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ABSTRACT

Reinforcement learning with human feedback (RLHF) fine-tunes a pretrained
large language model (LLM) using user preference data, enabling it to generate
content aligned with human preferences. However, due to privacy concerns, users
may be reluctant to share sensitive preference data. To address this, we propose
utilizing Federated Learning (FL) techniques, allowing large-scale preference
collection from diverse real-world users without requiring them to transmit data
to a central server. Our federated RLHF methods (i.e., FedBis and FedBiscuit)
encode each client’s preferences into binary selectors and aggregate them to capture
common preferences. In particular, FedBiscuit overcomes key challenges, such
as preference heterogeneity and reward hacking, through innovative solutions like
grouping clients with similar preferences to reduce heterogeneity and using multiple
binary selectors to enhance LLM output quality. To evaluate the performance of
the proposed methods, we establish the first federated RLHF benchmark with
a heterogeneous human preference dataset. Experimental results show that by
integrating the LLM with aggregated client preferences, FedBis and FedBiscuit
significantly enhance the professionalism and readability of the generated content.

1 INTRODUCTION

Large language models (LLMs) exhibit broad knowledge coverage as they are pretrained on a large
corpus. To elevate the quality of their generated content to match the professionalism and readability
of human writing, a common approach is to fine-tune these models using reinforcement learning
with human feedback (RLHF) (Ziegler et al., 2019; Christiano et al., 2017; Ouyang et al., 2022).
This process relies on preference datasets, which are constructed through two main methods: human
evaluation (Bai et al., 2022; Ganguli et al., 2022; Stiennon et al., 2020) and ChatGPT-based ranking
(Dubois et al., 2024b). In the human-effort approach, a set of instructions (a.k.a. prompts or user
queries) is paired with multiple model completions (a.k.a. generated responses), and a team of
labelers ranks completions of each instruction from best to worst. In the ChatGPT-based method, the
dataset is developed by feeding ChatGPT with multiple inputs encompassing an instruction and a
pair of completions, where it selects the superior completion for each input. As LLMs are deployed
to serve diverse users, there could be a gap between the preferences of real-world users and those
of lablers/ChatGPT, hindering the LLM’s ability to generate responses that align with the users’
preferences. Therefore, there is a need for a preference dataset that accurately reflects real world
users’ preferences in order to enhance the ability of LLM in content generation.
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Figure 1: Comparison between standard
and federated RLHF

One straightforward approach to meeting this need is to
directly collect preference data from a large number of real-
world users and build a comprehensive preference dataset,
which can be used to fine-tune an LLM on a central server.
This strategy has been implemented in recent projects
like OASST (Köpf et al., 2024). However, this approach
is often impractical because it involves collecting LLM
users’ inputs and preferences – both highly private and
sensitive (shown in the left part of Figure 1). Most users
are unwilling to share their data, and such practices may
also violate regulations like the GDPR (2016) and CCPA
(2023), which prohibit the use of users’ private data for
model training without explicit consent.
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To address privacy concerns, we propose utilizing Federated Learning (FL) techniques to enable
large-scale preference collection from diverse real-world users without requiring them to transmit
their preference data to a central server. In our design, we adopt FedAvg, a well-established FL
algorithm (Konečnỳ et al., 2016; McMahan et al., 2017), to learn user preferences without directly
collecting their data. In line with the reward model training used in RLHF (Stiennon et al., 2020;
Ouyang et al., 2022; Rafailov et al., 2023), each LLM user works as a FL client and locally trains a
reward model that can evaluate the quality of model completions. The server then aggregates these
client-trained reward models into a global model. While this approach appears effective, we observe
the following two limitations during training:

• Excessive Computation Overhead: Typically, the reward model is a regression model designed
to output a scalar value that represents the quality of a model completion (Stiennon et al., 2020).
Its optimization is based on comparing reward differences between preferred and dispreferred
completions—preferred completions should receive higher rewards. However, during optimization,
each data sample requires the retention of two computation graphs (one for the preferred and one
for the dispreferred completion) throughout the forward and backward passes. This results in
significant computational overhead and heavy GPU demands.

• Preference Heterogeneity and Reward Hacking: Client preferences are heterogeneous, as
both instructions and preferences vary across clients. As a result, each client tends to train their
reward model toward a local minimum, which deviates from the global optimum, leading to longer
convergence times compared to centralized training. Moreover, fine-tuning the pretrained model
using the reward model can lead to overfitting, where the proxy reward (the reward model’s output)
improves while the actual performance worsens. This phenomenon, known as reward hacking or
reward overfitting, has been discovered in several studies (Askell et al., 2021; Michaud et al., 2020;
Tien et al., 2022; Skalse et al., 2022).

In this paper, we propose to address these two limitations and propose effective and computationally
efficient methods for preference collection and subsequent fine-tuning. We start with a solution
that addresses computation costs. The key idea is to train a binary selector that identifies the
superior response between two model completions. Compared with traditional reward model training,
the binary selector requires significantly less computation. Casting binary selector training into a
federated learning setting, we develop a federated binary selector training (FedBis) framework, as
depicted in the right part of Figure 1. The aggregated binary selector captures the common preferences
of a large group of users, and thus can simulate a comprehensive preference dataset, facilitating
RLHF approaches (e.g., DPO (Rafailov et al., 2023)) to fine-tune the LLM without the need for the
real client preference data.

To further address the performance deterioration due to preference heterogeneity and reward hacking,
we propose a method named FedBis with cluster-wise aggregation (FedBiscuit). This approach
ensembles multiple binary selectors, each trained by clients with similar preferences. Since privacy
concerns prevent the explicit sharing of client data, the server intermittently collects the training loss
of all binary selectors on the clients. Using this data, clients are grouped into disjoint clusters, and
when comparing two completions, the one favored by the majority of selectors is deemed superior.
This method has two main advantages: (1) Clients with similar preferences collaboratively train a
binary selector, reducing data heterogeneity and improving performance stability, and (2) Reward
hacking is mitigated by employing multiple binary selectors, as it becomes difficult for the LLM to
generate content that satisfies all binary selectors without making genuine improvements.

Contributions. In this paper, our contributions are highlighted as follows:

• To the best of our knowledge, this is the first work to employ federated learning technique to
enable large-scale user preference collection for RLHF without jeopardizing user privacy. Our
proposed federated RLHF model (i.e., FedBis) encodes each client’s preference information into a
binary selector and aggregates all clients’ binary selectors to capture their common preferences. By
aligning the LLM with the aggregated client preference, we can improve the professionalism and
readability of LLM’s generated content.

• We identify the inherent challenges of federated RLHF, such as preference heterogeneity and
reward hacking, and extend FedBis into FedBiscuit with innovative solutions to address these
challenges, including grouping the binary selectors of clients with similar preferences to reduce
data heterogeneity and employing multiple binary selectors to force the LLM to improve the quality
of its generated content.
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• We conduct extensive experiments to evaluate the performance of the proposed FedBis and
FedBiscuit. Since no prior work has addressed RLHF in a federated learning setting, we es-
tablish the first FL benchmark by creating a heterogeneous human preference dataset. As expected,
both FedBis and FedBiscuit show significant performance improvements over the base models,
Gemma and LLaMA.

2 RELATED WORK

Federated Fine-Tuning for LLM. Recent studies have increasingly focused on fine-tuning large
language models (LLMs) using federated datasets (Sun et al., 2024; Ye et al., 2024; Zhang et al.,
2023a; Yi et al., 2023; Zhang et al., 2023b). However, these approaches often suffer from high
computation and communication costs due to the necessity of training and synchronizing the model
with clients. To mitigate these issues, lightweight methods such as black-box fine-tuning (Sun et al.,
2023; Lin et al., 2023) and offsite-tuning (Wu et al., 2024; Kuang et al., 2023) have emerged. Despite
their advancements, these methods primarily focus on fine-tuning LLMs for specific downstream
tasks, neglecting user preferences in the generated responses. A recent benchmark, OpenFedLLM (Ye
et al., 2024), introduces FedDPO, which allows federated clients to optimize their local LLMs using
DPO loss. While this approach can potentially align LLMs with human preferences, it faces three
key challenges: excessive computational overhead, preference heterogeneity, and the risk of reward
hacking. To address these limitations, our work aims to enable LLMs alignment with a feasible and
sustainable training framework in FL.

Reinforcement Learning with Human Feedback (RLHF). RLHF typically involves supervised
fine-tuning, reward modeling, and reward optimization, initially proposed by Christiano et al. (2017).
Proximal Policy Optimization (PPO) (Schulman et al., 2017) is a common RLHF algorithm, yet it
struggles with instability, inefficiency, and high resource demands (Choshen et al., 2019; Engstrom
et al., 2020). These challenges have led to the development of alternative methods, such as Direct
Preference Optimization (DPO) (Rafailov et al., 2023) and others (Dong et al., 2023; Zhao et al.,
2023; Azar et al., 2024; Ethayarajh et al., 2024; Gulcehre et al., 2023), which offer more stable and
efficient solutions. However, these methods typically operate within a centralized training framework,
where the LLM owner retains control over the preference data. In contrast, our work aims to expand
data sources and integrate real user preferences without directly collecting their personal data.

3 PRELIMINARY

3.1 FEDERATED LEARNING (FL)
FL is a distributed training paradigm where a server coordinates various clients toward the same goal,
i.e., training a generalized model ϕ ∈ Rd. Consider an FL system with M clients. Denote the weight
of client m as pm such that

∑
m∈[M ] pm = 1, and we aim to optimize the following objectives:

min
ϕ∈Rd

F (ϕ)
△
=

∑
m∈[M ]

pmFm(ϕ) (1)

where Fm(ϕ) is the expected loss on client m given the model ϕ. As a classical FL algorithm, FedAvg
can solve the optimization problem by multiple communications between the server and the clients.
In each communication round r ∈ [R] with the global model ϕr, the following steps are conducted:

• Model broadcast: The server uniformly samples A clients without replacement, denoted by A,
broadcasts the global model ϕr to the sampled clients.

• Local training on client m ∈ A: The client initializes the local model ϕm
r,0 with the received ϕr. In

the next K iterations, the client updates its local model via ϕm
r,k+1 = ϕm

r,k − η∇Fm(ϕm
r,k), k ∈ [K],

where η is learning rate, and ∇Fm(ϕm
r,k) is the local gradient on ϕm

r,k and estimated by a mini-batch.
We denote this K-iteration local training by ϕm

r,K = OPTIM(m,ϕr,K), which optimizes the model
ϕr with the data of client m.

• Global aggregation: The server collects the local model ϕm
r,K from clients m ∈ A and updates the

global model via weighted average aggregation, i.e., ϕr+1 = M
A

∑
m∈A pmϕm

r,K .

3.2 REINFORCEMENT LEARNING WITH HUMAN FEEDBACK (RLHF)
The objective of RLHF is to align a pretrained language model with human preferences so that the
model can generate text that is as professional and readable as human writing. DPO (Rafailov et al.,

3
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Figure 2: An outline of the proposed FedBis, an RLHF method in federated learning.

2023) is one of the most effective ways to achieve the goal. There is a human-annotated dataset
D comprising multiple samples (x, y0, y1, i), where y0 and y1 are two completions under a given
instruction x, and i ∈ {0, 1} indicates that yi is the preferred completion out of the pair of y0 and
y1. Motivated by the Bradley-Terry model (Bradley & Terry, 1952) on the formulation of human
preference distrition p∗(yi ≻ y1−i|x), DPO aims to optimize the model θ starting from θ0 via

min
θ

E(x,y0,y1,i)∼D

[
LDPO (θ|x, y0, y1, i)

△
= − log σ

(
β log πθ(yi|x)

πθ0
(yi|x) − β log πθ(y1−i|x)

πθ0
(y1−i|x)

)]
. (2)

4 FEDBIS: A VANILLA AND FEASIBLE FRAMEWORK FOR ACHIEVING
FEDERATED RLHF

We aim to fine-tune an LLM using clients’ preference data, enabling it to generate reader-friendly
responses. Since preference data contain sensitive personal information, some clients may be hesitant
to share this information due to privacy concerns. Recently, companies have developed on-device
pretrained language models (e.g., Phi-3 (Abdin et al., 2024) and Qwen (Bai et al., 2023)), with the
latest iPhone release integrating this technology (Gunter et al., 2024). This on-device feature allows
clients to ask private and sensitive questions directly on their smartphones, ensuring that even the
server (i.e., LLM owner) cannot access the input prompts (Wu et al., 2024).

The proposed FedBis provides a simple yet effective solution through a three-step process to enable
model fine-tuning with clients’ preference data while respecting clients’ privacy, as depicted in Figure
2: In the first step, each client builds their own preference dataset, which is originated from the daily
queries (a.k.a. prompts or instructions) to a pretrained language model (LM), the model generated a
pair of responses to each query, and the client chooses the preferred one. After the construction of
the preference dataset, each client independently trains the selector, and the server aggregates the
selectors into a global one and broadcasts it to the clients. This communication process repeats for a
total of R times, and the clients keep the preference dataset unchanged during the training. Afterward,
we utilize the well-trained binary selector to enhance the performance of LLM. Specifically, we
assume the server holds a set of instructions, together with pairwise responses generated by an LLM.
Then, we build a preference dataset with the help of the binary selector and boost the LLM by means
of DPO (Rafailov et al., 2023). The rest highlights the key steps of these two phases, while Appendix
A offers a detailed description of the proposed FedBis.

Local Training in FL. Suppose client m ∈ [M ] holds a set of pairwise data with the size of
nm, i.e., D̂m = {(xi, yi,w, yi,l)}i∈[nm], where xi is the prompt, yi,w is the preferred completion
out of the pair of yi,w and yi,l. We reorganize these data and build a preference dataset Dm to
be {(xi, yi,w, yi,l, 0), (xi, yi,l, yi,w, 1)|(xi, yi,w, yi,l) ∈ D̂m} for training, in which each contains
the prompt, a pair of completions and preference selection. Apparently, this dataset eliminates
the position effects, and we can train the selector as a classification task. Therefore, we utilize
cross-entropy (CE) loss ℓCE to optimize the selector and formulate the expected loss as

Fm(ϕ) = E(x,y0,y1,i)∼Dm
[ℓCE(i|ϕ;x, y0, y1)] . (3)

Generating synthetic preference data for DPO. Suppose the server holds a set of instructions D̂.
With the LLM θ0, we can generate multiple completions for an instruction x ∈ D̂, resulting in a set
of n completions (y0, . . . , yn−1) ∼ πθ0(y|x). For each instruction, we can form a total of

(
n
2

)
pairs

of completions. We then use the binary selector ϕR to choose the optimal completion for each pair

4
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(yj , yl) where 0 ≤ j < l ≤ n − 1. The pair is labeled with i = 0 if the first logit output is greater
than the second, i.e., πϕR

(0|x, yj , yl) > πϕR
(1|x, yj , yl), or i = 1 otherwise. This process builds the

preference dataset Dgen.

Limitations. While the proposed FedBis effectively achieves RLHF in FL with low computational
costs, there are two key limitations that remain unsolved. The first limitation is preference hetero-
geneity. The proposed work effectively aggregates client preferences via clients’ preference models,
but it does not address the preference gap across clients when there is a huge difference in client
preferences and prompts. As a result, the clients optimize their local models for their own data instead
of a global objective. This leads to global aggregation diverging from the global optimum, which
lengthens the training time to obtain the desired performance (Karimireddy et al., 2020; Wu et al.,
2023). Another limitation is reward hacking. The proposed FedBis relies on training a single selector
and using it to fine-tune the LLM. This procedure introduces an adversarial dynamic where the model
"cheats" the selector into favoring certain responses without genuinely improving. Eventually, as the
LLM is trained across more iterations, its performance degrades significantly, making the approach
inefficient and unsustainable. In the coming section, we propose a new algorithm that is able to
address both limitations while maintaining low computational costs.

5 FEDBISCUIT: FEDBIS WITH CLUSTER-WISE AGGREGATION

In this section, we aim to address the issues of preference heterogeneity and reward hacking in FedBis.
To mitigate reward hacking, Eisenstein et al. (2023) and Coste et al. (2024) propose a promising
method that trains multiple reward models simultaneously. Aggregating outputs from several models
can lead to a more robust reward estimate. Additionally, recognizing that some clients may share
similar preferences, we utilize clustered FL (Sattler et al., 2020; Ghosh et al., 2020; Ma et al., 2023) to
group clients with common preferences for joint selector training. These two strategies complement
each other, motivating us to combine them into a novel algorithm, FedBiscuit, which addresses both
reward hacking and preference heterogeneity.

However, integrating these approaches is non-trivial, particularly when using existing clustered FL
algorithms. Current algorithms predetermine the number of models and partition clients into groups,
with each group training its own model. This one-to-one mapping assumes a fixed number of groups,
but in practice, predefining the number of groups is challenging, and some models may end up
untrained if no clients are assigned to them. If these untrained selectors are excluded, it could reduce
the complexity of reward hacking, making it easier for the LLM to "cheat" the selector by favoring
certain responses without genuine improvement. On the other hand, including untrained selectors
could misalign the LLM, leading to incorrect alignments. Therefore, there is a need for a sustainable
algorithm that ensures every selector contributes meaningfully to resisting reward hacking.

Problem Formulation. In this work, we consider training multiple binary selectors ϕ[U ] which
independently decide on a better completion out of a pair. It is noted that U should be an odd number
because this guarantees one completion is preferred by more selectors. Moreover, to ensure that all
selectors are trained without bias towards a small specific group, we mandate that these selectors be
trained using evenly disjoint clusters of clients. Additionally, a client’s preference should align more
closely with those within the same cluster than with those in different clusters. To this end, we can
formulate the following objective:

min
ϕ[U]∈RU×d

F (ϕ[U ])
△
=

∑
m∈[M ]

pm

(
min
u∈[U ]

Fm(ϕu)

)
(4)

s.t. max{|Mu|}u∈[U ] −min{|Mu|}u∈[U ] ≤ 1, (5)

where the function Fm follows the same definition of Equation (3). ϕu indicates the u-th binary
selector, and Mu means a set of clients using the u-th selector. By definition, ∪u∈[U ]Mu = [M ], and
∩u∈[U ]Mu = ∅. Next we explore how the proposed FedBiscuit optimizes Equation (4) under the
constraint of Equation (5).

5.1 ALGORITHM DESIGN

Section 4 mentions that a client m ∈ [M ] holds a preference dataset Dm. Before the model training,
client m splits her dataset into two disjoint sets, namely, a training set Dm,train and a validation set
Dm,val, where |Dm,train| >> |Dm,val|.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Algorithm 1 FedBiscuit
Input: local learning rate ηl, global learning rate ηs, local updates K, warm-up rounds T for each
binary selector, total communication rounds R, client regrouping interval τ , pretrained LLM ϕ̃.
Require: OPTIM(m,ϕ,K) fine-tunes model ϕ with the data of a client m ∈ [M ] for K iterations
and returns an optimized model.
Require: CG(ϕ[U ]) assigns each client m ∈ [M ] to train one of the models ϕ[U ] and returns a list
{Um}m∈[M ] indicating that a client m should train the model ϕUm .

▷ Warm-up
1: for each u ∈ [U ] do
2: Initialize the binary selector ϕu,0 = ϕ̃
3: for t = 0, 1, . . . , T − 1 do
4: Sample clients A ⊆ [M ]
5: Send ϕu,t to clients m ∈ A
6: for m ∈ A in parallel do
7: ϕm

u,t,K = OPTIM(m,ϕu,t,K)
8: Send ϕm

u,t,K to the server
9: end for

10: ϕu,t+1 = M
A

∑
m∈A ϕm

u,t,K

11: end for
12: ϕu = ϕu,T

13: end for

▷ Clustered FL Training
14: Initialize ϕu,0 = ϕu for each u ∈ [U ]
15: for r = 0, 1, . . . , R− 1 do
16: if r%τ == 0 then
17: {Um}m∈[M ] = CG(ϕ[U ],r)
18: end if
19: Sample clients A ⊆ [M ]
20: Send ϕUm,r to clients m ∈ A
21: for m ∈ A in parallel do
22: ϕm

Um,r,K = OPTIM(m,ϕUm,r,K)
23: Send ϕm

Um,r,K to the server
24: end for
25: Calculate each ϕ[U ],r+1 via Equation (6)
26: end for

The proposed FedBiscuit consists of two phases: 1) We train each selector for a couple of rounds so
that all U selectors have basic capacities in selecting the preferred completion, and 2) we divide the
clients into disjoint clusters of size U and train each binary selector with a specific cluster.

Phase 1: Warm-up. In the beginning, we initialize each binary selector ϕu(u ∈ [U ]) with an
identical pretrained LLM ϕ̃. Subsequently, starting from u = 0, we train a selector ϕu for T
consecutive communication rounds following the steps of FedBis: In each communication round, the
server samples a subset of client A and broadcasts the selector ϕu to them. Each client m ∈ A then
locally trains the selector for K iterations using the dataset Dm,train. At the end of the communication
round, the server aggregates and updates the selector ϕu via Equation (8). After completing the
training of ϕu, the server initiates the training of the next selector ϕu+1 by repeating the above steps
until all selectors are trained.

The selectors are trained with different data distributions because the clients participating in each
training round are randomly selected. Consequently, all the selectors ϕ[U ] have distinct model
parameters, leading to varied performance in terms of final logit output when given an instruction
and a pair of completions.

Phase 2: Clustered FL Training. After the first phase, we obtain U different selectors, denoted by
ϕ[U ],0. Unlike FedBis, this phase includes an additional step called client grouping, which partitions
the clients into multiple disjoint clusters based on their preferences. In each communication round
r ∈ [R], FedBiscuit optimizes all the selectors ϕ[U ],r using the following four steps:

Step 2.1: Client Grouping CG(ϕ[U ],r). This step is executed every τ communication rounds, i.e.,
when r can be divided by τ , or τ |r. During this step, the server broadcasts all selectors ϕ[U ],r to
all clients [M ]. Then, a client m calculates the averaged loss for each selector ϕu,r using local
validation set via 1

|Dm,val|
∑

(x,y0,y1,i)∼Dm,val
[ℓCE(i|ϕu,r;x, y0, y1)]. The server thereby collects

all these losses and adopts a greedy clustering approach (Sattler et al., 2020; Ma et al., 2023) to assign
each client to the selector where they achieve the minimum loss. However, an obvious deficiency is
an imbalance where some selectors are chosen by many clients and others by few. It is noted that the
selectors trained with more clients achieve remarkable performance, while some may be overfitted to
a specific group of clients. Therefore, the greedy clustering approach negatively impacts the overall
performance when building a global preference dataset. To tackle the limitation, we propose to
balance the clusters using the following steps repeatedly until the clients are evenly distributed: (i)
Choose the cluster selected by the most clients, and (ii) If the cluster can accommodate n clients,
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cap the cluster at n clients and reassign the rest to other clusters where they achieve suboptimal loss.
Finally, we obtain balanced and disjoint clusters. Let a client m train the Um-th selector ϕUm

for the
next τ rounds. After this client grouping step, FedBiscuit proceeds to the following three steps.

Step 2.2: Model Broadcast. Similar to FedBis, the server samples A clients from all clients [M ],
denoted by A. For each selected client m ∈ A, the server transmits the selector ϕUm,r. This process
can be characterized by defining Au as the group of clients chosen to train the selector ϕu. This
ensures that ∪u∈[U ]Au = A and ∩u∈[U ]Au = ∅.

Step 2.3: Local Training. The client m ∈ A receives a binary selector ϕUm,r from the server and

trains the selector for K iterations via ϕm
Um,r,k+1 = ϕm

Um,r,k − η∇Fm

(
ϕm
Um,r,k

)
, k ∈ [K]. Finally,

let the updated local selector be ϕm
Um,r,K , and the client pushes it to the server.

Step 2.4: Global Aggregation. The server collects updated selectors from all participants A. Since
there are several binary selectors, the server updates each selector with a designated group of clients.
For instance, the aggregation rule for the selector u ∈ [U ] follows

ϕu,r+1 =

(
1−

∑
m∈Au

pm

)
ϕu,r +

∑
m∈Au

pmϕm
u,r,K . (6)

It is noted that performance degradation occurs when a model is trained by clients with time-varying
sizes in FedAvg (Gu et al., 2021; Wang & Ji, 2023). In other words, the weighted average aggregation
strategy is no longer suitable for multi-selector aggregation due to the fluctuation in the number of
clients training a specific selector in each communication round. Therefore, FedBiscuit adopts a new
aggregation rule as formulated in Equation (6).

FedBiscuit finally produces a set of well-trained selectors ϕ[U ],R and the subsequent objective is to
enhance LLM performance with the help of these selectors, as explored below.

Reinforcement-learning Fine-tuning with Multiple Selectors. We can leverage the methodology
described in Section A.2, and one of the key steps involves constructing a preference dataset incor-
porating multiple selectors. For this, we employ a strategy of majority voting. Given an instruction
x ∈ D̂ and a pair of generated completions (y0, y1), we assume a selector u ∈ [U ] prefers yiu ,
where iu ∈ {0, 1}. Therefore, the pair is assigned a label i = argmax{iu}u∈[U ], meaning that the
completion yi is favored by most of the clients.

5.2 DISCUSSION: INTEGRATION WITH LORA
As all binary selectors are LLM, training them may consume significant communication and compu-
tation overheads. Besides, multiple LLMs lead to considerable storage burdens shouldered by the
server. To reduce the costs, we adopt a parameter-efficient fine-tuning approach LoRA (Hu et al.,
2021), where all binary selectors share the same base model while using different adapters.

In comparison with FedBis, FedBiscuit requires extra costs, i.e., O(MU⌊R/τ⌋ · C), where C is the
communication cost of a selector. This is because FedBiscuit involves client grouping periodically,
unilaterally transferring all selectors from the server to the clients. Despite the extra costs, extensive
experiments demonstrate non-trivial improvement by comparing FedBiscuit with FedBis.

6 FEDERATED HUMAN PREFERENCE BENCHMARK

In this section, we describe the preparation of federated human preference datasets, while the next
section presents the experimental setup and quantitative analysis. We explore two open-ended text
generation tasks, i.e., summarization and question-answering, based on publicly available datasets.
Each task comprises two components: client preference data and unlabeled prompts. Below, we
outline the process of constructing a federated preference dataset. Detailed information on the datasets
is provided in Table 5 in Appendix B.

Summarization. Stiennon et al. (2020) introduces a summarization dataset that consists of Reddit
posts with human-written TL;DR (Völske et al., 2017). This dataset consists of two parts, one is a
pretrained dataset, while the other is a dataset with human preference. As suggested by Ouyang et al.
(2022), we ensure a post does not appear in both datasets. We assume the pretrained dataset is stored
on the server side, and 60% of data are reserved for supervised fine-tuning (SFT). The remaining
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40% are used for the RLHF process to improve LLM performance and generate human-preferred
content. Since the human-preference dataset contains the worker ID, we partition the dataset based
on the worker ID so that the dataset can be partitioned into 53 workers.

Question-Answering (QA). We reconstruct the public dataset SHP, which comprises numerous
questions from Reddit posts and their corresponding user answers (Ethayarajh et al., 2022). The
preference indicator is based on the number of likes an answer receives. Following the training of
StreamSHP (Ethayarajh et al., 2022), we utilize the data with no more than 512 tokens. Given that
the dataset spans 18 domains, we partition the dataset using a Dirichlet distribution with a parameter
of 0.3, ensuring that no questions overlap between clients. In our experiment, we consider training
the binary selector with 200 clients, which is a common setting when evaluating the performance of
an FL algorithm (Jhunjhunwala et al., 2023). Figure 3 visualizes the data distribution on the selected
clients. For the RLHF process, we incorporate 2.6K Reddit questions and 44.6K SafeRLHF prompts
(Dai et al., 2023).

7 EXPERIMENTS

7.1 EXPERIMENTAL SETUP

Model and computation environment. We initialize the binary selector(s) using three pretrained
base models, i.e., Qwen-2-0.5B (Bai et al., 2023), Gemma-2B (Team et al., 2024), and LLaMA-2-
7B (Touvron et al., 2023), configuring the final layer to produce binary outputs "A" and "B" only.
We adopt Gemma-2B and LLaMA-2-7B models for the summarization and QA tasks, where both
models are fine-tuned on the Alpaca dataset (Taori et al., 2023). Our implementation is built upon
FederatedScope (Xie et al., 2023; Kuang et al., 2023). The experiments are conducted on machines
with one Nvidia A100 GPU card, Intel Xeon Platinum 8369B CPUs, and 256GB RAM.

Baselines. Since no prior work systematically enables RLHF in FL, we propose the following
baselines, which extend previous studies to fit the FL and RLHF objectives. In each case, we directly
optimize the pretrained model.

• FedAvg: Given that preference data on clients is pairwise, each client trains its local model to
improve completions based on specific instructions. To minimize training costs, we employ LoRA
for training and aggregation, following the approach in Sun et al. (2024).

• FedDPO: Clients train their local models using the DPO loss (as defined in Equation 2), and the
server aggregates these local models into a global model using a weighted average. This method,
incorporated in the OpenFedLLM benchmark (Ye et al., 2024), requires substantial computational
resources and results in long local training wall-clock times.

Evaluation. We evaluate summarization and QA tasks using different datasets and methodologies:

• Summarization task: We use a test dataset consisting of 6,553 samples, all sourced from the
TL;DR dataset and excluded from the training data. The model is tasked with generating summaries
for each sample. Since human-labeled summaries are available, we measure the win rate of the
model-generated summaries against the human ones using the Auto-J model (Li et al., 2023a).

• QA task: For question answering, we use AlpacaEval 2.0 (Li et al., 2023b; Dubois et al., 2024a;b)
to assess model performance on 805 instructions. The model’s responses are compared with those
of GPT-4, and the win rate is calculated based on evaluations conducted by GPT-4-turbo-20240409.

Implementation. In our experiments, we train the binary selector for 500 communication rounds.
In each round, we sample 5 clients for the summarization task and 10 for the QA task, and the selected
clients fine-tune the binary selector locally for 30 iterations. As for FedBiscuit, the warm-up phase
takes 50 communication rounds for each adapter, which is counted as part of 500 communication
rounds. After the training of binary selectors, we fine-tune the LLM for three epochs, and we store
the checkpoint when finishing one epoch of training. By default, the evaluation result reports the
best-saved checkpoints. Due to the limited space, the details related to the hyperparameters are
deferred to Appendix B.

7.2 QUANTITATIVE EVALUATION ON SUMMARIZATION TASK

Table 1 presents a comparative analysis of human-written and model-generated summaries, where the
win rate indicates the likelihood that a generated summary surpasses its human counterpart, evaluated
using the Auto-J metric. It is evident that both our proposed baseline and algorithm significantly
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Binary Selector Methods Gemma-2B Win Rate
(# Wins / # Ties)

LLaMA-2-7B Win Rate
(# Wins / # Ties)

NA
Raw Model 67.27% (4408 / 28) 76.79% (5032 / 31)
FedAvg 28.66% (1878 / 10) 28.23% (1850 / 10)
FedDPO 49.03% (3213 / 23) 77.02% (5047 / 30)

Qwen-2
(0.5B)

FedBis 86.69% (5681 / 26) 89.63% (5874 / 38)
FedBiscuit (U = 3) 78.45% (5141 / 29) 83.29% (5458 / 48)
FedBiscuit (U = 5) 73.97% (4847 / 22) 82.04% (5376 / 37)

Gemma
(2B)

FedBis 77.34% (5068 / 39) 86.22% (5650 / 39)
FedBiscuit (U = 3) 83.81% (5492 / 43) 91.32% (5984 / 28)
FedBiscuit (U = 5) 83.12% (5447 / 33) 89.93% (5893 / 31)

LLaMA-2
(7B)

FedBis 82.56% (5410 / 28) 91.87% (6020 / 40)
FedBiscuit (U = 3) 81.90% (5367 / 41) 90.84% (5951 / 37)
FedBiscuit (U = 5) 79.31% (5197 / 41) 90.54% (5933 / 47)

Table 1: Performance under summarization task. Bold means the best result under the pretrained
model; Underline means the best result under a binary selector.

outperform the raw model and other baselines. For both base LLMs – Gemma-2B and LLaMA-2-
7B – all our methods demonstrate a performance improvement of at least 6% over the raw model,
underscoring the effectiveness of our approach irrespective of the binary selector used. Notably, all
baseline approaches exhibit a substantial decline in performance compared to the raw model, with a
decrease of at least 20% in the win rate measurement.

We offer a plausible explanation for the performance drop of FedDPO, thereby highlighting the
effectiveness of FedBis and FedBiscuit. Our proposed methods also incorporate DPO, differing
significantly from FedDPO in terms of data distribution. While FedDPO relies directly on client
preference datasets, our methods create a set of preference data comprising three components:
unlabeled prompts, a pair of responses generated by the base model for each prompt, and preference
selections simulated by the aggregated binary selector. Consequently, our generated responses align
more closely with model outputs, facilitating easier guidance for the model to refine its responses
into user-acceptable expressions. In contrast, FedDPO may confuse the model since it lacks outputs
similar to those in the client preference datasets, leaving the LLM unsure of how to enhance the
generated responses. An implicit assumption of DPO is that preference data should closely resemble
model outputs; however, our proposed method may not be bound by this assumption.

Performance analysis on various binary selectors. Table 1 presents the importance that a selector
trained with a proper method can significantly enhance the performance of base models (i.e., Gemma-
2B and LLaMA-2-7B). A powerful selector does not mean that it can significantly boost the base
model performance after alignment. For example, the smallest binary selector, Qwen-2, achieves a
win rate of 86.69% under the Gemma-2B model, performing much better than the other two types.
Different training methods on different binary selectors may lead to different effects. For instance,
training Qwen-2 and LLaMA-2 with FedBis is always better than that of FedBiscuit, while training
the Gemma selector with FedBiscuit (U = 3) would achieve the best performance.

7.3 QUANTITATIVE EVALUATION ON QA TASK

Table 2 shows that our methods, FedBis and FedBiscuit, consistently outperform the baseline ap-
proaches in terms of length-controlled win rate for both the Gemma-based model and the LLaMA-2
model. The baseline FedAvg performs worse than the Raw Model, with FedAvg showing a win rate
of only 1.88% for the Gemma-based model and 3.93% for the LLaMA-2 model, compared to the Raw
Model’s 2.40% and 4.80%, respectively. FedDPO offers a slight improvement over the Raw Model,
achieving a win rate of 3.28% for the Gemma-based model and 4.98% for the LLaMA-2 model, but
it remains inferior compared to our methods. Specifically, FedBis achieves win rates of up to 4.58%
for the Gemma-based model and 5.25% for the LLaMA-2 model, while FedBiscuit (U = 3) reaches
up to 4.14% and 5.63%, respectively. These results confirm that our methods provide significant
improvements over the baselines, enhancing the length-controlled win rates for both models.

Performance analysis on various unlabeled prompts. Table 2 also shows that the use of different
unlabeled prompts, such as Reddit posts and SafeRLHF, significantly affects the performance of
our methods. When using Reddit prompts, generating 2 or 4 completions leads to variations in win
rates. For example, with two completions, FedBiscuit (U = 5) achieves 3.98% for the Gemma-based
model and 5.42% for the LLaMA-2 model. However, increasing to four completions slightly shifts
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Unlabeled Prompts Methods Gemma-2B LC Win-rate (%) LLaMA-2-7B LC Win-rate (%)

NA
Raw Model 2.40 ± 0.16 4.80 ± 0.41
FedAvg 1.88 ± 0.12 3.93 ± 0.23
FedDPO 3.28 ± 0.23 4.98 ± 0.30

Reddit Posts
(2 completions)

FedBis 3.85 ± 0.25 5.06 ± 0.30
FedBiscuit (U = 3) 3.70 ± 0.24 5.04 ± 0.31
FedBiscuit (U = 5) 3.98 ± 0.24 5.42 ± 0.32

Reddit Posts
(4 completions)

FedBis 3.66 ± 0.25 5.08 ± 0.31
FedBiscuit (U = 3) 4.14 ± 0.27 5.34 ± 0.32
FedBiscuit (U = 5) 3.80 ± 0.27 4.81 ± 0.28

SafeRLHF
FedBis 4.58 ± 0.30 5.25 ± 0.32
FedBiscuit (U = 3) 4.03 ± 0.28 5.63 ± 0.34
FedBiscuit (U = 5) 3.85 ± 0.27 5.42 ± 0.35

Table 2: Performance under QA task using AlpacaEval 2.0. “LC” in the table means “length-control.”
FedBis and FedBiscuit adopt the reward model of Gemma-2B fine-tuned on SHP dataset. Bold
highlights the best result under each column, while Underline visualizes the best result under different
sources of unlabeled prompts.

the best performance for the Gemma model to FedBiscuit (U = 3) with 4.14%, while the win rate
for the LLaMA-2 model slightly drops to 5.34%. On the other hand, SafeRLHF prompts consistently
yield the best results overall, with FedBis achieving 4.58% for the Gemma model and FedBiscuit
(U = 3) reaching 5.63% for the LLaMA-2 model. These findings demonstrate that SafeRLHF is the
most effective prompt source, outperforming Reddit-based prompts.

7.4 ABLATION STUDY

Considering both tasks, the results reveal that the performance of FedBis and FedBiscuit varies
across datasets. In the summarization task (Table 1), FedBis outperforms FedBiscuit across most
binary selectors, achieving the highest win rates for both the Gemma-2B and LLaMA-2-7B models.
For instance, under the Qwen-2 selector, FedBis reaches 86.73% for Gemma-2B and 89.67% for
LLaMA-2-7B, while FedBiscuit (U = 3 and U = 5) are lower than those values. This is because
preference heterogeneity is not critical in the summarization task. As described in Stiennon et al.
(2020), the dataset is collected from a group of labelers who have a meeting from time to time to
ensure they reach a consensus. However, in the QA task (Table 2), FedBiscuit proves to be the
better method, particularly for the LLaMA-2-based model, where FedBiscuit (U = 3) achieves the
highest win rate at 5.63% under SafeRLHF prompts, outperforming FedBis and other configurations.
Although FedBis shows strength in some QA scenarios, such as the Gemma model with a 4.58%
win rate, FedBiscuit demonstrates superior overall performance in the QA task. Therefore, FedBis is
more effective in the summarization task, while FedBiscuit excels in the QA task.

8 CONCLUSION

In this work, we explore a feasible framework to employ federated learning technique to enable
large-scale user preference collection for RLHF without jeopardizing user privacy. Specifically, we
train a binary selector across different clients using their local preference datasets, and then use
the well-trained selector to align an LLM with human preferences. We propose two approaches
to enable selector training: FedBis and FedBiscuit. FedBis provides a framework to train a single
selector, while FedBiscuit ensembles multiple selectors to address preference heterogeneity and
reward hacking. We conduct empirical studies with the proposed federated human preference datasets
to validate our statements and demonstrate the superiority of FedBis and FedBiscuit when aligning
Gemma-2B and LLaMA-2-7B with human preference.

ETHICS STATEMENT

This paper investigates clients’ preferences using a publicly available dataset, ensuring that all data
sources are appropriately cited to maintain academic integrity and transparency. By leveraging this
public dataset, we avoid using private or sensitive client data, thus upholding ethical standards in data
usage and research practices. Furthermore, this work prioritizes the protection of clients’ privacy and
strictly avoids any disclosure of local data. When clients utilize their own data to fine-tune the model,
robust privacy measures are in place to ensure that no other clients can access or infer any information
related to their data. This approach not only safeguards individual privacy but also fosters trust and
security in the application of the model.
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A A DETAILED IMPLEMENTATION OF FEDBIS

The objective of RLHF is to align a pretrained language model with human preferences. RLHF
comprises two phases: (i) preference modeling and (ii) reinforcement-learning fine-tuning. The first
phase aims to develop a model that simulates human preferences to select the superior options from
numerous pairwise completions. Subsequently, the second phase enhances the language model’s
performance by creating a preference dataset, enabling the model to generate responses preferred by
humans. The following describes the proposed FedBis that achieves RLHF in FL.

A.1 PREFERENCE MODELING

We consider a practical and efficient FL scenario where not all clients but only a sampled subsets
of clients participate in each communication round (Yang et al., 2020). Before the commencement
of FL training, we initialize the binary selector with a pretrained LLM such as LLaMA-2 (Touvron
et al., 2023), and set the hyperparameters.

An FL algorithm requires multiple communication rounds and consists of three phases in each round,
i.e., model broadcast, local training, and global aggregation. Following this paradigm, we design
FedBis and optimize the selector ϕ, i.e., in the communication round r ∈ [R], as discussed as follows.

Step 1: Model Broadcast. The server uniformly samples A clients without replacement, denoted
by A. Let the selector be ϕr in the r-th communication round, and the server broadcasts it to the
sampled clients.

Step 2: Local Training. At this step, client m ∈ A optimizes the selector based on local preference
data. First, the client initializes the local selector ϕm

r,0 with the global selector ϕr received from the
server. Subsequently, the client trains the selector for K iterations, where the update rule between
consecutive iterations follows:

ϕm
r,k+1 = ϕm

r,k − η∇Fm(ϕm
r,k), k ∈ [K] (7)

where the gradient ∇Fm(ϕm
r,k) is approximated using a data batch sampled from the local preference

dataset Dmand can incorporate optimizers such as AdamW (Loshchilov & Hutter, 2017). Finally, the
client m transmits the updated local selector ϕm

r,K back to the server.

Step 3: Global Aggregation. After receiving the local selectors from the sampled clients A, the
server updates the global selector:

ϕr+1 =
M

A

∑
m∈A

pmϕm
r,K . (8)

This aggregation method, based on Li et al. (2019) where the clients are uniformly sampled to train a
global model, ensures consistency with Problem (1) in mathematical expectation.

After R communication rounds of training, FedBis outputs a binary selector ϕR that reflects the
overall preferences of all clients. The selector can then be used to enhance the performance of the
LLM, as discussed in the next section.

A.2 REINFORCEMENT-LEARNING FINE-TUNING

The reinforcement-learning fine-tuning takes place on the server and includes two phases: 1) a
preference dataset is created with a pretrained LLM θ0 and a well-trained selector ϕR from FedBis.
2) LLM is optimized according to the objective defined in Equation (2) with the generated dataset.

Step 1: Preference Dataset Generation. Suppose the server holds a set of instructions D̂. With
the LLM θ0, we can generate multiple completions for an instruction x ∈ D̂, resulting in a set of
n completions (y0, . . . , yn−1) ∼ πθ0(y|x). For each instruction, we can form a total of

(
n
2

)
pairs

of completions. We then use the binary selector ϕR to choose the optimal completion for each pair
(yj , yl) where 0 ≤ j < l ≤ n − 1. The pair is labeled with i = 0 if the first logit output is greater
than the second, i.e., πϕR

(0|x, yj , yl) > πϕR
(1|x, yj , yl), or i = 1 otherwise. This process builds the

preference dataset Dgen.
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Step 2: LLM Fine-tuning. With the constructed preference dataset Dgen, we evolve the LLM to
align with clients’ preferences. Specifically, in the t-th training round, where t ∈ {0, 1, . . . }, we
sample a data batch (x, y0, y1, i) from Dgen, and update the LLM using the following rule:

θt+1 = θt − η∇LDPO (θt|x, y0, y1, i) , (9)
where η is the learning rate. The gradient computation ∇LDPO is given by Rafailov et al. (2023).
In a nutshell, we distill the binary selector’s preferences into the LLM, allowing it to function as a
binary selector itself implicitly.

B IMPLEMENTATION DETAILS AND HYPERPARAMETERS

In this section, we include various settings, such as the prompt and the hyperparameters.

B.1 HYPERPARAMETER SETTINGS

In our work, we fine-tune all models using LoRA, which is consistently set to rank 8, α = 16, and
the dropout rate 0.05. For the generation, we apply these parameters:

• If it is required to generate multiple completions, then we set the temperature to 0.7. We set the
maximum new tokens for 80 under the summarization task and 300 for QA tasks.

• If it is required to generate a single completion, then we adopt greedy search by setting the
temperature to 0.0.

In the following part, we show the hyperparameter setting for different tasks:

Selector Training RLFT
Participation Rate 5/53 -
Local Iterations 30 -
Batch Size 32 32
Rounds 500 5 epochs
Optimizer AdamW RMSprop
Hyperparameters (0.9, 0.95) -
Learning rate 1e− 5 1e− 6

Table 3: Hyperparameter Settings for the Sum-
marization Task

Selector Training RLFT
Participation Rate 10/200 -
Local Iterations 30 -
Batch Size 32 32
Rounds 500 5 epochs
Optimizer AdamW RMSprop
Hyperparameters (0.9, 0.95) –
Learning rate 1e− 5 1e− 6

Table 4: Hyperparameter Settings for the QA
Task

B.2 DATASET DETAILS

In Section 6, we discuss how to partition the dataset for two tasks, namely, summarization and QA.
Table 5 comprehensively presents the dataset details of both tasks, while Figure 3 visualizes the data
distribution of the selected clients.

Task Preference
Dataset

# preference
samples # clients Partition

Rules Max. Min. Std. Unlabelled
Dataset

# unlabelled
prompts

Summarization TL;DR
comparison 92858 53 Worker ID 12985 1 2284.33 Open-AI

TL;DR 42782

Question Answering SHP 260814 200 Dirichlet(0.3)
on categories 4393 260 832.39

SHP Test 4293
SafeRLHF 44578

Table 5: Dataset details for federated human preference benchmark

Special Setting for FedBiscuit. For the above two tasks, we ensemble three binary selectors (i.e.,
LoRAs). In the warmup round, we train the selector for 50 rounds under an FL framework. FedBiscuit
performs regrouping every 50 rounds in the summarization task, while regrouping every 100 rounds
in the QA task.

B.3 MORE EXPERIMENTS

Comparison between two different model sizes. Table 6 compares the performance between
two Qwen-2 models as the selectors with different sizes (i.e., 0.5B and 1.5B) when using them to
fine-tune a Gemma-2B model for the summarization task. These results show that while larger binary
selectors (e.g., Qwen-2-1.5B) sometimes provide slight performance improvements, smaller selectors
like Qwen-2-0.5B remain competitive, particularly when applying FedBis. These findings suggest
that both model type and size influence the selector’s effectiveness, and they need to be carefully
balanced based on task requirements and resource constraints.
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Figure 3: Data distribution across different question domains on the selected clients.

Methods Win Rate on Qwen-2 (0.5B)
(# Wins / # Ties)

Win Rate on Qwen-2 (1.5B)
(# Wins / # Ties)

FedBis 86.69% (5681 / 26) 82.45% (5401 / 34)
FedBiscuit (U = 3) 78.45% (5141 / 29) 80.18% (5254 / 29)
FedBiscuit (U = 5) 73.97% (4847 / 22) 76.22% (4995 / 43)

Table 6: Performance using Gemma-2B to summarize a Reddit post (i.e., summarization task). Bold
means the best result under the selector.

B.4 INSTRUCTION TUNING PROMPT

The proposed work follows a previous study (Zhang et al., 2024) to fine-tune the model following a
given prompt template. This is also known as instruction tuning. The prompt template is different
between tasks and between the selector and base model. As a result, we provide the prompts in Figure
4 for detailed study.

C SAMPLE DIALOGS

We provide sample dialogs for our methods, FedBiscuit and FedBis, compared against the baselines
FedDPO, FedAvg, and the raw model, highlighting their performance in summarization and question-
answering tasks. Our methods consistently deliver superior results, as demonstrated by the provided
samples.

FedBiscuit generates precise and well-organized summaries, making it particularly effective in
distilling complex information into clear and actionable insights. FedBis, while maintaining a similar
level of clarity, offers more nuanced and in-depth responses, making it versatile for a wider range of
queries. In contrast, the baseline models—FedDPO, FedAvg, and the raw model—tend to produce
less coherent responses. FedDPO sometimes lacks structure, FedAvg oversimplifies the content, and
the raw model can miss critical details, leading to less accurate results.

These samples provide clear evidence that FedBiscuit and FedBis offer better summarization and
question-answering performance by consistently striking the right balance between conciseness,
accuracy, and detail, proving to be more reliable and contextually appropriate than the baselines.
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Prompts template of LLM generation for summarization task.

Below is an instruction that describes a task, paired with an input that provides further context. Write a
response that appropriately completes the request.

### Instruction:
Summarize the following Reddit post in a paragraph of 50 words or less.

### Input:
SUBREDDIT: r/{subreddit}
TITLE: {title}
POST: {post}

### Response:

Prompt template when training a binary selector for summarization task.

Below is a forum post followed by two summaries. Pick a more precise and concise one that summarizes
the most important points in the given forum post, without including unimportant or irrelevant details.
State your choice with a single capital letter, i.e., “A” if SUMMARY A is better, “B” if SUMMARY B is better.

### SUBREDDIT: r/{subreddit}
### TITLE: {title}
### POST: {post}
### SUMMARY A: {output_A}
### SUMMARY B: {output_B}
### YOUR CHOICE:

Prompts template of LLM generation for QA task with an additional input.

Below is an instruction that describes a task, paired with an input that provides further context. Write a
response that appropriately completes the request.

### Instruction:
{instruction}

### Input:
{input}

### Response:

Prompts template of LLM generation for QA task without an additional input.

Below is an instruction that describes a task. Write a response that appropriately completes the request.

### Instruction:
{instruction}

### Response:

Prompt template when training a binary selector for QA task with SHP dataset.

Below is a query followed by two responses. Pick a helpful response that is precise, concise, and casual.
State your choice with a single capital letter, i.e., “A” if RESPONSE A is better, “B” if RESPONSE B is better.

### QUERY: {instruction}
### RESPONSE A: {output_A}
### RESPONSE B: {output_B}
### YOUR CHOICE:

Figure 4: Prompt Templates.
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User Input

Give me a brief scenario of a persona that would search this information and find this content helpful: {NSW
Residential Building Contract for Small Works over $20,000 Designed for residential building work which is
not complex over $20,000. Suitable for smaller alteration and renovation projects. Small Works Contracts
(Form 10A) Pricing structure Fixed price Value range Under $7,500 Use for Minor residential alterations
and additions work Includes Succinct, plain-language conditions suitable for very small, low-risk projects in
place of a quotation}

FedBiscuit
Imagine you are a homeowner who wants to make some changes to your home, but you don’t want to spend
a lot of money on a major renovation. You come across a small works contract that is designed for residential
building work that is not complex and has a value range of under $7,500. This contract is suitable for smaller
alteration and renovation projects. It is a fixed price contract, meaning the price is set and there are no hidden
costs or additional fees.
The contract is written in plain language, making it easy to understand and use. It includes succinct conditions
that are suitable for very small, low-risk projects. This means that if something goes wrong, you can easily
resolve the issue and the contract will protect you.
Overall, this small works contract for residential building work is a great option for homeowners who want
to make some changes to their home without spending a lot of money. It is a simple, straightforward solution
that provides peace of mind and protection for your project.

FedBis
Imagine you are a homeowner who wants to make some changes to your home, but you don’t want to spend
a lot of money on a major renovation. You come across a small works contract that is designed for residential
building work that is not complex and has a value range of under $7,500. This contract is suitable for smaller
alteration and renovation projects. It is a fixed price contract, meaning the price is set and there are no hidden
costs or additional fees.
The contract is written in plain language, making it easy to understand and use. It includes succinct conditions,
which are suitable for very small, low-risk projects. The contract is intended for residential work, meaning it
is not suitable for larger, more complex projects.
Overall, this small works contract for residential building work is a cost-effective and straightforward option
for making small changes to your home without breaking the bank.

FedDPO
A persona that would find this information helpful is a homeowner who is planning to make some minor
changes to their home, such as adding a new room or making some renovations. They are looking for a
simple and straightforward contract that outlines the terms and conditions of the work, with a fixed price
and a value range of under $7,500. They want to ensure that the contract is suitable for their small, low-risk
project and that it is concise and easy to understand.

FedAvg

I’m not sure if this is helpful, but I’m a lawyer and I’ve been looking for a similar contract for a while now.
I’ve found a few, but they’re not quite what I’m looking for.

Raw Model
A persona that would search this information and find it helpful is a small residential building contractor who
is looking to complete a small works project on their home. They are looking for a fixed price contract that
is suitable for their project, which is not complex and will not exceed $20,000. They want a contract that
is simple and easy to understand, with concise conditions that outline the scope of work and the expected
timeline. They are looking for a contract that is suitable for small, low-risk projects, and they want to avoid
the need for a quotation.

Figure 5: Gemma QA Sample.
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User Input

Hi, I have some falafel, but no tahini to put on them. Can you give me a recipe for making tahini?

FedBiscuit
Sure, here is a recipe for making tahini at home:

Ingredients:
- 1 cup of sesame seeds
- 2 tablespoons of water
- 2 tablespoons of honey
- 2 tablespoons of lemon juice

Instructions:
1. Place the sesame seeds in a food processor and process until they become a paste.
2. Add the water, honey, and lemon juice and process until the mixture is smooth.
3. Taste and adjust the seasoning if necessary.
4. Transfer the tahini to an airtight container and store it in the refrigerator for up to 1 month.

FedBis
Sure, here is a recipe for making tahini at home:

Ingredients:
- 1 cup of sesame seeds
- 2 tablespoons of water
- 2 tablespoons of honey
- 2 tablespoons of lemon juice
- 1 teaspoon of garlic
- 1/2 teaspoon of salt

Instructions:
1. Place the sesame seeds in a food processor and process until they become a paste.
2. Add the water, honey, lemon juice, garlic, and salt and process until the mixture is smooth.
3. Taste and adjust the seasoning if necessary.
4. Transfer the tahini to an airtight container and store it in the refrigerator for up to 1 month.

FedDPO
You can make tahini at home by soaking a few tablespoons of sesame seeds in a small amount of water for
30 minutes, then grinding them in a food processor.
Add a tablespoon of the resulting paste to your falafel to give them a delicious, nutty flavor.

FedAvg

I’ve been making tahini with a blender.
I put a cup of sesame seeds in a blender, add a cup of water, and blend until smooth.
I then strain the mixture through a cheesecloth-lined strainer.
I’ve been using the tahini for a few weeks now and it’s been great.

Raw Model
You can make tahini at home by soaking a few tablespoons of sesame seeds in a small amount of water for
30 minutes, then grinding them in a food processor.
Add a tablespoon of the resulting paste to your falafel to give them a nutty flavor.

Figure 6: Llama QA Sample.
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Reddit Post: What is your most memorable act of kindness and why?

Random or otherwise.
I was walking to school one morning when I was about 15 when I heard a voice call out "Hello? Excuse me?
Young man?".
I turned and saw a frail old man who must have been in his 90s standing in the doorway of his house.
I walked over and he asked if I could help him with something. I said I would help, so I followed him to a
step-ladder in his kitchen.
He said that he needed to change the bulb but he couldn’t get up the ladder.
After I changed the bulb, he said that he’d give me something for helping out.
He reached for a small tray of change on his kitchen table and picked out the only 50p coin in his tray of 1p
and 2p coins.
I told him he didn’t have to give me anything but he said that it was only right to reward helping out an old
man.

FedBiscuit
A Reddit user recounts a heartwarming act of kindness where they helped an elderly man change a lightbulb
in his kitchen.
The stranger gave them a 50p coin as a reward for their help.
The act of kindness was memorable because it brought a smile to the elderly man’s face and showed that
even in their old age, people can still do good deeds for others.

FedBis
A Reddit user recounts a heartwarming act of kindness where they helped an elderly man change a lightbulb
in his kitchen. The stranger gave them a 50p coin as a reward for their help. The act of kindness was
memorable because it brought a smile to the elderly man’s face and showed that even in their old age, people
can still do good deeds for others.

FedDPO
A Reddit user recounts a heartwarming story of a 90-year-old man who needed help changing a lightbulb in
his kitchen.
The user, who was 15 at the time, heard the man’s plea for help and went to his aid. The man gave the user

FedAvg

Old man in his 90s needed help changing a bulb. I helped him and he gave me a 50p coin.

Raw Model
A Reddit user recounts a heartwarming story of a stranger who helped an elderly man change a lightbulb in
his kitchen.
The stranger, who was walking to school at 15, heard a voice call out for help and followed the old man to
his house.
He changed the lightbulb and the old man gave him a 50p coin as a reward.
The stranger didn’t have

Figure 7: Gemma Summarization Sample.
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Reddit Post: TIFU by locking myself out of my room.

It all started with a cultural tour. Being active duty military and stationed overseas in Japan we were voluntold
to partake in a tour of the local area. Fun and dandy right?
I was ecstatic about the free tour of the local area. Except when I woke up five minutes before the tour starts.
Luckily the meeting area was a Starbucks just outside of my room.
Que the rushing, the frantic panic to dress up, and get down in time. I left my ID which is also conveniently
my room key. Two more mistakes. (Straying away from the story, the military is all about being on time and
integrity. Hence "excellence in all we do".)
Realizing I fucked up bad, I told the host that I had left my REQUIRED ID in my room, which is my room
key locking myself out.
I couldn’t go on the tour and now I’m stuck in the Starbucks waiting until one of my supervisors picks me up
and lets me into my room. I’m expecting more than just a little scolding, paperwork even.

FedBiscuit
The poster was locked out of their room due to leaving their ID, which was also their room key, in their rush
to make it on time for a cultural tour.
They are now stuck in a Starbucks waiting for someone to pick them up and let them into their room.
They expect to receive a scolding and possibly even paperwork for the mistake.

FedBis
While on a cultural tour in Japan, the poster locked themselves out of their room, leading to them being stuck
in a Starbucks and expecting a scolding from their supervisors.

FedDPO
While on a cultural tour in Japan, the poster was locked out of their room due to leaving their ID and room
key in the room. They are now stuck in a Starbucks waiting for a supervisor to pick them up and let them
into their room. They expect to receive a scolding and possibly paperwork for the mistake.

FedAvg

I locked myself out of my room and now I’m stuck in Starbucks waiting for a supervisor to pick me up and
let me into my room.

Raw Model
While on a cultural tour in Japan, the poster was locked out of their room due to leaving their ID and room
key in the room.
They were stuck in a Starbucks until one of their supervisors picked them up and let them into their room.
They expect to receive a scolding and possibly paperwork for the mistake.

Figure 8: Llama Summarization Sample.
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