Diverse Parallel Data Synthesis for Cross-Database Adaptation of
Text-to-SQL Models

Anonymous ACL submission

Abstract

Serving novel schemas for semantic parsing
of natural language queries over relational
databases is a challenging problem owing to
a huge diversity of schemas and zero availabil-
ity of text queries in the target schema until
the initial deployment of the parser in the real
world. We present REFILL, a framework for
synthesising diverse and high quality parallel
data of Text-SQL pairs for adapting seman-
tic parsing models on a new schema. Unlike
prior approaches that synthesize text using an
SQL-to-Text model trained on existing datasets,
our approach uses a novel method of retriev-
ing diverse existing text, masking their schema-
specific tokens, and refilling to translate to the
target schema. We show that this process leads
to significantly more diverse text than achiev-
able by sampling the beam of a plain SQL-to-
Text model. Experiments across four groups
of relational databases establish that finetuning
a semantic parser on the datasets synthesized
by REFILL offers consistent performance gains
over prior data-augmentation methods.

1 Introduction

Natural Language interface to Databases (NLIDB)
that translate textual queries to SQLs executable
on a relational database is an ambitious goal in the
field of Semantic Parsing. Unlike other semantic
parsing tasks, Text-to-SQL also demands the ability
to reason over the schema structure of a relational
database, in addition to understanding the natural
text and generating a syntactically correct struc-
tured output. Recently datasets such as Spider (Yu
et al., 2018) comprising of parallel (Text,SQL)
pairs over hundreds of schemas have been released,
and these have been used to train state-of-art neural
Text-to-SQL models (Scholak et al., 2021a; Ru-
bin and Berant, 2021; Scholak et al., 2021b; Xu
et al., 2021). However, several studies have in-
dependently shown that such Text-to-SQL mod-
els fail catastrophically when evaluated on unseen

schemas from the real-world databases (Suhr et al.,
2020; Lee et al., 2021; Hazoom et al., 2021). Since
database schemas are typically proprietary or pri-
vate, generalizing over the unseen schema structure
becomes even harder due to the lack of labeled
training data. In general, adapting an existing se-
mantic parser to a new schema requires significant
amounts of labeled data for finetuning.

Lack of parallel data, that is representative of
natural human generated queries (Wang et al.,
2015; Herzig and Berant, 2019), is a long-standing
problem in semantic parsing. Several methods
have been proposed for supplementing with syn-
thetic data, ranging from grammar-based canoni-
cal queries to full-fledged conditional text genera-
tion models (Wang et al., 2015; Herzig and Berant,
2019; Zhong et al., 2020; Yang et al., 2021; Zhang
et al., 2021; Wang et al., 2021). For Text-to-SQL,
state of the art data-generation methods are based
on training an SQL-to-Text model using labeled
data from pre-existing schemas, and generating in
data in new schemas. We show that the text gen-
erated by these methods, while more natural than
canonical queries, lacks the rich diversity of natu-
ral multi-user queries. Fine-tuning with such data
often deteriorates the model performance since the
lack of diversity leads to a biased model.

We propose a framework called REFILL for gen-
erating synthetic, diverse text for a given SQL
workload that is often readily available (Baik et al.,
2019). REFILL leverages the availability of paral-
lel datasets such as Spider (Yu et al., 2018) from
several existing schemas to first retrieve a diverse
set of text paired with SQLs that are similar struc-
turally to a given SQL q. Then, it trains a novel
schema translator model for converting the text of
the training schema to the target schema of q. The
schema translator is decomposed into a mask and
£111 step to facilitate training without direct par-
allel examples of schema translation. Our design
of the ma sk module and our method of creating la-

beled data for the £111 module entails non-trivial
details that we explain in this paper. REFILL also
incorporates a method of filtering high-quality text
using an independent binary classifier, that pro-
vides more useful independent quality scores, than
the cycle consistency scores used in (Zhong et al.,
2020). Our approach is related to retrieve-and-edit
models that have been used in other NLP tasks
including dialogue generation (Chi et al., 2021),
translation (Cai et al., 2021), Question Answer-
ing (Karpukhin et al., 2020), and Semantic Pars-
ing (Hashimoto et al., 2018; Pasupat et al., 2021;
Das et al., 2021). However, our method of casting
the "edit" as a two-step mask-and-fill schema trans-
lation model is different from existing methods.

Our key contributions are as follows (i) We propose
the idea of translating natural text from several ex-
isting schemas for synthesizing text for a target
schema to get greater diversity than achievable by
beam-sampling a SQL-to-Text model. (ii) We de-
sign strategies for masking schema specific words
in the retrieved text, and training the REFILL model
to translate to the target schema using existing sin-
gle schema pairs. (iii) We present a method for
filtering high quality parallel data using a binary
classifier and show that it is more efficient than ex-
isting methods based on cycle consistency. (iv) We
compare REFILL with existing conditional gen-
eration methods and show that our more diverse
synthetic data yields significantly more accurate
adaption of Text-to-SQL models to new database
schemas.

2 Diverse parallel data synthesis with
REFILL

Our goal is to generate synthetic parallel data to
adapt a trained Text-to-SQL model to a new schema
unseen during training. A Text-to-SQL model M :
X', S+ O maps a natural language questionx € X
addressed on a database schema s € S, to an SQL
query q € Q. We assume a Text-to-SQL model M
trained on a dataset Dyin = {(x;, S;, qi)}ij\il con-
sisting of text queries x; addressed on a database
schema s;, and the corresponding gold SQL queries
q;. Our approach is agnostic to the exact model
used for Text-to-SQL. The train set Dy, con-
sists of examples from a wide range of schemas
S; € Strain, €-g. the Spider dataset (Yu et al., 2018)
which contains roughly 140 schemas in the train set
i.e. |Sirain] = 140. We focus on adapting a model

Algorithm 1: Data Synthesis with REFILL

1 input: OW,, M, Dyin

2 Deyn < ¢

3 for q < SampleSQLQueries (QW;) do

4 {ar,x,} < RetrieveRelatedPairs(q, Diuin)
5

6

7

{xpasked) « MaskSchemaTokens({q.,x,})
{x4} « EditAndFill({qg, xm})
Dsyn < Dsyn U Filtel‘(q7 {xg})

8 Miyew < Finetune(M, Dyyn)

M trained on Dy,iy to perform well on queries
from a new schema s different from the schemas
in Syain. We propose to generate diverse parallel
data Dgy, using which we fine-tune the pre-trained
model M to the new schema s. We assume that
on the new schema s we have a workload QW,
of SQL queries. Often in existing databases a sub-
stantial SQL workload is already available in the
query logs at the point a DB manager decides to in-
corporate the NL querying capabilities (Baik et al.,
2019). The workload is assumed to be represen-
tative but not exhaustive. In the absence of a real
workload, a grammar-based SQL generator may be
used (Zhong et al., 2020; Wang et al., 2021).

Figure 1 and Algorithm 1 summarizes our
method for synthesizing diverse SQL-Text pairs
for adapting an existing Text-to-SQL semantic pars-
ing model M to a target database s € Siyrge NOL
seen during training s & Sgain- Given a SQL
query q on the target schema s, our method first
retrieves related SQL-Text pairs {q,, x, }1* | from
the Dirain On the basis of a tree-edit-distance mea-
sure such that the SQLs {q, }Z_; in the retrieved
pairs have similar structure as the given SQL query
q. We then translate each text x, so its target query
changes from q, to q on schema s. We decompose
this task into two steps: mask out schema specific
tokens in x,, and fill the masked text to represent q
with the help of a conditional text generation model
B like BART (Lewis et al., 2020). The translated
text may be noisy since we do not have direct su-
pervision to train such models. To improve the
overall quality of the synthesized data we filter out
the unlikely SQL-Text pairs with the help of an
independent binary classifier. Finally, we adapt the
given Text-to-SQL model M for the target database
by fine-tuning it on the diverse, high-quality filtered
data Dgy, synthesized by our method. We now de-
scribe each step in further detail.

Dirain

(SQL,Text) pairs from
existing datasets

Retrieval

: : Masking
/= Y 1

q

Fill masks using
xmasked [oART | a BART

v
Retrieved (SQL,Text) pairs based on Tree Edit Distance Masked Texts Generated Diverse Text \
a,, %} {acpasked} {='}

q
= o
\Qb SELECT country,

COUNT (*) FROM
‘Query workload of the|
new database

country

Deyn

Synthesized parallel
data with diverse text
queries for new

Filtering using
binary classifier

singer GROUP BY |\

SELECT denomination,
COUNT (*) FROM school
GROUP BY denomination

SELECT country_ id,

COUNT (*) FROM
locations GROUP BY
country id

SELECT location,

‘| COUNT (*) FROM cinema

GROUP BY location

%\ senEcT nationality,

COUNT (*) FROM host

'\‘ GROUP BY nationality

SELECT country,

For each denomination,
return the denomination and
count of schools with that
denomination

Give the country ID and
corresponding count of cities.
in each country

Show each location and the
number of cinema there

How many hosts does each
nationality have? List
nationality and the count

Show the different countries

For each <mask>, return the
<mask> and count of
<mask> with that <mask>

Give the <mask> <mask>
and corresponding count of
<mask> in each <mask>

Show each <mask> and the
number of <mask> there

How many <mask> does
each <mask> have? List
<mask> and the <mask>

Show the different <mask>

For each country, return the
country and count of singers
with that country

Give the country name and
corresponding count of
singers in each country

Show each country and the
number of singers there

How many singers does each
country have? List country
and the count

Show the different countries

Binary
Classifier

Xy

q COUNT (*) FROM member
GROUP BY country

and the number of members
from each

and the number of <mask> and the number of singers
from each from each

2 T _/

T

Figure 1: Diverse parallel data synthesis by editing related examples using REFILL. Given a query q from a new
database, REFILL (1) Retrieves SQL-Text pairs from an existing dataset where the SQLs have a small edit distance
w.r.t. the query q (indicated by dashed lines in the diagram). (2) Since the retrieved text come from a different
database, the schema specific words are masked out. (3) The masked text and the query q are then translated into
the target schema via an Edit and Fill step that uses a conditional text generation model like BART. (4) Finally, the
synthesized SQL-Text pairs are filtered using a binary classifier model that is trained to retain only the consistent
SQL-Text pairs. Translating the text from multiple related examples allows REFILL to generate diverse and high

quality text for the new schemas.

2.1 Retrieving related queries

Given a query q € QW; sampled from the work-
load, we extract the query-text pairs {q,,x,} €
Dirain from the train set such that the retrieved
queries {q, } are similar in structure of the query q.
We utilize tree-edit-distance (Pawlik and Augsten,
2015, 2016) between the relational algebra trees
corresponding to the queries q and q,.. Since the
retrieved queries come from a different schema, we
modify the tree edit distance algorithm to ignore
the schema names and the database values. The
tree-edit-distance is further normalized by size of
the larger tree. We only consider the pairs with
queries having a distance of less than 0.1 w.r.t. the
query g. On existing datasets like Spider, it is often
possible to find several SQLs structurally similar
to a q. For example, in Spider we found that 76%
of test SQLs contain at least three SQLS in Dyain
that are structurally identical, that is, have a tree-
edit-distance of 0. Figure 2 shows more detailed
statistics.

2.2 Translating text of related queries

Our next goal is to translate x, from being a query
on g, on DB-schema s, to a text for query q on
schema s where q ~ q, structurally. We cannot

0.75

0.50

0.25

0.00

Fraction of total SQLs

= < < <
0.0 0.05 0.1 0.2
Mean Tree Edit Distance

< <
0.5 1.0

Figure 2: Frequency distribution of average tree-edit-
distance of test-queries in Spider to its top-3 structurally
similar queries in the training set.

train a direct translation model with (x,, q) as in-
put since we do not have any parallel labeled data
for this new type of translation task. We therefore
decompose this into two steps: 1) a simpler task of
masking schema-specific tokens in x, to get a tem-
plate xM3*d_and 2) a conditional text generation
model that maps (x7*d q) to the target text for
which we modify Dy, to get indirect supervision.
We describe these steps next:

Masking retrieved text Converting retrieved
text queries to masked templates is a critical com-
ponent of REFILL’s pipeline since irrelevant to-
kens e.g. references to schema elements of the
original database, can potentially misguide the text
generation. Our initial approach was to mask to-

kens based on match of text tokens with schema
names and manually refined schema-to-text linked
annotations as in (Lei et al., 2020). However, this
approach failed to mask all schema-related terms
since occurrences in natural text often differed
significantly from schema names in the database.
Table 9 shows some anecdotes. Consequently,
we designed a simple frequency-based method of
masking that was significantly more effective for
our goal of using the masked text to just guide
the diversity. For each word that appears in the
questions of the train set, we count the number
of distinct databases for which that word appears
at least once in one of the text questions for that
database. E.g. words like { *show’, ’what’,
"list’, ’order’} appear in more than
90% of schemas, and schema specific words
like {‘countries’, ‘government’} oc-
cur only in queries of a few schemas. We mask
out all the words that appear in less than 50% of
schema. The words to be masked are replaced by
a special token MASK. Consecutive occurrences of
MASK are collapsed into a single MASK token. Thus
we obtain masked templates {x™3k¢d} retaining
minimal information about their original schema.

Editing and Filling the masked text Given a
masked template x™k¢dand an SQL query q
that needs to be translated into a text query X, we
first convert q into a pseudo-English representa-
tion "¢ similar to the one described in (Shu et al.,
2021). In addition, we wrap the table, column, or
value tokens in q with special tokens to provide
explicit signals to the text generation module that
such tokens are likely to appear in the generated
text. Next, we concatenate the tokens in the masked
text x™M3%ked and the query q"¢ for jointly encoding
them as an input to a conditional text generation
model like BART. The output of the decoder is
expected to be natural language text X consistent
with the query q. Since we do not have direct su-
pervision for such training, we transform Dy, to
generate parallel data for this training as follows:
Given a training dataset Diqin =
{(xi,8i, i)}, of Text-SQL pairs (x;,q;)
for different schemas s; € Syain, the conditional
text generation model is now finetuned for
translating {xMked q™'1 1o x; as follows. (a)
For one-third of random train steps we provide
[X?"“Sked|qfng], the concatenation of the masked
text and the . "¢ as an input to the encoder and
maximize the likelihood of x; in the decoder’s

output. (b) For another one-third we pass only
q];:ng as an input maximize the likelihood of x;.
This ensures that model is capable of generating
the text from the query alone, if the templates are
unavailable or noisy. (c) For the last one-third, we
use masked templates X?‘aSked, across two different
schemas s; and s;, such that the tree-edit distance
between the queries q; and q; is small, and the
word edit distance between the masked templates
xjrasked and xMesked s also small. This makes
the training more consistent with the inference,
where the schemas are different. In Section 4.4,
we establish the importance of steps (b) and (c) for
generating text that is more consistent with the

SQL queries (See Table 3).

2.3 Filtering Generated Text

Since the data synthesized using REFILL is used to
finetune the semantic parsing models in the down-
stream, we learn a Filtering model F : (X, Q) —
R that assigns lower scores to inconsistent SQL-
Text pairs and higher scores to the consistent ones.
We select the top-5 sentences for each query gen-
erated by REFILL and reject all the sentences that
are scored below a fixed threshold as per the Filter-
ing model. Existing work depended on the trained
Text-to-SQL M to assign quality scores, however
we found that such filtering did not result in a use-
ful dataset for fine-tuning M since it favored text
on which M was already good.

We instead train an independent binary classifi-
cation model for filtering as follows: The SQL-Text
pairs in the training set Dyain = {(%i,8:,q:)}Y,
serve as the positive (consistent) examples and we
synthetically generate the negative (inconsistent
pairs) as follows: (i) Replace DB values in the SQL
with arbitrary values sampled from the same col-
umn of the database. (ii) Replace SQL-specific
tokens with their corresponding alternates e.g. re-
place ASC with DESC, or ‘>’ with ‘<’. (ii1) Cas-
cade previous two perturbations. (iv) Replace the
entire SQL with a randomly chosen SQL from the
same schema. (v) Randomly drop tokens in the
text query with a fixed probability of 0.3. (vi) Shuf-
fle a span of tokens in the text query, with span
length set to 30% of the length of the text query.
Thus for a given Text-SQL pair (x, q) we obtain six
corresponding negative pairs {(x?,q?)}%_;. Let
s be the score provided by the filtering model
for the original pair (x,q) and {s;}{_; be the
scores assigned to the corresponding negative pairs

{(x2,q")}5_,. We supervise the scores from the
filtering model using a binary-cross-entropy loss
over the Sigmoid activations of scores as in Equa-
tion 1.

6
ﬁbce = —loga(s) - IOgZU(l - Si) (1)
=1

To explicitly contrast an original pair with its cor-
responding negative pairs we further add another
Softmax-Cross-Entropy loss term.

exp(s)

Lyent = —log ——————
ent g Z?:l exp(si)

2

3 Related Work

SQL-to-Text generation A large body of prior
work performs training data augmentation via
pre-trained conditional text generation modelsthat
translate SQLs into natural text (Guo et al., 2018;
Zhong et al., 2020; Shi et al., 2020; Zhang et al.,
2021; Wang et al., 2021; Yang et al., 2021; Shu
et al., 2021). For example, Wang et al. (2021)
finetune BART (Lewis et al., 2020) on parallel
SQL-Text pairs to learn an SQL-to-Text translation
model. Shu et al. (2021) propose a similar model
that is trained in an iterative-adversarial way along
with an evaluator model. The evaluator learns to
identify inconsistent SQL-Text pairs, similar to our
filtering model. To retain high quality synthesized
data Zhong et al. (2020) additionally filter out the
synthesized pairs using a pre-trained Text-to-SQL
model based on cycle consistency, that we show
to be sub-optimal in Section 4.5. The SQL work-
load in these work was typically sampled from
hand-crafted templates or a grammar like PCFG in-
duced from existing SQLs, or crawling SQLs from
open-source repositories Shi et al. (2020). How-
ever, database practitioners have recently drawn
attention to the fact that SQL workloads are of-
ten pre-existing and should be utilized (Baik et al.,
2019)

Retrieve and Edit Methods Our method is re-
lated to the Retrieve and Edit framework, which
has been previously applied in the context of var-
ious NLP tasks. In Semantic Parsing, question
and logical-form pairs from the training data rele-
vant to the input question are retrieved and edited
to generate the output logical forms in different
ways (Shaw et al., 2018; Das et al., 2021; Pasu-
pat et al., 2021; Gupta et al., 2021). In machine

translation, Translation-memory augmented meth-
ods like (Hossain et al., 2020; Cai et al., 2021)
retrieves and edit examples from translation mem-
ory to guide the decoder’s outputs. Our editing
step masking followed by refilling is somewhat
similar to style transfer methods like (Li et al.,
2018) that minimally modify the input sentence
with help of retrieved examples corresponding to
the target attribute. In contrast to a learned retrieval,
we find simple tree-edit distance based retrieval to
be highly effective for retrieving the relevant exam-
ples for our task.

4 Experiments

We demonstrate the effectiveness of the data syn-
thesized using REFILL for adapting base semantic
parsing models to new groups of databases in Sec-
tion 4.1. We compare with the recent and competi-
tive baselines that utilize SQL-to-Text generation
methods for improving the performance of seman-
tic parsers via training-data augmentation (Wang
et al., 2021; Zhong et al., 2020). We also evaluate
the intrinsic quality of the generated synthetic data
in-terms of diversity and agreement with gold text
queries in the test data. In Section 4.2 we compare
the quality and the diversity of the text generated
using REFILL with the relevant SQL-to-Text base-
lines. Section 4.4 justifies the key design choices
related to masking and the training of schema trans-
lator module, that helps REFILL synthesize high
quality text. Section 4.5 demonstrates the impor-
tance of using an independent binary classifier over
cycle-consistency filtering.

4.1 Experimental Setup

Datasets: We create 4 Groups of databases cho-
sen from Spider’s dev-set. The databases within
each group have a similar topic. E.g. Group-1
consists of databases {Singer, Orchestra,
Concerts}. We utilize all the available Text-
SQL pairs in each group for evaluation. On average,
each group contains 69 unique SQLs and 131 eval-
uation examples. To simulate a query workload
OW; for each group, we randomly select 70%
of the available SQLs and replace the constants-
values in the SQLs with values sampled from their
corresponding column in the database. We also
evaluate on query workloads of size 30% and 50%
of the available SQL queries. The SQL queries in
the workload are translated using an SQL-to-Text
model, and the resulting Text-SQL pairs are then

used to finetune a base semantic parsing model.
Base Semantic Parsers: We experiment with SM-
BoP (Rubin and Berant, 2021) as our base Text-
to-SQL semantic parser, and utilize author’s imple-
mentation for our experiments. The SMBOP model
is initialized with a ROBERTA-BASE model, fol-
lowed by four RAT layers, and trained on the train
split of Spider dataset. The dev set used while train-
ing excludes the data from the four groups used for
evaluation.

Edit and Fill model: We utilize a pre-trained
BART-BASE as our conditional text generation
model for editing and filling the masked text. The
model is finetuned using the train split of Spider
dataset as described in Section 2.2

Filtering Model: We utilize a pre-trained
ROBERTA-BASE for learning a binary classifier to
filter out inconsistent SQL-Text pairs as described
in Section 2.3. The model is trained using the train
split of Spider dataset.

Baselines: For baseline SQL-to-Text generation
models, we consider recently proposed models like
L2S (Wang et al., 2021), GAZP (Zhong et al.,
2020), and SNOWBALL (Shu et al., 2021). All
the baselines utilize pre-trained language models
like BART (Lewis et al., 2020) or BERT (Devlin
et al., 2018) for translating SQL tokens to natural
text in a standard seq-to-seq set-up. The baselines
mostly differ in the way of feeding SQL tokens as
an input to the models. Section 3 provides more
details about the baselines.

Evaluation Metrics Following the prior work, we
evaluate the Text-to-SQL parsers using the Exact
Set Match (EM), and the Exection Accuracy (EX),
as proposed in Yu et al. (2018). The EM metric
measures set match for all the SQL clauses and
returns one if there is a match across all the clauses.
It ignores the DB-values (constants) in the SQL
query. The EX metric directly compares the results
obtained by executing the predicted query q and
the gold query q on the database.

Additional implementation details including the
hyperparameters are reported in the Appendix A.5

4.2 Main Results

Evaluating finetuned parsers Table 1 presents
results for finetuning the base Text-to-SQL model
on the SQL-Text pairs obtained by translating the
SQL workload using various SQL-to-Text genera-
tion models. Compared to prior methods for SQL-

-
no
*

—— 125 -
70 Snowball /,/

..®-- GAZP /’,
Jos R ReRll P
B e |
n Lol
266
c
] o
E b4 |
5 64 +

:
\

0.3 0.4 0.5 0.6 0.7
Fraction of query workload

Figure 3: Average EM performance of Text-to-SQL
models on the four groups vs. the size of query work-
load. The data generated by REFILL using 30% query
workload yields better performance than the data from
the best baseline on 70% workload.

to-Text generation that lack both in the diversity
and the quality of the generated text, finetuning
over the high-quality and diverse text generated
by REFILL provides consistent performance gains
over the base model across all the database groups.
On average, REFILL improves the base model by
8.0% EM in comparison to a gain of 2.8% by the
best baseline (GAZP). The gains from the baseline
methods are often small or even negative. Our gains
over baselines continue even for other settings of
workload sizes. Figure 3 plots size of the workload
on the x-axis vs. the EM of the finetuned parsers
averaged across all the four groups, on the y-axis
When using the data synthesized by REFILL, the
performance of the parser improves steadily with
an increasing size of the query workload. On the
other hand, the baseline SQL-to-Text generation
methods fail to provide significant improvements.
Interestingly, the data synthesized by REFILL for
the 30% query workload is more effective on av-
erage than any of the baselines utilizing the 70%
query workload for SQL-to-Text generation.

Intrinsic quality and diversity of generated text
We explain our gains over existing methods to the
increased quality and diversity of the generated
text. We measure quality by reporting the BLEU
score of the set S(q) of generated text for a SQL
q with the gold text of the query in the test data.
To measure diversity we report 1-SelfBLEU (Zhu
et al., 2018) that measures the average BLEU score
among text in S(q). We evaluate on all the gold

SMBoP Group 1 Group 2 Group 3 Group 4 Average
Method EM |EX |EM |EX |EM |EX |EM | EX ||EM | EX
BASE-M 809 | 843 | 64.8 | 67.2 | 64.0 | 659 | 45.8 | 35.8 || 63.8 | 63.3
L2S (Wang et al., 2021) 88.7 | 87.8 | 61.3 | 62.1 | 62.8 | 61.0 | 42.5 | 35.0 || 63.8 | 61.4
GAZP (Zhong et al., 2020) 852|852 589|669 | 70.1 | 60.5 | 525 | 40.8 || 66.6 | 63.3
SNOWBALL (Shu et al., 2021) | 85.2 | 87.8 | 59.7 | 60.5 | 64.0 | 65.9 | 44.2 | 38.3 || 63.2 | 63.1
REFILL (Ours) 88.7 | 87.0 | 69.7 | 73.8 | 73.2 | 70.1 | 55.8 | 45.0 || 71.8 | 68.9

Table 1: Results for finetuning a base semantic parser (SMBOP) on SQL-Text pairs generated various SQL-to-Text
baselines and REFILL, as described in Section 4.2. REFILL provides consistent gains over the base model across all
the database groups, while gains from other methods are often negative or small.

Method BLEU 1 | 100-SelfBLEU 1 ‘ — 1
(Quality) (Diversity) . /

Gold-Ref 100 68.8 .

L2S 38.0 2.2) ' . |

GAZP 38.8 2.0 R

SnowBall | 40.2 2.8 E

REFILL 48.6 33.8 “
Table 2: Comparison of quality (BLEU) and diver- B B R 1
sity (100-SelfBLEU) scores across various SQL-to-Text 0wl w";: L B R E—

models including REFILL. Gold-Ref represents the
scores corresponding to gold-references as outputs

SQL-Text pairs available in the Spider’s dev set.
Table 2 reports the results. For each model we 10
hypotheses per SQL query, and pick the hypothesis
with the highest BLEU to report the overall BLEU
scores. To allow baselines for generating more di-
verse outputs than the standard beam search, we
utilize beam-sampling (Fan et al., 2018; Holtzman
et al., 2019). For REFILL-10, the 10 hypothesis
come from using upto 10 retrieved templates. RE-
FILL generates both diverse and high-quality hy-
potheses. We observe that leveraging text from
other schemas allows REFILL to generate higher
quality text (+9.8 BLEU points), while simultane-
ously enabling higher diversity.

4.3 Importance of Text Diversity

Utilizing the retrieved text templates from multiple
schemas allows REFILL to generate diverse text.
Figure 4 justifies the importance of diversity in
the generated text for improved performance, by
varying the number of templates on the x-axis and
performance of the finetuned models on y-axis for
each group. To keep the number of synthesized
examples same, the product of beam-samples and
the number of templates is held constant. Utilizing
the more diverse data generated via 5 templates is
consistently superior than using less diverse data

2 1 6 8 10
Number of templates

Figure 4: EM performance of finetuned SQL-to-Text
models Vs. the number of templates per SQL used by
REFILL

Naive Train | Robust Train
Schema-Match 37.2 41.8
Frequency 40.2 43.8

Table 3: Analyzing impact of design choices related to
Schema Translation, by observing BLEU-4 scores of
the text generated by REFILL

obtained by using lesser templates. As indicated by
the Self-BLEU scores, the diversity of the data gen-
erated via 10 templates is also low, due to the repeti-
tion of similar templates. Drop in REFILL’s perfor-
mance with lesser templates reconfirms the worse
performance observed with the reported SQL-to-
Text baselines that do not offer textual diversity.

4.4 Design choices of Schema Translator

Section 2.2 described two important design choices:
(1) Method of masking schema-relevant tokens
and (2) Method of training the Edit-and-Fill model
for generating text. Table 3 justifies these design
choices. Comparing across rows (Schema-Match
Vs Frequency), we observe that Frequency based

EM | EX
BASE-M 45.8 | 35.8
No Filtering 40.8 | 31.7
Cycle Consistent | 29.2 | 22.5
Filtering Model | 48.3 | 36.7

Table 4: Using an independent filtering model allows
us to retain more useful training examples than cycle
consistent filtering, leading to better performance of the
finetuned Text-to-SQL models

masking results in 2 to 3 point improvements in
the BLEU scores compared to matching schema
names. Table 9 shows specific examples where the
schema-match method fails to mask sufficiently. In
contrast, even though the frequency-based method
might over-mask it still suffices for our goal of guid-
ing the text generation model. Comparing across
columns (Naive Train Vs. Robust Train) we ob-
serve that specifically training the template filling
model for being robust to the input templates also
improves quality of the generated text by 3.6 to 4.6
points.

4.5 Importance of Filtering model

Methods like GAZP (Zhong et al., 2020) utilize
consistency-based filtering to reject the synthe-
sized SQL-Text pairs (q, x) that are inconsistent
with the output q produced by the base Text-to-
SQL for the text query x. We argue that cycle-
consistency based filtering is sub-optimal for two
reasons: (i) Data Redundancy: Since the Text-to-
SQL model is already capable of generating the cor-
rect output for the retained examples, these samples
do not offer much improvements while training.
(i1)) Data Loss: If the base Text-to-SQL model is
weak in parsing text-queries for the target database,
a large portion of potentially useful training exam-
ples get filtered out due to cycle-inconsistency.

As a solution, we train a Filtering model described
in Section 2.3. The filtering is now independent of
the base semantic parser, thus capable of retaining
the high quality generated examples which might
otherwise be filtered out by cycle-consistency fil-
tering using a weak Text-to-SQL model. Table 4
compares the base Text-to-SQL model, with mod-
els finetuned without any filtering, with cycle-
consistent filtering, and with using the filtering
model. We focus on Group-4 where the base Text-
to-SQL model is significantly weaker in compar-
ison to other groups, and use REFILL to synthe-
size data for the 30% query workload. Not us-

ing any filtering, or using cycle-consist filtering
result in worse performance, while using our fil-
tering model offers significant improvements over
the base model. Table 8 provides anecdotes of po-
tentially useful training examples that were filtered
out by the cycle-consistency, but retained by our
filtering model.

5 Conclusion and Future Work

We presented REFILL, a framework for generating
diverse and high quality parallel data for adapting
Text-to-SQL models to a target database. REFILL
translates a given SQL query into diverse questions
by retrieving and editing examples in the other
schemas and using a masking and refill mecha-
nism. Our experiments show that REFILL gener-
ates higher quality and more diverse text which
are key to better performance of the downstream
semantic parsers finetuned on the data generated
by REFILL. Our experiments show that even in the
lowest query workload, the proposed framework
outperforms the best baseline with highest query
workload. However, currently the experiments are
only performed on academic datasets such as Spi-
der. We hope to explore applications of our work
on real-world databases in the future.

References

Christopher Baik, H. V. Jagadish, and Yunyao Li. 2019.
Bridging the semantic gap with SQL query logs in
natural language interfaces to databases. In 35th
IEEE International Conference on Data Engineering,
ICDE 2019, Macao, China, April 8-11, 2019, pages
374-385. IEEE.

Deng Cai, Yan Wang, Huayang Li, Wai Lam, and
Lemao Liu. 2021. Neural machine translation with
monolingual translation memory. In Proceedings
of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 7307-7318, Online.
Association for Computational Linguistics.

Ethan A Chi, Caleb Chiam, Trenton Chang, Swee Kiat
Lim, Chetanya Rastogi, Alexander Iyabor, Yutong
He, Hari Sowrirajan, Avanika Narayan, Jillian Tang,
et al. 2021. Neural, neural everywhere: Controlled
generation meets scaffolded, structured dialogue.
Alexa Prize Proceedings.

Rajarshi Das, Manzil Zaheer, Dung Thai, Ameya
Godbole, Ethan Perez, Jay-Yoon Lee, Lizhen Tan,
Lazaros Polymenakos, and Andrew McCallum.
2021. Case-based reasoning for natural language

queries over knowledge bases. arXiv preprint
arXiv:2104.08762.

https://doi.org/10.18653/v1/2021.acl-long.567
https://doi.org/10.18653/v1/2021.acl-long.567
https://doi.org/10.18653/v1/2021.acl-long.567

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Angela Fan, Mike Lewis, and Yann Dauphin. 2018.
Hierarchical neural story generation. In Proceedings
of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 889—898, Melbourne, Australia. Association
for Computational Linguistics.

Daya Guo, Yibo Sun, Duyu Tang, Nan Duan, Jian
Yin, Hong Chi, James Cao, Peng Chen, and Ming
Zhou. 2018. Question generation from sql queries
improves neural semantic parsing. arXiv preprint
arXiv:1808.06304.

Vivek Gupta, Akshat Shrivastava, Adithya Sagar,
Armen Aghajanyan, and Denis Savenkov. 2021.
Retronlu: Retrieval augmented task-oriented seman-
tic parsing. arXiv preprint arXiv:2109.10410.

Tatsunori B Hashimoto, Kelvin Guu, Yonatan Oren, and
Percy S Liang. 2018. A retrieve-and-edit framework
for predicting structured outputs. Advances in Neural
Information Processing Systems, 31.

Moshe Hazoom, Vibhor Malik, and Ben Bogin. 2021.
Text-to-SQL in the wild: A naturally-occurring
dataset based on stack exchange data. In Proceedings
of the 1st Workshop on Natural Language Processing
for Programming (NLP4Prog 2021), pages 77-87,
Online. Association for Computational Linguistics.

Jonathan Herzig and Jonathan Berant. 2019. Don’t para-
phrase, detect! rapid and effective data collection for
semantic parsing. In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP),
pages 3810-3820.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and
Yejin Choi. 2019. The curious case of neural text de-
generation. In International Conference on Learning
Representations.

Nabil Hossain, Marjan Ghazvininejad, and Luke Zettle-
moyer. 2020. Simple and effective retrieve-edit-
rerank text generation. In Proceedings of the 58th
Annual Meeting of the Association for Computational
Linguistics, pages 2532-2538.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick
Lewis, Ledell Wu, Sergey Edunov, Dangi Chen, and
Wen-tau Yih. 2020. Dense passage retrieval for open-
domain question answering. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 6769—-6781.

Chia-Hsuan Lee, Oleksandr Polozov, and Matthew
Richardson. 2021. KaggleDBQA: Realistic evalu-
ation of text-to-SQL parsers. In Proceedings of the
59th Annual Meeting of the Association for Compu-
tational Linguistics and the 11th International Joint

Conference on Natural Language Processing (Vol-
ume 1: Long Papers), pages 2261-2273, Online. As-
sociation for Computational Linguistics.

Wengiang Lei, Weixin Wang, Zhixin Ma, Tian Gan,
Wei Lu, Min-Yen Kan, and Tat-Seng Chua. 2020.
Re-examining the role of schema linking in text-to-
SQL. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 6943-6954, Online. Association for
Computational Linguistics.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020. Bart:
Denoising sequence-to-sequence pre-training for nat-
ural language generation, translation, and comprehen-
sion. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
7871-7880.

Juncen Li, Robin Jia, He He, and Percy Liang. 2018.
Delete, retrieve, generate: a simple approach to senti-
ment and style transfer. In NAACL-HLT.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Dangi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2020.
Ro{bert}a: A robustly optimized {bert} pretraining
approach.

Panupong Pasupat, Yuan Zhang, and Kelvin Guu. 2021.
Controllable semantic parsing via retrieval augmen-
tation. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
pages 7683-7698.

Mateusz Pawlik and Nikolaus Augsten. 2015. Efficient
computation of the tree edit distance. ACM Transac-
tions on Database Systems (TODS), 40(1):1-40.

Mateusz Pawlik and Nikolaus Augsten. 2016. Tree edit
distance: Robust and memory-efficient. Information
Systems, 56:157-173.

Ohad Rubin and Jonathan Berant. 2021. Smbop: Semi-
autoregressive bottom-up semantic parsing. In Pro-
ceedings of the 2021 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
311-324.

Torsten Scholak, Raymond Li, Dzmitry Bahdanau,
Harm de Vries, and Christopher Pal. 2021a. Duorat:
Towards simpler text-to-sql models. In Proceedings
of the 2021 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 1313—-1321.

Torsten Scholak, Nathan Schucher, and Dzmitry Bah-
danau. 2021b. Picard - parsing incrementally for
constrained auto-regressive decoding from language
models. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing.
Association for Computational Linguistics.

https://doi.org/10.18653/v1/P18-1082
https://doi.org/10.18653/v1/2021.nlp4prog-1.9
https://doi.org/10.18653/v1/2021.nlp4prog-1.9
https://doi.org/10.18653/v1/2021.nlp4prog-1.9
https://doi.org/10.18653/v1/2021.acl-long.176
https://doi.org/10.18653/v1/2021.acl-long.176
https://doi.org/10.18653/v1/2021.acl-long.176
https://doi.org/10.18653/v1/2020.emnlp-main.564
https://doi.org/10.18653/v1/2020.emnlp-main.564
https://doi.org/10.18653/v1/2020.emnlp-main.564
https://openreview.net/forum?id=SyxS0T4tvS
https://openreview.net/forum?id=SyxS0T4tvS
https://openreview.net/forum?id=SyxS0T4tvS

Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani. 2018.
Self-attention with relative position representations.
In Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 2 (Short Papers), pages 464—468, New Or-
leans, Louisiana. Association for Computational Lin-
guistics.

Peng Shi, Patrick Ng, Zhiguo Wang, Henghui Zhu,
Alexander Hanbo Li, Jun Wang, Cicero Nogueira dos
Santos, and Bing Xiang. 2020. Learning con-
textual representations for semantic parsing with
generation-augmented pre-training. arXiv preprint
arXiv:2012.10309.

Chang Shu, Yusen Zhang, Xiangyu Dong, Peng Shi,
Tao Yu, and Rui Zhang. 2021. Logic-consistency
text generation from semantic parses. In Findings of
the Association for Computational Linguistics: ACL-
IJCNLP 2021, pages 4414-4426.

Alane Suhr, Ming-Wei Chang, Peter Shaw, and Ken-
ton Lee. 2020. Exploring unexplored generalization
challenges for cross-database semantic parsing. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 8372—
8388.

Bailin Wang, Wenpeng Yin, Xi Victoria Lin, and Caim-
ing Xiong. 2021. Learning to synthesize data for
semantic parsing. In Proceedings of the 2021 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, pages 2760-2766.

Yushi Wang, Jonathan Berant, and Percy Liang. 2015.
Building a semantic parser overnight. In Proceedings
of the 53rd Annual Meeting of the Association for
Computational Linguistics and the 7th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 1332-1342, Beijing,
China. Association for Computational Linguistics.

Tomer Wolfson, Jonathan Berant, and Daniel Deutch.
2021. Weakly supervised mapping of natural lan-
guage to sql through question decomposition. ArXiv,
abs/2112.06311.

Peng Xu, Dhruv Kumar, Wei Yang, Wenjie Zi, Keyi
Tang, Chenyang Huang, Jackie Chi Kit Cheung, Si-
mon J.D. Prince, and Yanshuai Cao. 2021. Opti-
mizing deeper transformers on small datasets. In
Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 2089—
2102, Online. Association for Computational Lin-
guistics.

Wei Yang, Peng Xu, and Yanshuai Cao. 2021. Hier-
archical neural data synthesis for semantic parsing.
arXiv preprint arXiv:2112.02212.

10

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga,
Dongxu Wang, Zifan Li, James Ma, Irene Li, Qingn-
ing Yao, Shanelle Roman, et al. 2018. Spider: A
large-scale human-labeled dataset for complex and
cross-domain semantic parsing and text-to-sql task.
In Proceedings of the 2018 Conference on Empiri-
cal Methods in Natural Language Processing, pages
3911-3921.

Ao Zhang, Kun Wu, Lijie Wang, Zhenghua Li, Xinyan
Xiao, Hua Wu, Min Zhang, and Haifeng Wang.
2021. Data augmentation with hierarchical sql-to-
question generation for cross-domain text-to-sql pars-
ing. arXiv preprint arXiv:2103.02227.

Victor Zhong, Mike Lewis, Sida I. Wang, and Luke
Zettlemoyer. 2020. Grounded adaptation for zero-
shot executable semantic parsing. In Proceedings
of the 2020 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pages 6869—
6882, Online. Association for Computational Lin-
guistics.

Yaoming Zhu, Sidi Lu, Lei Zheng, Jiaxian Guo, Weinan
Zhang, Jun Wang, and Yong Yu. 2018. Texygen: A
benchmarking platform for text generation models.
In The 41st International ACM SIGIR Conference on
Research & Development in Information Retrieval,

pages 1097-1100.

https://doi.org/10.18653/v1/N18-2074
https://doi.org/10.3115/v1/P15-1129
https://doi.org/10.18653/v1/2021.acl-long.163
https://doi.org/10.18653/v1/2021.acl-long.163
https://doi.org/10.18653/v1/2021.acl-long.163
https://doi.org/10.18653/v1/2020.emnlp-main.558
https://doi.org/10.18653/v1/2020.emnlp-main.558
https://doi.org/10.18653/v1/2020.emnlp-main.558

A Appendix

A.1 Grouping Details

Group Number of queries by hardness
easy medium hard extra | total
Group 1 24 60 25 6| 115
e concert_singer 4 24 13 4 45
e singer 6 18 6 0 30
e orchestra 14 18 6 2 40
Group 2 14 58 16 36 | 124
e dog_kennels 10 36 10 26 82
epets_1 4 22 6 10 42
Group 3 46 60 32 26 | 164
e students_transcripts_tracking 26 24 8 20 78
e course_teach 8 14 8 0 30
e network_1 12 22 16 6 56
Group 4 24 46 20 60 | 120
eworld 1 24 46 20 60 | 120

Table 5: Group statistics for every group. Group 4 contains only 1 schema since the wor1d_1 schema is large
enough. On other groups, we collect together 2-3 similar schema to get a larger workload as shown.

A.2 Results in low or medium overlap setting

SMBoOP Group 1 Group 2 Group 3 Group 4 Average
Method EM |EX |EM |EX |EM |EX |EM | EX || EM | EX
BASE-M 809 | 843 | 648 | 67.2 | 64.0 | 659 | 458 | 35.8 || 63.8 | 63.3
L2S 82.6 | 84.3 | 60.5 | 65.3 | 61.6 | 63.4 | 26.7 | 26.7 || 57.8 | 59.9
GAZP 83.5 | 843 | 61.3 | 645|665 |67.1 458 | 375 | 64.3 | 63.3
SNOowBALL | 80.0 | 83.5 | 59.7 | 63.7 | 67.7 | 68.3 | 39.2 | 32.5 || 61.7 | 62.0
REFILL 86.1 | 86.1 | 65.6 | 65.6 | 68.3 | 67.1 | 48.3 | 36.7 || 67.1 | 63.8

Table 6: Results on SMBOP under 0.3 overlap setting

SMBoOP Group 1 Group 2 Group 3 Group 4 Average
Method EM |EX |EM |EX |EM |EX |EM | EX || EM | EX
BASE-M 80.9 | 843 | 64.8 | 67.2 | 64.0 | 659 | 458 | 35.8 || 63.8 | 63.3
L2S 89.6 | 88.7 | 66.1 | 68.5 | 579 | 58.5 | 41.7 | 35.8 || 63.8 | 62.9
GAZP 87.8 | 87.0 | 589 | 63.7 | 659 | 68.9 | 45.0 | 35.0 || 64.4 | 63.6
SNOWBALL | 83.5 | 852 | 55.6 | 66.1 | 65.2 | 66.5 | 40.0 | 32.5 || 61.1 | 62.6
REFILL 88.7 1913 1672 |69.7 | 70.7 | 67.1 | 45.8 | 38.3 || 68.1 | 66.6

Table 7: Results on SMBOP under 0.5 overlap setting

11

A.3 Examples rejected by Cycle-consistency but retained by our filtering model

Generated text
Gold SQL
Predicted SQL

How many countries are governed by Islamic Emirate?
SELECT count () FROM country WHERE GovernmentForm = ’'Islamic Emirate’

SELECT COUNT (*) FROM country WHERE country.code NOT IN (SELECT
countrylanguage.countrycode FROM countrylanguage)

Generated text
Gold SQL

Predicted SQL

What is the number of languages that are official in Australia?

SELECT COUNT (*) FROM country AS Tl JOIN countrylanguage AS T2 ON
Tl.Code = T2.CountryCode WHERE T1l.Name = ’'Australia’ AND IsOfficial
= 1T’

SELECT COUNT (%*) FROM countrylanguage JOIN country ON
countrylanguage.countrycode = country.code WHERE country.name =
"Australia’

Generated text
Gold SQL

Predicted SQL

How many countries have both “Karen" and “Mandarin Chinese" languages?

SELECT COUNT (*) FROM (SELECT T1.Name FROM country AS Tl JOIN
countrylanguage AS T2 ON Tl.Code = T2.CountryCode WHERE T2.Language
= ’Karen’ INTERSECT SELECT T1.Name FROM country AS Tl JOIN
countrylanguage AS T2 ON Tl.Code = T2.CountryCode WHERE T2.Language
= ’'Mandarin Chinese’)

SELECT COUNT (*) FROM countrylanguage JOIN country
ON countrylanguage.countrycode = country.code WHERE
countrylanguage.language = ’'Karen’

Generated text

Gold SQL

Predicted SQL

Find the language of the country that has the head of state Salahuddin Abdul Aziz Shah
Alhaj and is official.

SELECT T2.Language FROM country AS Tl JOIN countrylanguage AS T2 ON
Tl.Code = T2.CountryCode WHERE T1l.HeadOfState = ’Salahuddin Abdul Aziz

Shah Alhaj’ AND T2.IsOfficial = 'T’
SELECT countrylanguage.language FROM countrylanguage JOIN country ON
countrylanguage.countrycode = country.code WHERE country.headofstate =

"Salahuddin Abdul Aziz Shah Alhaj’

Generated text

Gold SQL

Predicted SQL

What are the names of countries with surface area greater than the smallest area of any
country in Antarctica?

SELECT Name FROM country WHERE SurfaceArea >
FROM country WHERE Continent = ’Antarctica’)

(SELECT min (SurfaceArea)

SELECT country.name FROM country WHERE country.surfacearea > (SELECT
MAX (country.surfacearea) FROM country WHERE country.continent =
"Antarctica’)

Table 8: Useful training examples rejected by Cycle-consistency but retained by our filtering model. Predicted SQL
is the output of the Text-to-SQL model used for checking cycle consistency, and does not match the Gold SQL often

due to minor errors

12

A.4 Examples of masking

SQL SELECT Tl.template_type_code , count () FROM Templates AS T1
JOIN Documents AS T2 ON Tl.template_id = T2.template_id GROUP BY
Tl.template_type_code [Schema Name: Document Template Management]

Reference Show all template type codes and the number of documents using each type.

Retrieved SQL | T1.FacID , count (*¥) FROM Faculty AS Tl JOIN Student AS T2 ON Tl.FacID =
T2.advisor GROUP BY T1.FacID [SchemaName: Faculty Student Activity]

Retrieved Text | Show the faculty id of each faculty member, along with the number of students he or she
advises.

Sch-match Show the MASK of each MASK member , along with the number of MASK he or she advises

Mask .

Filled Text Show the type code of each template member, along with the number of documents he or
she advises.

Freq Mask Show the MASK of each MASK , MASK with the number of MASK he or she MASK .

Filled Text Show the code of each template type, together with the number of documents correspond-
ing to it.

SQL SELECT T2.name , T2.capacity FROM concert AS Tl JOIN stadium AS
T2 ON Tl.stadium_id = T2.stadium_id WHERE Tl.year >= 2014 GROUP BY
T2.stadium_id ORDER BY count (*) DESC LIMIT 1 [SchemaName: Concert Singer]

Reference Show the stadium name and capacity with most number of concerts in year 2014 or after.

Retrieved SQL | SELECT T2.name , Tl.team_id_winner FROM postseason AS Tl JOIN team AS

Retrieved Text

T2 ON Tl.team_id_winner = T2.team_id_br WHERE Tl.year = 2008 GROUP BY
Tl.team_id_winner ORDER BY count () DESC LIMIT 1 [Schema Name: Baseball 1]

What are the name and id of the team with the most victories in 2008 postseason?

Sch-match What are the MASK and MASK of the MASK with the most victories in MASK

Mask

Filled Text What are the name and capacity of the stadium with the most victories in year 2014?
Freq Mask What are the MASK and MASK of the MASK with the most MASK in MASK

Filled Text What are the name and capacity of the stadium with the most concerts in 20147

Table 9: Masking the text based on string matches Vs. our method of frequency based masking. Schema-relevant
words like ‘victories’, ‘members’, ‘advises’ that do not have a sufficient string match with any of the table or column
names of their schema, get left out when using string-match based matches. Thus failing to mask the words in the
original schema might lead to copying of the word in the target schema, thus making the generated text semantically
inconsistent. Words in blue are schema relevant words for the target database and should appear in the generated

output.

13

A.5 Hyperparameters

Our Edit and Fill model (139.2M parameters) is
based on a pretrained BART-BASE (Lewis et al.,
2020) model. We fine-tune this model for 100
epochs with learning rate of 3 x 1072, weight decay
of 0.01 and batch size of 64. The pretrained model
is obtained from HuggingFace'.

The proposed binary classifier (124.6M params)
is pretrained ROBERTA-BASE (Liu et al., 2020)
(obtained from HuggingFace?) finetuned for 100
epochs on our data with learning rate 1075, weight
decay 0.01 and batch size 16 for 100 epochs.

For SMBOP experiments, we use a smaller SM-
BOP model with 4 RAT layers and ROBERTA-
BASE (Liu et al., 2020) encoder as a baseline. The
number of parameters in this model is 132.9M.
All the adaptation experiments use learning rate
of 5 x 1075, learning rate of language model of
3 x 107° and batch size of 8. All the models were
trained for 100 epochs.

All the experiments were performed on NVIDIA
RTX 3060 GPU. Training times for template fill-
ing model and binary classifiers were ~ 4.5 hrs
and = 6.5 hrs respectively. Each of the finetuning
experiment took 3 — 4 hrs to complete.

A.6 Cost function for Tree Edit Distance

Group Value | Cost

Equal Equal 0

Equal Unequal | 0.5
Unequal Equal 0
Unequal Unequal 1

Table 10: Cost function of nodes n; and ny based on
their groups and value

We use APTED library (Pawlik and Augsten,
2015, 2016) to compute TED between 2 parsed
SQL trees. For every node in the tree, a group
is assigned according to table 11. Then the cost
for various combinations of node groups and node
values is described in table 10. If either of the
nodes does not belong to any of the groups in table
11, their groups are considered to be “unequal” and
cost will be assigned based on their values.

A.7 Examples of TED neighbours

lhttps://huggingface.co/facebook/
bart-base
https://huggingface.co/roberta-base

14

Group SQL elements

Aggregation | MAX, MIN, AVG, COUNT, SUM

Order ORDERBY_ASC,
ORDERBY_DESC

Boolean OR, AND

Set UNION, INTERSECT, EXCEPT

Leaf VAL_LIST, VALUE, LITERAL,
TABLE

Similarity LIKE, IN, NOT_IN

Comparison | >, >, <, <, =, #

Table 11: Group definitions for TED calculation

Table

N

Agg Table

| /N

Value(*) Predicate Table(head)

/

Value(age) Value(56)

(@) SELECT count (x) FROM head WHERE age > 56

Table

N

Agg Table

| /N

Value(*) Predicate Table(game)

Value(season) Value(2007)

(b) SELECT count (+) FROM game WHERE season > 2007

Figure 5: Example of tree pair with TED=0

Table

N

Agg Table(county_public_safety)

Value(*)

(a) SELECT count (x) FROM county_public_safety

Table

/N

Agg Table(film)

Value(Gross_in_dollar)

(b) SELECT avg(Gross_in_dollar) FROM film

Figure 6: Example of tree pair with non-zero TED

https://huggingface.co/facebook/bart-base
https://huggingface.co/facebook/bart-base
https://huggingface.co/roberta-base

