
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

TOWARDS FEDERATED RLHF WITH AGGREGATED
CLIENT PREFERENCE FOR LLMS

Anonymous authors
Paper under double-blind review

ABSTRACT

Reinforcement learning with human feedback (RLHF) fine-tunes a pretrained
large language model (LLM) using user preference data, enabling it to generate
content aligned with human preferences. However, due to privacy concerns, users
may be reluctant to share sensitive preference data. To address this, we propose
utilizing Federated Learning (FL) techniques, allowing large-scale preference
collection from diverse real-world users without requiring them to transmit data
to a central server. Our federated RLHF methods (i.e., FedBis and FedBiscuit)
encode each client’s preferences into binary selectors and aggregate them to capture
common preferences. In particular, FedBiscuit overcomes key challenges, such
as preference heterogeneity and reward hacking, through innovative solutions like
grouping clients with similar preferences to reduce heterogeneity and using multiple
binary selectors to enhance LLM output quality. To evaluate the performance of
the proposed methods, we establish the first federated RLHF benchmark with
a heterogeneous human preference dataset. Experimental results show that by
integrating the LLM with aggregated client preferences, FedBis and FedBiscuit
significantly enhance the professionalism and readability of the generated content.

1 INTRODUCTION

Large language models (LLMs) exhibit broad knowledge coverage as they are pretrained on a large
corpus. To elevate the quality of their generated content to match the professionalism and readability
of human writing, a common approach is to fine-tune these models using reinforcement learning
with human feedback (RLHF) (Ziegler et al., 2019; Christiano et al., 2017; Ouyang et al., 2022).
This process relies on preference datasets, which are constructed through two main methods: human
evaluation (Bai et al., 2022; Ganguli et al., 2022; Stiennon et al., 2020) and ChatGPT-based ranking
(Dubois et al., 2024b). In the human-effort approach, a set of instructions (a.k.a. prompts or user
queries) is paired with multiple model completions (a.k.a. generated responses), and a team of
labelers ranks completions of each instruction from best to worst. In the ChatGPT-based method, the
dataset is developed by feeding ChatGPT with multiple inputs encompassing an instruction and a
pair of completions, where it selects the superior completion for each input. As LLMs are deployed
to serve diverse users, there could be a gap between the preferences of real-world users and those
of lablers/ChatGPT, hindering the LLM’s ability to generate responses that align with the users’
preferences. Therefore, there is a need for a preference dataset that accurately reflects real world
users’ preferences in order to enhance the ability of LLM in content generation.

Part3: Fine-tuning and Preference Alignment

Question
Templates

(Barack Obama, birthplace, Hawaii)

LLM

Prompt

Encoder

Training

Judge model training
substitution

Labels

Step #2: Judge Model Training

Prompt Encoder

{Barack Obama} was born in {Hawaii}.

Input triple

Knowledge

Graphs

Question
Templates

<System Prompt>:
Tailored to the specific LM.
<Instruction>:
Please judge whether the statement
is true or false.
<Input>:
{Barack Obama} was born in {Hawaii}.
<Your Answer>:
{answer}

Negative

Sampling

Filling triple
(Barack Obama, birthplace, Hawaii)

 with
{Barack Obama} was born in {Hawaii}.

Template

Generation

Facts

Triple 1

……

Input Data

Triple 2

Triple 3

Triple K

 LLM

Yes, the statement is true. Because…

I don’t know. Because…

No, the statement is false. Because…

Step #1: Question and Label Collection

Sample

Yes, the statement is true. Because…

Result Analysis

LLM

{Kobe Bryant} attended {Lower Merion High School}.

Knowledge

Graphs

{Kobe Bryant} attended { }.

Negative Sampling

Whitney High School
Trained Judge Model

Step #3: Evaluation on Whole KGs

True
False
IDK

True
False
IDK

Filling triple
(Barack Obama, birthplace, Hawaii)

 with
{Barack Obama} was born in {Hawaii}.

…

User

Which high school did Kobe
Bryant attend? Choose from
(A) Whitney High School; (B)
Preuss School UCSD; (C)
Lower Merion High School.

My answer is C.
LLM

Private Question…

GenerationClient

Preferences

Training

User
Private Question…

Please Select from

Answer B

User Answer B is Better

Answer A

Privacy
Leakage!

Binary Selector

Standard RLHF

Response 1

Response 2

Client’s

Private

Preference

Preference
Optimization

Aligned LLM

Federated RLHF

Client’s

Private

Preference

Client
Preference
Selector

Trains

Aggregated

Selector

Aligned
LLM

Preference
Optimization

Privacy
Preserved

Server

Client

Figure 1: Comparison between standard
and federated RLHF

One straightforward approach to meeting this need is to
directly collect preference data from a large number of real-
world users and build a comprehensive preference dataset,
which can be used to fine-tune an LLM on a central server.
This strategy has been implemented in recent projects
like OASST (Köpf et al., 2024). However, this approach
is often impractical because it involves collecting LLM
users’ inputs and preferences – both highly private and
sensitive (shown in the left part of Figure 1). Most users
are unwilling to share their data, and such practices may
also violate regulations like the GDPR (2016) and CCPA
(2023), which prohibit the use of users’ private data for
model training without explicit consent.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

To address privacy concerns, we propose utilizing Federated Learning (FL) techniques to enable
large-scale preference collection from diverse real-world users without requiring them to transmit
their preference data to a central server. In our design, we adopt FedAvg, a well-established FL
algorithm (Konečnỳ et al., 2016; McMahan et al., 2017), to learn user preferences without directly
collecting their data. In line with the reward model training used in RLHF (Stiennon et al., 2020;
Ouyang et al., 2022; Rafailov et al., 2023), each LLM user works as a FL client and locally trains a
reward model that can evaluate the quality of model completions. The server then aggregates these
client-trained reward models into a global model. While this approach appears effective, we observe
the following two limitations during training:

• Excessive Computation Overhead: Typically, the reward model is a regression model designed
to output a scalar value that represents the quality of a model completion (Stiennon et al., 2020).
Its optimization is based on comparing reward differences between preferred and dispreferred
completions—preferred completions should receive higher rewards. However, during optimization,
each data sample requires the retention of two computation graphs (one for the preferred and one
for the dispreferred completion) throughout the forward and backward passes. This results in
significant computational overhead and heavy GPU demands.

• Preference Heterogeneity and Reward Hacking: Client preferences are heterogeneous, as
both instructions and preferences vary across clients. As a result, each client tends to train their
reward model toward a local minimum, which deviates from the global optimum, leading to longer
convergence times compared to centralized training. Moreover, fine-tuning the pretrained model
using the reward model can lead to overfitting, where the proxy reward (the reward model’s output)
improves while the actual performance worsens. This phenomenon, known as reward hacking or
reward overfitting, has been discovered in several studies (Askell et al., 2021; Michaud et al., 2020;
Tien et al., 2022; Skalse et al., 2022).

In this paper, we propose to address these two limitations and propose effective and computationally
efficient methods for preference collection and subsequent fine-tuning. We start with a solution
that addresses computation costs. The key idea is to train a binary selector that identifies the
superior response between two model completions. Compared with traditional reward model training,
the binary selector requires significantly less computation. Casting binary selector training into a
federated learning setting, we develop a federated binary selector training (FedBis) framework, as
depicted in the right part of Figure 1. The aggregated binary selector captures the common preferences
of a large group of users, and thus can simulate a comprehensive preference dataset, facilitating
RLHF approaches (e.g., DPO (Rafailov et al., 2023)) to fine-tune the LLM without the need for the
real client preference data.

To further address the performance deterioration due to preference heterogeneity and reward hacking,
we propose a method named FedBis with cluster-wise aggregation (FedBiscuit). This approach
ensembles multiple binary selectors, each trained by clients with similar preferences. Since privacy
concerns prevent the explicit sharing of client data, the server intermittently collects the training loss
of all binary selectors on the clients. Using this data, clients are grouped into disjoint clusters, and
when comparing two completions, the one favored by the majority of selectors is deemed superior.
This method has two main advantages: (1) Clients with similar preferences collaboratively train a
binary selector, reducing data heterogeneity and improving performance stability, and (2) Reward
hacking is mitigated by employing multiple binary selectors, as it becomes difficult for the LLM to
generate content that satisfies all binary selectors without making genuine improvements.

Contributions. In this paper, our contributions are highlighted as follows:

• To the best of our knowledge, this is the first work to employ federated learning technique to
enable large-scale user preference collection for RLHF without jeopardizing user privacy. Our
proposed federated RLHF model (i.e., FedBis) encodes each client’s preference information into a
binary selector and aggregates all clients’ binary selectors to capture their common preferences. By
aligning the LLM with the aggregated client preference, we can improve the professionalism and
readability of LLM’s generated content.

• We identify the inherent challenges of federated RLHF, such as preference heterogeneity and
reward hacking, and extend FedBis into FedBiscuit with innovative solutions to address these
challenges, including grouping the binary selectors of clients with similar preferences to reduce
data heterogeneity and employing multiple binary selectors to force the LLM to improve the quality
of its generated content.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

• We conduct extensive experiments to evaluate the performance of the proposed FedBis and
FedBiscuit. Since no prior work has addressed RLHF in a federated learning setting, we es-
tablish the first FL benchmark by creating a heterogeneous human preference dataset. As expected,
both FedBis and FedBiscuit show significant performance improvements over the base models,
Gemma and LLaMA.

2 RELATED WORK

Federated Fine-Tuning for LLM. Recent studies have increasingly focused on fine-tuning large
language models (LLMs) using federated datasets (Sun et al., 2024; Ye et al., 2024; Zhang et al.,
2023a; Yi et al., 2023; Zhang et al., 2023b). However, these approaches often suffer from high
computation and communication costs due to the necessity of training and synchronizing the model
with clients. To mitigate these issues, lightweight methods such as black-box fine-tuning (Sun et al.,
2023; Lin et al., 2023) and offsite-tuning (Wu et al., 2024; Kuang et al., 2023) have emerged. Despite
their advancements, these methods primarily focus on fine-tuning LLMs for specific downstream
tasks, neglecting user preferences in the generated responses. A recent benchmark, OpenFedLLM (Ye
et al., 2024), introduces FedDPO, which allows federated clients to optimize their local LLMs using
DPO loss. While this approach can potentially align LLMs with human preferences, it faces three
key challenges: excessive computational overhead, preference heterogeneity, and the risk of reward
hacking. To address these limitations, our work aims to enable LLMs alignment with a feasible and
sustainable training framework in FL.

Reinforcement Learning with Human Feedback (RLHF). RLHF typically involves supervised
fine-tuning, reward modeling, and reward optimization, initially proposed by Christiano et al. (2017).
Proximal Policy Optimization (PPO) (Schulman et al., 2017) is a common RLHF algorithm, yet it
struggles with instability, inefficiency, and high resource demands (Choshen et al., 2019; Engstrom
et al., 2020). These challenges have led to the development of alternative methods, such as Direct
Preference Optimization (DPO) (Rafailov et al., 2023) and others (Dong et al., 2023; Zhao et al.,
2023; Azar et al., 2024; Ethayarajh et al., 2024; Gulcehre et al., 2023), which offer more stable and
efficient solutions. However, these methods typically operate within a centralized training framework,
where the LLM owner retains control over the preference data. In contrast, our work aims to expand
data sources and integrate real user preferences without directly collecting their personal data.

3 PRELIMINARY

3.1 FEDERATED LEARNING (FL)
FL is a distributed training paradigm where a server coordinates various clients toward the same goal,
i.e., training a generalized model ϕ ∈ Rd. Consider an FL system with M clients. Denote the weight
of client m as pm such that

∑
m∈[M] pm = 1, and we aim to optimize the following objectives:

min
ϕ∈Rd

F (ϕ)
△
=

∑
m∈[M]

pmFm(ϕ) (1)

where Fm(ϕ) is the expected loss on client m given the model ϕ. As a classical FL algorithm, FedAvg
can solve the optimization problem by multiple communications between the server and the clients.
In each communication round r ∈ [R] with the global model ϕr, the following steps are conducted:

• Model broadcast: The server uniformly samples A clients without replacement, denoted by A,
broadcasts the global model ϕr to the sampled clients.

• Local training on client m ∈ A: The client initializes the local model ϕm
r,0 with the received ϕr. In

the next K iterations, the client updates its local model via ϕm
r,k+1 = ϕm

r,k − η∇Fm(ϕm
r,k), k ∈ [K],

where η is learning rate, and ∇Fm(ϕm
r,k) is the local gradient on ϕm

r,k and estimated by a mini-batch.
We denote this K-iteration local training by ϕm

r,K = OPTIM(m,ϕr,K), which optimizes the model
ϕr with the data of client m.

• Global aggregation: The server collects the local model ϕm
r,K from clients m ∈ A and updates the

global model via weighted average aggregation, i.e., ϕr+1 = M
A

∑
m∈A pmϕm

r,K .

3.2 REINFORCEMENT LEARNING WITH HUMAN FEEDBACK (RLHF)
The objective of RLHF is to align a pretrained language model with human preferences so that the
model can generate text that is as professional and readable as human writing. DPO (Rafailov et al.,

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

× R rounds

Server

Aggregated

Binary Selector

Response 1 Compare

Client 1

Prompts

Client 1

Preference

dataset

Binary

Selector

Pretrained

LM
Response 2

Unlabeled

Prompts

Response 1 Response 2

Selector

Preference

dataset

DPO

Reader

friendly

Binary

Selector

Product

Team

Pretrained

LM

Response 1 Compare

Client M

Prompts

Client M

Preference

dataset

Pretrained

LM
Response 2

Step 1: Clients’ Preference Data Creation Step 2: Federated Preference Selector Training

Client 1

Preference

dataset

Trains

Binary

Selector

Client M

Preference

dataset

Trains

Client 1

Client M

Step 3: LLM Fine-tuning with RLHF

Figure 2: An outline of the proposed FedBis, an RLHF method in federated learning.

2023) is one of the most effective ways to achieve the goal. There is a human-annotated dataset
D comprising multiple samples (x, y0, y1, i), where y0 and y1 are two completions under a given
instruction x, and i ∈ {0, 1} indicates that yi is the preferred completion out of the pair of y0 and
y1. Motivated by the Bradley-Terry model (Bradley & Terry, 1952) on the formulation of human
preference distrition p∗(yi ≻ y1−i|x), DPO aims to optimize the model θ starting from θ0 via

min
θ

E(x,y0,y1,i)∼D

[
LDPO (θ|x, y0, y1, i)

△
= − log σ

(
β log πθ(yi|x)

πθ0
(yi|x) − β log πθ(y1−i|x)

πθ0
(y1−i|x)

)]
. (2)

4 FEDBIS: A VANILLA AND FEASIBLE FRAMEWORK FOR ACHIEVING
FEDERATED RLHF

We aim to fine-tune an LLM using clients’ preference data, enabling it to generate reader-friendly
responses. Since preference data contain sensitive personal information, some clients may be hesitant
to share this information due to privacy concerns. Recently, companies have developed on-device
pretrained language models (e.g., Phi-3 (Abdin et al., 2024) and Qwen (Bai et al., 2023)), with the
latest iPhone release integrating this technology (Gunter et al., 2024). This on-device feature allows
clients to ask private and sensitive questions directly on their smartphones, ensuring that even the
server (i.e., LLM owner) cannot access the input prompts (Wu et al., 2024).

The proposed FedBis provides a simple yet effective solution through a three-step process to enable
model fine-tuning with clients’ preference data while respecting clients’ privacy, as depicted in Figure
2: In the first step, each client builds their own preference dataset, which is originated from the daily
queries (a.k.a. prompts or instructions) to a pretrained language model (LM), the model generated a
pair of responses to each query, and the client chooses the preferred one. After the construction of
the preference dataset, each client independently trains the selector, and the server aggregates the
selectors into a global one and broadcasts it to the clients. This communication process repeats for a
total of R times, and the clients keep the preference dataset unchanged during the training. Afterward,
we utilize the well-trained binary selector to enhance the performance of LLM. Specifically, we
assume the server holds a set of instructions, together with pairwise responses generated by an LLM.
Then, we build a preference dataset with the help of the binary selector and boost the LLM by means
of DPO (Rafailov et al., 2023). The rest highlights the key steps of these two phases, while Appendix
A offers a detailed description of the proposed FedBis.

Local Training in FL. Suppose client m ∈ [M] holds a set of pairwise data with the size of
nm, i.e., D̂m = {(xi, yi,w, yi,l)}i∈[nm], where xi is the prompt, yi,w is the preferred completion
out of the pair of yi,w and yi,l. We reorganize these data and build a preference dataset Dm to
be {(xi, yi,w, yi,l, 0), (xi, yi,l, yi,w, 1)|(xi, yi,w, yi,l) ∈ D̂m} for training, in which each contains
the prompt, a pair of completions and preference selection. Apparently, this dataset eliminates
the position effects, and we can train the selector as a classification task. Therefore, we utilize
cross-entropy (CE) loss ℓCE to optimize the selector and formulate the expected loss as

Fm(ϕ) = E(x,y0,y1,i)∼Dm
[ℓCE(i|ϕ;x, y0, y1)] . (3)

Generating synthetic preference data for DPO. Suppose the server holds a set of instructions D̂.
With the LLM θ0, we can generate multiple completions for an instruction x ∈ D̂, resulting in a set
of n completions (y0, . . . , yn−1) ∼ πθ0(y|x). For each instruction, we can form a total of

(
n
2

)
pairs

of completions. We then use the binary selector ϕR to choose the optimal completion for each pair

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

(yj , yl) where 0 ≤ j < l ≤ n − 1. The pair is labeled with i = 0 if the first logit output is greater
than the second, i.e., πϕR

(0|x, yj , yl) > πϕR
(1|x, yj , yl), or i = 1 otherwise. This process builds the

preference dataset Dgen.

Limitations. While the proposed FedBis effectively achieves RLHF in FL with low computational
costs, there are two key limitations that remain unsolved. The first limitation is preference hetero-
geneity. The proposed work effectively aggregates client preferences via clients’ preference models,
but it does not address the preference gap across clients when there is a huge difference in client
preferences and prompts. As a result, the clients optimize their local models for their own data instead
of a global objective. This leads to global aggregation diverging from the global optimum, which
lengthens the training time to obtain the desired performance (Karimireddy et al., 2020; Wu et al.,
2023). Another limitation is reward hacking. The proposed FedBis relies on training a single selector
and using it to fine-tune the LLM. This procedure introduces an adversarial dynamic where the model
"cheats" the selector into favoring certain responses without genuinely improving. Eventually, as the
LLM is trained across more iterations, its performance degrades significantly, making the approach
inefficient and unsustainable. In the coming section, we propose a new algorithm that is able to
address both limitations while maintaining low computational costs.

5 FEDBISCUIT: FEDBIS WITH CLUSTER-WISE AGGREGATION

In this section, we aim to address the issues of preference heterogeneity and reward hacking in FedBis.
To mitigate reward hacking, Eisenstein et al. (2023) and Coste et al. (2024) propose a promising
method that trains multiple reward models simultaneously. Aggregating outputs from several models
can lead to a more robust reward estimate. Additionally, recognizing that some clients may share
similar preferences, we utilize clustered FL (Sattler et al., 2020; Ghosh et al., 2020; Ma et al., 2023) to
group clients with common preferences for joint selector training. These two strategies complement
each other, motivating us to combine them into a novel algorithm, FedBiscuit, which addresses both
reward hacking and preference heterogeneity.

However, integrating these approaches is non-trivial, particularly when using existing clustered FL
algorithms. Current algorithms predetermine the number of models and partition clients into groups,
with each group training its own model. This one-to-one mapping assumes a fixed number of groups,
but in practice, predefining the number of groups is challenging, and some models may end up
untrained if no clients are assigned to them. If these untrained selectors are excluded, it could reduce
the complexity of reward hacking, making it easier for the LLM to "cheat" the selector by favoring
certain responses without genuine improvement. On the other hand, including untrained selectors
could misalign the LLM, leading to incorrect alignments. Therefore, there is a need for a sustainable
algorithm that ensures every selector contributes meaningfully to resisting reward hacking.

Problem Formulation. In this work, we consider training multiple binary selectors ϕ[U] which
independently decide on a better completion out of a pair. It is noted that U should be an odd number
because this guarantees one completion is preferred by more selectors. Moreover, to ensure that all
selectors are trained without bias towards a small specific group, we mandate that these selectors be
trained using evenly disjoint clusters of clients. Additionally, a client’s preference should align more
closely with those within the same cluster than with those in different clusters. To this end, we can
formulate the following objective:

min
ϕ[U]∈RU×d

F (ϕ[U])
△
=

∑
m∈[M]

pm

(
min
u∈[U]

Fm(ϕu)

)
(4)

s.t. max{|Mu|}u∈[U] −min{|Mu|}u∈[U] ≤ 1, (5)

where the function Fm follows the same definition of Equation (3). ϕu indicates the u-th binary
selector, and Mu means a set of clients using the u-th selector. By definition, ∪u∈[U]Mu = [M], and
∩u∈[U]Mu = ∅. Next we explore how the proposed FedBiscuit optimizes Equation (4) under the
constraint of Equation (5).

5.1 ALGORITHM DESIGN

Section 4 mentions that a client m ∈ [M] holds a preference dataset Dm. Before the model training,
client m splits her dataset into two disjoint sets, namely, a training set Dm,train and a validation set
Dm,val, where |Dm,train| >> |Dm,val|.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Algorithm 1 FedBiscuit
Input: local learning rate ηl, global learning rate ηs, local updates K, warm-up rounds T for each
binary selector, total communication rounds R, client regrouping interval τ , pretrained LLM ϕ̃.
Require: OPTIM(m,ϕ,K) fine-tunes model ϕ with the data of a client m ∈ [M] for K iterations
and returns an optimized model.
Require: CG(ϕ[U]) assigns each client m ∈ [M] to train one of the models ϕ[U] and returns a list
{Um}m∈[M] indicating that a client m should train the model ϕUm .

▷ Warm-up
1: for each u ∈ [U] do
2: Initialize the binary selector ϕu,0 = ϕ̃
3: for t = 0, 1, . . . , T − 1 do
4: Sample clients A ⊆ [M]
5: Send ϕu,t to clients m ∈ A
6: for m ∈ A in parallel do
7: ϕm

u,t,K = OPTIM(m,ϕu,t,K)
8: Send ϕm

u,t,K to the server
9: end for

10: ϕu,t+1 = M
A

∑
m∈A ϕm

u,t,K

11: end for
12: ϕu = ϕu,T

13: end for

▷ Clustered FL Training
14: Initialize ϕu,0 = ϕu for each u ∈ [U]
15: for r = 0, 1, . . . , R− 1 do
16: if r%τ == 0 then
17: {Um}m∈[M] = CG(ϕ[U],r)
18: end if
19: Sample clients A ⊆ [M]
20: Send ϕUm,r to clients m ∈ A
21: for m ∈ A in parallel do
22: ϕm

Um,r,K = OPTIM(m,ϕUm,r,K)
23: Send ϕm

Um,r,K to the server
24: end for
25: Calculate each ϕ[U],r+1 via Equation (6)
26: end for

The proposed FedBiscuit consists of two phases: 1) We train each selector for a couple of rounds so
that all U selectors have basic capacities in selecting the preferred completion, and 2) we divide the
clients into disjoint clusters of size U and train each binary selector with a specific cluster.

Phase 1: Warm-up. In the beginning, we initialize each binary selector ϕu(u ∈ [U]) with an
identical pretrained LLM ϕ̃. Subsequently, starting from u = 0, we train a selector ϕu for T
consecutive communication rounds following the steps of FedBis: In each communication round, the
server samples a subset of client A and broadcasts the selector ϕu to them. Each client m ∈ A then
locally trains the selector for K iterations using the dataset Dm,train. At the end of the communication
round, the server aggregates and updates the selector ϕu via Equation (8). After completing the
training of ϕu, the server initiates the training of the next selector ϕu+1 by repeating the above steps
until all selectors are trained.

The selectors are trained with different data distributions because the clients participating in each
training round are randomly selected. Consequently, all the selectors ϕ[U] have distinct model
parameters, leading to varied performance in terms of final logit output when given an instruction
and a pair of completions.

Phase 2: Clustered FL Training. After the first phase, we obtain U different selectors, denoted by
ϕ[U],0. Unlike FedBis, this phase includes an additional step called client grouping, which partitions
the clients into multiple disjoint clusters based on their preferences. In each communication round
r ∈ [R], FedBiscuit optimizes all the selectors ϕ[U],r using the following four steps:

Step 2.1: Client Grouping CG(ϕ[U],r). This step is executed every τ communication rounds, i.e.,
when r can be divided by τ , or τ |r. During this step, the server broadcasts all selectors ϕ[U],r to
all clients [M]. Then, a client m calculates the averaged loss for each selector ϕu,r using local
validation set via 1

|Dm,val|
∑

(x,y0,y1,i)∼Dm,val
[ℓCE(i|ϕu,r;x, y0, y1)]. The server thereby collects

all these losses and adopts a greedy clustering approach (Sattler et al., 2020; Ma et al., 2023) to assign
each client to the selector where they achieve the minimum loss. However, an obvious deficiency is
an imbalance where some selectors are chosen by many clients and others by few. It is noted that the
selectors trained with more clients achieve remarkable performance, while some may be overfitted to
a specific group of clients. Therefore, the greedy clustering approach negatively impacts the overall
performance when building a global preference dataset. To tackle the limitation, we propose to
balance the clusters using the following steps repeatedly until the clients are evenly distributed: (i)
Choose the cluster selected by the most clients, and (ii) If the cluster can accommodate n clients,

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

cap the cluster at n clients and reassign the rest to other clusters where they achieve suboptimal loss.
Finally, we obtain balanced and disjoint clusters. Let a client m train the Um-th selector ϕUm

for the
next τ rounds. After this client grouping step, FedBiscuit proceeds to the following three steps.

Step 2.2: Model Broadcast. Similar to FedBis, the server samples A clients from all clients [M],
denoted by A. For each selected client m ∈ A, the server transmits the selector ϕUm,r. This process
can be characterized by defining Au as the group of clients chosen to train the selector ϕu. This
ensures that ∪u∈[U]Au = A and ∩u∈[U]Au = ∅.

Step 2.3: Local Training. The client m ∈ A receives a binary selector ϕUm,r from the server and

trains the selector for K iterations via ϕm
Um,r,k+1 = ϕm

Um,r,k − η∇Fm

(
ϕm
Um,r,k

)
, k ∈ [K]. Finally,

let the updated local selector be ϕm
Um,r,K , and the client pushes it to the server.

Step 2.4: Global Aggregation. The server collects updated selectors from all participants A. Since
there are several binary selectors, the server updates each selector with a designated group of clients.
For instance, the aggregation rule for the selector u ∈ [U] follows

ϕu,r+1 =

(
1−

∑
m∈Au

pm

)
ϕu,r +

∑
m∈Au

pmϕm
u,r,K . (6)

It is noted that performance degradation occurs when a model is trained by clients with time-varying
sizes in FedAvg (Gu et al., 2021; Wang & Ji, 2023). In other words, the weighted average aggregation
strategy is no longer suitable for multi-selector aggregation due to the fluctuation in the number of
clients training a specific selector in each communication round. Therefore, FedBiscuit adopts a new
aggregation rule as formulated in Equation (6).

FedBiscuit finally produces a set of well-trained selectors ϕ[U],R and the subsequent objective is to
enhance LLM performance with the help of these selectors, as explored below.

Reinforcement-learning Fine-tuning with Multiple Selectors. We can leverage the methodology
described in Section A.2, and one of the key steps involves constructing a preference dataset incor-
porating multiple selectors. For this, we employ a strategy of majority voting. Given an instruction
x ∈ D̂ and a pair of generated completions (y0, y1), we assume a selector u ∈ [U] prefers yiu ,
where iu ∈ {0, 1}. Therefore, the pair is assigned a label i = argmax{iu}u∈[U], meaning that the
completion yi is favored by most of the clients.

5.2 DISCUSSION: INTEGRATION WITH LORA
As all binary selectors are LLM, training them may consume significant communication and compu-
tation overheads. Besides, multiple LLMs lead to considerable storage burdens shouldered by the
server. To reduce the costs, we adopt a parameter-efficient fine-tuning approach LoRA (Hu et al.,
2021), where all binary selectors share the same base model while using different adapters.

In comparison with FedBis, FedBiscuit requires extra costs, i.e., O(MU⌊R/τ⌋ · C), where C is the
communication cost of a selector. This is because FedBiscuit involves client grouping periodically,
unilaterally transferring all selectors from the server to the clients. Despite the extra costs, extensive
experiments demonstrate non-trivial improvement by comparing FedBiscuit with FedBis.

6 FEDERATED HUMAN PREFERENCE BENCHMARK

In this section, we describe the preparation of federated human preference datasets, while the next
section presents the experimental setup and quantitative analysis. We explore two open-ended text
generation tasks, i.e., summarization and question-answering, based on publicly available datasets.
Each task comprises two components: client preference data and unlabeled prompts. Below, we
outline the process of constructing a federated preference dataset. Detailed information on the datasets
is provided in Table 5 in Appendix B.

Summarization. Stiennon et al. (2020) introduces a summarization dataset that consists of Reddit
posts with human-written TL;DR (Völske et al., 2017). This dataset consists of two parts, one is a
pretrained dataset, while the other is a dataset with human preference. As suggested by Ouyang et al.
(2022), we ensure a post does not appear in both datasets. We assume the pretrained dataset is stored
on the server side, and 60% of data are reserved for supervised fine-tuning (SFT). The remaining

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

40% are used for the RLHF process to improve LLM performance and generate human-preferred
content. Since the human-preference dataset contains the worker ID, we partition the dataset based
on the worker ID so that the dataset can be partitioned into 53 workers.

Question-Answering (QA). We reconstruct the public dataset SHP, which comprises numerous
questions from Reddit posts and their corresponding user answers (Ethayarajh et al., 2022). The
preference indicator is based on the number of likes an answer receives. Following the training of
StreamSHP (Ethayarajh et al., 2022), we utilize the data with no more than 512 tokens. Given that
the dataset spans 18 domains, we partition the dataset using a Dirichlet distribution with a parameter
of 0.3, ensuring that no questions overlap between clients. In our experiment, we consider training
the binary selector with 200 clients, which is a common setting when evaluating the performance of
an FL algorithm (Jhunjhunwala et al., 2023). Figure 3 visualizes the data distribution on the selected
clients. For the RLHF process, we incorporate 2.6K Reddit questions and 44.6K SafeRLHF prompts
(Dai et al., 2023).

7 EXPERIMENTS

7.1 EXPERIMENTAL SETUP

Model and computation environment. We initialize the binary selector(s) using three pretrained
base models, i.e., Qwen-2-0.5B (Bai et al., 2023), Gemma-2B (Team et al., 2024), and LLaMA-2-
7B (Touvron et al., 2023), configuring the final layer to produce binary outputs "A" and "B" only.
We adopt Gemma-2B and LLaMA-2-7B models for the summarization and QA tasks, where both
models are fine-tuned on the Alpaca dataset (Taori et al., 2023). Our implementation is built upon
FederatedScope (Xie et al., 2023; Kuang et al., 2023). The experiments are conducted on machines
with one Nvidia A100 GPU card, Intel Xeon Platinum 8369B CPUs, and 256GB RAM.

Baselines. Since no prior work systematically enables RLHF in FL, we propose the following
baselines, which extend previous studies to fit the FL and RLHF objectives. In each case, we directly
optimize the pretrained model.

• FedAvg: Given that preference data on clients is pairwise, each client trains its local model to
improve completions based on specific instructions. To minimize training costs, we employ LoRA
for training and aggregation, following the approach in Sun et al. (2024).

• FedDPO: Clients train their local models using the DPO loss (as defined in Equation 2), and the
server aggregates these local models into a global model using a weighted average. This method,
incorporated in the OpenFedLLM benchmark (Ye et al., 2024), requires substantial computational
resources and results in long local training wall-clock times.

Evaluation. We evaluate summarization and QA tasks using different datasets and methodologies:

• Summarization task: We use a test dataset consisting of 6,553 samples, all sourced from the
TL;DR dataset and excluded from the training data. The model is tasked with generating summaries
for each sample. Since human-labeled summaries are available, we measure the win rate of the
model-generated summaries against the human ones using the Auto-J model (Li et al., 2023a).

• QA task: For question answering, we use AlpacaEval 2.0 (Li et al., 2023b; Dubois et al., 2024a;b)
to assess model performance on 805 instructions. The model’s responses are compared with those
of GPT-4, and the win rate is calculated based on evaluations conducted by GPT-4-turbo-20240409.

Implementation. In our experiments, we train the binary selector for 500 communication rounds.
In each round, we sample 5 clients for the summarization task and 10 for the QA task, and the selected
clients fine-tune the binary selector locally for 30 iterations. As for FedBiscuit, the warm-up phase
takes 50 communication rounds for each adapter, which is counted as part of 500 communication
rounds. After the training of binary selectors, we fine-tune the LLM for three epochs, and we store
the checkpoint when finishing one epoch of training. By default, the evaluation result reports the
best-saved checkpoints. Due to the limited space, the details related to the hyperparameters are
deferred to Appendix B.

7.2 QUANTITATIVE EVALUATION ON SUMMARIZATION TASK

Table 1 presents a comparative analysis of human-written and model-generated summaries, where the
win rate indicates the likelihood that a generated summary surpasses its human counterpart, evaluated
using the Auto-J metric. It is evident that both our proposed baseline and algorithm significantly

8

https://huggingface.co/mlabonne/Gemmalpaca-2B
https://huggingface.co/NEU-HAI/Llama-2-7b-alpaca-cleaned

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Binary Selector Methods Gemma-2B Win Rate
(# Wins / # Ties)

LLaMA-2-7B Win Rate
(# Wins / # Ties)

NA
Raw Model 67.27% (4408 / 28) 76.79% (5032 / 31)
FedAvg 28.66% (1878 / 10) 28.23% (1850 / 10)
FedDPO 49.03% (3213 / 23) 77.02% (5047 / 30)

Qwen-2
(0.5B)

FedBis 86.69% (5681 / 26) 89.63% (5874 / 38)
FedBiscuit (U = 3) 78.45% (5141 / 29) 83.29% (5458 / 48)
FedBiscuit (U = 5) 73.97% (4847 / 22) 82.04% (5376 / 37)

Gemma
(2B)

FedBis 77.34% (5068 / 39) 86.22% (5650 / 39)
FedBiscuit (U = 3) 83.81% (5492 / 43) 91.32% (5984 / 28)
FedBiscuit (U = 5) 83.12% (5447 / 33) 89.93% (5893 / 31)

LLaMA-2
(7B)

FedBis 82.56% (5410 / 28) 91.87% (6020 / 40)
FedBiscuit (U = 3) 81.90% (5367 / 41) 90.84% (5951 / 37)
FedBiscuit (U = 5) 79.31% (5197 / 41) 90.54% (5933 / 47)

Table 1: Performance under summarization task. Bold means the best result under the pretrained
model; Underline means the best result under a binary selector.

outperform the raw model and other baselines. For both base LLMs – Gemma-2B and LLaMA-2-
7B – all our methods demonstrate a performance improvement of at least 6% over the raw model,
underscoring the effectiveness of our approach irrespective of the binary selector used. Notably, all
baseline approaches exhibit a substantial decline in performance compared to the raw model, with a
decrease of at least 20% in the win rate measurement.

We offer a plausible explanation for the performance drop of FedDPO, thereby highlighting the
effectiveness of FedBis and FedBiscuit. Our proposed methods also incorporate DPO, differing
significantly from FedDPO in terms of data distribution. While FedDPO relies directly on client
preference datasets, our methods create a set of preference data comprising three components:
unlabeled prompts, a pair of responses generated by the base model for each prompt, and preference
selections simulated by the aggregated binary selector. Consequently, our generated responses align
more closely with model outputs, facilitating easier guidance for the model to refine its responses
into user-acceptable expressions. In contrast, FedDPO may confuse the model since it lacks outputs
similar to those in the client preference datasets, leaving the LLM unsure of how to enhance the
generated responses. An implicit assumption of DPO is that preference data should closely resemble
model outputs; however, our proposed method may not be bound by this assumption.

Performance analysis on various binary selectors. Table 1 presents the importance that a selector
trained with a proper method can significantly enhance the performance of base models (i.e., Gemma-
2B and LLaMA-2-7B). A powerful selector does not mean that it can significantly boost the base
model performance after alignment. For example, the smallest binary selector, Qwen-2, achieves a
win rate of 86.69% under the Gemma-2B model, performing much better than the other two types.
Different training methods on different binary selectors may lead to different effects. For instance,
training Qwen-2 and LLaMA-2 with FedBis is always better than that of FedBiscuit, while training
the Gemma selector with FedBiscuit (U = 3) would achieve the best performance.

7.3 QUANTITATIVE EVALUATION ON QA TASK

Table 2 shows that our methods, FedBis and FedBiscuit, consistently outperform the baseline ap-
proaches in terms of length-controlled win rate for both the Gemma-based model and the LLaMA-2
model. The baseline FedAvg performs worse than the Raw Model, with FedAvg showing a win rate
of only 1.88% for the Gemma-based model and 3.93% for the LLaMA-2 model, compared to the Raw
Model’s 2.40% and 4.80%, respectively. FedDPO offers a slight improvement over the Raw Model,
achieving a win rate of 3.28% for the Gemma-based model and 4.98% for the LLaMA-2 model, but
it remains inferior compared to our methods. Specifically, FedBis achieves win rates of up to 4.58%
for the Gemma-based model and 5.25% for the LLaMA-2 model, while FedBiscuit (U = 3) reaches
up to 4.14% and 5.63%, respectively. These results confirm that our methods provide significant
improvements over the baselines, enhancing the length-controlled win rates for both models.

Performance analysis on various unlabeled prompts. Table 2 also shows that the use of different
unlabeled prompts, such as Reddit posts and SafeRLHF, significantly affects the performance of
our methods. When using Reddit prompts, generating 2 or 4 completions leads to variations in win
rates. For example, with two completions, FedBiscuit (U = 5) achieves 3.98% for the Gemma-based
model and 5.42% for the LLaMA-2 model. However, increasing to four completions slightly shifts

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Unlabeled Prompts Methods Gemma-2B LC Win-rate (%) LLaMA-2-7B LC Win-rate (%)

NA
Raw Model 2.40 ± 0.16 4.80 ± 0.41
FedAvg 1.88 ± 0.12 3.93 ± 0.23
FedDPO 3.28 ± 0.23 4.98 ± 0.30

Reddit Posts
(2 completions)

FedBis 3.85 ± 0.25 5.06 ± 0.30
FedBiscuit (U = 3) 3.70 ± 0.24 5.04 ± 0.31
FedBiscuit (U = 5) 3.98 ± 0.24 5.42 ± 0.32

Reddit Posts
(4 completions)

FedBis 3.66 ± 0.25 5.08 ± 0.31
FedBiscuit (U = 3) 4.14 ± 0.27 5.34 ± 0.32
FedBiscuit (U = 5) 3.80 ± 0.27 4.81 ± 0.28

SafeRLHF
FedBis 4.58 ± 0.30 5.25 ± 0.32
FedBiscuit (U = 3) 4.03 ± 0.28 5.63 ± 0.34
FedBiscuit (U = 5) 3.85 ± 0.27 5.42 ± 0.35

Table 2: Performance under QA task using AlpacaEval 2.0. “LC” in the table means “length-control.”
FedBis and FedBiscuit adopt the reward model of Gemma-2B fine-tuned on SHP dataset. Bold
highlights the best result under each column, while Underline visualizes the best result under different
sources of unlabeled prompts.

the best performance for the Gemma model to FedBiscuit (U = 3) with 4.14%, while the win rate
for the LLaMA-2 model slightly drops to 5.34%. On the other hand, SafeRLHF prompts consistently
yield the best results overall, with FedBis achieving 4.58% for the Gemma model and FedBiscuit
(U = 3) reaching 5.63% for the LLaMA-2 model. These findings demonstrate that SafeRLHF is the
most effective prompt source, outperforming Reddit-based prompts.

7.4 ABLATION STUDY

Considering both tasks, the results reveal that the performance of FedBis and FedBiscuit varies
across datasets. In the summarization task (Table 1), FedBis outperforms FedBiscuit across most
binary selectors, achieving the highest win rates for both the Gemma-2B and LLaMA-2-7B models.
For instance, under the Qwen-2 selector, FedBis reaches 86.73% for Gemma-2B and 89.67% for
LLaMA-2-7B, while FedBiscuit (U = 3 and U = 5) are lower than those values. This is because
preference heterogeneity is not critical in the summarization task. As described in Stiennon et al.
(2020), the dataset is collected from a group of labelers who have a meeting from time to time to
ensure they reach a consensus. However, in the QA task (Table 2), FedBiscuit proves to be the
better method, particularly for the LLaMA-2-based model, where FedBiscuit (U = 3) achieves the
highest win rate at 5.63% under SafeRLHF prompts, outperforming FedBis and other configurations.
Although FedBis shows strength in some QA scenarios, such as the Gemma model with a 4.58%
win rate, FedBiscuit demonstrates superior overall performance in the QA task. Therefore, FedBis is
more effective in the summarization task, while FedBiscuit excels in the QA task.

8 CONCLUSION

In this work, we explore a feasible framework to employ federated learning technique to enable
large-scale user preference collection for RLHF without jeopardizing user privacy. Specifically, we
train a binary selector across different clients using their local preference datasets, and then use
the well-trained selector to align an LLM with human preferences. We propose two approaches
to enable selector training: FedBis and FedBiscuit. FedBis provides a framework to train a single
selector, while FedBiscuit ensembles multiple selectors to address preference heterogeneity and
reward hacking. We conduct empirical studies with the proposed federated human preference datasets
to validate our statements and demonstrate the superiority of FedBis and FedBiscuit when aligning
Gemma-2B and LLaMA-2-7B with human preference.

ETHICS STATEMENT

This paper investigates clients’ preferences using a publicly available dataset, ensuring that all data
sources are appropriately cited to maintain academic integrity and transparency. By leveraging this
public dataset, we avoid using private or sensitive client data, thus upholding ethical standards in data
usage and research practices. Furthermore, this work prioritizes the protection of clients’ privacy and
strictly avoids any disclosure of local data. When clients utilize their own data to fine-tune the model,
robust privacy measures are in place to ensure that no other clients can access or infer any information
related to their data. This approach not only safeguards individual privacy but also fosters trust and
security in the application of the model.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Marah Abdin, Sam Ade Jacobs, Ammar Ahmad Awan, Jyoti Aneja, Ahmed Awadallah, Hany
Awadalla, Nguyen Bach, Amit Bahree, Arash Bakhtiari, Harkirat Behl, et al. Phi-3 technical report:
A highly capable language model locally on your phone. arXiv preprint arXiv:2404.14219, 2024.

Amanda Askell, Yuntao Bai, Anna Chen, Dawn Drain, Deep Ganguli, Tom Henighan, Andy Jones,
Nicholas Joseph, Ben Mann, Nova DasSarma, et al. A general language assistant as a laboratory
for alignment. arXiv preprint arXiv:2112.00861, 2021.

Mohammad Gheshlaghi Azar, Zhaohan Daniel Guo, Bilal Piot, Remi Munos, Mark Rowland, Michal
Valko, and Daniele Calandriello. A general theoretical paradigm to understand learning from
human preferences. In International Conference on Artificial Intelligence and Statistics, pp.
4447–4455. PMLR, 2024.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge,
Yu Han, Fei Huang, et al. Qwen technical report. arXiv preprint arXiv:2309.16609, 2023.

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn Drain,
Stanislav Fort, Deep Ganguli, Tom Henighan, et al. Training a helpful and harmless assistant with
reinforcement learning from human feedback. arXiv preprint arXiv:2204.05862, 2022.

Ralph Allan Bradley and Milton E Terry. Rank analysis of incomplete block designs: I. the method
of paired comparisons. Biometrika, 39(3/4):324–345, 1952.

CCPA. California consumer privacy act (ccpa), 2023. URL https://oag.ca.gov/privacy/
ccpa.

Leshem Choshen, Lior Fox, Zohar Aizenbud, and Omri Abend. On the weaknesses of reinforcement
learning for neural machine translation. arXiv preprint arXiv:1907.01752, 2019.

Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep
reinforcement learning from human preferences. Advances in neural information processing
systems, 30, 2017.

Thomas Coste, Usman Anwar, Robert Kirk, and David Krueger. Reward model ensembles help
mitigate overoptimization. In The Twelfth International Conference on Learning Representations,
2024. URL https://openreview.net/forum?id=dcjtMYkpXx.

Josef Dai, Xuehai Pan, Ruiyang Sun, Jiaming Ji, Xinbo Xu, Mickel Liu, Yizhou Wang, and
Yaodong Yang. Safe rlhf: Safe reinforcement learning from human feedback. arXiv preprint
arXiv:2310.12773, 2023.

Hanze Dong, Wei Xiong, Deepanshu Goyal, Yihan Zhang, Winnie Chow, Rui Pan, Shizhe Diao,
Jipeng Zhang, Kashun Shum, and Tong Zhang. Raft: Reward ranked finetuning for generative
foundation model alignment. arXiv preprint arXiv:2304.06767, 2023.

Yann Dubois, Balázs Galambosi, Percy Liang, and Tatsunori B Hashimoto. Length-controlled
alpacaeval: A simple way to debias automatic evaluators. arXiv preprint arXiv:2404.04475, 2024a.

Yann Dubois, Chen Xuechen Li, Rohan Taori, Tianyi Zhang, Ishaan Gulrajani, Jimmy Ba, Carlos
Guestrin, Percy S Liang, and Tatsunori B Hashimoto. Alpacafarm: A simulation framework for
methods that learn from human feedback. Advances in Neural Information Processing Systems, 36,
2024b.

Jacob Eisenstein, Chirag Nagpal, Alekh Agarwal, Ahmad Beirami, Alex D’Amour, DJ Dvijotham,
Adam Fisch, Katherine Heller, Stephen Pfohl, Deepak Ramachandran, et al. Helping or herd-
ing? reward model ensembles mitigate but do not eliminate reward hacking. arXiv preprint
arXiv:2312.09244, 2023.

Logan Engstrom, Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Firdaus Janoos, Larry Rudolph,
and Aleksander Madry. Implementation matters in deep policy gradients: A case study on ppo and
trpo. arXiv preprint arXiv:2005.12729, 2020.

11

https://oag.ca.gov/privacy/ccpa
https://oag.ca.gov/privacy/ccpa
https://openreview.net/forum?id=dcjtMYkpXx

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Kawin Ethayarajh, Yejin Choi, and Swabha Swayamdipta. Understanding dataset difficulty with
V-usable information. In International Conference on Machine Learning, pp. 5988–6008. PMLR,
2022.

Kawin Ethayarajh, Winnie Xu, Niklas Muennighoff, Dan Jurafsky, and Douwe Kiela. Kto: Model
alignment as prospect theoretic optimization. arXiv preprint arXiv:2402.01306, 2024.

Deep Ganguli, Liane Lovitt, Jackson Kernion, Amanda Askell, Yuntao Bai, Saurav Kadavath, Ben
Mann, Ethan Perez, Nicholas Schiefer, Kamal Ndousse, et al. Red teaming language models to
reduce harms: Methods, scaling behaviors, and lessons learned. arXiv preprint arXiv:2209.07858,
2022.

GDPR. Regulation (EU) 2016/679 of the European Parliament and of the Council, 2016. URL
https://data.europa.eu/eli/reg/2016/679/oj.

Avishek Ghosh, Jichan Chung, Dong Yin, and Kannan Ramchandran. An efficient framework for
clustered federated learning. Advances in Neural Information Processing Systems, 33:19586–
19597, 2020.

Xinran Gu, Kaixuan Huang, Jingzhao Zhang, and Longbo Huang. Fast federated learning in the
presence of arbitrary device unavailability. Advances in Neural Information Processing Systems,
34:12052–12064, 2021.

Caglar Gulcehre, Tom Le Paine, Srivatsan Srinivasan, Ksenia Konyushkova, Lotte Weerts, Abhishek
Sharma, Aditya Siddhant, Alex Ahern, Miaosen Wang, Chenjie Gu, et al. Reinforced self-training
(rest) for language modeling. arXiv preprint arXiv:2308.08998, 2023.

Tom Gunter, Zirui Wang, Chong Wang, Ruoming Pang, Andy Narayanan, Aonan Zhang, Bowen
Zhang, Chen Chen, Chung-Cheng Chiu, David Qiu, et al. Apple intelligence foundation language
models. arXiv preprint arXiv:2407.21075, 2024.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021.

Divyansh Jhunjhunwala, Shiqiang Wang, and Gauri Joshi. Fedexp: Speeding up federated averaging
via extrapolation. arXiv preprint arXiv:2301.09604, 2023.

Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebastian Stich, and
Ananda Theertha Suresh. Scaffold: Stochastic controlled averaging for federated learning. In
International Conference on Machine Learning, pp. 5132–5143. PMLR, 2020.

Jakub Konečnỳ, H Brendan McMahan, Felix X Yu, Peter Richtárik, Ananda Theertha Suresh, and
Dave Bacon. Federated learning: Strategies for improving communication efficiency. arXiv
preprint arXiv:1610.05492, 2016.

Andreas Köpf, Yannic Kilcher, Dimitri von Rütte, Sotiris Anagnostidis, Zhi Rui Tam, Keith
Stevens, Abdullah Barhoum, Duc Nguyen, Oliver Stanley, Richárd Nagyfi, et al. Openassistant
conversations-democratizing large language model alignment. Advances in Neural Information
Processing Systems, 36, 2024.

Weirui Kuang, Bingchen Qian, Zitao Li, Daoyuan Chen, Dawei Gao, Xuchen Pan, Yuexiang Xie,
Yaliang Li, Bolin Ding, and Jingren Zhou. Federatedscope-llm: A comprehensive package for
fine-tuning large language models in federated learning. arXiv preprint arXiv:2309.00363, 2023.

Junlong Li, Shichao Sun, Weizhe Yuan, Run-Ze Fan, Hai Zhao, and Pengfei Liu. Generative judge
for evaluating alignment. arXiv preprint arXiv:2310.05470, 2023a.

Xiang Li, Kaixuan Huang, Wenhao Yang, Shusen Wang, and Zhihua Zhang. On the convergence of
fedavg on non-iid data. arXiv preprint arXiv:1907.02189, 2019.

Xuechen Li, Tianyi Zhang, Yann Dubois, Rohan Taori, Ishaan Gulrajani, Carlos Guestrin, Percy
Liang, and Tatsunori B. Hashimoto. Alpacaeval: An automatic evaluator of instruction-following
models. https://github.com/tatsu-lab/alpaca_eval, 2023b.

12

https://data.europa.eu/eli/reg/2016/679/oj
https://github.com/tatsu-lab/alpaca_eval

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Zihao Lin, Yan Sun, Yifan Shi, Xueqian Wang, Lifu Huang, Li Shen, and Dacheng Tao. Efficient
federated prompt tuning for black-box large pre-trained models. arXiv preprint arXiv:2310.03123,
2023.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

Jie Ma, Tianyi Zhou, Guodong Long, Jing Jiang, and Chengqi Zhang. Structured federated learning
through clustered additive modeling. Advances in Neural Information Processing Systems, 36,
2023.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial intelli-
gence and statistics, pp. 1273–1282. PMLR, 2017.

Eric J Michaud, Adam Gleave, and Stuart Russell. Understanding learned reward functions. arXiv
preprint arXiv:2012.05862, 2020.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. Advances in neural information processing systems, 35:27730–
27744, 2022.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and
Chelsea Finn. Direct preference optimization: Your language model is secretly a reward
model. In A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.),
Advances in Neural Information Processing Systems, volume 36, pp. 53728–53741. Curran Asso-
ciates, Inc., 2023. URL https://proceedings.neurips.cc/paper_files/paper/
2023/file/a85b405ed65c6477a4fe8302b5e06ce7-Paper-Conference.pdf.

Felix Sattler, Klaus-Robert Müller, and Wojciech Samek. Clustered federated learning: Model-
agnostic distributed multitask optimization under privacy constraints. IEEE transactions on neural
networks and learning systems, 32(8):3710–3722, 2020.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Joar Skalse, Nikolaus Howe, Dmitrii Krasheninnikov, and David Krueger. Defining and characterizing
reward gaming. Advances in Neural Information Processing Systems, 35:9460–9471, 2022.

Nisan Stiennon, Long Ouyang, Jeff Wu, Daniel M. Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford,
Dario Amodei, and Paul Christiano. Learning to summarize from human feedback. In NeurIPS,
2020.

Jingwei Sun, Ziyue Xu, Hongxu Yin, Dong Yang, Daguang Xu, Yiran Chen, and Holger R Roth.
Fedbpt: Efficient federated black-box prompt tuning for large language models. arXiv preprint
arXiv:2310.01467, 2023.

Youbang Sun, Zitao Li, Yaliang Li, and Bolin Ding. Improving lora in privacy-preserving federated
learning. arXiv preprint arXiv:2403.12313, 2024.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B. Hashimoto. Stanford alpaca: An instruction-following llama model.
https://github.com/tatsu-lab/stanford_alpaca, 2023.

Gemma Team, Thomas Mesnard, Cassidy Hardin, Robert Dadashi, Surya Bhupatiraju, Shreya Pathak,
Laurent Sifre, Morgane Rivière, Mihir Sanjay Kale, Juliette Love, et al. Gemma: Open models
based on gemini research and technology. arXiv preprint arXiv:2403.08295, 2024.

Jeremy Tien, Jerry Zhi-Yang He, Zackory Erickson, Anca D Dragan, and Daniel S Brown. Causal
confusion and reward misidentification in preference-based reward learning. arXiv preprint
arXiv:2204.06601, 2022.

13

https://proceedings.neurips.cc/paper_files/paper/2023/file/a85b405ed65c6477a4fe8302b5e06ce7-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/a85b405ed65c6477a4fe8302b5e06ce7-Paper-Conference.pdf
https://github.com/tatsu-lab/stanford_alpaca

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Michael Völske, Martin Potthast, Shahbaz Syed, and Benno Stein. Tl; dr: Mining reddit to learn
automatic summarization. In Proceedings of the Workshop on New Frontiers in Summarization, pp.
59–63, 2017.

Shiqiang Wang and Mingyue Ji. A lightweight method for tackling unknown participation probabili-
ties in federated averaging. arXiv preprint arXiv:2306.03401, 2023.

Feijie Wu, Song Guo, Zhihao Qu, Shiqi He, Ziming Liu, and Jing Gao. Anchor sampling for federated
learning with partial client participation. In International Conference on Machine Learning, pp.
37379–37416. PMLR, 2023.

Feijie Wu, Zitao Li, Yaliang Li, Bolin Ding, and Jing Gao. Fedbiot: Llm local fine-tuning in federated
learning without full model. In Proceedings of the 30th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, pp. 3345–3355, 2024.

Yuexiang Xie, Zhen Wang, Dawei Gao, Daoyuan Chen, Liuyi Yao, Weirui Kuang, Yaliang Li, Bolin
Ding, and Jingren Zhou. Federatedscope: A flexible federated learning platform for heterogeneity.
Proceedings of the VLDB Endowment, 16(5):1059–1072, 2023.

Haibo Yang, Minghong Fang, and Jia Liu. Achieving linear speedup with partial worker participation
in non-iid federated learning. In International Conference on Learning Representations, 2020.

Rui Ye, Wenhao Wang, Jingyi Chai, Dihan Li, Zexi Li, Yinda Xu, Yaxin Du, Yanfeng Wang, and
Siheng Chen. Openfedllm: Training large language models on decentralized private data via
federated learning. In Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery
and Data Mining, pp. 6137–6147, 2024.

Liping Yi, Han Yu, Gang Wang, and Xiaoguang Liu. Fedlora: Model-heterogeneous personalized
federated learning with lora tuning. arXiv preprint arXiv:2310.13283, 2023.

Jianyi Zhang, Saeed Vahidian, Martin Kuo, Chunyuan Li, Ruiyi Zhang, Guoyin Wang, and Yiran Chen.
Towards building the federated gpt: Federated instruction tuning. arXiv preprint arXiv:2305.05644,
2023a.

Jianyi Zhang, Saeed Vahidian, Martin Kuo, Chunyuan Li, Ruiyi Zhang, Tong Yu, Guoyin Wang,
and Yiran Chen. Towards building the federatedgpt: Federated instruction tuning. In ICASSP
2024-2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
pp. 6915–6919. IEEE, 2024.

Zhuo Zhang, Yuanhang Yang, Yong Dai, Qifan Wang, Yue Yu, Lizhen Qu, and Zenglin Xu. Fed-
petuning: When federated learning meets the parameter-efficient tuning methods of pre-trained
language models. In Annual Meeting of the Association of Computational Linguistics 2023, pp.
9963–9977. Association for Computational Linguistics (ACL), 2023b.

Yao Zhao, Rishabh Joshi, Tianqi Liu, Misha Khalman, Mohammad Saleh, and Peter J Liu. Slic-hf:
Sequence likelihood calibration with human feedback. arXiv preprint arXiv:2305.10425, 2023.

Daniel M Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B Brown, Alec Radford, Dario Amodei, Paul
Christiano, and Geoffrey Irving. Fine-tuning language models from human preferences. arXiv
preprint arXiv:1909.08593, 2019.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A A DETAILED IMPLEMENTATION OF FEDBIS

The objective of RLHF is to align a pretrained language model with human preferences. RLHF
comprises two phases: (i) preference modeling and (ii) reinforcement-learning fine-tuning. The first
phase aims to develop a model that simulates human preferences to select the superior options from
numerous pairwise completions. Subsequently, the second phase enhances the language model’s
performance by creating a preference dataset, enabling the model to generate responses preferred by
humans. The following describes the proposed FedBis that achieves RLHF in FL.

A.1 PREFERENCE MODELING

We consider a practical and efficient FL scenario where not all clients but only a sampled subsets
of clients participate in each communication round (Yang et al., 2020). Before the commencement
of FL training, we initialize the binary selector with a pretrained LLM such as LLaMA-2 (Touvron
et al., 2023), and set the hyperparameters.

An FL algorithm requires multiple communication rounds and consists of three phases in each round,
i.e., model broadcast, local training, and global aggregation. Following this paradigm, we design
FedBis and optimize the selector ϕ, i.e., in the communication round r ∈ [R], as discussed as follows.

Step 1: Model Broadcast. The server uniformly samples A clients without replacement, denoted
by A. Let the selector be ϕr in the r-th communication round, and the server broadcasts it to the
sampled clients.

Step 2: Local Training. At this step, client m ∈ A optimizes the selector based on local preference
data. First, the client initializes the local selector ϕm

r,0 with the global selector ϕr received from the
server. Subsequently, the client trains the selector for K iterations, where the update rule between
consecutive iterations follows:

ϕm
r,k+1 = ϕm

r,k − η∇Fm(ϕm
r,k), k ∈ [K] (7)

where the gradient ∇Fm(ϕm
r,k) is approximated using a data batch sampled from the local preference

dataset Dmand can incorporate optimizers such as AdamW (Loshchilov & Hutter, 2017). Finally, the
client m transmits the updated local selector ϕm

r,K back to the server.

Step 3: Global Aggregation. After receiving the local selectors from the sampled clients A, the
server updates the global selector:

ϕr+1 =
M

A

∑
m∈A

pmϕm
r,K . (8)

This aggregation method, based on Li et al. (2019) where the clients are uniformly sampled to train a
global model, ensures consistency with Problem (1) in mathematical expectation.

After R communication rounds of training, FedBis outputs a binary selector ϕR that reflects the
overall preferences of all clients. The selector can then be used to enhance the performance of the
LLM, as discussed in the next section.

A.2 REINFORCEMENT-LEARNING FINE-TUNING

The reinforcement-learning fine-tuning takes place on the server and includes two phases: 1) a
preference dataset is created with a pretrained LLM θ0 and a well-trained selector ϕR from FedBis.
2) LLM is optimized according to the objective defined in Equation (2) with the generated dataset.

Step 1: Preference Dataset Generation. Suppose the server holds a set of instructions D̂. With
the LLM θ0, we can generate multiple completions for an instruction x ∈ D̂, resulting in a set of
n completions (y0, . . . , yn−1) ∼ πθ0(y|x). For each instruction, we can form a total of

(
n
2

)
pairs

of completions. We then use the binary selector ϕR to choose the optimal completion for each pair
(yj , yl) where 0 ≤ j < l ≤ n − 1. The pair is labeled with i = 0 if the first logit output is greater
than the second, i.e., πϕR

(0|x, yj , yl) > πϕR
(1|x, yj , yl), or i = 1 otherwise. This process builds the

preference dataset Dgen.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Step 2: LLM Fine-tuning. With the constructed preference dataset Dgen, we evolve the LLM to
align with clients’ preferences. Specifically, in the t-th training round, where t ∈ {0, 1, . . . }, we
sample a data batch (x, y0, y1, i) from Dgen, and update the LLM using the following rule:

θt+1 = θt − η∇LDPO (θt|x, y0, y1, i) , (9)
where η is the learning rate. The gradient computation ∇LDPO is given by Rafailov et al. (2023).
In a nutshell, we distill the binary selector’s preferences into the LLM, allowing it to function as a
binary selector itself implicitly.

B IMPLEMENTATION DETAILS AND HYPERPARAMETERS

In this section, we include various settings, such as the prompt and the hyperparameters.

B.1 HYPERPARAMETER SETTINGS

In our work, we fine-tune all models using LoRA, which is consistently set to rank 8, α = 16, and
the dropout rate 0.05. For the generation, we apply these parameters:

• If it is required to generate multiple completions, then we set the temperature to 0.7. We set the
maximum new tokens for 80 under the summarization task and 300 for QA tasks.

• If it is required to generate a single completion, then we adopt greedy search by setting the
temperature to 0.0.

In the following part, we show the hyperparameter setting for different tasks:

Selector Training RLFT
Participation Rate 5/53 -
Local Iterations 30 -
Batch Size 32 32
Rounds 500 5 epochs
Optimizer AdamW RMSprop
Hyperparameters (0.9, 0.95) -
Learning rate 1e− 5 1e− 6

Table 3: Hyperparameter Settings for the Sum-
marization Task

Selector Training RLFT
Participation Rate 10/200 -
Local Iterations 30 -
Batch Size 32 32
Rounds 500 5 epochs
Optimizer AdamW RMSprop
Hyperparameters (0.9, 0.95) –
Learning rate 1e− 5 1e− 6

Table 4: Hyperparameter Settings for the QA
Task

B.2 DATASET DETAILS

In Section 6, we discuss how to partition the dataset for two tasks, namely, summarization and QA.
Table 5 comprehensively presents the dataset details of both tasks, while Figure 3 visualizes the data
distribution of the selected clients.

Task Preference
Dataset

preference
samples # clients Partition

Rules Max. Min. Std. Unlabelled
Dataset

unlabelled
prompts

Summarization TL;DR
comparison 92858 53 Worker ID 12985 1 2284.33 Open-AI

TL;DR 42782

Question Answering SHP 260814 200 Dirichlet(0.3)
on categories 4393 260 832.39

SHP Test 4293
SafeRLHF 44578

Table 5: Dataset details for federated human preference benchmark

Special Setting for FedBiscuit. For the above two tasks, we ensemble three binary selectors (i.e.,
LoRAs). In the warmup round, we train the selector for 50 rounds under an FL framework. FedBiscuit
performs regrouping every 50 rounds in the summarization task, while regrouping every 100 rounds
in the QA task.

B.3 MORE EXPERIMENTS

Comparison between two different model sizes. Table 6 compares the performance between
two Qwen-2 models as the selectors with different sizes (i.e., 0.5B and 1.5B) when using them to
fine-tune a Gemma-2B model for the summarization task. These results show that while larger binary
selectors (e.g., Qwen-2-1.5B) sometimes provide slight performance improvements, smaller selectors
like Qwen-2-0.5B remain competitive, particularly when applying FedBis. These findings suggest
that both model type and size influence the selector’s effectiveness, and they need to be carefully
balanced based on task requirements and resource constraints.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

ask
aca

de
mia

ask
an

thr
op

olo
gy

ask
ba

kin
g

ask
car

gu
ys

ask
cul

ina
ry

ask
do

cs

ask
en

gin
ee

rs

ask
his

tor
ian

s
ask

hr

ask
ph

ilos
op

hy

ask
ph

ysi
cs

ask
sci

en
ce

ask
sci

en
cef

ict
ion

ask
soc

ials
cie

nce
ask

ve
t

cha
ng

em
yvi

ew

exp
lain

like
im

fiv
e

leg
ala

dv
ice

19

39

59

79

99

119

139

159

179

199

Cl
ie

nt
 ID

Figure 3: Data distribution across different question domains on the selected clients.

Methods Win Rate on Qwen-2 (0.5B)
(# Wins / # Ties)

Win Rate on Qwen-2 (1.5B)
(# Wins / # Ties)

FedBis 86.69% (5681 / 26) 82.45% (5401 / 34)
FedBiscuit (U = 3) 78.45% (5141 / 29) 80.18% (5254 / 29)
FedBiscuit (U = 5) 73.97% (4847 / 22) 76.22% (4995 / 43)

Table 6: Performance using Gemma-2B to summarize a Reddit post (i.e., summarization task). Bold
means the best result under the selector.

B.4 INSTRUCTION TUNING PROMPT

The proposed work follows a previous study (Zhang et al., 2024) to fine-tune the model following a
given prompt template. This is also known as instruction tuning. The prompt template is different
between tasks and between the selector and base model. As a result, we provide the prompts in Figure
4 for detailed study.

C SAMPLE DIALOGS

We provide sample dialogs for our methods, FedBiscuit and FedBis, compared against the baselines
FedDPO, FedAvg, and the raw model, highlighting their performance in summarization and question-
answering tasks. Our methods consistently deliver superior results, as demonstrated by the provided
samples.

FedBiscuit generates precise and well-organized summaries, making it particularly effective in
distilling complex information into clear and actionable insights. FedBis, while maintaining a similar
level of clarity, offers more nuanced and in-depth responses, making it versatile for a wider range of
queries. In contrast, the baseline models—FedDPO, FedAvg, and the raw model—tend to produce
less coherent responses. FedDPO sometimes lacks structure, FedAvg oversimplifies the content, and
the raw model can miss critical details, leading to less accurate results.

These samples provide clear evidence that FedBiscuit and FedBis offer better summarization and
question-answering performance by consistently striking the right balance between conciseness,
accuracy, and detail, proving to be more reliable and contextually appropriate than the baselines.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Prompts template of LLM generation for summarization task.

Below is an instruction that describes a task, paired with an input that provides further context. Write a
response that appropriately completes the request.

Instruction:
Summarize the following Reddit post in a paragraph of 50 words or less.

Input:
SUBREDDIT: r/{subreddit}
TITLE: {title}
POST: {post}

Response:

Prompt template when training a binary selector for summarization task.

Below is a forum post followed by two summaries. Pick a more precise and concise one that summarizes
the most important points in the given forum post, without including unimportant or irrelevant details.
State your choice with a single capital letter, i.e., “A” if SUMMARY A is better, “B” if SUMMARY B is better.

SUBREDDIT: r/{subreddit}
TITLE: {title}
POST: {post}
SUMMARY A: {output_A}
SUMMARY B: {output_B}
YOUR CHOICE:

Prompts template of LLM generation for QA task with an additional input.

Below is an instruction that describes a task, paired with an input that provides further context. Write a
response that appropriately completes the request.

Instruction:
{instruction}

Input:
{input}

Response:

Prompts template of LLM generation for QA task without an additional input.

Below is an instruction that describes a task. Write a response that appropriately completes the request.

Instruction:
{instruction}

Response:

Prompt template when training a binary selector for QA task with SHP dataset.

Below is a query followed by two responses. Pick a helpful response that is precise, concise, and casual.
State your choice with a single capital letter, i.e., “A” if RESPONSE A is better, “B” if RESPONSE B is better.

QUERY: {instruction}
RESPONSE A: {output_A}
RESPONSE B: {output_B}
YOUR CHOICE:

Figure 4: Prompt Templates.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

User Input

Give me a brief scenario of a persona that would search this information and find this content helpful: {NSW
Residential Building Contract for Small Works over $20,000 Designed for residential building work which is
not complex over $20,000. Suitable for smaller alteration and renovation projects. Small Works Contracts
(Form 10A) Pricing structure Fixed price Value range Under $7,500 Use for Minor residential alterations
and additions work Includes Succinct, plain-language conditions suitable for very small, low-risk projects in
place of a quotation}

FedBiscuit
Imagine you are a homeowner who wants to make some changes to your home, but you don’t want to spend
a lot of money on a major renovation. You come across a small works contract that is designed for residential
building work that is not complex and has a value range of under $7,500. This contract is suitable for smaller
alteration and renovation projects. It is a fixed price contract, meaning the price is set and there are no hidden
costs or additional fees.
The contract is written in plain language, making it easy to understand and use. It includes succinct conditions
that are suitable for very small, low-risk projects. This means that if something goes wrong, you can easily
resolve the issue and the contract will protect you.
Overall, this small works contract for residential building work is a great option for homeowners who want
to make some changes to their home without spending a lot of money. It is a simple, straightforward solution
that provides peace of mind and protection for your project.

FedBis
Imagine you are a homeowner who wants to make some changes to your home, but you don’t want to spend
a lot of money on a major renovation. You come across a small works contract that is designed for residential
building work that is not complex and has a value range of under $7,500. This contract is suitable for smaller
alteration and renovation projects. It is a fixed price contract, meaning the price is set and there are no hidden
costs or additional fees.
The contract is written in plain language, making it easy to understand and use. It includes succinct conditions,
which are suitable for very small, low-risk projects. The contract is intended for residential work, meaning it
is not suitable for larger, more complex projects.
Overall, this small works contract for residential building work is a cost-effective and straightforward option
for making small changes to your home without breaking the bank.

FedDPO
A persona that would find this information helpful is a homeowner who is planning to make some minor
changes to their home, such as adding a new room or making some renovations. They are looking for a
simple and straightforward contract that outlines the terms and conditions of the work, with a fixed price
and a value range of under $7,500. They want to ensure that the contract is suitable for their small, low-risk
project and that it is concise and easy to understand.

FedAvg

I’m not sure if this is helpful, but I’m a lawyer and I’ve been looking for a similar contract for a while now.
I’ve found a few, but they’re not quite what I’m looking for.

Raw Model
A persona that would search this information and find it helpful is a small residential building contractor who
is looking to complete a small works project on their home. They are looking for a fixed price contract that
is suitable for their project, which is not complex and will not exceed $20,000. They want a contract that
is simple and easy to understand, with concise conditions that outline the scope of work and the expected
timeline. They are looking for a contract that is suitable for small, low-risk projects, and they want to avoid
the need for a quotation.

Figure 5: Gemma QA Sample.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

User Input

Hi, I have some falafel, but no tahini to put on them. Can you give me a recipe for making tahini?

FedBiscuit
Sure, here is a recipe for making tahini at home:

Ingredients:
- 1 cup of sesame seeds
- 2 tablespoons of water
- 2 tablespoons of honey
- 2 tablespoons of lemon juice

Instructions:
1. Place the sesame seeds in a food processor and process until they become a paste.
2. Add the water, honey, and lemon juice and process until the mixture is smooth.
3. Taste and adjust the seasoning if necessary.
4. Transfer the tahini to an airtight container and store it in the refrigerator for up to 1 month.

FedBis
Sure, here is a recipe for making tahini at home:

Ingredients:
- 1 cup of sesame seeds
- 2 tablespoons of water
- 2 tablespoons of honey
- 2 tablespoons of lemon juice
- 1 teaspoon of garlic
- 1/2 teaspoon of salt

Instructions:
1. Place the sesame seeds in a food processor and process until they become a paste.
2. Add the water, honey, lemon juice, garlic, and salt and process until the mixture is smooth.
3. Taste and adjust the seasoning if necessary.
4. Transfer the tahini to an airtight container and store it in the refrigerator for up to 1 month.

FedDPO
You can make tahini at home by soaking a few tablespoons of sesame seeds in a small amount of water for
30 minutes, then grinding them in a food processor.
Add a tablespoon of the resulting paste to your falafel to give them a delicious, nutty flavor.

FedAvg

I’ve been making tahini with a blender.
I put a cup of sesame seeds in a blender, add a cup of water, and blend until smooth.
I then strain the mixture through a cheesecloth-lined strainer.
I’ve been using the tahini for a few weeks now and it’s been great.

Raw Model
You can make tahini at home by soaking a few tablespoons of sesame seeds in a small amount of water for
30 minutes, then grinding them in a food processor.
Add a tablespoon of the resulting paste to your falafel to give them a nutty flavor.

Figure 6: Llama QA Sample.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Reddit Post: What is your most memorable act of kindness and why?

Random or otherwise.
I was walking to school one morning when I was about 15 when I heard a voice call out "Hello? Excuse me?
Young man?".
I turned and saw a frail old man who must have been in his 90s standing in the doorway of his house.
I walked over and he asked if I could help him with something. I said I would help, so I followed him to a
step-ladder in his kitchen.
He said that he needed to change the bulb but he couldn’t get up the ladder.
After I changed the bulb, he said that he’d give me something for helping out.
He reached for a small tray of change on his kitchen table and picked out the only 50p coin in his tray of 1p
and 2p coins.
I told him he didn’t have to give me anything but he said that it was only right to reward helping out an old
man.

FedBiscuit
A Reddit user recounts a heartwarming act of kindness where they helped an elderly man change a lightbulb
in his kitchen.
The stranger gave them a 50p coin as a reward for their help.
The act of kindness was memorable because it brought a smile to the elderly man’s face and showed that
even in their old age, people can still do good deeds for others.

FedBis
A Reddit user recounts a heartwarming act of kindness where they helped an elderly man change a lightbulb
in his kitchen. The stranger gave them a 50p coin as a reward for their help. The act of kindness was
memorable because it brought a smile to the elderly man’s face and showed that even in their old age, people
can still do good deeds for others.

FedDPO
A Reddit user recounts a heartwarming story of a 90-year-old man who needed help changing a lightbulb in
his kitchen.
The user, who was 15 at the time, heard the man’s plea for help and went to his aid. The man gave the user

FedAvg

Old man in his 90s needed help changing a bulb. I helped him and he gave me a 50p coin.

Raw Model
A Reddit user recounts a heartwarming story of a stranger who helped an elderly man change a lightbulb in
his kitchen.
The stranger, who was walking to school at 15, heard a voice call out for help and followed the old man to
his house.
He changed the lightbulb and the old man gave him a 50p coin as a reward.
The stranger didn’t have

Figure 7: Gemma Summarization Sample.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Reddit Post: TIFU by locking myself out of my room.

It all started with a cultural tour. Being active duty military and stationed overseas in Japan we were voluntold
to partake in a tour of the local area. Fun and dandy right?
I was ecstatic about the free tour of the local area. Except when I woke up five minutes before the tour starts.
Luckily the meeting area was a Starbucks just outside of my room.
Que the rushing, the frantic panic to dress up, and get down in time. I left my ID which is also conveniently
my room key. Two more mistakes. (Straying away from the story, the military is all about being on time and
integrity. Hence "excellence in all we do".)
Realizing I fucked up bad, I told the host that I had left my REQUIRED ID in my room, which is my room
key locking myself out.
I couldn’t go on the tour and now I’m stuck in the Starbucks waiting until one of my supervisors picks me up
and lets me into my room. I’m expecting more than just a little scolding, paperwork even.

FedBiscuit
The poster was locked out of their room due to leaving their ID, which was also their room key, in their rush
to make it on time for a cultural tour.
They are now stuck in a Starbucks waiting for someone to pick them up and let them into their room.
They expect to receive a scolding and possibly even paperwork for the mistake.

FedBis
While on a cultural tour in Japan, the poster locked themselves out of their room, leading to them being stuck
in a Starbucks and expecting a scolding from their supervisors.

FedDPO
While on a cultural tour in Japan, the poster was locked out of their room due to leaving their ID and room
key in the room. They are now stuck in a Starbucks waiting for a supervisor to pick them up and let them
into their room. They expect to receive a scolding and possibly paperwork for the mistake.

FedAvg

I locked myself out of my room and now I’m stuck in Starbucks waiting for a supervisor to pick me up and
let me into my room.

Raw Model
While on a cultural tour in Japan, the poster was locked out of their room due to leaving their ID and room
key in the room.
They were stuck in a Starbucks until one of their supervisors picked them up and let them into their room.
They expect to receive a scolding and possibly paperwork for the mistake.

Figure 8: Llama Summarization Sample.

22

	Introduction
	Related Work
	Preliminary
	Federated Learning (FL)
	Reinforcement Learning with Human Feedback (RLHF)

	FedBis: A Vanilla and Feasible Framework for Achieving Federated RLHF
	FedBiscuit: FedBis with Cluster-wise Aggregation
	Algorithm Design
	Discussion: Integration with LoRA

	Federated Human Preference Benchmark
	Experiments
	Experimental Setup
	Quantitative Evaluation on Summarization Task
	Quantitative Evaluation on QA Task
	Ablation Study

	Conclusion
	A Detailed Implementation of FedBis
	Preference Modeling
	Reinforcement-learning Fine-tuning

	Implementation Details and Hyperparameters
	Hyperparameter Settings
	Dataset Details
	More Experiments
	Instruction Tuning Prompt

	Sample Dialogs

