
Uncertainty-Aware Pseudo-labeling for Quantum Calculations

Kexin Huang1,2 Vishnu Sresht1 Brajesh Rai1 Mykola Bordyuh1

1Machine Learning and Computational Sciences, Pfizer Inc., Cambridge, Massachusetts, USA
2Department of Computer Science, Stanford University, Stanford, California, USA

Abstract

Machine learning models have recently shown
promise in predicting molecular quantum chem-
ical properties. However, the path to real-life adop-
tion requires (1) learning under low-resource con-
straints and (2) out-of-distribution generalization
to unseen, structurally diverse molecules. We ob-
serve that these two challenges can be addressed
via abundant labels, which is often not the case in
quantum chemistry. We hypothesize that pseudo-
labeling on a vast array of unlabeled molecules
can serve as gold-label proxies to expand the train-
ing labeled dataset significantly. The challenge in
pseudo-labeling is to prevent the bad pseudo-labels
from biasing the model. Motivated by the entropy
minimization framework, we develop a simple and
effective strategy PSEUDσ that can assign pseudo-
labels, detect bad pseudo-labels through eviden-
tial uncertainty, and prevent them from biasing
the model using adaptive weighting. Empirically,
PSEUDσ improves quantum calculations accuracy
in full data, low data, and out-of-distribution set-
tings.

1 INTRODUCTION

Ab initio quantum chemistry methods attempt to solve the
electronic many-body Schrödinger equation to characterize
biomolecular properties and interactions at different level
of theory and numerical approximations. Despite extensive
repertoire of methods from Post–Hartree–Fock methods
such as CCSD(T) (coupled cluster single-double-triple) and
MP2 (second order Møller-Plesset) [Watts et al., 1992] to
Density Functional Theory (DFT) [Parr and Weitao, 1989]
they continue to be numerically expensive, even with re-
cent advances in hardware capabilities. Machine learning
(ML) models have astonishing performance in approximat-

ing these calculations at a fraction of the computational cost
[von Lilienfeld and Burke, 2020]. Such speedups have the
potential to accelerate the discovery of new materials and
therapeutics.

Most publications on this topic have relied on QM9 dataset,
a standard benchmark for training and evaluating ML mod-
els to predict QM properties of small molecules precom-
puted using approximate DFT calculations. Model-centric
approaches demonstrated great capabilities of the machine
learning on this dataset, by showing low error on hold-
out test set of unseen molecules (e.g. [Schütt et al., 2017,
Klicpera et al., 2020, Liu et al., 2021]). Despite the promise,
realistic adoptions still face unsolved challenges. First, pre-
vious ML models rely on large number of labeled molecular
geometries (e.g. 100K for QM9), which are often not avail-
able for higher-fidelity level of energy calculations such as
CCSD(T) or MP2 – the challenge is for a QM/ML model to
perform well under small number of computed geometries;
Second, previous works evaluate the trained ML models on
a test set that is in a similar chemical space as the training
set (i.e. in-distribution), while the goal of deployment is to
predict energies for structurally distant molecules across
the diverse chemical space – the challenge is for a QM/ML
model to generalize to out-of-distribution molecules. We
observe that known QM/ML architectures would have sig-
nificantly higher errors in these difficult regimes, calling
for innovative ML algorithms to tackle these challenges
(Section 6).

Present work. Our work focuses on addressing the fun-
damental cause of the above challenges - the scarcity of
computed QM labels on a diverse set of chemicals. We
utilize the abundance of the unlabeled molecules and de-
velop an effective pseudo-labeling strategy suitable for QM
calculations. The basic idea behind pseudo - labeling is to
estimate the labels for the unlabeled data and expand the
training dataset. Several pseudo-labeling methods in vari-
ous machine learning domains have been already applied
successfully to improve state-of the-art models especially
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in computer vision [Xie et al., 2020, Lee et al., 2013, Is-
cen et al., 2019]. We investigate many of these approaches
(e.g., data augmentation, model noise, student-training, re-
initialization) and found many can have a negative effect
in quantum calculations. For example, adding positional
noise [Xie et al., 2020] in molecular geometries could sig-
nificantly affect energies and thus bias the pseudo-labels.
Thus, a QM-specialized pseudo-labeling strategy is needed.
After extensive empirical studies, we reached an optimal
QM-specialized scheduling strategy using episodes with no
re-initialization and noise.

A crucial issue in pseudo-labeling is the introduced bias
from low-quality pseudo-labels. Based on theoretical mo-
tivations (Section 5), we rely on a key observation that a
data point with less evidence/higher model uncertainty is
more likely to be of low-quality pseudo-label (Section 6).
Thus, we use model-generated evidential uncertainty to
quantify each unlabeled data and use it to adaptively lower
the weights of bad pseudo-labels in the training loss to re-
duce the bias effect.

In summary, our method focuses on the effective strategy to
incorporate QM pseudo-labels to alleviate the fundamental
label scarcity issue, along with the associated challenges
of low-data and out-of-distribution generalization. We have
made the following contributions: (1) Previous QM/ML
methods focus on in-distribution and label abundant setting
while we investigate more realistic case of low-data and
out-of-distribution settings; (2) Pivoting away from the sta-
tus quo in improving the physics-based representation, we
propose to look at data-centric approaches on learning from
the vast array of unlabeled molecules; (3) We propose a
simple, effective, theoretically motivated pseudo-labeling
strategy PSEUDσ designed specifically for QM, integrating
episodic scheduling and downplaying low-quality pseudo-
labels informed by uncertainty; (4) Empirically, we show
that PSEUDσ can improve QM accuracy for any atomistic
model across full-data, low-data, and out-of-distribution
settings.

2 RELATED WORKS

ML-aided quantum calculations. Recently, many ML
models have been proposed to improve quantum calcula-
tions. They mainly focus on improving the physics-based
representation and architectural developments tested on the
full QM9 dataset [Schütt et al., 2017, Unke and Meuwly,
2019, Anderson et al., 2019, Lu et al., 2019, Klicpera et al.,
2020, Liu et al., 2021, Qiao et al., 2021]. In contrast, our
work proposes to shift the focus to model-agnostic train-
ing strategies in realistic low-data and out-of-distribution
settings.

Pseudo-labeling. Pseudo-labeling/self-training generates
pseudo-labels for unlabeled data. Numerous works on how

to assign pseudo-labels exist, notably, through trained ML
model predictions [Lee et al., 2013], label propagation[Shi
et al., 2018, Iscen et al., 2019], and history cache [Likhoma-
nenko et al., 2021, Higuchi et al., 2021]. PSEUDσ is different
as it focuses on detecting and preventing bad pseudo-labels
from affecting the model. Also, PSEUDσ adopts a novel
episodic pseudo-labelling strategy with a re-initialized learn-
ing rate. [Xie et al., 2020] re-initialize the network as a stu-
dent when a new pseudo-label set is generated along with
noise per epoch. In contrast, PSEUDσ has no student and no
noise as both are shown to be ineffective for QM in Section 6.
In addition, small perturbational noise in 3D molecular ge-
ometry could easily lead to a drastic energy change. Thus,
a naive strategy of adding noise does not work for QM
tasks. More related is a preceding work [Rizve et al., 2021]
that develops an uncertainty-aware pseudo-labeling strat-
egy. They introduce additional hyperparameters to remove
pseudo-labels at some uncertainties. In contrast, PSEUDσ
uses an effective adaptive weighting scheme, along with
an episodic pseudo-labeling training schedule. There are
also works using adaptive weighting scheme to leverage
unlabeled data. [Ren et al., 2020] adopt a hessian based ap-
proach for weighting, while we utilize an uncertainty based
weighting based on a theoretical motivation. Additionally,
PSEUDσ is the first method that studies pseudo-label in
quantum calculations that present unique challenges.

Uncertainty. Model uncertainty is a well-studied sub-
ject [Kendall and Gal, 2017, Lakshminarayanan et al., 2017,
Blundell et al., 2015]. Notably, [Berthelot et al., 2020] es-
timate marginal class distribution for consistency regular-
ization. Their work can also be connected to the entropy
minimization strategy. [Lienen and Hüllermeier, 2021] use
a credal set to extend to the use of multiple probability dis-
tributions to reduce the bias of pseudo-labels. In contrast,
we adopt a different approach - explicit uncertainty mod-
eling (evidential modelling for capturing data and model
uncertainty) for a different goal (measuring pseudo-label
quality for adaptive reweighting). More related to us, [Amini
et al., 2020] use evidential uncertainty to add a prior over the
gaussian parameters to search for higher-order patterns for
regression tasks. PSEUDσ leverages evidential uncertainty
as the uncertainty measure. Note that PSEUDσ is uncertainty
measure-agnostic. We can easily switch to alternative uncer-
tainty measures. Recently, [Soleimany et al., 2021] adapt
evidential uncertainty and show that it can successfully help
guide property prediction. In contrast, we leverage eviden-
tial uncertainty as a proxy for pseudo-label quality to tackle
low-data and out-of-distribution challenges in a realistic
quantum calculations setup.

3 PROBLEM FORMULATION

Let X = {x1, . . . ,xN} denote N molecules, where
each molecule xi is uniquely defined by 3D coordinates



{(aij , bij , cij)}Ni
j=1 for Ni atoms with atom types {tj}Ni

j=1

in the corresponding molecule. We then denote Y =
{y1, . . . yN} a set of quantum mechanical properties for
each molecule, where i-th molecule has label yi. The labeled
dataset thus consists of a set of pairs of 3D coordinates and
scalar labels D = {X ,Y}.
In addition to the labeled data, we solicit a large quantity
of unlabeled data to generate pseudo-labels. We denote an
unlabeled dataset U = {x1, . . . ,xP }, where P is the size
of the unlabeled dataset. Given an atomistic model f(·),
we can generate pseudo-labels Ŷ = {ŷ1, . . . , ŷP }, where
ŷi = f(xi) for xi ∈ U .

The problem is to train a machine learning-based atomistic
model f : x 7→ y that can establish an accurate map from
3D coordinates to the quantum mechanical properties of the
molecules with the help of pseudo-labeled dataset U .

4 PSEUDσ: UNCERTAINTY-AWARE
PSEUDO-LABELING FOR QUANTUM
CALCULATIONS

PSEUDσ (Figure 1) is an approach for quantum chemical
property prediction. Building on theoretical motivation from
Section 5, PSEUDσ solicits pseudo-labels on a vast array of
an unlabeled dataset to increase the diversity of the training
space via an episodic labeling strategy. Then, it adaptively
weights the pseudo-labels using evidential uncertainty to
allow a positive transfer. The overview is in Algorithm 1.

Episodic Pseudo-labeling. We devise a pseudo-labeling
strategy that can ensure learning from the pseudo-labels to
the fullest extent for QM. We have made two distinct mod-
ifications compared to existing works. First is the pseudo-
label scheduling. In the standard pseudo-labeling [Lee et al.,
2013], pseudo-labels are updated in every update and the
model is continuously trained. In contrast, we devise an
episodic training strategy, where each episode consists of K
epochs, and pseudo-labels are regenerated in every episode,
while the model is continuously trained. This is important be-
cause we observe that updating pseudo labels too frequently
prevents the model from extracting all the useful information
from pseudo-labels. In contrast, our episodic approach gives
the model more time to absorb useful information from a
given set of pseudo-labels. A second modification is how we
carry out model updates. In self-training [Rizve et al., 2021,
Xie et al., 2020], a set of pseudo-labels are regenerated after
K epochs (1 episode) and the model is reinitialized. Instead,
we train the same model across episodes. This new strat-
egy allows the model to be exposed to a larger number of
labels or training data points given the same time frame. For
each episode, we also reinitialize the learning rate with a
small step-wise decay strategy to allow the model a chance
to jump out of the local optimum from the previous set of
pseudo-labels.

Formally, PSEUDσ mainly consists of three stages: in the
first stage, regular training is conducted on labeled data D,
and the output model is the initialized model f (1). In the
second stage, the updated model at episode k then conducts
inference on the entire unlabeled data Ŷ = f (k)(U) to
generate the pseudo-label set. The per-episode pseudo-label
set is then combined with the gold-labeled data to form the
training data for the next episode. In the third stage, the
model is further trained using the combined dataset to get a
new model f (k+1) after K epochs (i.e., one more episode).
The second and third stages are then reiterated till the loss
converges.

Evidential uncertainty quantification. Pseudo-labels are
noisy. Many are incorrect and can potentially lead to nega-
tive transfer. Thus, it is instrumental to determine the quality
of pseudo-labels. However, there is no auxiliary informa-
tion in the dataset about the pseudo-labels. Thus, we need
to quantify it through some proxies that can be assigned
without auxiliary information. Our key observation is that
low-quality pseudo-labels have high model uncertainty, and
high-quality pseudo-labels have low model uncertainty. An-
other advantage of model uncertainty is that it can be esti-
mated solely from x, if we make it model uncertainty-aware.

Building on the theoretical motivation about the connection
between evidential uncertainty and the entropy minimization
in Section 5, we use evidential uncertainty as the proxy for
label quality. The evidential modeling of molecular property
allows us to derive an analytical expression for uncertainty,
which can be directly used to weight the pseudo-labels.
Formally, we can model the label probabilistically as being
drawn from (y1, · · · , yi) ∼ N (µ, σ2), where the mean µ
are variance σ2 are unknown. To estimate them, we pose a
prior

µ ∼ N (γ, σ2v−1), σ2 ∼ Γ−1(α, β), (1)

where the parameters θ = (µ, σ) is an instantiation of the
posterior p(µ, σ2|γ, v, α, β). The choice of prior allows the
factorization p(µ, σ2) = p(µ) p(σ2) [Jordan, 2009]. The
posterior then becomes a NormalInvGamma(γ, v, α, β)
where the maximum likelihood estimation of θ can be ana-
lytically found as

E[µ] = γ, E[σ2] =
β

α− 1
. (2)

Here, E[σ2] plays the role of the aleatoric (data) uncertainty.
The uncertainty of the model prediction can also be calcu-
lated, i.e. epistemic uncertainty:

Var[µ] = E[σ2]/v =
β

v(α− 1)
. (3)

As the MLE is deterministic, the model can output four prior
parameters {γ, v, α, β} directly where the prediction and
uncertainty can be derived from them analytically. The prior
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Figure 1: PSEUDσ illustration. In every episode k, PSEUDσ assigns pseudo-labels along with their evidential uncertainty
using trained neural network f (k−1) from previous episode. The uncertainty is used as weight to adaptively adjust the loss
in this episode’s neural network f (k)’s training to reduce the effect of bad pseudo-labels in an inner-loop training with K
epochs.

is optimized by evidential loss Levi [Amini et al., 2020]:

Levi
i = −log St

(
yi; γ,

β(1 + v)

vα
, 2α

)
+λ|yi−γ|(2v+α),

(4)
where the first term maximizes the log-likelihood of the
posterior predictive, which is the Student’s t-distribution.
The second term is a regularizer that imposes a penalty
whenever there is an error in the prediction and scales with
the total evidence 2v+α of our inferred posterior. Similarly,
it encourages lower uncertainty when the model prediction is
error free. This encourages the model to generate an accurate
estimate of uncertainty or the degree of errors for the pseudo-
labeled data points. The regularization is controlled by a
hyperparameter λ.

Adaptive weighting. The evidential uncertainty detects the
low-quality pseudo-labels. The next step is to remove the
noisy effect from the model training. Naive methods of-
ten use removal based on a threshold [Rizve et al., 2021].
However, this has two disadvantages: (1) it introduces a
new hyperparameter - the threshold; and (2) it removes a
portion of unlabeled noisy data, which can contain useful
information. Instead, we propose an adaptive weighting
mechanism that weights the evidential loss with the inverse
of the epistemic uncertainty. Intuitively, a higher uncertainty
data point should have a smaller effect on the loss function
because it is more likely that the sample has a low pseudo-
label quality, and we want to reduce its effect on the model.
Conversely, if a pseudo-label has low uncertainty, the label
quality is high enough to be used as a high-fidelity proxy for
a gold-label. Thus, it should have a higher impact on the loss.
The uncertainty is from the teacher model in the previous
episode and is fixed throughout the current episode. Thus,
the adaptive weight for each pseudo data point i becomes

Ŵi = Var[µ]−1
i . The final loss then becomes

L =
1

|D|
∑
i∈D
Levi
i +

∑
i∈U

Ŵi∑
i∈U Ŵi

Levi
i , (5)

where the first term, corresponding to the labeled dataset D,
does not have weights unlike the second term correspond-
ing to the unlabeled data U . This adaptive loss solves two
disadvantages: it has zero hyperparameters, and it removes
the effect of bad pseudo-labels while retaining all training
examples including the noisy ones to maximize the diversity
of the training space.

5 PSEUDσ MOTIVATION: CONNECTION
TO ENTROPY MINIMIZATION

We derive motivation about why evidential uncertainty and
the weighting mechanism could be beneficial to pseudo-
labeling based on the entropy minimization framework
for semi-supervised learning from Grandvalet and Bengio
[2004, 2006], Lee et al. [2013]. Notably, our use of Bayesian
modeling enables us to analytically derive a conditional en-
tropy for pseudo-labeled data. We find that evidential loss
strongly relates to conditional entropy, and minimizing evi-
dential loss directly minimizes entropy. Secondly, we find
the conditional entropy could be decomposed into the in-
verse epistemic uncertainty and the log-likelihood, which
motivates our weighting mechanism.

In the standard regression setting, one seeks to maximize
the likelihood of the model pθ(Y|X ) on the labeled data
set D. To utilize the unlabeled data set, we need to extract
some useful information on how the model behaves on the
unlabeled dataset and inject this information to improve
the model. To measure the utility, entropy H (Y | U) is



Figure 2: (a) Dependence of the entropy (Eq. 9) on epistemic uncertainty and virtual observation parameter α for a fixed
aleatoric uncertainty E[σ2] = 1. As the the epistemic uncertainty increases, the entropy is also increases for all values of
parameter α. For example, figure (b) demonstrate the trend for a fixed α = 2. Figure (c) demonstrates the dependence of
empirical weights (Eq. 14) on epistemic uncertainty. The empirical weights tend to decrease as the epistemic uncertainty
increases. Figure (d) demonstrates this trend for a fixed α = 2.

introduced [Grandvalet and Bengio, 2006] as a proxy to
measure the amount of information in unlabeled data:

H(Y | U) =
∑
xi∈U

Ey∼pθ(y |xi)[−log pθ(y |xi)]. (6)

Throughout the text, we are referring to entropy as Shannon
entropy. High entropy is associated with random predictions
while low entropy is associated with non-random behavior.
Hence, we hypothesize that small entropy may be indication
of a signal that our model can benefit from. Small entropy, as
seen below, corresponds to high model confidence and vice
versa. Large entropy corresponds to high model uncertainty.
Entropy minimization framework casts the regression as the
following optimization problem:

argmaxθ [log pθ(Y|X ) − cH(Y | U)] , (7)

where c is the proportionality constant. Intuitively, here,
the objective tends to maximize the log-likelihood on the
labeled dataset while minimizing the entropy on the unla-
beled data set at the same time to transfer knowledge from
unlabeled data.

In previous works [Schütt et al., 2017, Liu et al., 2021],
molecule properties are not modeled probabilistically such
that entropy calculation is infeasible. In contrast, PSEUDσ
uses Bayesian modeling approaches that allow us to ana-
lytically calculate the entropy. For every molecule xi the
machine learning model outputs four parameters f(xi) =
(αi, βi, γi, νi). Based on these parameters, the likelihood of
label y given the input molecule xi is given by the Student’s
t-distribution in the context of evidential regression

pθ(y|xi) = St(y; γi, σ
2
st,i, 2αi) (8)

evaluated at location parameter γi, Student’s t-distribution
scale parameter σ2

st,i =
βi(1+νi)

νiαi
and 2αi degrees of free-

dom. The entropy of the Student’s t-distribution given in

terms of evidential parameters is readily available (Ap-
pendix 1):

H(y |xi) =
2αi + 1

2

(
Ψ(

2αi + 1

2
)−Ψ(αi)

)
+ log

√
2αi B(αi,

1

2
) +

1

2
log σ2

st,i ,

(9)

where Ψ is a digamma function and B(· , ·) is a beta function.
If we take model (epistemic) uncertainty (Eq. 3) as our mea-
sure of uncertainty, we can show that minimizing entropy
directly relates to minimizing epistemic uncertainty. We plot
the relation between the entropy and epistemic uncertainty
in the Figure 2.

As the next step, we aim to uncover the dependence of the
entropy on the model uncertainty of our pseudo-labeling
approach. This can be done if we make two simplifications
in entropy evaluation. Firstly, to introduce iterations as in
pseudo-labeling, we replace entropy with the cross-entropy
between two probability distributions: the predictions y are
generated from the probability distribution pθ(t−1)(y|xi) at
iteration step t − 1 and log-likelihood are evaluated with
respect to probability distribution pθ(t)(y|xi) at iterative
step t:

H(Y | U) ≈
∑
xi∈U

Ey∼pθ(t−1)(y|xi)

[
− log pθ(t)(y |xi)

]
.

(10)
Upon convergence, t→ +∞, the probability distributions
at every iterative step pθ(t−1)(y|xi) ≈ pθ(t)(y|xi) and are
approximately the same and one can view introduced cross-
entropy with respect to time step t as entropy. At the earlier
stages of training, cross-entropy acts as a regularizer encour-
aging network parameters θ(t) to match θ(t− 1).

As a second approximation, to uncover model uncertainty
in mathematical formulas, we approximate the probability
distribution at time step t− 1. We resort to empirical esti-
mate of the entropy, as done in [Grandvalet and Bengio,



Algorithm 1: PSEUDσ Algorithm.
Input: Labeled data D = {(x1, y1), · · · , (xN , yN )},
unlabled data U = {x1, · · · ,xP } Û ← {}, Ŵ ← {}
// Initialize with empty unlabeled
data

for k ∈ {1, · · · ,M} // Outer-loop with M
episodes
do
T ← D ∪ Û // Join updated
pseudo-labels

for (xi,yi) ∈ T // Inner-loop with K
epochs
do

θi = (γi, vi, αi, βi) = f (k−1)(xi)
// Evidental parameters
ŷi = E[µ] = γi // Posterior
prediction

L = L(ŷi,yi, θi, Ŵi) // Adaptive
evidential loss via Eq. 5

f (k−1) = Update(f (k−1),L)
// Inner-loop update

end
f (k) ← f (k−1) // Update teacher model
for pseudo-labels

for xi ∈ U do
θ̂i = (γ̂i, v̂i, α̂i, β̂i) = f (k)(xi)
ŷi = γ̂i // Infer a new set of
pseudo-labels

Ûi ← (xi, ŷi) // Update
pseudo-labels

Ŵi ← Var[µ]−1
i = v̂i ∗ (α̂i − 1)/β̂i

// Update adaptive weights
end

end

2004]. We select labels y at the highest mode of probability
distribution pθ(t−1)(y |xi), which corresponds to y = γt−1

i .
We obtain the following approximate for the entropy:

H(Y | U) ≈ Hemp(Y | U) = −
∑
xi∈U

Et−1
i log pθ(t)(γ

t−1
i |xi),

(11)
where the log probabilities are weighted by empirical prob-
abilities as weights Et−1

i evaluated at iterative step t − 1
when plugged into Eq. 8 (also see Appendix. Eq. 3 for exact
formula of Student’s t-distribution)

Et−1
i = St(y = γi, σ

2
st,i, 2αi) =

1√
2αi σ2

st,iB(
1
2 , αi)

.

(12)

To establish a relationship between empirical weights Et−1
i

and aleatoric E[σ2
i ] / epistemic Var[µi] uncertainties we

rewrite

σ2
st,i =

αi − 1

αi
(Var[µi] + E[σ2

i ] ) (13)

Et−1
i =

(Var[µi] + E[σ2
i ] )

− 1
2√

2B( 12 , αi)
√
αi − 1

. (14)

Empirical coefficients depend on aleatoric, epistemic uncer-
tainties and αi parameter, which can be interpreted as virtual
observations in support of the variance estimation [Jordan,
2009]. In the limiting case αi ≫ 1 one can approximate
beta function via Stirling formula B( 12 , αi) ≈

√
π α

− 1
2

i and
empirical weights become

Et−1
i ≈ (Var[µi] + E[σ2

i ] )
− 1

2 . (15)

We can express the empirical coefficients depend both on
aleatoric and epistemic uncertainties in a symmetric fashion.

We selected adaptive pseudo-labeling coefficients Wi in
our pseudo-labeling approach Eq. 5 to be inverse epis-
temic/model uncertainties. We can see, that those coeffi-
cients directly relate to empirical coefficients derived from
entropy minimization approach Eq. 14, as empirical coef-
ficients also depend on model uncertainty in the inverse
fashion. As the model uncertainty increases, the empirical
coefficients Ei tend to decrease to minimize the entropy.

6 EXPERIMENTS

6.1 DATASET AND EXPERIMENTAL SETUPS

We evaluate PSEUDσ using the QM9 dataset [Wu et al.,
2018] under two settings1. (A) Full-data: We follow the pre-
vious works [Liu et al., 2021, Klicpera et al., 2020] where
a 110,000/10,000/10,831 training/validation/testing split is
obtained. We draw unlabeled data from PC9, a dataset of
99,234 molecules that consists of the same elements as
QM9, curated by [Glavatskikh et al., 2019]. (B) Low-data:
we set k% of QM9 full training set as the training set (i.e.
k% × 110,000) and we remove the labels from the remain-
ing (1-k%) of the QM9 full training set and treat this as
the unlabeled set. We evaluate PSEUDσ for two k values,
1 and 10 (meaning only 1,100/11,000 labelled QM data
points are retained, respectively). A summary of the dataset
statistics is presented in Table 1. Note that PC9 has a wider
chemical diversity than QM9, demonstrated by wider distri-
bution of distances of chemical bonds and more functional
groups [Glavatskikh et al., 2019].

PSEUDσ is model-agnostic. We evaluate it with two model
backbones SchNet [Schütt et al., 2017] (PSEUDσ-S) and
DimeNet++ [Klicpera et al., 2020] (PSEUDσ-D). We do not

1Code and datasets are available at https://github.
com/PfizerRD/pseudo.

https://github.com/PfizerRD/pseudo
https://github.com/PfizerRD/pseudo


Table 1: Dataset statistics.

Setting Training Set Validation Set Testing Set Unlabeled Set OOD Set

Full-data 110,000 (QM9) 10,000 (QM9) 10,831 (QM9) 99,234 (PC9) -
Low-data-1% 1,100 (QM9) 10,000 (QM9) 10,831 (QM9) 108,900 (QM9) -
Low-data-10% 11,000 (QM9) 10,000 (QM9) 10,831 (QM9) 99,000 (QM9) -
Out-of-distribution 110,000 (QM9) 10,000 (QM9) 10,831 (QM9) 99,234 (PC9) 99,234 (PC9)

experiment with the SOTA atomistic model SphereNet [Liu
et al., 2021] because it is highly computationally expensive.
Our result is conducted on two targets σHOMO, σLUMO,
because the PC9 dataset only has these two targets. We use
mean absolute error as the evaluation metric.

For baselines, we compare with 6 state-of-the-art baselines,
including SchNet [Schütt et al., 2017], PhysNet [Unke
and Meuwly, 2019], Cormorant [Anderson et al., 2019],
MGCN [Lu et al., 2019], DimeNet++ [Klicpera et al., 2020],
and SphereNet [Liu et al., 2021]. We report the best results
taken from the original authors’ paper while using the same
fraction of data split in the full data setting. For PSEUDσ,
we conduct two hyperparameter tunings on σHOMO with
SchNet backbone on the validation MAE with full data/low-
data setting, respectively. The optimal hyperparameter is
then used for both targets. Note that the atomistic model
itself has the same hyperparameters as used by the original
authors.

6.2 RESULTS

Overview of results. We report performances of PSEUDσ
in full data (Table 2), low-data (Table 3), and out-of-
distribution (Table 4) settings and find PSEUDσ achieves the
best performance across all settings, suggesting the robust-
ness of the pseudo-labeling strategy. A systematic ablation
study (Table 5) shows the importance of each module in
PSEUDσ.

PSEUDσ improves on fully supervised QM calculations.
We compare PSEUDσ against 6 state-of-the-art models in
Table 2. PSEUDσ-D surpasses all baselines on both targets
σHOMO, σLUMO. Notably, PSEUDσ-D improves the SOTA
by 3.2 meV, a significant margin. Particularly, comparing
PSEUDσ-S with SchNet and PSEUDσ-D with DimeNet++,
we find PSEUDσ can consistently improve even on the fully
supervised setting by a large margin (8.1 meV for SchNet
and 4.2 meV for DimeNet++), highlighting the utility of
PSEUDσ and the high quality of PC9 as unlabeled data. For
PSEUDσ-D, we used the same data split and ran it three
times and obtained a standard deviation of 0.432, which
is still significantly better than the best baseline. Overall,
the strong empirical result on full supervised setting shows
that this direction of improving learning strategy instead of
improving physics-based representation is promising.
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Figure 3: Uncertainty highly correlates to label quality.

PSEUDσ significantly improves on low-data QM calcula-
tions. In Table 3, we investigate how PSEUDσ can improve
in the low-data regime with only 1% or 10% of the training
data (i.e, using only 1,100 and 11,000 QM calculations).
We observe PSEUDσ can consistently and significantly im-
prove prediction accuracy in σHOMO, σLUMO across both
low-data settings and both model backbones, suggesting
PSEUDσ can help prediction in realistic low-data settings
(simulating the use of the more expensive QM levels of
theory such as CCSD(T)/MP2). Notably, in σLUMO with
1% of QM9 data, PSEUDσ improves upon SchNet by 57.8
meV, a considerable margin. We also observe that the gain
margin is much more significant when the training dataset
is smaller.

PSEUDσ improves out-of-distribution QM calculations.
Another realistic challenge is to infer accurately on un-
seen data distribution away from QM9. We conduct infer-
ence on the PC9 dataset (since the dataset already contains
calculated σHOMO, σLUMO values). We find PSEUDσ can
again significantly improve OOD accuracy over DimeNet++,
a SOTA method, with over 16.0 meV improvement on
σHOMO and 8.4 meV improvement on σLUMO, highlighting
the robustness of PSEUDσ.

Evidential uncertainty highly correlates to label quality.
The motivation of PSEUDσ to utilize uncertainty as a proxy
of label quality is that they are highly correlated with each



Table 2: PSEUDσ improves on full data setting. Reported metric is MAE. The lower the better.

Property Unit SchNet PhysNet Cormorant MGCN DimeNet++ SphereNet PSEUDσ-S PSEUDσ-D

ϵHOMO meV 41 32.9 36 42.1 24.6 23.6 32.9 20.4
ϵLUMO meV 34 24.7 36 57.4 19.5 18.9 24.7 18.2

Table 3: PSEUDσ improves on low-data regime. Reported metric is MAE. The lower the better.

Low-Data Setting 1% QM9 (1,100) 10% QM9 (11,000)

Property Unit SchNet −→ PSEUDσ DimeNet++ −→ PSEUDσ SchNet −→ PSEUDσ DimeNet++ −→ PSEUDσ

ϵHOMO meV 265.4 +10.8−−−−→ 276.2 248.9 −18.7−−−−→ 230.2 119.0 −30.2−−−−→ 88.8 81.1 −13.7−−−−→ 67.4
ϵLUMO meV 290.6 −57.8−−−−→ 232.8 229.3 −5.2−−−→ 224.1 93.3 −15.0−−−−→ 78.3 60.8 −1.6−−−→ 59.2

Table 4: Out-of-distribution best validation MAE.

Property Unit SchNet DimeNet++ PSEUDσ-D

σHOMO meV 243.4 230.4 214.4
σLUMO meV 225.0 184.2 175.8

Table 5: Ablation using SchNet as backbone on the fully supervised setting.

Property Unit PSEUDσ-S -pseudo-label -uncertainty -student -uniform

ϵHOMO meV 32.9 38.9 47.7 41.4 37.2
ϵLUMO meV 24.7 27.2 32.1 31.4 28.8

other for unseen molecules. In this experiment, we want
to validate this hypothesis. We train on the complete QM9
training set with evidential uncertainty and then infer on the
QM9 testing set. We find that the non-parametric Spearman
correlation between MAE and epistemic uncertainty is 0.42
with a p-value < 1e-16 (Figure 3). Additionally, we evaluate
on PC9 out-of-distribution set, and the Spearman correlation
is 0.35 with p-value < 1e-16, suggesting our uncertainty is
a robust measure of label quality.

Ablations. In Table 5, we conduct a systematic ablation
study using SchNet as the backbone architecture on the fully
supervised QM9 setting. We show that each component in
PSEUDσ is indispensable for PSEUDσ. In Table 2, we have
reported original authors best performance following stan-
dard practices Klicpera et al. [2020], Liu et al. [2021]. To
further clearly demonstrate the utility of pseudo-labeling,
in -pseudo-label, we keep all hyperparameters the same but
remove the pseudo-labeling part. We show that our pseudo-
labeling strategy improves performance by a large margin.
Next, in the -uncertainty ablation, we use a vanilla per-epoch
pseudo-labeling strategy with no uncertainty. This ablation
corresponds to the pseudo-labeling strategy in [Lee et al.,
2013]. This decreases performances even as compared to
the -pseudo-label strategy. Then, to compare against stan-

dard self-training, the -student ablation retrains a model in
every episode as in [Xie et al., 2020] and we see decreased
performance. From the last two ablations, we see that pre-
vious pseudo-labelling strategies have negative or limited
transfer for QM while our approach achieved strong positive
transfer. Lastly, the -uniform ablation uses the same weight
for all pseudo-labels with no uncertainty reweighting. The
decreased performance shows the importance of detection
and adaptive removal of bad pseudo-labels, achieved by our
evidential characterization of the molecular target property.

7 CONCLUSION

We introduce PSEUDσ, a simple, effective, model-agnostic
pseudo-labeling strategy that can improve quantum calcu-
lations accuracy in abundant data, low data and out-of-
distribution settings. PSEUDσ learns from vast unlabeled
data by assigning uncertainty-aware pseudo-labels. These
pseudo-labels are adaptively selected to be absorbed into
the model via an episodic schedule. Unlike earlier methods
in QM that focuses on physics-based representation, we
show the potential of this data-centric approach to improve
performance on a task crucial to materials and therapeutic
discovery.
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