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Abstract

To reduce annotation difficulty, Partial label learn-
ing (PLL) uses ambiguous annotations with can-
didate labels instead of the exact correct label.
It assumes the candidate label set contains the
correct label, inducing disambiguation, which
is commonly adopted in PLL methods. How-
ever, this assumption is impractical as no one
could guarantee the existence of the correct la-
bel in the candidate label set under real-world
scenarios. Therefore, Unreliable Partial Label
Learning (UPLL) is investigated where the cor-
rect label of each example may not exist in the
candidate label set. In this paper, we propose a
fusion framework of refinement and disambigua-
tion named FREDIS to handle the UPLL prob-
lem. Specifically, with theoretical guarantees, not
only does disambiguation move incorrect labels
from candidate labels to non-candidate labels but
also refinement, an opposite procedure, moves
correct labels from non-candidate labels to can-
didate labels. Besides, we prove that the classi-
fier trained by our framework could eventually
approximate the Bayes optimal classifier. Ex-
tensive experiments on widely used benchmark
datasets validate the effectiveness of our proposed
framework. Source code is available at https:
//github.com/palm-ml/fredis.

1. Introduction
Partial Label Learning (PLL), known as a typical weakly
supervised learning (Patrini et al., 2017; Zhou, 2018; Kam-
nitsas et al., 2018; Lu et al., 2018; Gong et al., 2019), learns
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a multi-class classifier from instances annotated with can-
didate label sets, where the exact correct labels lie fixed
but unknown. PLL has been widely encountered in a va-
riety of real-world domains including web mining (Luo &
Orabona, 2010), ecoinformatics (Liu & Dietterich, 2012),
and multimedia content analysis (Zeng et al., 2013).

To tackle the PLL problem, a large number of approaches
have been proposed. Identification-based approaches (Jin
& Ghahramani, 2002; Nguyen & Caruana, 2008; Liu & Di-
etterich, 2012; Yu & Zhang, 2016; Chen et al., 2017; Feng
& An, 2019; Wang et al., 2021; Ni et al., 2021) consider
the correct label as a latent variable and aim to identify
it through various techniques. Average-based approaches
(Hüllermeier & Beringer, 2006; Cour et al., 2011; Zhang &
Yu, 2015) treat all the candidate labels equally and predict
by averaging the modeling outputs. Additionally, recent ad-
vancements in deep PLL algorithms have emerged oriented
at regularization items (Yao et al., 2020a;b; Wu et al., 2022),
classifier or risk consistency (Lv et al., 2020; Feng et al.,
2020; Wen et al., 2021), and intrinsic representations (Zhang
et al., 2021; Wang et al., 2022), providing new avenues for
research in this field.

The preceding methods are all founded on the PLL assump-
tion that each candidate label set inevitably contains the
correct label. Nevertheless, this assumption is impractical
as no one could guarantee the existence of the correct label
in the candidate label set. Let us reconsider how candidate
labels are typically generated: One case is that an annotator
(or more abstractly, an annotation system) cannot decide
which one is the correct label for a given instance, and
thus uses multiple labels for annotation (Cour et al., 2011).
Another is that multiple annotators disagree on the same
instance (Jin & Ghahramani, 2002; Zhang et al., 2017). The
two cases do not completely avoid inherent ambiguity, and
the correct label cannot be guaranteed to be included by the
corresponding candidate label set. Hence, we need to in-
vestigate Unreliable Partial Labeling Learning (UPLL) (Lv
et al., 2023), where the candidate label set is not guaranteed
to contain the correct label. In this way, PLL can be gener-
alized to more real-world scenarios, such as crowdsourcing
(CROWDSOURCING, 2008). Typically, several non-expert
crowdworkers can be organized to annotate a large-scale
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dataset, saving a significant amount of annotation costs.

In this paper, we propose a theoretically grounded frame-
work for UPLL named FREDIS, i.e., Fusion of REfinement
and DISambiguation. Specifically, since correct labels may
hide in non-candidate labels, we perform not only disam-
biguation but also refinement of moving the correct label
from non-candidate labels into candidate labels to avoid
missing supervision information and misleading. Under
mild assumptions, we prove that by selecting appropriate
thresholds based on the classifier output, correct labels can
be possibly refined from non-candidate labels and incorrect
labels can be disambiguated from candidate labels. During
each fusion round of refinement and disambiguation, we
control disambiguated labels to be far more than refined la-
bels in order to mitigate the risk posed by mistaken incorrect
labels. As a result, the entire candidate label sets would be
gradually purified, and the classifier is proved capable of
approximating the Bayes optimal classifier eventually. Our
main contributions are summarized below:

• We propose a novel framework named FREDIS from the
perspective of data calibration. The framework progres-
sively purifies the whole candidate label sets via perform-
ing refinement and disambiguation simultaneously.

• We demonstrate that FREDIS has the competence to refine
correct labels out of non-candidate labels and is guaran-
teed to eliminate incorrect labels out of candidate labels.
Disambiguation and refinement will be accommodated
harmoniously in FREDIS, which is proved to improve the
performance of the classifier iteratively.

• We prove that the classifier trained by our proposed frame-
work approximates the Bayes optimal classifier under
mild assumptions. To the best of our knowledge, this is
the first theoretically guaranteed framework for the UPLL
problem along the research line of identification.

2. Related Work
In this section, we will provide a brief overview of two
aspects of PLL research: traditional PLL and deep PLL,
both of which have achieved tremendous theoretical and
empirical improvements.

Traditional PLL involves the use of linear models to perform
disambiguation, which can be classified into two types::
identification and average. Those based on identification
focus on distinguishing the correct label from the candidate
label set by selecting one label as the ground truth based on
certain criteria and directly maximizing the model’s output
for that label. For instance, (Jin & Ghahramani, 2002) ap-
ply the EM algorithm to determine which label among the
candidate label set is more appropriate for training than the
others. (Nguyen & Caruana, 2008) generalize the margin-
based multi-class approach to margin-based partial label

classification to disambiguate the candidate label set. (Liu
& Dietterich, 2012) maximize the likelihood of data based
on the assumption of a noise distribution, consider the cor-
rect label as a hidden variable, and discriminate it using
variational EM. On the other hand, those based on average
thought pursue disambiguation between candidate labels
and non-candidate labels, thereby often putting all labels in
the candidate label set in the equal position and averaging
the outputs of the model on all candidate labels to make pre-
dictions. Typically, (Hüllermeier & Beringer, 2006) apply
the k-nearest neighbour technique to vote for each accept-
able label. In (Cour et al., 2011; Zhang et al., 2016), the
parameters of the classifier are optimized to maximize the
difference between the average score of candidate labels
and non-candidate labels.

Deep PLL lifts the restriction on model structures, data di-
mensions and optimization strategies. Equipped with deep
neural networks, the PLL problem has been studied on many
benchmark datasets, in which parameters of the classifier is
efficiently updated by various stochastic optimization, such
as SGD (Robbins & Monro, 1951), and ADAM (Kingma
& Ba, 2014). (Yao et al., 2020a) is the pioneering work to
integrates deep neural networks into PLL to improve the
representation ability of the models. Building upon the esti-
mation error bound, (Lv et al., 2020) theoretically prove that
its classifier learned from candidate label sets can converge
to the optimal one trained with correct labels. From the
perspective of the generation model of candidate label sets,
(Feng et al., 2020) propose one risk-consistent estimator and
one classifier-consistent estimator, which makes the assump-
tion that the candidate label set is uniformly sampled with
the correct label contained. (Wen et al., 2021) generalize
the uniform generation process and assume the candidate
label set to be label-specific. (Xu et al., 2021b) first notice
that the instance-dependent case is more realistic and adopt
the variational inference technique to estimate the latent
label distribution (Xu et al., 2021a; 2023) of each instance.
(Zhang et al., 2021) discover that class activation maps can
be utilized for disambiguation purposes, and further propose
using class activation values to capture learned representa-
tion information in a more general manner. (Wang et al.,
2022) aim to improve the extracted representation and in-
troduce constrastive learning. (Wu et al., 2022) consider
the manifold consistency, which attempt to maintain the
manifold in both feature space and label space. (Lv et al.,
2023) first consider UPLL and propose average partial-label
losses for UPLL along the research line of average. (Lian
et al., 2023) focuses on detecting and correcting unreliable
training examples to reduce the unreliability in UPLL.

At the core of most PLL approaches, whether traditional
or deep, is disambiguation, which excludes incorrect labels
from candidate labels or, more flexibly, exerts more weight
on correct labels and less weight on incorrect labels within
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candidate labels when training the classifier. However, in
UPLL, disambiguation is ineffective because the correct
label may not be present in the candidate label set. To
avoid missing supervision information, refinement, which
attempts to move the correct label from non-candidate labels
to candidate labels, is supposed to be implemented. Nev-
ertheless, disambiguation and refinement naturally interact
on each other in a state of competition. Therefore, we con-
sider fusing disambiguation and refinement with theoretical
guarantees for UPLL in this paper.

3. Problem Setup
3.1. Partial Label Learning

For partial label learning, each example is annotated with a
candidate label set, which conceals the correct label. The ob-
jective is to induce a predictive model capable of assigning
the correct label to an unseen instance. Let X = Rq be the
q-dimensional instance space and Y = {1, 2, ..., c} be the
label space with c class labels. Given a PLL training dataset
D = {(xi, Si)|1 ≤ i ≤ n}, where xi ∈ X denotes the i-th
q-dimensional instance and Si ∈ C denotes the candidate
label set associated with xi where C = 2Y \ {∅,Y}. The
task of PLL is to train a multi-class classifier f : X 7→ Y
using the PLL training dataset D.

3.2. Unreliable Partial Label Learning

Given a UPLL training set D̃ = {(xi, S̃i)|1 ≤ i ≤ n}
where S̃i ∈ C denotes the candidate label set of xi in UPLL.
Note that in PLL the correct label yi is guaranteed to exist in
the corresponding candidate label set Si, i.e., yi ∈ Si always
holds, while in UPLL the correct label yi is not necessarily
in the candidate label set S̃i, i.e., yi /∈ S̃i sometimes exists,
which is more challenging but more practical. The task of
UPLL is also to induce a multi-class classifier f : X 7→ Y
from D̃, which can assign the correct label for the unseen
instance. Compared to PLL, UPLL suffers from a loss of
supervision information in non-candidate labels. Merely
conducting disambiguation solely on the candidate label set,
which lacks the correct label, fails to effectively utilize the
corresponding instance during training. Hence, we need to
perform refinement, which attempts to sieve correct labels
in non-candidate labels to recover supervision information.

To formulate our fusion framework FREDIS, we let the out-
put of the classifier f satisfy f(x) ∈ ∆c−1, which denotes
the c-dimensional probability simplex, and the predict la-
bel of the classifier f given the instance xi is denoted by
yf(xi) = argmaxj fj(xi). To simplify the following the-
oretical induction, ηj(x) = P[yi = j|xi] is employed to
denote the posterior probability of the label yi = j given
the instance xi, and the multi-class Bayes optimal classifier
prediction is denoted by η⋆(x) = argmaxj ηj(x), which is

also the correct label yx according to (Zheng et al., 2020). A
classifier is considered consistent with or approximating the
Bayes optimal classifier when its predictions align precisely
with those of the Bayes optimal classifier.

4. The Proposed Method
4.1. Overview

In this section, a fusion framework of refinement and dis-
ambiguation for UPLL named FREDIS is introduced fol-
lowing theoretical guarantees. Theoretically, we first prove
that for a given UPLL distribution, there exist appropriate
thresholds, which are set on the output of the classifier, to
sieve correct and incorrect labels, inducing refinement and
disambiguation. Then we prove that if the disambiguated
labels overwhelms the refined labels, the boundary of the
gap between the output of the classifier and the posterior
probability will decrease after one fusion round of refine-
ment and disambiguation. Additionally, disambiguation is
proved capable of eliminating incorrect labels previously
misidentified by refinement. Finally, we prove that the clas-
sifier trained in our framework FREDIS could have a good
chance to approximate the Bayes optimal classifier.

Practically, FREDIS repeatedly trains a randomly initialized
classifier on the UPLL dataset for enough epochs, and then
updates the candidate labels in the dataset with the refine-
ment and disambiguation procedure. During each fusion
round of refinement and disambiguation, we calculate the
difference between the output of the classifier on the pre-
dicted label and that on the rest labels, where we set a low
threshold for refinement and a high threshold for disam-
biguation, respectively. We randomly sample a subset of
the refined and disambiguated labels to control the sieving
number. In this way of fusion, the predictive classifier can
perform prediction for unseen instances.

4.2. The FREDIS framework

Recently weakly-supervised approaches (Feng et al., 2020;
Gao & Zhang, 2021) assume that the output of deep neu-
ral networks with the softmax layer could be employed to
directly approximate the posterior probability, which is em-
pirically effective but theoretically unreasonable to some
extent. It has only been proved by (Yu et al., 2018; Lv
et al., 2020) that for a ordinary multi-class classifier g, if the
hypothesis class is enough complex, given infinitely many
data and the strict proper loss function ℓ such as the cross-
entropy loss or the mean square loss, the optimal classifier
g∗ = argming∈H E(x,yx)[ℓ(g(x), yx)] can output the pos-
terior probability , i.e., ∀j ∈ Y, g∗j (x) = ηj(x). In this
paper, we also use a deep model with the softmax layer
as our classifier but relax the approximation in UPLL by
only assuming that the probabilistic output of the classifier
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trained on a dataset with lower label ambiguity gets closer
to the Bayesian posterior probability.

To formulate the assumption, we define a scoring function
to decide the label ambiguity of an UPLL dataset, inspired
by (Gong et al., 2021), and an (α, ϵ, ρ)-ambiguity bounded
distribution of UPLL, inspired by (Cour et al., 2011).

Definition 1 (Label Ambiguity Scoring Function) Let
U(D̃) =

∑
(x,S̃)∈D̃

∑
j∈Y I[j = yx, j /∈ S̃] + I[j ̸=

yx, j ∈ S̃] denote the label ambiguity of the dataset D̃
where I is the indicator function. A scoring function
O(U(D̃)) : R+ 7→ [0, 1] is said to depict the concrete
score of the label ambiguity if there exists ε > 0, σ > 1
making the following conditions holds:

• Suppose an data point (x, S̃) in the dataset D̃, which
satisfies yx /∈ S̃, is replaced by another point (x, S̃′),
which satisfies S̃′ = S̃ ∪ {yx}, to form a new dataset D̃′.
Then O(U(D̃))−O(U(D̃′)) > σε will hold.

• Suppose an data point (x, S̃) in the dataset D̃, which
satisfies j ∈ S̃ and j ̸= yx, is replaced by another
point (x, S̃′), which satisfies S̃′ = S̃\{j}, to form a new
dataset D̃′. Then ε ≤ O(U(D̃))−O(U(D̃′)) ≤ σε will
holds.

Intuitively, the less label ambiguity the UPLL dataset D̃ has,
the smaller value the score function O(U(D̃)) outputs. On
the one hand, when one correct label is refined from non-
candidate labels to candidate labels, the value of the score
function O(U(D̃)) will be reduced by more than σε. On
the other hand, when one incorrect label is disambiguated
from candidate labels to non-candidate labels, the value of
the score function O(U(D̃)) is reduced by at least ε. Here,
we also assume that the gain of recovering one correct label
is larger that that of eliminating one incorrect label in the
scoring function.

Definition 2 (α, ϵ, ρ)-ambiguity bounded distribution. An
UPLL distribution P[x, S̃] is bounded by (α, ϵ, ρ)-ambiguity
if there exists a subset G of the support of P[x, S̃], G ⊆
X × C, with probability mass at least 1 − ρ, that is,∫
(x,S̃)∈G

P[x, S̃]dµ(x, S̃) ≥ 1− ρ, integrated w.r.t the ap-
propriate underlying measure µ on X × C, for which when
f(x) = argminf∈H R̂(f) and ∀D̃ ⊆ G,

sup
(x,S̃)∈D̃,j∈Y

|fj(x)− ηj(x)| ≤ αO(U(D̃)) + ϵ, (1)

where R̂(f) = 1
n

∑n
i=1 ℓ(f(xi), S̃) is the empirical risk es-

timator, α ∈ (0, 1) is used to resolve the scale problem, and
ϵ ∈ (0, 1) is a minor value denoting the inherent difference
between f and η influenced by the loss function, sample
complexity, optimization and etc.

Definition 2 indicates that for an UPLL dataset D̃ ⊆ G in
the (α, ϵ, ρ)-ambiguity bounded P[x, S̃], the gap between f

and η is bounded by the label ambiguity of the whole dataset
D. If we can refine correct labels or disambiguate incorrect
labels in the dataset D̃, the boundary will be narrowed. From
now on, we will assume:

Assumption 1 The UPLL dataset D̃ is always a subset of
G in the (α, ϵ, ρ)-ambiguity bounded P[x, S̃].

Based on Assumption 1, we introduce the refinement the-
orem and the disambiguation theorem for our framework.
The refinement theorem states that for each instance x, there
exists a threshold ζ to test the output difference of a clas-
sifier between the predictive label and the rest, and then
decide which crowd correct labels hide themselves in. On
the contrary, the disambiguation theorem states that there
exists a threshold ζ̄ for the difference to determine which
label is incorrect.

Theorem 1 (Refinement) Under Assumption 1, suppose
that for an instance x, of which the correct label yx /∈
S̃, and a constant ζ = 2(αO(U(D̃)) + ϵ) − ηyx(x) +
ηyf(x)

(x), there exists an instance-label level set I(f, ζ) =
{(x, j)

∣∣fyf(x)
(x) − fj(x) ≤ ζ, j /∈ S̃}. Then we have

(x, yx) ∈ I(f, ζ).

The detailed proof can be found in Appendix A.1. Theorem
1 theoretically guarantees the refinement procedure in our
framework FREDIS. It demonstrates that for an instance xi,
there exists a special threshold ζ such that its correct label
yxi

satisfies the condition fyf(xi)
(xi)− fyxi

(xi) ≤ ζ and
(x, yx) is included in the instance-label level set I(f, ζ).
Hence, we can refine the correct label yxi for the instance
xi via performing S̃ ∪ {j} for (S̃, j) ∈ {(S̃, j)|(x, S̃) ∈
D̃, (x, j) ∈ I(f, ζ)} to sieve labels from non-candidate la-
bels to candidate labels, recovering the reliability for the
candidate label sets which do not contain the correct la-
bels. Naturally, we need a theorem to guide disambiguation,
which further purifies the supervison information of the
UPLL dataset.

Theorem 2 (Disambiguation) Under Assumption 1, sup-
pose that for a constant ζ̄ = 2(αO(U(D̃) + ϵ), there exists
an instance-label level set Ī(f, ζ̄) = {(x, j)

∣∣fyf(x)
(x) −

fj(x) ≥ ζ̄, j ∈ S̃}. Then for any instance x, we have
(x, yx) /∈ Ī(f, ζ̄).

The detailed proof can be found in Appendix A.2. Theorem
2 provides a theoretical guarante for the disambiguation pro-
cedure in our framework FREDIS, which suggests that when
an appropriate threshold ζ̄ is set, if a candiate label j ∈ S̃i of
the instance xi satisfies the condidtion fyf(x)

− fj(x) ≥ ζ̄,
we can perform S̃i \ {j} to eliminate the incorrect label j
from the candidate label set S̃i.

Base on Theorem 1 and 2, we deduce the following theorem,
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Algorithm 1 FREDIS

Input: The UPLL training set D̃ = {(xi, S̃i)|1 ≤ i ≤ n},
initial refinement and disambiguation thresholds ζ0 and
ζ̄0, final refinement and disambiguation thresholds ζ̄end,
ζend, and total rounds R;

1: Initialize ζ with ζ0 and ζ̄ with ζ̄0;
2: for r = 1, ..., R do
3: Train the predictive model f on D̃;
4: Obtain instance-label level sets I(f, ζ) and Ī(f, ζ̄);
5: Randomly sample a subset I ′(f, ζ) from I(f, ζ)

and a subset Ī ′(f, ζ̄) from Ī(f, ζ̄), which satisfy
σ|I ′(f, ζ)| ≤ |Ī ′(f, ζ̄)|;

6: for each (x, j) in I ′(f, ζ) do
7: Add the label j to the candidate label set S̃ via

performing S̃ = S̃ ∪ {j};
8: end for
9: for each (x, j) in Ī ′(f, ζ̄) do

10: Remove the label j from the candidate label set S̃
via performing S̃ = S̃ \ {j};

11: end for
12: if ζ ≤ ζend, ζ̄ ≥ ζ̄end, and there is no change for all

candidate labels then
13: Increase ζ, Decrease ζ̄;
14: end if
15: end for
Output: The final predictive classifier f .

which is theoretically not heuristically prepared for the fu-
sion of refinement and disambiguation, where the boundary
of the gap between f and η will be narrowed as the label
ambiguity of the dataset decreases.

Theorem 3 (One Round Boundary Narrowing) Under As-
sumption 1, for constants ζ = 2(αO(U(D̃)) + ϵ) −
ηyx(x) + ηyf(x)

(x) and ζ̄ = 2(αO(U(D̃)) + ϵ), suppose
that there exist their corresponding instance-label level sets
I(f, ζ) = {(x, j)

∣∣fyf(x)
(x) − fj(x) ≤ ζ, j /∈ S̃} and

Ī(f, ζ̄) = {(x, j)
∣∣fyf(x)

(x)− fj(x) ≥ ζ̄, j ∈ S̃} for an f

such that σ|I(f, ζ)| ≤ |Ī(f, ζ̄)|, where | · | denotes the cardi-
nality. After performing one fusion round of refinement and
disambiguation, the boundary of the gap |fj(x)− ηj(x)|
will be reduced at least αε.

The detailed proof can be found in Appendix A.3. The-
orem 3 demonstrates that one fusion round of refine-
ment and disambiguation narrows the boundary of the gap
|fj(x)− ηj(x)| by at least αε. Therefore, the performance
of the classifier could be guaranteed improved when we
simultaneously perform refinement and disambiguation by
one round according to the corresponding instance-label sets
I(f, ζ) and Ī(f, ζ̄), which satisfy σ|I(f, ζ)| ≤ |Ī(f, ζ̄)|, i.e.
the disambiguated labels should be at least σ times more
than the refined labels.

Besides, from Theorem 3, we immediately obtain the fol-
lowing corollary, which assets that although we add some
incorrect labels at the same time as correct labels when we
performing the refinement on non-candidate labels, the in-
correct labels could be moved out later when we perform
the disambiguation due to the continuous decrease of the
boundary of the gap |fj(x)− ηj(x)|.

Corollary 1 (Mistaken Incorrect Labels Eliminating) Sup-
pose Assumption 1 holds, and assume an instance-label
pair (x, j) ∈ I(f, ζ) with the refinement threshold ζ =
2(αO(U(D̃)) + ϵ) − ηyx′ (x

′) + ηyf(x′)(x
′), leading the

incorrect label j of the instance x to be mistaken into
S̃ by the refinement procedure. Simultaneously, the dis-
ambiguation procedure removes incorrect labels from
candidate labels according to Ī(f, ζ̄) with the disam-
biguation threshold ζ̄ = 2(αO(U(D̃) + ϵ). Then after
R ≥ 1

4αε (2(min(x,j)∈Ī(f,ζ̄) fyf(x)
(x)− fj(x))+ (ηj(x)−

minj ηj(x))) rounds, the incorrect label j will be moved
out from S̃.

The proof is provided in Appendix A.4. Corollary 1 indi-
cates that mistaken incorrect labels in the refinement proce-
dure could be guaranteed to be eliminated in the disambigua-
tion procedure to further purify the candidate label set, as we
iteratively perform R ≥ 1

4αε (2(min(x,j)∈Ī(f,ζ̄) fyf(x)
(x)−

fj(x)) + (ηj(x) − minj ηj(x))) fusion rounds of refine-
ment and disambiguation. Additionally, Theorem 3 and
Corollary 1 encourage us to progressively refine and dis-
ambiguate labels. Though we can set the constant ζ ≥
maxx 2(αO(U(D̃)) + ϵ)− ηyx(x) + ηyf(x)

(x) to directly
recover all correct labels for the dataset D̃ in one round re-
finement, the supervision information will be impaired a lot
by the mistaken incorrect labels, which may not be purified
by disambiguation and cannot guarantees the improvement
of the classifier f .

4.3. Implementation Details

According to the above theorems, we are able to formulate
our fusion framework of refinement and disambiguation
FREDIS aimed at UPLL, which simultaneously refines cor-
rect labels out of non-candidate labels and disambiguates
incorrect labels in the candidate labels in a progressive
way. To be specific, in each round, we start with training
our predictive model f on the dataset D̃ using a weighted
cross entropy loss with consistency regularization (Wu et al.,
2022) until getting a relatively acceptable approximation
about η. Then, we can begin to perform the refinement
and disambiguation procedure to update candidate labels.
Inspired by Theorem 3, we randomly sample subsets from
the instance-label level sets of refinement and disambigua-
tion, controlling the disambiguated labels to overwhelm the
refined labels. According to the sampled subsets, we add
and remove the candidate labels to recover the reliability of
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candidate label sets and purify the supervision information.

Certainly, if current thresholds incur no change for any
candidate label set S̃ in the dataset D̃, it is time to slowly
increase the refinement threshold ζ and decrease the disam-
biguation threshold ζ̄ until we can refine correct labels and
disambiguate incorrect labels to update the dataset D̃ again.
We repeat the training and updating procedure for R rounds
until the classifier will not be improved. Algorithm 1 is the
pseudo code depicting our framework.

4.4. Theoretical Analysis

Here, we further analyze the relationship between the clas-
sifier f trained by our algorithm FREDIS and the Bayes
optimal classifier η⋆. Before proving our classifier f has a
good chance to be consistent with the Bayes optimal clas-
sifier η⋆, the Tsybakov condition (Chaudhuri & Dasgupta,
2014; Belkin et al., 2018; Qiao et al., 2019) is assumed to
be hold around the decision boundary of the Bayes optimal
classifier η⋆.

Assumption 2 (Tsybakov Condition). Let sx =
argmaxj ̸=yx ηj(x). Suppose that there exists constants
C, λ > 0, and t0 ∈ (0, 1), such that for all t ≤ t0,

P [ηyx(x)− ηsx(x) ≤ t] ≤ Ctλ, (2)

Assumption 2 quantifies how well classes are separated
on the decision boundary {x : ηyx(x) = ηsx(x)}, and
states that the uncertainty of η, denoted by the margin
ηyx(x)− ηsx(x), is bounded. Then we provide a theoreti-
cal guarantee for the consistency of the classifier f trained
in our framework with respect to the Bayes optimal classi-
fier η⋆. Empirical experiments conducted in (Zheng et al.,
2020) validate the bound, which also indicates the constant
C satisfies C ≤ 1 and the constant λ ≥ 1.

Theorem 4 (Bayes Consistency) Under Assumption 2 and
Suppose P[x, S̃] is (α, ϵ, ρ)-ambiguity bounded, after run-
ning R fusion rounds of refinement of disambiguation in the
algorithm FREDIS, we have:

P[yffinal(x) = η⋆(x)] ≥(
1− C

(
2
(
αO(U(D̃)) + ϵ− αεR

))λ
)
(1− ρ)

(3)

The proof of Theorem 4 is provided in Appendix A.5. The-
orem 4 demonstrates that the classifier f trained in our
proposed framework FREDIS could guaranteed to gradually
approximate the Bayes optimal classifies η⋆. Furthermore,
the theorem reveals that several factors influence this ap-
proximation, including the initial label ambiguity of a UPLL

dataset, the maximum fusion rounds, the range of the subset
G in (α, ϵ, ρ)-ambiguity bounded distribution, and certain
inherent constants.

5. Experiments
5.1. Datasets

In order to validate the effectiveness of our algorithm,
we employ four benchmark datasets, which are widely
used to be corrupted for validation in deep PLL, in-
cluding Kuzushiji-MNIST (Clanuwat et al., 2018),
Fashion-MNIST (Xiao et al., 2017), CIFAR-10 and
CIFAR-100 (Krizhevsky et al., 2009). Each dataset is
partitioned into training, validation and test datasets with
the proportion of 80%/10%/10% respectively.

For each benchmark dataset, we manually corrupt its train-
ing dataset into partially labeled versions with unreliable
candidate label sets, inspired by the generation process in
(Lv et al., 2023). Specifically, the generation process can be
divided into three procedures. Firstly, we sample a possibly
incorrect label for each instance according to Categorical
Distribution, i.e, P[ȳ = yx

∣∣yx] = 1 − γ1 (0 < γ1 < 1)
and P[ȳ ̸= yx

∣∣yx] = γ1

c−1 , where ȳ represents the possibly
incorrect label generated by this procedures and γ1 denotes
the possibility that the sampled label ȳ ̸= yx given the cor-
rect label yx. Then we sample the rest candidate labels for
each instance according to Bernoulli Distribution. Given
the correct label yx of an instance x, each incorrect label
has the probability γ2 (0 < γ2 < 1) to be selected into the
candidate label set. This procedure will generate a label
set S̄ without the correct label yx. Finally, we create the
unreliable candidate label set S̃ via performing S̃ = {ȳ}∪S̄
for each instance in the benchmark datasets. Compared with
the generation process in (Lv et al., 2023), our generation
process is experimentally simple and convenient to directly
control the unreliable level (overall proportion of unreliable
candidate label sets) and partial level (average number of
candidate labels) with γ1 and γ2 respectively.

5.2. Baselines

In this paper, the proposed framework FREDIS is compared
against seven well-established PLL algorithms based on
deep neural network. 1) PLCR (Wu et al., 2022), which uti-
lizes consistency regularization regularization by matching
the outputs of the classifier on multiple augmentations of
each instance to a conformal label distribution. 2) PICO
(Wang et al., 2022), which uses an entropy-based regular-
ization item as well as the ensemble technique. 3) CAVL
(Zhang et al., 2021), which is a discriminative approach and
identifies correct labels from candidate labels by class acti-
vation value. 4) LWS (Wen et al., 2021), which introduces
a leverage parameter considering the trade-offs between
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Table 1. Test accuracy (%) on benchmark datasets Fashion-MNIST and Kuzushiji-MNIST under different levels of γ1 and γ2
when FREDIS is compared with six PLL methods. Average accuracy and standard deviation over 5 trials are reported.

FMNIST γ1 = 0.1 γ1 = 0.3 γ1 = 0.5 γ1 = 0.3 γ1 = 0.5
γ2 = 0.5 γ2 = 0.3 γ2 = 0.1 γ2 = 0.5 γ2 = 0.3

FREDIS 91.76± 0.09 90.56± 0.11 89.21± 0.15 87.45± 0.12 85.84± 0.16

PLCR 90.97± 0.19• 89.78± 0.13• 88.18± 0.28• 86.29± 0.16• 84.41± 0.46•
PICO 90.47± 0.11• 89.15± 0.22• 87.83± 0.38• 83.42± 0.64• 80.37± 0.89•
CAVL 57.89± 8.79• 76.98± 2.01• 65.86± 1.26• 19.75± 3.77• 51.58± 7.77•
LWS 88.25± 2.01• 88.60± 0.19• 64.59± 2.13• 80.67± 2.76• 65.79± 2.14•

PRODEN 84.55± 0.20• 84.51± 0.49• 84.04± 0.20• 78.73± 0.62• 78.09± 0.43•
RC 85.43± 0.41• 84.94± 0.20• 84.14± 0.40• 78.48± 1.10• 77.21± 0.97•
CC 86.76± 0.54• 85.79± 0.15• 84.16± 0.46• 81.67± 0.27• 79.82± 0.74•

KMNIST γ1 = 0.1 γ1 = 0.3 γ1 = 0.5 γ1 = 0.3 γ1 = 0.5
γ2 = 0.5 γ2 = 0.3 γ2 = 0.1 γ2 = 0.5 γ2 = 0.3

FREDIS 95.15± 0.05 93.54± 0.28 91.02± 0.15 88.41± 0.58 84.75± 0.39

PLCR 94.07± 0.57• 92.83± 0.36• 90.06± 0.15• 85.78± 0.74• 81.81± 0.74•
PICO 88.25± 2.87• 91.45± 0.37• 87.14± 0.67• 71.67± 3.39• 59.43± 6.60•
CAVL 88.27± 2.12• 86.83± 1.05• 83.91± 1.21• 75.60± 2.80• 72.73± 2.89•
LWS 85.52± 4.51• 89.39± 1.05• 39.25± 3.06• 62.79± 8.29• 71.07± 1.64•

PRODEN 92.01± 0.47• 91.78± 0.24• 89.53± 0.61• 82.96± 1.06• 81.06± 0.69•
RC 93.36± 0.32• 92.38± 0.52• 89.72± 0.71• 85.87± 0.82• 83.28± 0.55•
CC 92.70± 1.00• 90.08± 0.48• 86.84± 0.34• 80.39± 0.40• 77.32± 1.58•

losses on candidate labels and non-candidate labels. 5) PRO-
DEN (Lv et al., 2020), which uses a classifier-consistent
risk estimator and updates the label weights in it with the
output of the model. 6) RC (Feng et al., 2020), which uses
a risk-consistent estimator utilizing the output of the model
to calculate the posterior. 7) CC (Feng et al., 2020), which
uses a classifier-consistent risk estimator deriving from the
transition matrix.

When implementing each algorithm, we employ the same
model, optimization, batch size and data augmentation
strategy on the same dataset for fairness. For simple
benchmark datasets such as Kuzushiji-MNIST and
Fashion-MNIST, we only choose LeNet as our classi-
fier. For relatively complex datasets such as CIFAR-10
and CIFAR-100, we choose ResNet-32 (He et al., 2016)
as our backbone. The model is optimized by stochastic
gradient decent (SGD) with momentum 0.9. We train each
model with the batch size set to 256. The data augmentation
strategy is the same as that employed by (Wu et al., 2022).
For hyper-parameters like learning rate and weight decay,
we select the most appropriate one for each algorithm to
ensure the best model parameters according to their perfor-
mances on the validating datasets. To alleviate overfitting,
the training procedure of a model will be early stopped if
its performance on the validation dataset does not improve
in 50 epochs. Finally, we run 5 trials based on different

random seeds for each method to record the performance.

5.3. Experimental Results

Table 1 and 2 summarizes the classification accuracy
of each comparison approach on manually corrupted
UPLL benchmark datasets. We control the unreliable
level and partial level respectively at low, middle and
high levels. For the 10-class datasets Fashion-MNIST,
Kuzushiji-MNIST and CIFAR-10, γ1 and γ2 both
take values in {0.1, 0.3, 0.5}. For the 100-class dataset
CIFAR-100, γ1 takes values in {0.1, 0.3, 0.5} while γ2 is
controlled in {0.01, 0.05, 0.1}. The performance at both
the high unreliable level and the high partial level is not
recorded due to that the approaches do not work in such a
case. Due to space constraints, we present a partial set of
results in Table 1 and 2, while the remaining results can be
found in Appendix A.6. The best results are highlighted in
bold. In addition, •/◦ indicates whether FREDIS is statisti-
cally superior/inferior to the comparing approach on each
dataset (pairwise t-test at 0.05 significance level).

From the tables, we can observe that FREDIS outperforms
or is at least comparable with all of the other comparative
approaches, although the compared approaches PLCR and
PICO seem to exhibit some robustness in handling unre-
liable candidate label sets. For the comparing results on
CIFAR-100 with γ2 = 0.1, the superiority of our method
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Table 2. Test accuracy (%) on benchmark datasets CIFAR-10 and CIFAR-100 under different levels of γ1 and γ2 when FREDIS is
compared with six PLL methods. Average accuracy and standard deviation over 5 trials are reported.

CIFAR10 γ1 = 0.1 γ1 = 0.3 γ1 = 0.5 γ1 = 0.3 γ1 = 0.5
γ2 = 0.5 γ2 = 0.3 γ2 = 0.1 γ2 = 0.5 γ2 = 0.3

FREDIS 87.42± 0.21 81.02± 0.60 75.80± 0.24 65.15± 0.13 51.29± 0.25

PLCR 84.64± 0.35• 77.95± 0.67• 68.59± 0.65• 46.13± 0.92• 37.93± 2.49•
PICO 86.90± 0.16• 81.59± 0.50 74.33± 0.30• 61.39± 2.64• 30.32± 7.58•
CAVL 39.14± 6.25• 48.90± 1.90• 50.96± 0.49• 14.31± 2.08• 12.65± 2.72•
LWS 18.19± 0.71• 18.64± 1.63• 15.13± 0.93• 12.49± 2.34• 18.81± 1.06•

PRODEN 76.23± 0.58• 73.95± 0.78• 68.08± 1.06• 58.77± 1.52• 39.39± 2.85•
RC 79.17± 0.73• 76.36± 1.11• 70.98± 0.60• 63.82± 0.86• 50.88± 4.00•
CC 72.06± 0.38• 68.66± 0.98• 64.09± 1.45• 43.57± 2.36• 33.16± 4.00•

CIFAR100 γ1 = 0.1 γ1 = 0.3 γ1 = 0.5 γ1 = 0.3 γ1 = 0.5
γ2 = 0.1 γ2 = 0.05 γ2 = 0.01 γ2 = 0.1 γ2 = 0.05

FREDIS 60.31± 0.10 56.15± 0.18 50.72± 0.18 50.14± 0.48 48.05± 0.20

PLCR 51.02± 0.81• 51.87± 0.25• 48.27± 0.50• 27.99± 0.48• 35.44± 2.14•
PICO 43.52± 1.60• 53.98± 0.57• 47.76± 0.71• 31.62± 2.42• 40.00± 0.91•
CAVL 22.14± 0.84• 31.07± 2.03• 29.55± 2.99• 17.29± 1.46• 23.29± 1.30•
LWS 10.06± 1.63• 5.59± 0.24• 5.05± 0.55• 6.28± 0.80• 8.01± 0.63•

PRODEN 42.96± 0.45• 49.39± 0.76• 47.05± 0.29• 26.29± 0.47• 35.79± 1.24•
RC 51.86± 0.32• 52.49± 0.40• 49.07± 0.57• 37.15± 0.59• 40.65± 0.58•
CC 52.99± 0.36• 50.04± 0.80• 47.07± 0.75• 44.51± 0.63• 40.11± 0.64•
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Figure 1. Further analysis of FREDIS on Fashion-MNIST and CIFAR-10.

is more significant when compared to that on previous sim-
pler datasets, owing to that more incorrect labels in the
corrupted dataset could be used by the disambiguation pro-
cedure to progressively alleviate the risk to supervision in-
formation brought from the mistaken incorrect labels in the
refinement procedure.

5.4. Further Analysis

Figure 1(a) and 1(b) illustrates the variation curves of
our method FREDIS on CIFAR-10 with γ1 = 0.5 and
γ2 = 0.3. More details under other cases such as the
variation curves on Fashion-MNIST with γ1 = 0.5 and
γ2 = 0.1 can be referred to in Appendix A.6. We can see
that correct labels in candidate label sets increase and incor-

rect candidate labels decrease after several fusion rounds, of
which the changes are stable. This means that the reliability
of candidate label sets is being recovered by refinement and
the supervision information is being purified by dismabigua-
tion during the training and fusion updating process.

In addition, we conduct the sensitivity analysis about the
threshold ζ0 and ζ̄0 in FREDIS on Fashion-MNIST with
γ1 = 0.3, γ2 = 0.3 and CIFAR-10 with γ1 = 0.1, γ2 =
0.5, which is illustrated in Figure 1(c) and 1(d), respectively.
We select ζ0 from {1e− 2, 1e− 3, 1e− 4, 1e− 5, 1e− 6}
and ζ̄0 from {1, 0.9, 0.8, 0.7, 0.6} according to validation
datasets, and fix ζend = 0.9 and ζ̄end = 0.1. We can find
that the performance of the proposed FREDIS is relatively
stable over a range of threshold values, which indicates the
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robustness and is desirable for algorithm design.

6. Conclusion
In this paper, we propose a novel framework FREDIS aimed
at solving the problem of unreliable partial label learning
problem. Different from partial label learning, we consider
not only a disambiguation procedure but also a refinement
procedure, and propose a theoretically-guaranteed frame-
work, which could fuse refinement and disambiguation and
train the classifier with an iteratively updated dataset with
less and less label ambiguity and is theoretically guaranteed
to eventually have a good chance to be consistent with the
Bayes optimal classifier under mild assumptions for UPLL.
Extensive experiments on widely used benchmark datasets
validate the effectiveness of the proposed method.
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A. Appendix
A.1. Proof of Theorem 1

As for Theorem 1, we provide a proof by contradiction to carry it out in a simple-minded pattern.

Proof. Suppose that (x, yx) /∈ I(f, ζ). Then we have fyf(x)
(x)− fyx(x) > ζ = 2(αO(U(D̃)) + ϵ)− ηyx(x) + ηyf(x)

(x),
i.e.,

[fyf(x)
(x)− ηyf(x)

(x)− (αO(U(D̃)) + ϵ)]− [fyx(x)− ηyx(x) + (αO(U(D̃)) + ϵ)] > 0. (4)

Due to that Assumption 1 holds, we have |fyf(x)
(x)−ηyf(x)

(x)| ≤ αO(U(D̃))+ϵ and |fyx(x)−ηyx(x)| ≤ αO(U(D̃))+ϵ,
which means that

−(αO(U(D̃)) + ϵ) ≤ fyf(x)
(x)− ηyf(x)

(x) ≤ (αO(U(D̃)) + ϵ),

fyf(x)
(x)− ηyf(x)

(x)− (αO(U(D̃)) + ϵ) ≤ 0, (5)

and
−(αO(U(D̃)) + ϵ) ≤ fyx(x)− ηyx(x) ≤ (αO(U(D̃)) + ϵ),

fyx(x)− ηyx(x) + (αO(U(D̃)) + ϵ) ≥ 0. (6)

Hence, according to Eq.(5) and Eq.(6),

[fyf(x)
(x)− ηyf(x)

(x)− (αO(U(D̃)) + ϵ)]− [fyx(x)− ηyx(x) + (αO(U(D̃)) + ϵ)] ≤ 0 (7)

This contradiction between Eq.(4) and Eq.(7) suggests that (x, yx) ∈ I(f, ζ) and proves Theorem 1.

A.2. Proof of Theorem 2

Proof. To prove Theorem 2, we need to prove that fyf(x)
(x) − fyx(x) ≤ ζ̄ = 2(αO(U(D̃)) + ϵ) under Assumption 1.

Then (x, yx) /∈ Ī(f, ζ̄) will hold. Since the posterior probability of the correct label is larger than that of the rest, i.e.,
∀j ∈ Y, ηyx(x)− ηj(x) ≥ 0, we have ηyx(x)− ηyf(x)

(x) ≥ 0.

Hence, for an instance x and the classifier f ,

fyf(x)
(x)− fyx(x) ≤ fyf(x)

(x)− fyx(x) + (ηyx(x)− ηyf(x)
(x))

= (fyf(x)
(x)− ηyf(x)

(x)) + (ηyx(x)− fyx(x))

≤ |fyf(x)
(x)− ηyf(x)

(x)|+ |fyx(x)− ηyx(x)|

≤ 2(αO(U(D̃)) + ϵ).

(8)

The proof has been completed.

A.3. Proof of Theorem 3

Proof. Let us review the definition of the whole label ambiguity for a dataset and the corresponding scoring function:
U(D̃) =

∑
(x,S̃)∈D̃

∑
j I{j=yx,j /∈S̃} + I{j ̸=yx,j∈S̃} represent the whole ambiguity of the dataset D̃ and a scoring function

O(U(D̃)) : R+ 7→ [0, 1] depict the concrete score of the ambiguity. As we mention before, the scoring function has two
characteristics, which can help us understand the refinement and disambiguation procedure:

1) Suppose an data point (x, S̃) in the dataset D̃, which satisfies yx /∈ S̃, is replaced by another point (x, S̃′), which satisfies
S̃′ = S̃ ∪ {yx}, to form a new dataset D̃′. Then O(U(D̃))−O(U(D̃′)) > σε will hold.

2) Suppose an data point (x, S̃) in the dataset D̃, which satisfies j ∈ S̃ and j ̸= yx, is replaced by another point (x, S̃′),
which satisfies S̃′ = S̃\{j}, to form a new dataset D̃′. Then ε ≤ O(U(D̃))−O(U(D̃′)) ≤ σε will holds.

Let the dataset changed by the refinement be D̃+
|I(f,ζ)|, where D̃+

k denotes D̃ has added k candidate labels. Then according

to the characteristic (1), the difference of the score between the original dataset D̃ and the refined dataset D̃+
|I(f,ζ)| can be

12
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formulated as:

O(U(D̃))−O(U(D̃+
|I(f,ζ)|)) = [O(U(D̃))−O(U(D̃+

1 ))] + [O(U(D̃+
1 ))−O(U(D̃+

2 ))] + · · ·

+ [O(U(D̃+
|I(f,ζ)|−1))−O(U(D̃+

|I(f,ζ)|))]

≥ σε− σ(|I(f, ζ)| − 1)ε

= (2σ − σ|I(f, ζ)|)ε.

(9)

Similarly, let the dataset changed by the disambiguation be D̃−
|Ī(f,ζ̄)|, where D̃−

k denotes D+
|I(f,ζ)| has removed k candidate

labels. Then the difference of the score between the refined dataset D̃+
|I(f,ζ)| and the disambiguated dataset D̃−

|Ī(f,ζ̄)| can be
formulated as:

O(U(D̃+
|I(f,ζ)|))−O(U(D̃−

|Ī(f,ζ̄)|)) = [O(U(D̃+
|I(f,ζ)|))−O(U(D̃−

1 ))] + [O(U(D̃−
1 ))−O(U(D̃−

2 ))] + · · ·

+ [O(U(D̃−
|Ī(f,ζ̄)|−1

))−O(U(D̃−
|Ī(f,ζ̄)|))]

≥ |Ī(f, ζ̄)|ε.

(10)

Hence, after one fusion round of refinement and disambiguation, the boundary difference of the gap |fj(x)− ηj(x)|
between the original dataset D̃ and the refined dataset can be formulated as:

(αO(U(D̃) + ϵ)− (αO(U(D̃−
|Ī(f,ζ̄)|)) + ϵ) = α(O(U(D̃)−O(U(D̃−

|Ī(f,ζ̄)|)))

= α(O(U(D̃))−O(U(D̃+
|I(f,ζ)|)) +O(U(D̃+

|I(f,ζ)|))−O(U(D̃−
|Ī(f,ζ̄)|)))

≥ α(2σ − σ|I(f, ζ)|+ |Ī(f, ζ̄)|)ε
≥ 2ασε

≥ αε
(11)

The proof has been completed.

A.4. Proof of Corollary 1

Since the disambiguation procedure removes incorrect labels from candidate labels according to Ī(f, ζ̄) with the disam-
biguation threshold ζ̄ = 2(αO(U(D̃)) + ϵ), we have the following constraint:

min
(x,j)∈Ī(f,ζ̄)

fyf(x)
(x)− fj(x) ≥ 2(αO(U(D̃) + ϵ)). (12)

To eliminate the mistaken incorrect label j from candidate labels, the incorrect label j for the instance x need to satisfy the
following constraint:

f ′
yf′(x)

(x)− f ′
j(x) ≥ 2(αO(U(D̃′)) + ϵ), (13)

where D̃′ and f ′ are the new dataset and classifier respectively.

According to Theorem 3, after R fusion rounds, we have

αO(U(D̃′)) + ϵ ≤ αO(U(D̃)) + ϵ−Rαε (14)

Hence, if f ′
yf′(x)

(x)− f ′
j(x) ≥ 2(αO(U(D̃)) + ϵ−Rαε), the incorrect label j will be disambiguated.

According to Assumption 1, we have

f ′
j(x)− f ′

yf′(x)
(x) ≤ (ηj(x) + (αO(U(D̃′)) + ϵ))− (ηyf′(x)

(x)− (αO(U(D̃′)) + ϵ))

= ηj(x)− ηyf′(x)
(x) + 2(αO(U(D̃′)) + ϵ)

≤ ηj(x)− ηyf′(x)
(x) + 2(αO(U(D̃)) + ϵ−Rαε)

= ηj(x)− ηyf′(x)
(x) + 2(αO(U(D̃)) + ϵ)− 2Rαε

≤ ηj(x)−min
j

ηj(x) + 2(αO(U(D̃)) + ϵ)− 2Rαε

(15)

13



FREDIS: A Fusion Framework of Refinement and Disambiguation for Unreliable Partial Label Learning

Hence, when
−(ηj(x)−min

j
ηj(x) + 2(αO(U(D̃)) + ϵ)− 2Rαε) ≥ 2(αO(U(D̃)) + ϵ−Rαε),

Eq.(13) will be satisfied, i.e.,

R ≥ 1

4αε
(2( min

(x,j)∈Ī(f,ζ̄)
fyf(x)

(x)− fj(x)) + (ηj(x)−min
j

ηj(x))), (16)

the mistaken label j will be removed from candidate label. The proof has finished.

A.5. Proof of Theorem 4

Under Assumption 2, for (α, ϵ, ρ)-ambiguity bounded P[x, S̃], after running R rounds of refinement of disambiguation in
the algorithm FREDIS, we have

P
[
yffinal(x) = η⋆(x)

]
= P

[
yffinal(x) = η⋆(x)|(x, S) ∈ G

]
P [(x, S) ∈ G] + P

[
yffinal(x) = η⋆(x)|(x, S) /∈ G

]
P [(x, S) /∈ G]

= P
[
yffinal(x) = η⋆(x)|(x, S) ∈ G

]
(1− ρ) + P

[
yffinal(x) = η⋆(x)|(x, S) /∈ G

]
ρ

≥ P
[
yffinal(x) = η⋆(x)|(x, S) ∈ G

]
(1− ρ)

≥ P
[
ηyx(x)− ηsx(x) ≥ 2(αO(U(D̃)) + ϵ− αεR)|(x, S) ∈ G

]
(1− ρ)

= (1− P
[
ηyx(x)− ηsx(x) ≤ 2(αO(U(D̃)) + ϵ− αεR)|(x, S) ∈ G

]
)(1− ρ)

≥ (1− C(2(αO(U(D̃)) + ϵ− αεR))λ)(1− ρ).
(17)

A.6. Details for experiments

Table 3 and 4 summarize the classification accuracy of each comparison approach on manually corrupted UPLL benchmark
datasets with the rest pairs of γ1 and γ2. Figure 2 illustrates the change of the number about correct labels and incorrect
labels on benchmark datasets with various pairs of γ1 and γ2.

14
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Table 3. Test accuracy (%) on benchmark datasets Fashion-MNIST and Kuzushiji-MNIST under different levels of γ1 and γ2
when FREDIS is compared with six PLL methods. Average accuracy and standard deviation over 5 trials are reported.

FMNIST γ1 = 0.1 γ1 = 0.1 γ1 = 0.3
γ2 = 0.1 γ2 = 0.3 γ2 = 0.1

FREDIS 93.10± 0.10 92.59± 0.07 91.41± 0.11

PLCR 92.48± 0.19• 92.03± 0.12• 91.06± 0.06•
PICO 92.11± 0.22• 91.45± 0.15• 90.60± 0.27•
CAVL 88.04± 0.28• 80.91± 3.79• 82.19± 5.35•
LWS 91.13± 0.10• 90.70± 0.14• 89.70± 0.24•

PRODEN 88.01± 0.24• 87.16± 0.16• 86.68± 0.20•
RC 88.34± 0.33• 87.27± 0.11• 86.59± 0.35•
CC 88.51± 0.29• 87.92± 0.38• 86.86± 0.17•

KMNIST γ1 = 0.1 γ1 = 0.1 γ1 = 0.3
γ2 = 0.1 γ2 = 0.3 γ2 = 0.1

FREDIS 96.68± 0.12 96.22± 0.09 94.55± 0.12

PLCR 96.17± 0.24• 95.67± 0.12• 94.21± 0.36•
PICO 96.38± 0.16• 95.70± 0.17• 94.73± 0.36
CAVL 93.76± 0.11• 93.03± 0.40• 91.70± 0.25•
LWS 93.96± 0.71• 92.22± 0.31• 91.01± 0.78•

PRODEN 95.81± 0.15• 94.91± 0.29• 93.97± 0.61•
RC 95.51± 0.46• 95.17± 0.46• 93.70± 0.28•
CC 95.66± 0.49• 93.62± 2.17• 93.29± 0.20•

Table 4. Test accuracy (%) on benchmark datasets CIFAR-10 and CIFAR-100 under different levels of γ1 and γ2 when FREDIS is
compared with six PLL methods. Average accuracy and standard deviation over 5 trials are reported.

CIFAR10 γ1 = 0.1 γ1 = 0.1 γ1 = 0.3
γ2 = 0.1 γ2 = 0.3 γ2 = 0.1

FREDIS 90.57± 0.23 89.02± 0.15 84.35± 0.20

PLCR 89.38± 0.41• 88.17± 0.17• 82.76± 0.47•
PICO 89.52± 0.24• 88.49± 0.31• 83.86± 0.34•
CAVL 81.43± 3.85• 58.45± 9.29• 68.56± 5.94•
LWS 17.48± 0.72• 67.10± 0.88• 16.75± 0.57•

PRODEN 81.86± 0.52• 80.11± 0.98• 77.29± 1.11•
RC 83.44± 0.88• 82.00± 0.36• 78.54± 0.58•
CC 81.60± 0.93• 78.80± 0.85• 74.56± 1.19•

CIFAR100 γ1 = 0.1 γ1 = 0.1 γ1 = 0.3
γ2 = 0.01 γ2 = 0.05 γ2 = 0.01

FREDIS 64.73± 0.28 66.43± 0.22 59.42± 0.18

PLCR 62.79± 0.24• 61.07± 0.58• 57.11± 0.38•
PICO 64.05± 1.53 64.41± 0.66• 55.64± 0.54•
CAVL 44.73± 2.54• 36.01± 1.15• 38.19± 2.79•
LWS 5.09± 0.56• 5.29± 0.56• 5.27± 1.09•

PRODEN 58.91± 0.76• 55.96± 0.18• 54.09± 0.77•
RC 59.66± 0.68• 57.98± 0.51• 55.71± 0.56•
CC 58.41± 0.76• 56.41± 0.45• 53.79± 0.40•
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(a) Fashion-MNIST, γ1 = 0.5 and γ2 = 0.1
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(b) Fashion-MNIST, γ1 = 0.1 and γ2 = 0.5

0 5 10 15 20 25

Hedging Rounds

34880

35970

37060

38150

39240

40330

N
um

be
r o

f C
or

re
ct

 L
ab

el
s

0 5 10 15 20 25

Hedging Rounds

214000

218280

222560

226840

231120

N
um

be
r o

f I
nc

or
re

ct
 L

ab
el

s

(c) Kuzushiji-MNIST, γ1 = 0.3 and γ2 = 0.5
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(d) Kuzushiji-MNIST, γ1 = 0.5 and γ2 = 0.3
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(e) CIFAR-10, γ1 = 0.3 and γ2 = 0.3
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(f) CIFAR-10, γ1 = 0.3 and γ2 = 0.1
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(g) CIFAR-100, γ1 = 0.1 and γ2 = 0.01

0 3 6 9 12 15

Hedging Rounds

45090

45360

45630

45900

46170

N
um

be
r o

f C
or

re
ct

 L
ab

el
s

0 3 6 9 12 15

Hedging Rounds

220500

222000

223500

225000

226500

N
um

be
r o

f I
nc

or
re

ct
 L

ab
el

s

(h) CIFAR-100, γ1 = 0.1 and γ2 = 0.05

Figure 2. The number of correct labels (Left) and incorrect labels (Right) on benchmark datasets with various pairs of γ1 and γ2
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