was directed by the following pivotal re- 391

search questions: 392

• (RQ1) Does the proposed framework surpass 393

existing baselines in both embedding-based 394

and LLM-based recommendation models? 395

• (RQ2) What extent does supervised fine- 396

tuning on recommendation-specific corpus en- 397

hance Large Language Model performance? 398

• (RQ3) How crucial is the involvement of our 399

proposed module for metrics improvement? 400

• (RQ4) How does permutation-sensitive learn- 401

ing compare to bootstrapping methods in 402

terms of performance and efficiency? 403

• (RQ5) How does the ALRO framework im- 404

prove performance across different parameter 405

sizes of the backbone language model com- 406

pared to traditional supervised fine-tuning? 407

Through these explorations, we aim to elucidate 408

the contributions of domain-specific fine-tuning 409

with our novel modules to the advancements in 410

LLM-based recommendation systems. 411

5.1 Dataset 412

We selected four widely adopted open-source 413

datasets to evaluate the effectiveness of our frame- 414

work: Movie (MovieLens-1M1), Music (the "CDs 415

& Vinyl" subset), Books (the "Books" subset), and 416

Games (the "Toys and Games" subset) from the 417

Amazon product reviews dataset. The Amazon 418

product reviews datasets encompass reviews from 419

1996 to 2023 (Hou et al., 2024a) with 5-core. De- 420

tailed information about these datasets is presented 421

in Table 1. To evaluate the model’s capability of 422

ranking explicit feedback, we sampled the most 423

recent 25 user-interacted items as candidates Cu, 424

each with a rating rci ∈ [1 . . 5]. The output per- 425

mutation τ is sorted from the candidate ratings rci 426

provided by the user. The length of historical se- 427

quence |Hu| is set to 20. Followed by Kang and 428

McAuley (2018), we split the user interaction se- 429

quence into three-part, 1) the most recent 25 actions 430

for testing 2) the most recent 25 to 50 actions for 431

validation 3) all remaining actions for training. 432

5.2 Baselines and Evaluation Metrices 433

To evaluate the effectiveness of our framework, 434

we select several state-of-the-art baselines, which 435

could be categorized into Non-Sequential Recom- 436

1https://grouplens.org/datasets/movielens/1m/

5

https://grouplens.org/datasets/movielens/1m/

Table 1: Statistics of datasets.

Dataset Movie Books Games Music
Users 6040 54440 12182 9612
Items 3952 446987 114601 83937

Actions 1.0M 9.27M 1.53M 1.58M
Density (%) 4.19 0.0381 0.11 0.197
Tokens/Item 20.76 45.53 56.92 24.10

mendation, Sequential Recommendation, Rank-437

ing Methods, and Large Language Model-based438

Recommendation. We introduce the BERT-based439

model as the backbone to extract the textual infor-440

mation of items in both Non-Sequential Recom-441

mendation and Sequential Recommendation.442

• Non-Sequential Recommendation:443

NCF (He et al., 2017) adopts a neural444

network with collaborative filtering for recom-445

mendations. DIN (Kang and McAuley, 2018)446

involves user interest modeling based on user447

behavior with an attention mechanism.448

• Sequential Recommendation:449

GRU4Rec (Hidasi et al., 2016) is a450

session-based recommendation system451

utilizing a GRU-based recurrent network.452

SASRec (Hidasi et al., 2016) employs a self-453

attention network with positional embeddings454

to capture the user’s sequential behavior455

information. CORE (Hou et al., 2022) uses456

a representation-consistent framework to457

unify the session and item representation458

spaces. NARM (Li et al., 2017) decomposes459

user behavior into global and local forms460

using attention networks for sequential461

recommendation.462

• Ranking Methods: Seq2Slate (Bello et al.,463

2018) adopts RNN modules with a pointer464

network that maps candidate items to ranking465

positions in an end-to-end manner. PRM (Pei466

et al., 2019) utilizes a transformer-based net-467

work to re-rank lists by assigning scores to468

each candidate in a list-wise form.469

• Large Language Model-based Recommen-470

dation: For Zero-shot LLM and Few-shot471

LLM, we follow list-wise setting in Hou et al.472

(2024b), which provides instructions and ex-473

amples. TallRec (Bao et al., 2023) fine-tunes474

LLMs with instruction tuning for point-wise475

recommendation. ES4Rec (Li et al., 2023)476

introduces pre-trained item embeddings as477

prompts with an adapter to fine-tune the LLM.478

LlamaRec (Yue et al., 2023) employs a two-479

stage re-ranking framework for recommenda-480

tion. We adopted the LLM re-ranking mod- 481

ule in LlamaRec for ranking the candidates. 482

We use Llama2-7b as the base model for all 483

LLM-based baselines. It is worth noting that 484

ES4Rec and TallRec require negative sam- 485

pling data to maintain the performance of 486

learning user embeddings, which imposes an 487

additional burden on LLM training. 488

To assess the performance of various models in 489

ranking tasks for explicit feedback, we employ Nor- 490

malized Discounted Cumulative Gain (NDCG) at 491

different cutoffs as our evaluation metric, specif- 492

ically NDCG@k with k values of 3, 5, 10, and 493

25. 494

5.3 Implementation Details 495

Our experiments were conducted on a cluster of 12 496

Linux servers, each equipped with 8 A800 GPUs. 497

For the backbone model, we utilized the Llama2- 498

7b 2 with BF16 precision, available on Hugging- 499

face. The supervised fine-tuning step was imple- 500

mented using the PyTorch framework and peft li- 501

brary, applying the LoRA technique with a rank 502

setting of 16. We used the AdamW (Loshchilov 503

and Hutter, 2019) optimizer with a learning rate of 504

5e-5 and batch size as 128 for SFT, complemented 505

by 2 gradient accumulation steps with a total of 10 506

training epochs. We also used Deepspeed (Rasley 507

et al., 2020) with ZeRO stage as 2 for distributed 508

training. For our loss function, we fine-tuned the 509

hyperparameters, setting α equal to 1, β equal to 2, 510

and γ equal to 2. 511

5.4 Overall Performance (RQ1) 512

To validate the performance of our proposed frame- 513

work, ALRO, we executed comparative analyses 514

against established baseline methods, with the re- 515

sults presented in Table 2. The following observa- 516

tions were made: 517

• ALRO consistently outperformed the base- 518

lines across various metrics and datasets, un- 519

equivocally demonstrating its superiority in 520

ranking tasks within recommender systems. 521

• Large Language Models (LLMs) without fine- 522

tuning fell short against traditional methods, 523

highlighting the crucial role of supervised fine- 524

tuning for LLMs in recommendation contexts. 525

• TALLRec achieves comparable performance 526

but faces efficiency challenges. 527

These insights confirm the significance of our 528

2https://huggingface.co/meta-llama/Llama-2-7b-hf

6

Table 2: Performance Comparison. Optimal outcomes across all models are emphasized in bold, while second-best
performances are distinguished by underlining. Evaluation metrics include NDCG at ranks 3, 10, and 25.

Dataset Movie Books Games Music

NDCG @3 @10 @25 @3 @10 @25 @3 @10 @25 @3 @10 @25

NCF 0.5804 0.6452 0.8336 0.7482 0.7692 0.9040 0.8245 0.8346 0.9356 0.7733 0.7918 0.9140
DIN 0.6067 0.6674 0.8437 0.7495 0.7711 0.9048 0.8240 0.8337 0.9351 0.7804 0.7946 0.9153

GRU4Rec 0.5545 0.6268 0.8241 0.7461 0.7679 0.9034 0.8258 0.8344 0.9355 0.7705 0.7858 0.9117
DIEN 0.5890 0.6580 0.8385 0.7508 0.7716 0.9051 0.8331 0.8376 0.9372 0.7728 0.7919 0.9133
SASRec 0.6436 0.6891 0.8427 0.7796 0.7961 0.9153 0.8501 0.8533 0.9432 0.7979 0.8135 0.9229
COREave 0.6236 0.6455 0.8299 0.7740 0.7899 0.9128 0.8498 0.8503 0.9409 0.7876 0.7957 0.9146
NARM 0.5281 0.6059 0.8145 0.7285 0.7555 0.8979 0.8282 0.8373 0.9366 0.7679 0.7863 0.9118

Seq2Slate 0.5320 0.6034 0.8178 0.7850 0.7961 0.9160 0.8292 0.8345 0.9357 0.7850 0.7961 0.9160
PRM 0.6088 0.6496 0.8384 0.7668 0.7858 0.9116 0.8235 0.8315 0.9344 0.7668 0.7858 0.9116

Zero-shot 0.5118 0.5954 0.8089 0.7322 0.7576 0.8989 0.8190 0.8317 0.9339 0.7639 0.7841 0.9106
Few-shot 0.5149 0.5958 0.8097 0.7337 0.7595 0.8995 0.8288 0.8358 0.9362 0.7746 0.7874 0.9128
TALLRec 0.6512 0.6835 0.8494 0.7895 0.8153 0.9141 0.8492 0.8469 0.9397 0.8221 0.8269 0.9295
E4SRec 0.5697 0.6210 0.8373 0.7620 0.7878 0.9089 0.8477 0.8545 0.9354 0.7795 0.7951 0.9203
LlamaRec 0.5360 0.6164 0.8193 0.7439 0.7687 0.9092 0.8402 0.8458 0.9366 0.7831 0.7945 0.9154

ALRO 0.6584 0.6925 0.8590 0.7903 0.7981 0.9190 0.8555 0.8582 0.9472 0.8310 0.8411 0.9283

Table 3: Comparison of Zero-shot, Few-shot and Super-
vised Fine-Tuning with Llama2-7b backbone.

Dataset Movie

NDCG @3 @10 @25

Zero-shot 0.5118 0.5954 0.8089
Few-shot 0.5149 0.5958 0.8097
SFT 0.5712 0.6413 0.8258

ALRO framework in enhancing the efficacy of rank-529

ing in recommendation systems and underscore the530

necessity for appropriate fine-tuning of LLMs to531

fully leverage their potential recommendation.532

5.5 Effect of Supervised Fine-Tuning (RQ2)533

Prompting techniques have showcased the pro-534

found ability of language models to interpret and535

execute tasks with remarkable precision. (Liu et al.,536

2023) However, the efficacy of these techniques is537

challenged when applied to specialized domains538

such as recommendation systems, particularly due539

to the potential misalignment between the pre-540

training corpus and the intricate requirements of541

ranking tasks. As depicted in Table 3, this discrep-542

ancy is notably pronounced in medium-sized lan-543

guage models like Llama-7b, where simple prompt-544

ing may not suffice to activate the model’s ranking545

capabilities effectively.546

To address this gap, our study delves into the im-547

pact of supervised fine-tuning on the performance548

of language models in recommendation-related549

NDCG@3 NDCG@10 NDCG@25
0.5

0.6

0.7

0.8

0.9

1.0
w/o SLL
w/o PSL
ALRO

(a) Movie dataset.
NDCG@3 NDCG@10 NDCG@25

0.5

0.6

0.7

0.8

0.9

1.0
w/o SLL
w/o PSL
ALRO

(b) Music dataset.

Figure 3: Ablation study on multiple datasets.

tasks. Through a comparative analysis encompass- 550

ing zero-shot, few-shot, and supervised fine-tuning 551

approaches, we unveil a substantial improvement 552

in model performance by supervised fine-tuning, 553

with metrics enhancing by over 10%. This im- 554

provement is attributed to the fine-tuning process, 555

which effectively adjusts the model’s outputs to 556

better align with specific task requirements. This 557

approach overcomes the shortcomings of conven- 558

tional prompting techniques that often yield non- 559

parsable outputs, thereby enhancing the model’s 560

ability to rank information more accurately. 561

5.6 Ablation Study (RQ3) 562

In our research, we conducted an ablation study 563

to distinguish the contributions of distinct compo- 564

nents within our proposed framework, systemati- 565

cally omitting each module for comparative analy- 566

sis against the complete model. This involved eval- 567

uating two key variants: Exclusion of soft lambda 568

loss (w/o SLL) and Exclusion of permutation- 569

sensitive learning (w/o PSL). Figure 3 shows that 570

7

Table 4: Comparative analysis of bootstrapping and
permutation-sensitive learning. ‘p@i’ denotes the num-
ber of permutations applied in bootstrapping. The origi-
nal permutation represented by p@1 is consistent with
the prompt in ALRO. TPD represents the average infer-
ence time per data sample, measured in seconds.

Dataset Movie

NDCG @3 @10 @25 TPD

p@1 0,6004 0.6203 0.8156 0.2546
p@3 0.6217 0.6842 0.8554 0.7654
p@5 0.6472 0.7032 0.8646 1.3756
ALRO 0.6584 0.6925 0.8590 0.2546

both components significantly enhance the sys-571

tem’s candidate ranking ability. The reduction in572

NDCG is attributed to the exclusion of the soft573

lambda loss, highlighting the importance of objec-574

tive alignment in enhancing language models as575

recommender systems. Additionally, the perfor-576

mance drop from removing Permutation-Sensitive577

Learning underscores the impact of position bias578

on ranking performance.579

5.7 Comparison of Bootstrapping and580

Permutation-Sensitive Learning (RQ4)581

Our research introduces a permutation-sensitive582

learning approach designed to address position583

bias, which affects the outcomes based on the or-584

der of candidate lists. While the bootstrapping585

method (Hou et al., 2023) , offers a solution to this586

bias, it significantly increases inference time. We587

evaluated the effectiveness of permutation-sensitive588

learning compared to bootstrapping, aiming to re-589

duce position bias without burdening the infer-590

ence stage. Our comparisons included the orig-591

inal model without modifications, and bootstrap-592

ping with permutations executed 3 and 5 times. As593

demonstrated in Table 4, our method achieves com-594

parable outcomes to bootstrapping while reducing595

inference times by approximately 5-fold. This in-596

dicates that our approach effectively mitigates the597

inference time issue through well-designed learn-598

ing objectives.599

5.8 Effect of Model parameter size (RQ5)600

In this section of our research paper, we delve into601

the adaptability and efficacy of our learning frame-602

work across several LLM-based recommender sys-603

tems, spanning various model sizes. Specifically,604

OPT-125M Pythia 1.4B Pythia-2.8B Llama2-7B LLama3-8B0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

SFT
ALRO

Figure 4: Enhancements achieved by ALRO across var-
ious model sizes on Movie dataset, measured using
NDCG@10 metric.

we selected four distinct models for our analy- 605

sis: OPT-125M, Pythia 1.4B, Pythia-2.7B, Llama2- 606

7B, Llama3-8B. By applying our framework to 607

these models, we aim to showcase the consistent 608

and significant performance enhancements it offers 609

compared to traditional supervised fine-tuning ap- 610

proaches. As depicted in Figure 4, there is a clear 611

correlation between model parameter size and per- 612

formance, which serves to emphasize the capacity 613

of our learning framework to augment the effective- 614

ness of recommender systems across a spectrum of 615

language model sizes. Notably, the enhancements 616

provided by our framework are more significant 617

in larger models than in smaller ones, this may 618

be attributed to the innate reasoning capability of 619

language models. Overall, the experiment high- 620

lights the versatility and broad applicability of our 621

framework in improving system performance. 622

6 Conclusion 623

In this research, we tackled the intricacies of em- 624

ploying large language models as ranking agents 625

in recommender systems with explicit feedback, 626

focusing on refining list-wise ranking methods to 627

manage the order relation. We proposed a cutting- 628

edge framework that integrates soft lambda loss 629

and permutation-sensitive learning. The integra- 630

tion of soft lambda loss is important as it bridges 631

the objective between LLM’s natural language gen- 632

eration and the specific demands of ranking tasks. 633

It enhances the performance of ranking by optimiz- 634

ing the order relation within the magnitude of rat- 635

ings. Furthermore, permutation-sensitive learning 636

approaches effectively address the issue of posi- 637

tion bias, providing an improvement over tradi- 638

tional bootstrapping methods without imposing 639

additional computational demands during infer- 640

ence. Our comprehensive evaluation across var- 641

ious datasets confirms the success of our method, 642

advancing LLMs as recommendation agents. 643

8

7 Limitation644

While our framework adeptly aligns the objectives645

of ranking and language generation, it falls short in646

fully harnessing the explainability potential inher-647

ent in language models. The supervised fine-tuning648

process, augmented by joint loss optimization, ef-649

fectively enhances the model’s performance in list-650

wise ranking tasks, particularly in recommendation651

systems. However, this process inadvertently un-652

dermines the model’s proficiency in tasks beyond653

recommendation, limiting its versatility. Further-654

more, although our method demonstrates efficacy655

in ranking a set of 25 items, scalability becomes656

a concern as the number of candidates increases657

significantly. This limitation arises due to con-658

straints such as context limits or the propensity for659

forgetting in Large Language Models, compromis-660

ing the model’s ability to maintain performance661

consistency across varying candidate sizes. Typi-662

cally, when dealing with large candidate sets, meth-663

ods such as sliding windows (Sun et al., 2023) or664

retrieve-and-rank two-stage approaches (Yue et al.,665

2023) are employed to address scalability issues.666

References667

Keqin Bao, Jizhi Zhang, Yang Zhang, Wenjie Wang,668
Fuli Feng, and Xiangnan He. 2023. Tallrec: An ef-669
fective and efficient tuning framework to align large670
language model with recommendation. In Proceed-671
ings of the 17th ACM Conference on Recommender672
Systems, RecSys 2023, Singapore, Singapore, Septem-673
ber 18-22, 2023, pages 1007–1014. ACM.674

Irwan Bello, Sayali Kulkarni, Sagar Jain, Craig675
Boutilier, Ed Huai-hsin Chi, Elad Eban, Xiyang Luo,676
Alan Mackey, and Ofer Meshi. 2018. Seq2slate: Re-677
ranking and slate optimization with rnns. CoRR,678
abs/1810.02019.679

Chris Burges, Tal Shaked, Erin Renshaw, Ari Lazier,680
Matt Deeds, Nicole Hamilton, and Greg Hullender.681
2005. Learning to rank using gradient descent. In682
Proceedings of the 22nd international conference on683
Machine learning, pages 89–96.684

Christopher JC Burges. 2010. From ranknet to lamb-685
darank to lambdamart: An overview. Learning,686
11(23-581):81.687

Zhe Cao, Tao Qin, Tie-Yan Liu, Ming-Feng Tsai, and688
Hang Li. 2007. Learning to rank: from pairwise689
approach to listwise approach. In Proceedings of the690
24th international conference on Machine learning,691
pages 129–136.692

Olivier Chapelle and S. Sathiya Keerthi. 2010. Effi-693
cient algorithms for ranking with svms. Inf. Retr.,694
13(3):201–215.695

Zheng Chen. 2023. PALR: personalization aware llms 696
for recommendation. CoRR, abs/2305.07622. 697

Koby Crammer and Yoram Singer. 2001. Pranking with 698
ranking. pages 641–647. 699

Sunhao Dai, Ninglu Shao, Haiyuan Zhao, Weijie Yu, 700
Zihua Si, Chen Xu, Zhongxiang Sun, Xiao Zhang, 701
and Jun Xu. 2023. Uncovering chatgpt’s capabilities 702
in recommender systems. In Proceedings of the 17th 703
ACM Conference on Recommender Systems, RecSys 704
2023, Singapore, Singapore, September 18-22, 2023, 705
pages 1126–1132. ACM. 706

Andrew Drozdov, Honglei Zhuang, Zhuyun Dai, Zhen 707
Qin, Razieh Rahimi, Xuanhui Wang, Dana Alon, 708
Mohit Iyyer, Andrew McCallum, Donald Metzler, 709
and Kai Hui. 2023. Parade: Passage ranking us- 710
ing demonstrations with llms. In Findings of the 711
Association for Computational Linguistics: EMNLP 712
2023, Singapore, December 6-10, 2023, pages 14242– 713
14252. Association for Computational Linguistics. 714

Yoav Freund, Raj D. Iyer, Robert E. Schapire, and 715
Yoram Singer. 2003. An efficient boosting algorithm 716
for combining preferences. J. Mach. Learn. Res., 717
4:933–969. 718

Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, 719
Xia Hu, and Tat-Seng Chua. 2017. Neural collabo- 720
rative filtering. In Proceedings of the 26th Interna- 721
tional Conference on World Wide Web, WWW 2017, 722
Perth, Australia, April 3-7, 2017, pages 173–182. 723
ACM. 724

Balázs Hidasi, Alexandros Karatzoglou, Linas Bal- 725
trunas, and Domonkos Tikk. 2016. Session-based 726
recommendations with recurrent neural networks. In 727
4th International Conference on Learning Represen- 728
tations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 729
2016, Conference Track Proceedings. 730

Yupeng Hou, Binbin Hu, Zhiqiang Zhang, and 731
Wayne Xin Zhao. 2022. CORE: simple and effec- 732
tive session-based recommendation within consistent 733
representation space. In SIGIR ’22: The 45th Interna- 734
tional ACM SIGIR Conference on Research and De- 735
velopment in Information Retrieval, Madrid, Spain, 736
July 11 - 15, 2022, pages 1796–1801. ACM. 737

Yupeng Hou, Jiacheng Li, Zhankui He, An Yan, Xiusi 738
Chen, and Julian J. McAuley. 2024a. Bridging lan- 739
guage and items for retrieval and recommendation. 740
CoRR, abs/2403.03952. 741

Yupeng Hou, Junjie Zhang, Zihan Lin, Hongyu Lu, 742
Ruobing Xie, Julian J. McAuley, and Wayne Xin 743
Zhao. 2023. Large language models are zero- 744
shot rankers for recommender systems. CoRR, 745
abs/2305.08845. 746

Yupeng Hou, Junjie Zhang, Zihan Lin, Hongyu Lu, 747
Ruobing Xie, Julian J. McAuley, and Wayne Xin 748
Zhao. 2024b. Large language models are zero-shot 749
rankers for recommender systems. In Advances in 750
Information Retrieval - 46th European Conference 751

9

https://doi.org/10.1145/3604915.3608857
https://doi.org/10.1145/3604915.3608857
https://doi.org/10.1145/3604915.3608857
https://doi.org/10.1145/3604915.3608857
https://doi.org/10.1145/3604915.3608857
http://arxiv.org/abs/1810.02019
http://arxiv.org/abs/1810.02019
http://arxiv.org/abs/1810.02019
https://doi.org/10.1007/S10791-009-9109-9
https://doi.org/10.1007/S10791-009-9109-9
https://doi.org/10.1007/S10791-009-9109-9
https://doi.org/10.48550/ARXIV.2305.07622
https://doi.org/10.48550/ARXIV.2305.07622
https://doi.org/10.48550/ARXIV.2305.07622
https://proceedings.neurips.cc/paper/2001/hash/5531a5834816222280f20d1ef9e95f69-Abstract.html
https://proceedings.neurips.cc/paper/2001/hash/5531a5834816222280f20d1ef9e95f69-Abstract.html
https://proceedings.neurips.cc/paper/2001/hash/5531a5834816222280f20d1ef9e95f69-Abstract.html
https://doi.org/10.1145/3604915.3610646
https://doi.org/10.1145/3604915.3610646
https://doi.org/10.1145/3604915.3610646
https://doi.org/10.18653/V1/2023.FINDINGS-EMNLP.950
https://doi.org/10.18653/V1/2023.FINDINGS-EMNLP.950
https://doi.org/10.18653/V1/2023.FINDINGS-EMNLP.950
http://jmlr.org/papers/v4/freund03a.html
http://jmlr.org/papers/v4/freund03a.html
http://jmlr.org/papers/v4/freund03a.html
https://doi.org/10.1145/3038912.3052569
https://doi.org/10.1145/3038912.3052569
https://doi.org/10.1145/3038912.3052569
http://arxiv.org/abs/1511.06939
http://arxiv.org/abs/1511.06939
http://arxiv.org/abs/1511.06939
https://doi.org/10.1145/3477495.3531955
https://doi.org/10.1145/3477495.3531955
https://doi.org/10.1145/3477495.3531955
https://doi.org/10.1145/3477495.3531955
https://doi.org/10.1145/3477495.3531955
https://doi.org/10.48550/ARXIV.2403.03952
https://doi.org/10.48550/ARXIV.2403.03952
https://doi.org/10.48550/ARXIV.2403.03952
https://doi.org/10.48550/ARXIV.2305.08845
https://doi.org/10.48550/ARXIV.2305.08845
https://doi.org/10.48550/ARXIV.2305.08845
https://doi.org/10.1007/978-3-031-56060-6_24
https://doi.org/10.1007/978-3-031-56060-6_24
https://doi.org/10.1007/978-3-031-56060-6_24

on Information Retrieval, ECIR 2024, Glasgow, UK,752
March 24-28, 2024, Proceedings, Part II, volume753
14609 of Lecture Notes in Computer Science, pages754
364–381. Springer.755

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan756
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and757
Weizhu Chen. 2022. Lora: Low-rank adaptation of758
large language models. In The Tenth International759
Conference on Learning Representations, ICLR 2022,760
Virtual Event, April 25-29, 2022. OpenReview.net.761

Wang-Cheng Kang and Julian J. McAuley. 2018. Self-762
attentive sequential recommendation. In IEEE Inter-763
national Conference on Data Mining, ICDM 2018,764
Singapore, November 17-20, 2018, pages 197–206.765
IEEE Computer Society.766

Wang-Cheng Kang, Jianmo Ni, Nikhil Mehta, Mah-767
eswaran Sathiamoorthy, Lichan Hong, Ed H. Chi,768
and Derek Zhiyuan Cheng. 2023. Do llms under-769
stand user preferences? evaluating llms on user rating770
prediction. CoRR, abs/2305.06474.771

Jing Li, Pengjie Ren, Zhumin Chen, Zhaochun Ren, Tao772
Lian, and Jun Ma. 2017. Neural attentive session-773
based recommendation. In Proceedings of the 2017774
ACM on Conference on Information and Knowledge775
Management, CIKM 2017, Singapore, November 06 -776
10, 2017, pages 1419–1428. ACM.777

Ping Li, Christopher J. C. Burges, and Qiang Wu. 2007.778
Mcrank: Learning to rank using multiple classifica-779
tion and gradient boosting. In Advances in Neural780
Information Processing Systems 20, Proceedings of781
the Twenty-First Annual Conference on Neural In-782
formation Processing Systems, Vancouver, British783
Columbia, Canada, December 3-6, 2007, pages 897–784
904. Curran Associates, Inc.785

Xinhang Li, Chong Chen, Xiangyu Zhao, Yong Zhang,786
and Chunxiao Xing. 2023. E4srec: An elegant787
effective efficient extensible solution of large lan-788
guage models for sequential recommendation. CoRR,789
abs/2312.02443.790

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang,791
Hiroaki Hayashi, and Graham Neubig. 2023. Pre-792
train, prompt, and predict: A systematic survey of793
prompting methods in natural language processing.794
ACM Computing Surveys, 55(9):1–35.795

Ilya Loshchilov and Frank Hutter. 2019. Decoupled796
weight decay regularization. In 7th International797
Conference on Learning Representations, ICLR 2019,798
New Orleans, LA, USA, May 6-9, 2019. OpenRe-799
view.net.800

Xueguang Ma, Xinyu Zhang, Ronak Pradeep, and801
Jimmy Lin. 2023. Zero-shot listwise document802
reranking with a large language model. CoRR,803
abs/2305.02156.804

OpenAI. 2023. GPT-4 technical report. CoRR,805
abs/2303.08774.806

Changhua Pei, Yi Zhang, Yongfeng Zhang, Fei Sun, 807
Xiao Lin, Hanxiao Sun, Jian Wu, Peng Jiang, Junfeng 808
Ge, Wenwu Ou, and Dan Pei. 2019. Personalized 809
re-ranking for recommendation. In Proceedings of 810
the 13th ACM Conference on Recommender Systems, 811
RecSys 2019, Copenhagen, Denmark, September 16- 812
20, 2019, pages 3–11. ACM. 813

Zhen Qin, Rolf Jagerman, Kai Hui, Honglei Zhuang, 814
Junru Wu, Jiaming Shen, Tianqi Liu, Jialu Liu, Don- 815
ald Metzler, Xuanhui Wang, and Michael Bender- 816
sky. 2023. Large language models are effective text 817
rankers with pairwise ranking prompting. CoRR, 818
abs/2306.17563. 819

Zhaopeng Qiu, Xian Wu, Jingyue Gao, and Wei Fan. 820
2021. U-BERT: pre-training user representations for 821
improved recommendation. In Thirty-Fifth AAAI 822
Conference on Artificial Intelligence, AAAI 2021, 823
Thirty-Third Conference on Innovative Applications 824
of Artificial Intelligence, IAAI 2021, The Eleventh 825
Symposium on Educational Advances in Artificial In- 826
telligence, EAAI 2021, Virtual Event, February 2-9, 827
2021, pages 4320–4327. AAAI Press. 828

Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, 829
and Yuxiong He. 2020. Deepspeed: System opti- 830
mizations enable training deep learning models with 831
over 100 billion parameters. In KDD ’20: The 26th 832
ACM SIGKDD Conference on Knowledge Discovery 833
and Data Mining, Virtual Event, CA, USA, August 834
23-27, 2020, pages 3505–3506. ACM. 835

Devendra Singh Sachan, Mike Lewis, Mandar Joshi, 836
Armen Aghajanyan, Wen-tau Yih, Joelle Pineau, and 837
Luke Zettlemoyer. 2022. Improving passage retrieval 838
with zero-shot question generation. In Proceedings 839
of the 2022 Conference on Empirical Methods in 840
Natural Language Processing, EMNLP 2022, Abu 841
Dhabi, United Arab Emirates, December 7-11, 2022, 842
pages 3781–3797. Association for Computational 843
Linguistics. 844

Weiwei Sun, Lingyong Yan, Xinyu Ma, Shuaiqiang 845
Wang, Pengjie Ren, Zhumin Chen, Dawei Yin, and 846
Zhaochun Ren. 2023. Is chatgpt good at search? 847
investigating large language models as re-ranking 848
agents. In Proceedings of the 2023 Conference on 849
Empirical Methods in Natural Language Process- 850
ing, EMNLP 2023, Singapore, December 6-10, 2023, 851
pages 14918–14937. Association for Computational 852
Linguistics. 853

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann 854
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang, 855
and Tatsunori B. Hashimoto. 2023. Stanford alpaca: 856
An instruction-following llama model. https:// 857
github.com/tatsu-lab/stanford_alpaca. 858

Michael Taylor, John Guiver, Stephen Robertson, and 859
Tom Minka. 2008. Softrank: optimizing non-smooth 860
rank metrics. In Proceedings of the 2008 Interna- 861
tional Conference on Web Search and Data Mining, 862
pages 77–86. 863

10

https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://doi.org/10.1109/ICDM.2018.00035
https://doi.org/10.1109/ICDM.2018.00035
https://doi.org/10.1109/ICDM.2018.00035
https://doi.org/10.48550/ARXIV.2305.06474
https://doi.org/10.48550/ARXIV.2305.06474
https://doi.org/10.48550/ARXIV.2305.06474
https://doi.org/10.48550/ARXIV.2305.06474
https://doi.org/10.48550/ARXIV.2305.06474
https://doi.org/10.1145/3132847.3132926
https://doi.org/10.1145/3132847.3132926
https://doi.org/10.1145/3132847.3132926
https://proceedings.neurips.cc/paper/2007/hash/b86e8d03fe992d1b0e19656875ee557c-Abstract.html
https://proceedings.neurips.cc/paper/2007/hash/b86e8d03fe992d1b0e19656875ee557c-Abstract.html
https://proceedings.neurips.cc/paper/2007/hash/b86e8d03fe992d1b0e19656875ee557c-Abstract.html
https://doi.org/10.48550/ARXIV.2312.02443
https://doi.org/10.48550/ARXIV.2312.02443
https://doi.org/10.48550/ARXIV.2312.02443
https://doi.org/10.48550/ARXIV.2312.02443
https://doi.org/10.48550/ARXIV.2312.02443
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://doi.org/10.48550/ARXIV.2305.02156
https://doi.org/10.48550/ARXIV.2305.02156
https://doi.org/10.48550/ARXIV.2305.02156
https://doi.org/10.48550/ARXIV.2303.08774
https://doi.org/10.1145/3298689.3347000
https://doi.org/10.1145/3298689.3347000
https://doi.org/10.1145/3298689.3347000
https://doi.org/10.48550/ARXIV.2306.17563
https://doi.org/10.48550/ARXIV.2306.17563
https://doi.org/10.48550/ARXIV.2306.17563
https://doi.org/10.1609/AAAI.V35I5.16557
https://doi.org/10.1609/AAAI.V35I5.16557
https://doi.org/10.1609/AAAI.V35I5.16557
https://doi.org/10.1145/3394486.3406703
https://doi.org/10.1145/3394486.3406703
https://doi.org/10.1145/3394486.3406703
https://doi.org/10.1145/3394486.3406703
https://doi.org/10.1145/3394486.3406703
https://doi.org/10.18653/V1/2022.EMNLP-MAIN.249
https://doi.org/10.18653/V1/2022.EMNLP-MAIN.249
https://doi.org/10.18653/V1/2022.EMNLP-MAIN.249
https://aclanthology.org/2023.emnlp-main.923
https://aclanthology.org/2023.emnlp-main.923
https://aclanthology.org/2023.emnlp-main.923
https://aclanthology.org/2023.emnlp-main.923
https://aclanthology.org/2023.emnlp-main.923
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca

Xuanhui Wang, Cheng Li, Nadav Golbandi, Michael864
Bendersky, and Marc Najork. 2018. The lambdaloss865
framework for ranking metric optimization. In Pro-866
ceedings of the 27th ACM international conference867
on information and knowledge management, pages868
1313–1322.869

Likang Wu, Zhi Zheng, Zhaopeng Qiu, Hao Wang,870
Hongchao Gu, Tingjia Shen, Chuan Qin, Chen Zhu,871
Hengshu Zhu, Qi Liu, et al. 2023. A survey on872
large language models for recommendation. arXiv873
preprint arXiv:2305.19860.874

Fen Xia, Tie-Yan Liu, Jue Wang, Wensheng Zhang, and875
Hang Li. 2008. Listwise approach to learning to876
rank: theory and algorithm. In Proceedings of the877
25th international conference on Machine learning,878
pages 1192–1199.879

Cong Xu, Zhangchi Zhu, Jun Wang, Jianyong Wang,880
and Wei Zhang. 2024. Understanding the role881
of cross-entropy loss in fairly evaluating large882
language model-based recommendation. CoRR,883
abs/2402.06216.884

Jun Xu and Hang Li. 2007. Adarank: a boosting al-885
gorithm for information retrieval. In SIGIR 2007:886
Proceedings of the 30th Annual International ACM887
SIGIR Conference on Research and Development in888
Information Retrieval, Amsterdam, The Netherlands,889
July 23-27, 2007, pages 391–398. ACM.890

Zhenrui Yue, Sara Rabhi, Gabriel de Souza Pereira Mor-891
eira, Dong Wang, and Even Oldridge. 2023. Lla-892
marec: Two-stage recommendation using large lan-893
guage models for ranking. CoRR, abs/2311.02089.894

Zheng Zhi, Chao Wenshuo, Qiu Zhaopeng, Zhu Heng-895
shu, and Xiong Hui. 2024. Harnessing large lan-896
guage model in text-rich sequential recommendation.897
In Proceedings of the ACM Web Conference 2024,898
WWW 2024. ACM.899

11

https://doi.org/10.48550/ARXIV.2402.06216
https://doi.org/10.48550/ARXIV.2402.06216
https://doi.org/10.48550/ARXIV.2402.06216
https://doi.org/10.48550/ARXIV.2402.06216
https://doi.org/10.48550/ARXIV.2402.06216
https://doi.org/10.1145/1277741.1277809
https://doi.org/10.1145/1277741.1277809
https://doi.org/10.1145/1277741.1277809
https://doi.org/10.48550/ARXIV.2311.02089
https://doi.org/10.48550/ARXIV.2311.02089
https://doi.org/10.48550/ARXIV.2311.02089
https://doi.org/10.48550/ARXIV.2311.02089
https://doi.org/10.48550/ARXIV.2311.02089

A Appendix900

A.1 Template Design901

We followed the template design from existing902

works (Bao et al., 2023; Yue et al., 2023) and re-903

fined the prompt to rank the items in a list-wise904

manner and alleviate position bias, as shown in Ta-905

ble 5. Specifically, the ranking results are sorted906

based on the rating rci ∈ [1 . . . 5]. For candidates907

with equal ratings, we further sort them alphabeti-908

cally. It is worth noting that while the equal rating909

results affect the supervised fine-tuning loss, they910

do not impact the soft lambda loss suggested in911

our framework, as the cumulative gain assigned912

in DCG for items with the same rating remains913

consistent.914

A.2 Permutation Sensitive Loss915

We generate the candidate list C′
u =916

{cπ(0), cπ(1), · · · , cπ(m)}, which represents a917

permuted version of the original candidate list918

Cu, where π(·) is a random permutation function.919

When the order of the candidate list is permuted,920

the corresponding target answer Ttgt(τ
′) also921

noted as y′t is adjusted to match the new order.922

For example, referring to Table 5, if we permute923

the candidates "Starman" and "Jumanji," the924

corresponding ranking result will change from "B925

A C ..." to "A B C ...". This permutation ensures926

that the model learns to rank based on the content927

rather than the position of the items in the list.928

Regarding the probability distribution929

Pθ(y
′
t|x′, y′<t), our objective is to minimize930

the distance of the output distribution after931

permutation. Let kid represent the set of all token932

IDs and kα represent the set of alphabetic tokens.933

When the targeted alphabetic token ID kα changes934

according to the permutation function π(·), we935

apply the same permutation function to adjust936

the token categories in the target distribution.937

Mathematically, we aim to minimize the following938

loss:939

Lperm =
∑
t

KL
(
Pθ(yt|x, y<t)∥Pθ(y

′
t|x′, y′<t)

)
,

(8)940

where KL(·∥·) denotes the Kullback-Leibler diver-941

gence, measuring the difference between the orig-942

inal output distribution and the permuted output943

distribution.944

After applying the permutation π(·) on the can-945

didate, the output tokens ID k′α are changed. The946

Table 5: Instruction Template and Example

Prompt Template

Instruction:
Given the user’s interaction history, which reveals their
items preferences, generate a preference-based ranking of
the provided candidate items. Your task is to rank a list of
new candidate movies.
Your ranking should include all the candidate movies pro-
vided, and it should be based solely on the user’s prefer-
ences, without regard to the initial order of the candidates.
Input:
[User Interaction History]:
<User Interaction History>
[Candidate Items]:
<Candidate Items>
Response:
Given the historical interaction, the ranking result is:
<Ranking Result>

Example

Instruction:
Given the user’s interaction history, which reveals their
items preferences, generate a preference-based ranking of
the provided candidate items. Your task is to rank a list of
new candidate movies.
Your ranking should include all the candidate movies pro-
vided, and it should be based solely on the user’s prefer-
ences, without regard to the initial order of the candidates.
Input:
[User Interaction History]:
title: Independence Day genres: Action|SciFi|War rating: 3
title: Close Encounters of the Third Kind (1977) genres:
Drama|Sci-Fi rating: 4 . . .
[Candidate Items]:
(A) title: Starman genres: Adventure|Drama|Romance
(B) title: Jumanji (1995) genres: Adventure|Children’s
|Fantasy . . .
Response:
Given the historical interaction, the ranking result is:
B A C . . .

permuted token ID set is k′α = π(kα). Conse- 947

quently, the target distribution must be adjusted to 948

reflect the new order: 949

Pθ(y
′
t,k′α

|x′, y′<t,k′α
) 950

= Pθ(y
′
t,π−1(kα)

|x′, y′<t,π−1(kα)
). (9) 951

This means that the output distribution should 952

accurately reflect the new order imposed by the 953

permutation. The objective is to ensure that 954

the output distribution of the permuted prompt 955

Pθ(y
′
t|x′, y′<t) closely matches the original distri- 956

bution Pθ(yt|x, y<t), thereby maintaining the in- 957

tegrity of the ranking despite the permutation. 958

12

	Introduction
	Related Works
	Large Language Model for Recommendation
	Learning to Rank

	Problem Statement
	Methodology
	Template Design
	Supervised Fine-Tuning
	Soft Lambda Loss (SLL)
	Permutation-Sensitive Loss (PSL)
	Training Objective

	Experiment
	Dataset
	Baselines and Evaluation Metrices
	Implementation Details
	Overall Performance (RQ1)
	Effect of Supervised Fine-Tuning (RQ2)
	Ablation Study (RQ3)
	Comparison of Bootstrapping and Permutation-Sensitive Learning (RQ4)
	Effect of Model parameter size (RQ5)

	Conclusion
	Limitation
	Appendix
	Template Design
	Permutation Sensitive Loss

