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Abstract

Due to statistical lower bounds on the learnability of many function classes un-
der privacy constraints, there has been recent interest in leveraging public data
to improve the performance of private learning algorithms. In this model, algo-
rithms must always guarantee differential privacy with respect to the private sam-
ples while also ensuring learning guarantees when the private data distribution is
sufficiently close to that of the public data. Previous work has demonstrated that
when sufficient public, unlabelled data is available, private learning can be made
statistically tractable, but the resulting algorithms have all been computationally
inefficient. In this work, we present the first computationally efficient, algorithms
to provably leverage public data to learn privately whenever a function class is
learnable non-privately, where our notion of computational efficiency is with re-
spect to the number of calls to an optimization oracle for the function class. In
addition to this general result, we provide specialized algorithms with improved
sample complexities in the special cases when the function class is convex or when
the task is binary classification.

1 Introduction

Differential privacy (DP) [Dwork et al., 2006] is a standard guarantee of individual-level privacy for
statistical data analysis. Algorithmic research on differential privacy aims to understand what statis-
tical tasks are compatible with the definition, and at what cost, e.g., in terms of sample complexity
or computational efficiency. Unfortunately, it is known that some tasks may become more expensive
or outright impossible to conduct with differential privacy. For example, in the setting of binary
classification, there is no differentially private algorithm for solving the simple problem of learning
a one-dimensional classifier over the real numbers [Bun et al., 2015, Alon et al., 2019].
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Motivated in part by such barriers to full-fledged private learning, many papers have considered
relaxing the model to allow the use of auxiliary “public” data Balcan and Feldman [2013], Bassily
et al. [2019, 2020b, 2022, 2023], Kairouz et al. [2021], Amid et al. [2022], Lowy et al. [2023].
Such data may be available if individuals can voluntarily opt-in to share or sell their information
to enable a particular task. Alternatively, a data analyst might have background knowledge about
the underlying data distribution from the results of previous analyses, or hold a plausible generative
model for it. These situations are captured by semi-private learning, first discussed by Balcan and
Feldman [2013], formally introduced by Beimel et al. [2014] and subsequently studied by Bassily
et al. [2019], Hopkins et al. [2024]. In this model, a learning algorithm is given n “private” samples
from a joint distribution D over example-label pairs, as well as m unlabeled “public” samples from
the same marginal distribution over examples. The algorithm must be differentially private with
respect to its private dataset, but can depend arbitrarily on its public samples. For learning a binary
classifier over a class F with a VC-dimension vc(F), these papers showed that in the presence of
O(vc(F)) public unlabeled samples, every concept class F is agnostically learnable with O(vc(F))
private labeled samples, matching what is achievable without privacy guarantees.

While these results essentially resolve the statistical complexity of semi-private learning, they do
not address the question of computational efficiency. These algorithms proceed by drawing enough
public samples to construct a cover for the class F with respect to the target marginal distribution
on examples, and then using the exponential mechanism [McSherry and Talwar, 2007] to select a
hypothesis from this cover that fits the private dataset. As the size of this cover is exponential in
vc(F), constructing it explicitly is computationally expensive. This paper aims to address the fol-
lowing question: Is such computational overhead really necessary if F exhibits additional structure
that make non-private learning tractable?

In this work, we give new semi-private learners that are efficient whenever fast non-private algo-
rithms are available. More specifically, our main result is generic semi-private algorithms for regres-
sion and classification that are oracle-efficient in that they run in polynomial time given an oracle
solving the non-private empirical risk minimization problem for F , and have sample complexity
polynomial in the usual parameters such as Gaussian complexity and VC dimension.

Theorem 1 (Informal version of Theorem 2). Fix a function class F : X → [−1, 1]. Then there is
an oracle-efficient, (ε, δ)-differentially private algorithm (Algorithm 2) using poly(supm Gm(F))
labeled private samples (where, Gm(F) denotes the Gaussian complexity of function class F), un-
labeled public samples, and calls to an empirical risk minimization oracle for F that learns an
approximately optimal predictor f̂ ∈ F .

While Theorem 1 captures extremely broad learning settings, the polynomials governing its sample
complexity are rather large. We identify several important cases in which the sample complexity
can be improved and the number of oracle calls is only 2. In the case where the function class F
is convex, we give a variant of Algorithm 2, inspired by follow-the-regularized-leader, with signif-
icantly improved sample complexity as a function of the desired error (Theorem 3, Algorithm 3).
Finally, in the special case of binary classification (i.e., Boolean F under the 0-1 loss), we give a
completely different oracle-efficient algorithm with improved sample complexity (Theorem 4, Al-
gorithm 4), which requires the private sample size to grow at the rate of O((vc(F))2). Prior work of
Bassily et al. [2018] gave an oracle-efficient algorithm in this setting with somewhat better sample
complexity than ours, based on a reduction to private classification. Meanwhile, our algorithm has
the advantage of being able to guarantee pure (rather than only approximate) differential privacy al-
gorithm, as well as making only two oracle calls as opposed to the polynomially many as a function
of ε and the target accuracy. Our results in the binary classification setting can also be viewed as an
extension of Neel et al. [2019], which gives oracle-efficient private learners for structured function
classes F that have a small universal identification set [Goldman et al., 1993]. Our results relax this
stringent combinatorial condition by leveraging a small public unlabelled dataset, which allows us
to design an oracle-efficient private learner for any function class F with bounded VC-dimension.

In fact, our results also address a somewhat more general setting than the semi-private model de-
scribed so far. Specifically, our results automatically handle the setting where there may be a
bounded distribution shift between the public and private data. In particular, all of our results hold
as long as the public unlabelled data distribution and the private marginal distribution over the fea-
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ture space have a density ratio bounded by σ.1 The standard semi-private setting corresponds to
the special case where σ = 1. Taking this view, we can interpret our results as oracle-efficient pri-
vate learning in the smoothed learning setting. Our algorithms achieve accurate learning provided
that the private marginal distribution does not deviate too much from a public reference distribution.
However, our privacy guarantees hold even if the private data distribution has unbounded distribution
shift from the public data.

1.1 Related Work

Our work brings together ideas and techniques from multiple literatures.

Oracle efficiency in private and online learning. Our notion of oracle-efficiency is standard in
(theoretical) machine learning to model reductions in a world where worst-case hardness abounds,
but optimization heuristics (e.g., integer programming solvers, non-convex optimization) often enjoy
success. Within the differential privacy literature, oracle-efficient algorithms are known for binary
classification with classes F that admits small universal identification sets [Neel et al., 2019], syn-
thetic data generation [Gaboardi et al., 2014, Nikolov et al., 2013, Neel et al., 2019, Vietri et al.,
2020], and certain types of non-convex optimization problems [Neel et al., 2020]. Oracle-efficiency
is also well-established approach in online learning [Kalai and Vempala, 2005, Hazan and Ko-
ren, 2016, Kozachinskiy and Steifer, 2023, Haghtalab et al., 2022a, Block and Simchowitz, 2022,
Block and Polyanskiy, 2023, Block et al., 2023a,b], an area with deep connections to differential
privacy [Alon et al., 2019, Abernethy et al., 2019, Bun et al., 2020, Ghazi et al., 2021]. Indeed,
our new semi-private learning algorithm Algorithm 2 adapts a follow-the-perturbed-leader inspired
algorithm [Block et al., 2022] from the setting of smoothed online learning.

DP learning and release with public (unlabelled) data Our results contribute to a long line of
theoretical work that leverages public data for private data analysis. In particular, our work provides
general computationally efficient algorithms (in the oracle efficiency sense) for semi-private learning
[Beimel et al., 2014]. In addition to the work in this direction we discussed above, several recent
papers Bassily et al. [2022, 2023] developed efficient algorithms for private learning with domain
adaptation from a public source. That work accommodates a more general notion of distribution
shift than ours, but makes essential use of labeled public data, as well as handling only restricted
concept classes or loss functions. There has also been work that leverages public data to remove
statistical barriers in private query release [Bassily et al., 2020a] and density estimation Bie et al.
[2022], Ben-David et al. [2023]. Papernot et al. [2018], Yu et al. [2022], Golatkar et al. [2022], Zhou
et al. [2021] and Liu et al. [2021a,b] give empirical guarantees to the problem of private learning
and private synthetic data from public samples respectively.

Smoothed Analysis in Online Learning. Smoothed analysis was pioneered in Spielman and Teng
[2004] for the purpose of explaining the empirical success of algorithms whose worst-case behavior
is provably intractable. More recently, the framework has come to online learning [Rakhlin et al.,
2011, Haghtalab et al., 2020, 2022b, Block et al., 2022, Haghtalab et al., 2022a, Block and Sim-
chowitz, 2022, Block et al., 2023a,b] in order to circumvent the strong statistical [Rakhlin et al.,
2015] and computational [Hazan and Koren, 2016] lower bounds that worst-case data can induce.
The assumption of smoothness has also been used in learning more broadly [Durvasula et al., 2023,
Cesa-Bianchi et al., 2023] and its assumptions have been relaxed [Block and Polyanskiy, 2023].

2 Preliminaries

In this section, we formally introduce our setting. Let X denote the feature space and Y be the
label space. In general, we consider Y = [−1, 1], but in the special case of binary classification
setting, we have Y = {0, 1}. In general, we study learning algorithms A that map a dataset D with
n examples from X × Y to a predictor in a function class F . We require A to satisfy differential
privacy, defined below.

1In fact, this condition can be further relaxed to only assuming the two distributions have a bounded f -
divergence.
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Definition 1 (Differential Privacy Dwork et al. [2006]). Let A : (X × Y)n → F be a randomized
algorithm and D,D′ ∈ (X ×Y)n be data sets. We say that D and D′ are neighboring if |D \ D′| =
|D′ \ D| ≤ 1, i.e. they differ in at most one datum. We say that A is (ε, δ)-differentially private
if for all neighboring datasets D,D′, and for all measurable G ⊂ F , it holds that P (A(D) ∈ G) ≤
eε · P (A(D′) ∈ G) + δ. If δ = 0, we say that A is ε-(purely) differentially private.

As defined, it is trivial to construct algorithms that are differentially private by outputting functions
independent of the data set; for an algorithm to be useful, however, we also require that it learns in a
meaningful sense. Thus, in the context of learning, we consider the following accuracy desideratum.
Definition 2. Let A : (X × Y)n → F be a randomized algorithm. We say that A is an (α, β)-
learner with respect to a measure ν on X × Y and loss function L : F → [−1, 1] if, for D sampled
independently from ν, it holds that P (L(A(D)) ≤ inff∈F L(f) + α) ≥ 1 − β. For regression
problems, we consider the loss function L to be induced by a function ℓ : Y × Y → [0, 1], convex
and λ-Lipschitz in the first argument, such that L(f) = E(X,Y )∼ν [ℓ(f(X), Y )].

For simplicity, we will denote the empirical loss on a data set D as LD(f) = 1
n ·∑

(Xi,Yi)∈D ℓ(f(Xi), Yi). We emphasize that in contradistinction to the standard notion of PAC-
learnability [Valiant, 1984], our requirement is weaker in that we only require distribution-dependent
learning, i.e., the algorithm A is allowed to depend on ν in some to-be-specified way. This is nec-
essary in our setting as it is well known that distribution-independent differentially private PAC
learning is possible only for very restricted classes of functions F with bounded Littlestone dimen-
sion [Alon et al., 2019, Bun et al., 2020]. To make private learning statistically tractable for broader
classes of functions, we consider the following restriction on ν:
Definition 3. Given a measure µ ∈ ∆(X ) and a parameter σ ∈ (0, 1], we say that νx is σ-
smooth with respect to µ if

∥∥∥dνx

dµ

∥∥∥
∞

≤ 1
σ . We suppose that the learner has access to m samples

Z1, . . . , Zm ∼ µ that are independent of each other and the training data D and thus A may depend
on these samples.

We remark that Definition 3 can be significantly relaxed by assuming only that Df (νx||µ) ≤ 1
σ as

in Block and Polyanskiy [2023], where Df (·||·) is a sufficiently strong f -divergence2. In this case,
the statistical rates presented below will be worse and depend on f , but the algorithms and privacy
guarantees will remain unchanged. Critically, we do not require that our algorithms are private with
respect to Z1, . . . , Zm, which we treat as public, unlabelled data. The key reason that this public
data helps us circumvent the lower bounds is that it gives us access (albeit indirectly) to a small
subclass of the hypothesis set that still has approximately good hypotheses. Since our primary
focus is to design computationally efficient private learners, we cannot directly handle either the
original hypothesis class or the small proxy that the public data gives us access. Instead we suppose
access to the following ERM oracle:
Definition 4. Given a function class F : X → R, a data set D = {x1, . . . , xm} ⊂ X and loss
functions ℓ1, . . . , ℓm : R → R, we define the empirical risk minimization oracle ERM : F → R
such that ERM(F ,LD) ∈ argminf∈F LD(f), where LD(f) =

∑
xi∈D ℓi(f(xi)).

ERM oracles are standard computational models in many learning domains such as online learning
[Kalai and Vempala, 2005, Hazan and Koren, 2016, Block et al., 2022, Haghtalab et al., 2022a] and
Reinforcement Learning [Foster and Rakhlin, 2020, Foster et al., 2021, Mhammedi et al., 2023b,a].
Assuming access to ERM allows us to disentangle the computational challenges of optimizing over
specific function classes from the specific challenge of differentially private learning as well as to
avoid the well-known intractability results for nonconvex optimization [Blum and Rivest, 1988]
that do not accurately reflect the realities of modern optimization techniques (e.g., integer program
solvers, SGD). We note that our algorithms also work in the case of ERM oracles with additive
error by minor modification to the analysis similar to the one in [Block et al., 2022]. We remark
that applying Neel et al. [2019, Theorem 8] gives a black-box robustification procedure for purely
private, oracle-efficient algorithms, which ensures that the privacy guarantees continue to hold even
when the oracle may fail to optimize the objective. In particular, Algorithms 3 and 4 below, when
run in their pure DP forms can be made robust at a minimal cost on accuracy. We defer to Neel et al.
[2019] for further discussion on this topic.

2These divergences include the well-known KL divergence and Renyi divergence. For a comprehensive
introduction to f -divergences, see Polyanskiy and Wu [2022+].
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Algorithm 1: Perturb: An algorithm for perturbing a function with noise on public data.

1: Input Function f̄ ∈ F , distribution Q ∈ ∆(R), scale γ ≥ 0, public data D̃x = {Z1, . . . , Zm}.
2: Sample ζ1, . . . , ζm ∼ Q.
3: Define R(f) =

∥∥f − f̄ − γ · ζ
∥∥2
m

.
4: Output f̂ = ERM(R,F).

It is well-known that even absent differential privacy guarantees, learning arbitrary function classes
is impossible; we now introduce the notions of complexity that are relevant to our results. We begin
with the standard notion of VC dimension:
Definition 5. Let F : X → {0, 1} be a function class. We say that a set of points x1, . . . , xd ∈ X
shatters F if for all ε1:d ∈ {0, 1}d, there is some fε such that fε(xi) = εi for all i. The VC
dimension of F , denoted vc(F), is the largest d such that there exists a set of d points shattering F .

In addition to VC dimension, we also use the Gaussian complexity of a function class:
Definition 6. Let F : X → [−1, 1] be a function class and x1, . . . , xm ∈ X be arbitrary points. We
let ωm : F → R be the canonical Gaussian process on F , i.e.,

ωm(f) =
1√
m

·
m∑
i=1

ξi · f(xi), (1)

where ξi are independent standard Gaussians. We define the (data-dependent) Gaussian
complexity of F to be E

[
supf∈F ωm(f)

]
, the average Gaussian complexity as Gm(F) =

EZE[supf∈F ωm(f)], and the worst-case Gaussian complexity of F to be Gm(F) =

supx1,...,xm∈X E
[
supf∈F ωm(f)

]
.

Both vc(F) and Gm(F) are well known measures of complexity from learning theory and their
relationships to other notions of complexity like covering number are well-understood [Mendelson
and Vershynin, 2003, Wainwright, 2019, Van Handel, 2014]. In particular, it is well-known that
Gm(F) = O(

√
vc(F)) [Dudley, 1969, Mendelson and Vershynin, 2003] and that standard PAC-

learning is possible if and only if Gm(F) = o(
√
m) [Wainwright, 2019, Van Handel, 2014]. We

remark that different texts use different scalings for Gm(F), with some replacing the m−1/2 factor
in (1) with m−1 and others omitting it entirely; our choice of scaling is motivated by the fact that a
natural complexity measure for many (Donsker [Wainwright, 2019]) function classes that our algo-
rithms depend on is supm Gm(F), which is most compactly represented with the present scaling.

Notation. We always reserve P and E for probability and expectation with respect to measures
that are clear from the context. We denote by ∆(X ) the space of measures on some X and for
any µ ∈ ∆(X ) we let ∥·∥µ denote the L2(µ) norm, i.e., ∥f∥2µ = EZ∼µ[f(Z)2]. Similarly, for
m points Z1, . . . , Zm ∈ X , we let ∥·∥m denote the empirical L2 norm on these points so that
∥f∥2m = m−1 ·

∑m
i=1 f(Zi)

2. We reserve ωm for the canonical empirical Gaussian process on F as
in (1) and L for a functional on F .

3 Algorithms for Differentially Private Learning

In this section, we provide a general template for constructing differentially private learning algo-
rithms with public data and instantiate this template with two oracle-efficient algorithms. Our first
algorithm applies to arbitrary bounded function classes, whereas the second algorithm only applies
to convex classes but has an improved sample complexity. Our general template is broken into
the following two steps: (i) Use ERM (cf. Definition 4) and the public data to construct an initial
estimate f̄ that is a good learner and satisfies stability with respect to ∥·∥m; (ii) Output f̂ as the
function that minimizes

∥∥f − f̄ − γ · ζ
∥∥
m

, where γ ≥ 0 is a scale and ζ = (ζ1, . . . , ζm) is a vector
of independent random variables sampled according to some distribution Q. The second step is
accomplished through Algorithm 1 and is the same across our algorithms. The first step, however,
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Algorithm 2: Oracle Efficient Private Learner (Perturbation)

1: Input Oracle ERM, perturbation parameter η > 0, public data set D̃x = {Z1, . . . , Zm},
private data set D = {(Xi, Yi)|1 ≤ i ≤ n}, function class F , loss function ℓ, noise level γ > 0,
number of iterations J ∈ N, noise distribution Q ∈ ∆(R).

2: for j = 1, 2, . . . , J do
3: Sample ξ

(j)
1 , . . . , ξ

(j)
m ∼ N (0, 1).

4: Define ω
(j)
m : F → R such that

ω(j)
m (f) =

1√
m

·
m∑
i=1

ξi · f(Zi). (2)

5: Define L(j) : F → R such that L(j)(f) =
∑

(Xi,Yi)∈D ℓ(f(Xi), Yi) + η · ω(j)
m (f).

6: Define f̄j = ERM(L(j),F)
end

7: Define f̄ = 1
J ·
∑J

j=1 f̄j .

8: Output f̂ = Perturb(f̄ ,Q, γ, D̃x) ▷ By running Algorithm 1

is algorithm-specific and is the primary factor affecting the sample complexity. The intuition for our
template is as follows. We need to show that f̂ is both a learner and is differentially private. To see
why the template produces a good learner, note that if Zi ∼ µ are independent and m is sufficiently
large, then ∥·∥m ≈ ∥·∥µ. Thus if γ is small, then

∥∥∥f̄ − f̂
∥∥∥
µ
≪ 1 and

∣∣∣Eµ

[
L(f̂)

]
− Eµ[L(f̄)]

∣∣∣≪ 1

whenever ℓ is Lipschitz. By smoothness, a similar guarantee holds for expectations with respect to
ν and thus f̂ is a good learner. To see why f̂ is differentially private, note that by choosing Q to be
a standard Gaussian, we can ensure that the likelihood ratios of choosing f̂ given f̄ versus f̄ ′ are
controlled by

∥∥f̄ − f̄ ′
∥∥
m

. Thus, if f̄ is stable with respect to ∥·∥m, then f̂ will be private. The
intuition of the stability of f̄ is discussed in Section 4.

We now make the above intuition precise by instantiating this template in our most general setting
in Algorithm 2. We construct f̄ by running ERM on a perturbed version of the empirical risk
minimization problem and then averaging. Specifically, for j ∈ [J ], we define L(j) : F → R as a
sample path of a noncentred Gaussian process in (2) and let f̄j denote the minimizer of L(j) over F .
We then output f̄ as the average of f̄1, . . . , f̄J . We present motivation for the particular choice of f̄ ,
as well as the analogue in Algorithm 3, in the subsequent section. The following theorem shows that
if Q is chosen correctly, this algorithm is an oracle-efficient differentially private learner whenever
νx is σ-smooth with respect to µ.
Theorem 2. Suppose that F : X → [−1, 1] is a function class and µ ∈ ∆(X ) is a measure such
that inff∈F ∥f∥µ ≥ 2

3 . Let ℓ : [−1, 1] × [−1, 1] → [0, 1] be a loss function that is convex and
λ-Lipschitz in its first argument. If Q = N (0, 1) in Algorithm 1, then for any ε, δ, α, β ∈ (0, 1),
there are choices of η, γ > 0 and J,m ∈ N, all polynomial in problem parameters and given in
Appendix C.6, such that if

n = poly
(
sup
m

Gm(F), log

(
1

δ

)
, log

(
1

β

)
, λ

)
· ε−3 · α−14,

then the f̂ returned by Algorithm 2 is (ε, δ)-differentially private. If νx is σ-smooth with respect to
µ, then f̂ is an (α, β)-learner with respect to νx and ℓ.

We emphasize that Algorithm 2 is always differentially private, independent of ν; however, our al-
goirthm is only a good learner if νx is smooth with respect to µ. We remark that all of the conditions
in Theorem 2 are standard with the exception of the assumption that ∥f∥µ ≥ 2/3 for all f ∈ F .
This condition is easy to ensure by setting µ̃ = µ+2·δz⋆

3 , where z⋆ is a distinguished point such that
f(z⋆) = 1 for all f ∈ F ; note that this process deflates σ at most by a factor of 3 while ensuring the
lower bound on the norm of f . Replacing µ by µ̃ then suffices to ensure that Theorem 2 holds.
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Algorithm 3: Oracle Efficient Private Learner (Regularization)

1: Input Oracle ERM, perturbation parameter η > 0, public data set D̃x = {Z1, . . . , Zm},
private data set D = {(Xi, Yi)|1 ≤ i ≤ n}, function class F , loss function ℓ, noise level γ > 0,
number of iterations J ∈ N, noise distribution Q ∈ ∆(R).

2: Define L : F → R such that

L(f) =
∑

(Xi,Yi)∈D

ℓ(f(Xi), Yi) + η · ∥f∥2m . (3)

3: Define f̄ = ERM(L,F)

4: Output f̂ = Perturb(f̄ ,Q, γ, D̃x) ▷ By running Algorithm 1

We further remark that it is classical that the complexity notion supm Gm(F) is upper bounded by√
vc(F) for binary function classes and

√
log(|F|) for finite classes [Wainwright, 2019], ensuring

that the proven sample complexity is polynomial in all standard notions of function class complexity.
For even more complex function classes, where Gm(F) = ω(1), similar results hold, although with
worse rates; further dicussion, as well as the precise polynomial dependence of hyperparameters and
sample complexity, can be found in Appendix C.

While Algorithm 2 succeeds in our desiderata under general assumptions, the sample complex-
ity is a large polynomial of the desired accuracy. Indeed, the sample complexity of Algorithm 2
scales like O

(
vc(F) · ε−3 · α−14

)
, which is significantly worse than the O

(
vc(F) · α−2

)
sample

complexity that a non-private algorithm such as ERM can achieve [Wainwright, 2019] or even the
O
(
vc(F) · α−2 · ε−2

)
sample complexity achievable by private, inefficient algorithms with public

data [Bassily et al., 2020b]. Furthermore, we are unable to achieve a pure differential privacy guar-
antee with this algorithm. We now address both issues by providing an improved algorithm in the
special case that the function class F is convex. While we still use Algorithm 1 as a subroutine,
in Algorithm 3, motivated by the difference between Follow the Perturbed Leader (FTPL) and Fol-
low the Regularized Leader (FTRL) [Kalai and Vempala, 2005, Cesa-Bianchi and Lugosi, 2006] in
online learning, we modify the way in which we choose our initial estimator f̄ . In particular, we
eliminate the averaging step and redefine ω to be a strongly convex regularizer instead of a Gaussian
Process perturbation. More specifically, we define L in (3) as the empirical loss regularized by ∥·∥2m
and output f̄ = ERM(L,F). We have the following result:
Theorem 3. Suppose that F : X → [−1, 1] is a convex function class and ℓ : [−1, 1] × [−1, 1] →
[0, 1] is convex and λ-Lipschitz in its first argument. Suppose that Z1, . . . , Zm ∼ µ are indepen-
dent and Q = N (0, 1). Then there are η, γ,m polynomial in problem parameters and given in
Appendix C.6 such that, if

n = poly
(
log
(
β−1

)
, log

(
δ−1
)
, λ
)
· (sup

m
Gm(F))2 · ε−1 · α−5

then the f̂ returned by Algorithm 3 is (ε, δ)-differentially private. If νx is σ-smooth with respect to
µ, then f̂ is an (α, β)-learner with respect to νx and ℓ. Furthermore, if Q = Lap(1), and

n = poly
(
sup
m

Gm(F), log
(
β−1

)
, λ

)
· ε−1 · α−6,

then Algorithm 3 is ε-purely differentially private and an (α, β)-PAC learner for any σ-smooth νx.

As in the case of Theorem 2, we can easily generalize Theorem 3 to apply to function classes F
where Gm(F) = ω(1) at the cost of worse polynomial dependence in the sample complexity. We
again omit this case for the sake of simplicity. While the sample complexity of Algorithm 3 is
a marked improvement over that of Algorithm 2, it remains a far cry from the desired O

(
α−2

)
rates of non-private learning that computationally inefficient private algorithms leveraging public
data are able to achieve [Bassily et al., 2019]; we leave the interesting question of producing an
oracle-efficient private algorithm with optimal sample complexity to future work.

Finally, we remark that even in the case where F is not convex, Algorithm 3 can be applied to
conv(F), the convex hull of F , if we assume the learner has access to ERM′, a stronger ERM oracle
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that can optimize over conv(F). In this case, Theorem 3 supercedes Theorem 2 as it is easy to see
that Gm(F) = Gm(conv(F)) and thus the sample complexity of Algorithm 3 is strictly better than
that of Algorithm 2 and the pure differential privacy result applies.

4 Analysis Techniques

In this section, we outline the proofs of our main results, with full details deferred to Appendix C.
As is suggested by our template, the proof of the privacy part of Theorem 2 rests on two results: the
first shows that if Q is a standard Gaussian (resp. exponential) then stability of f̄ with respect to
∥·∥m can be translated into differential privacy. The second shows that f̄ will be stable with respect
to ∥·∥m. Similarly, the proof that f̂ is a good learner first shows that f̄ is a good learner and then
that f̂ and f̄ are close. We begin with the more technically novel parts and show that, under standard
assumptions, Algorithms 2 and 3 result in f̄ that are stable in ∥·∥m. In our proof of Theorem 2,
we provide an improved analysis of the Gaussian anti-concentration result from Block et al. [2022],
which may be of independent interest. We prove the stability of Algorithm 3 using a technique
common in online learning. We then show that stability in ∥·∥m can be boosted to a differential
privacy guarantee using the Gaussian and Laplace Mechanisms [Dwork et al., 2006]. Finally, we
apply standard learning theoretic techniques to show that f̂ is a good learner.

4.1 Stability Analysis

In this section, we explain how to prove that Algorithms 2 and 3 are stable with respect to ∥·∥m.
Our stability results further cement the connections between differential privacy and online learning
noted in Abernethy et al. [2019] as both algorithms are primarily motivated by online learning tech-
niques. We begin by describing the stability analysis of Algorithm 2. The key lemma underlying
the stability of Algorithm 2 is an improved version of a Gaussian anti-concentration result from
Block et al. [2022], which may be of independent interest.

Proposition 1. Let F denote a subspace of the unit ball with respect to a norm ∥·∥ induced by an
inner product ⟨·, ·⟩ and let m,m′ : F → R be measurable functions such that ∥m−m′∥∞ ≤ τ . If ω
is a centred Gaussian process on F with covariance kernel given by ⟨·, ·⟩, Ω(f) = m(f)+ η ·ω(f),
f̄ = argminf∈F Ω(f), and Ω′ and f̄ ′ are defined similarly, then for any ρ, τ > 0, it holds that
P
(∥∥f̄ − f̄ ′

∥∥ > ρ
)
≤ 8τ

ρ4κ2η · E
[
supf∈F ω(f)

]
, where κ2 = inff∈F E

[
ω(f)2

]
.

The proof proceeds in a similar way to that of Lemma 33 from Block et al. [2022], but involves
a tighter analysis in several steps in order to improve the bound. The intuition for the result is
straightforward: if f̄ is the minimizer of the Gaussian process Ω, then with reasonable probability,
almost minimizers of Ω (as measured by the tolerance τ ) are within a radius ρ of f̄ as long as
the Gaussian process is nontrivial in the sense that all indices f have sufficiently high variance.
Moreover, the quantitative control on the probability of this event depends in a natural way both
on τ and ρ as well as on the Gaussian process ω: more complex spaces F and lower variance
processes lead to a worse anti-concentration guarantee. Finally, we note that Proposition 1 is an
improvement of Lemma 33 from Block et al. [2022] in that the quantitative bound on the probability
of anti-concentration is tighter by polynomial factors in ρ, η, and κ.

Like essentially all anti-concentration results [Chernozhukov et al., 2015], Proposition 1 holds only
with moderate probability in the sense that the guarantee is polynomial in the scale ρ; this fact is in
contradistinction to concentration inequalities which tend to hold with high probability exponential
in the scale. This discrepancy is precisely what motivates the averaging in Line 7 of Algorithm 2.
Indeed, we can use Proposition 1 to show that if f̄j is as in Line 6 of Algorithm 2 and f̄ ′

j is defined
analogously with respect to D′, then with moderate probability

∥∥f̄j − f̄ ′
j

∥∥
m

is small. Using Jensen’s
inequality and a standard chernoff bound, we can then boost this moderate probability guarantee into
a high probability guarantee to show that if J is sufficiently large, then

∥∥f̄ − f̄ ′
∥∥
m

is small with high
probability. We formalize this argument in the following lemma:

Lemma 1 (Stability of Algorithm 2). Suppose that F : X → [−1, 1] is a function class and
ℓ : [−1, 1]×2 → [0, 1] is a bounded loss function. Suppose that D,D′ are neighboring datasets
and let f̄ be as in Line 5 of Algorithm 2 and f̄ ′ be defined analogously with respect to D′. Then
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for any ρ, δ > 0, with probability at least 1 − δ, over the Gaussian processes ω(j),
∥∥f̄ − f̄ ′

∥∥
m

≤
2

(η·n)1/3κ2/3 ·
(
E
[
supf∈F ωm(f)

])1/3
+

√
log( 1

δ )
J .

We note that the worse dependence on η in Lemma 1 as compared to Proposition 1 arises from
integrating the tail bound to obtain the control on

∥∥f̄j − f̄ ′
j

∥∥
m

in expectation necessary to apply
Jensen’s inequality; details can be found in Appendix C.1.

We now turn to the stability of Algorithm 3. The proof is based on a technique borrowed from online
learning and the analysis of the Follow the Regularized Leader (FTRL) algorithm [Gordon, 1999,
Cesa-Bianchi and Lugosi, 2006].
Lemma 2 (Stability of Algorithm 3). Suppose that ℓ is convex and λ-Lipschitz in its first argument.
Let D,D′ denote neighboring data sets and let f̄ denote the output of Line 3 in Algorithm 3 and f̄ ′

be the analogous output evaluated on D′. If F is convex, then,
∥∥f̄ − f̄ ′

∥∥
m

≤ 2√
η·n .

The proof of Lemma 2 can be found in Appendix C.2 and rests on elementary properties of strongly
convex functions. We note that relative to Lemma 1, the dependence on η in Lemma 2 is improved,
which in turn leads to the better sample complexity exhibited in Theorem 3. With stability of Algo-
rithms 2 and 3 thus established, we proceed to analyze the effect of the output perturbation.

4.2 Output Perturbation Analysis

We now turn to the analysis of Algorithm 1. In order to boost a stability-in-norm guarantee into
one for differential privacy while remaining a good learner, we require the output perturbation to
be sufficiently small as to not not affect the learning guarantee of f̄ while at the same time being
sufficiently large as to ensure privacy. We balance these two competing objectives by tuning the
variance of the added noise. This part of the analysis is relatively standard in the differential privacy
literature [Chaudhuri et al., 2011, Neel et al., 2019], with the bound on the size of the output pertur-
bation following from standard tail bounds on Gaussian and Laplace random vectors. The privacy
guarantees are similarly standard and summarized in the following lemma:
Lemma 3. Suppose f̄ ∈ F is the output of an algorithm A : D → F that is ρ-stable with
respect to ∥·∥m, i.e., for any neighboring data set D′, it holds that ∥A(D)−A(D′)∥m ≤ ρ.
Then applying Algorithm 1 with Q = N (0, 1) to f̄ results in an (ε, δ)-private algorithm if
m
2γ2

(
1 + γ ·

√
log
(
1
δ

))
ρ ≤ ε. Similarly, if Q = Lap(γ), then the algorithm is ε-purely private if

m3/2/γ · ρ ≤ ε.

This standard result is proved in Appendix C.3. Note that, perhaps counterintuitively, the privacy
loss increases with the public data. This relationship occurs because the algorithm is implicitly
discretizing the function class, where more public data leads to a finer discretization; though finer
discretizations lead to higher accuracy, they also leads to more privacy loss. Furthermore, note that
even were the whole marginal distribution known, the privacy-accuracy tradeoff is dictated by the
number of labelled samples, not m.

The balance between privacy and learning is quantified in the choices of m and γ. If γ is too large,
then f̄ will be private but a poor learner, whereas the opposite occurs if γ is too small. Similarly, if
m is too large then privacy is reduced whereas if m is too small then ∥·∥m is a poor approximation
for ∥·∥µ.

4.3 Learning Guarantees and Concluding the Proof

By combining Lemma 1 (resp. Lemma 2) with Lemma 9, we can establish the privacy of Algo-
rithm 2 (resp. Algorithm 3) as long as the tuning parameters m, γ, η, and J are chosen correctly. We
now sketch the proof that these algorithms comprise good learners in the sense of Definition 2. We
break our proof into three components, the first two of which are standard learning theoretic results.
The first lemma says that if m ≫ 1, then ∥·∥m is a good approximation for ∥·∥µ:

Lemma 4. Let F : X → [−1, 1] be a bounded function class and let Z1, . . . , Zm ∼ µ be inde-
pendent samples. Then for any β > 0 it holds with probability at least 1 − β that for all f ∈ F ,

∥f∥µ ≤ 2 · ∥f∥m + Õ

(
Gm(F)+

√
log(1/β)√

m

)
.

9



Lemma 4 is a standard bound from learning theory [Bousquet, 2002, Rakhlin et al., 2017] and is
proved in Appendix C.7 for the sake of completeness. The second component is given by Lemma 13
in Appendix C.5, which amounts to a classical uniform deviations bound for the empirical process,
ensuring that if n ≫ 1, then LD(f) ≈ L(f) for all f ∈ F . The final step is the following simple
lemma, which ensures that if η is not too large, then LD(f̄) ≈ LD(fERM):
Lemma 5. Let F : X → [−1, 1] be a bounded function class and let R : F → R be an arbitrary,
possibly random, regularizer. Let fERM ∈ argminf∈F LD(f) and f̄ ∈ argminf∈F LD(f) +R(f).
Then, LD(f̄) ≤ LD(fERM) + supf,f ′∈F R(f)−R(f ′).

Lemma 5 is a simple computation proved in Appendix C.5. Letting R(f) be either η · ω(j)
m (f) in

Algorithm 2 or η · ∥f∥2m in Algorithm 3 demonstrates that if η is not too large, then f̄ performs
similarly to fERM. To prove that Algorithms 2 and 3 produce good learning algorithms then, it
suffices to combine these three components, observing first that L(f̄) is close to optimal if n ≫ 1

and η is not too large, second that ∥f̄ − f̂∥µ ≪ 1 if m ≫ 1 and γ is sufficently small, and third
that |L(f̂) − L(f̄)| ≲ ∥f̄ − f̂∥µ if νx is σ-smooth with respect to µ and ℓ is λ-Lipschitz in its
first argument. Combining these results concludes the proofs of Theorems 2 and 3. A detailed and
rigorous argument for both proofs is presented in Appendix C. As a final remark, we note that in
the case of Algorithm 2, convexity of ℓ in the first argument is irrelevant to the privacy guarantee
despite being necessary for learning. Indeed, for f̄ returned by Line 5 in Algorithm 2 to be proven
a good learner, we apply Jensen’s and the above argument that ensures that f̄j is a good learner.
Interestingly, on the other hand, convexity in ℓ is irrelevant to the learning guarantee of Algorithm 3
while it is essential to the privacy guarantee. Further understanding the role that such structural
assumptions play in allowing privacy is an interesting direction for future work.
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A Differentially Private Classification

In the previous section, we presented a private algorithm for general, real-valued loss functions.
Here, we turn to the special case of classification, where we provide an algorithm with improved
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rates. Formally, binary classification is a special case of Definition 2, where F : X → {0, 1} and ℓ
is the indicator loss.

Much like Algorithms 2 and 3, our approach to classification in Algorithm 4 relies on minimizing
a perturbed empirical loss over F and projecting the output f̃ onto the public data. Unlike in these
earlier algorithms, which require a further perturbation of the output in order to boost stability into
differential privacy, in the special case of classification we are able to circumvent this second per-
turbation and return any f̂ that agrees with f̃ on the public data. This is accomplished by carefully
choosing the initial perturbation to the ERM objective (see (4)) so that the predictions of f̃ on the
public data satisfy differential privacy without ensuring some form of stability in norm. As a re-
sult, our improved rates then follow from lack of a second perturbation. We present the following
guarantee for our classification algorithm, whose pseudo-code can be found in Algorithm 4.

Algorithm 4: Rounded Report Separator Perturbed Minimum Algorithm (RRSPM)
Input ERM oracle ERM, dataset D = {(Xi, Yi) | 1 ≤ i ≤ n}, hypothesis class F , smoothness
parameter σ, loss function ℓ : Y × Y → {0, 1}, arbitrary Q ∈ ∆(R).
Draw D̃ = (D̃x, D̃y) where D̃x = {Z1, . . . , Zm} and D̃y = {Ỹ1, . . . , Ỹm} such that Zi ∼ µ

and Ỹi ∼ Uni({0, 1}), for all i ∈ [m].
Draw weights ξ = {ξ1, . . . , ξm} such that ξi ∼ Lap(2m/ε).
Define Lξ,D,D̃ : F → R such that

Lξ,D,D̃(f) =

n∑
i=1

ℓ(f(Xi), Yi) +

m∑
i=1

ξi · ℓ(f(Zi), Ỹi). (4)

Get f̃ = ERM(F ,Lξ,D,D̃).
Output f̂ = Perturb(f̃ ,Q, γ = 0, D̃x) ▷ By running Algorithm 1

Theorem 4. Suppose that F : X → Y is a function class of VC dimension d and ℓ : Y×Y → {0, 1}
is the indicator loss. Suppose that Z1, . . . , Zm ∼ µ and ξ1, . . . , ξm ∼ Lap(2m/ε) are independent.
Then there is a choice of m polynomial in the problem parameters such that if

n = Ω̃(d2ε−1α−5 log(β−1)),

then the f̂ returned by Algorithm 4 is ε-pure differentially private. If νx is σ-smooth with respect to µ,
then f̂ is an (α, β)-learner with respect to νx and ℓ. Furthermore, for some C > 0, if ξ1, . . . , ξm ∼
N (0, C

√
m log(1/δ)/ε) then there is a choice of m polynomial in the problem parameters such

that if

n = Ω̃(d2ε−1α−4 log1/2(1/δ) log(β−1)),

then the f̂ returned by Algorithm 4 with Gaussian perturbations is (ε, δ)-differentially private and
is an (α, β)-PAC learner with respect to any σ-smooth νx.
Remark 1. Note that the sample complexity we get in the above theorems is in the general, agnostic
setting. In the realizable setting, where some f⋆ ∈ F perfectly predicts the Y from the X , we
get a sample complexity of n = Ω̃(d2ε−1α−3 log(β−1)) for ε-pure differential privacy and n =

Ω̃(d2ε−1α−2.5 log1/2(1/δ) log(β−1)) for (ε, δ)-differential privacy.

We emphasize that Theorem 4 attains the improved O(α−5) sample complexity (even O(α−4 for
approximate differential privacy)), which is significantly better than the O(α−14) from Theorem 2.
While this is a major improvement, it still falls short of the desired O(α−2) statistical rates achiev-
able by inefficient algorithms from [Bassily et al., 2019]. We leave the interesting question of
whether improved sample complexity is possible to future work. We now briefly sketch the proof of
Theorem 4.

A.1 Privacy Analysis of Algorithm 4

While the privacy of Algorithms 2 and 3 is proven in two steps, by first demonstrating stability
and then leveraging the output perturbation to ensure privacy, the privacy of Algorithm 4 is proven
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directly. Our approach is motivated by techniques from Neel et al. [2019], which adapt the earlier
notion of separator sets from Goldman et al. [1993], Syrgkanis et al. [2016], Dudík et al. [2020]
to the setting of differential privacy. Unlike those works, however, we do not require the strong
assumption that F has a small separator set and our results hold for general VC function classes.
The main technical result that ensures privacy of Algorithm 4 demonstrates that the projection F to
the public data set D̃x is private with respect to D, where we let F|D̃x

= {(f(Zi))1≤i≤m|f ∈ F}.
We have the following privacy guarantee for f̃(D̃x) ∈ F|D̃x

:

Lemma 6. (Privacy over Projection) Let D,D′ be arbitrary datasets containing n points each. Let
D̃x be a set of m points Z1, . . . , Zm ∈ X . Let Ỹ1, . . . , Ỹm ∈ {0, 1} be the set of corresponding
labels. Then for all measurable H ⊆ F|D̃x

P(ERM(F|D̃x
,Lξ,D,D̃) ∈ H) ≤ eε · P(ERM(F|D̃x

,Lξ,D′,D̃) ∈ H),

where Lξ,D,D̃ is defined as in (4).

With the above lemma in hand, the privacy of Algorithm 4 follows immediately from the post-
processing property of differential privacy. We provide a full proof of Lemma 6 in Appendix D and
now turn to the accuracy guarantee.

A.2 Concluding the Proof of Theorem 4

Proving that Algorithm 4 is an (α, β)-learner whenever νx is σ-smooth with respect to µ is similar
to the approach taken in Section 4.3, with the critical difference that in the absence of the second
perturbation, we are able to achieve a stronger guarantee on the difference between f̃ and f̂ . Indeed,
much as in the previous analysis, we observe that as m increases, the suboptimality of the inter-
mediate f̃ is driven up, while the difference between f̃ and f̂ is driven down, thereby requiring a
careful balance; here, however, we do not also need to account for the balancing of the variance γ.
We provide a full proof of the accuracy guarantee in Appendix D.

B Gaussian Anti-Concentration and Proof of Lemma 1

In this section we present and prove a more general version of Proposition 1. We begin by defining
a Gaussian process and then state and prove the result. We then show how Proposition 1 follows as
an immediate corollary. To begin, we recall the formal definition of a Gaussian process.

Definition 7. Let T be an index set and m : T → R be a function. Let K : T × T → R
be a covariance kernel in the sense that for any t1, . . . , tn ∈ T , the matrix (K(ti, tj))i,j∈[n] is
positive semi-definite. We say that ω : T → R is a Gaussian process with mean function m and
covariance kernel K if for any t1, . . . , tn ∈ T , the random vector (ω(ti))i∈[n] is Gaussian with mean
(m(ti))i∈[n] and covariance matrix (K(ti, tj))i,j∈[n]. We say that ω is a centered Gaussian process
if m is identically zero.

Note that by Le Gall [2016, Theorem 1.11] such a process always exists given m,K. Furthermore,
we note that K induces a semi-metric d on T by letting d(t, t′)2 = E

[
(ω(t)− ω(t′))2

]
. We now

prove the following result, which is a tighter version of Block et al. [2022, Lemma 33].

Theorem 5 (Gaussian Anti-concentration). Let T be a set, m : T → R be a mean function and
K : T × T → R be a covariance kernel (in the sense of being positive definite). Let d denote the
metric induced by K and suppose that m is continuous with respect to d, and the metric space (T, d)
is separable and compact. Let ω denote a Gaussian process on T with covariance K and for η > 0,
let

Ω(t) = m(t) + η · ω(t)

be an offset Gaussian process. We further suppose that ω is taken to be a version with almost surely
continuous paths t 7→ ω(t) and that 0 < κ ≤ K(t, t) ≤ 1 for all t ∈ T . Let

t⋆ = argmin
t∈T

Ω(t),
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and,

E(ρ, τ) =
{

there exists s ∈ T such that
K(s, t⋆)

K(t⋆, t⋆)
≤ 1− ρ2 and Ω(s) ≤ Ω(t⋆) + τ

}
,

for ρ, τ > 0. The following holds:

P (E(ρ, τ)) ≤ τ

ρ2ηκ2
· E
[
sup
t∈T

ω(t)

]
.

Note that K(s,t)
K(t,t) is a measure of how close s and t are to each other; indeed, in the special case

where κ = 1 this is precisely the correlation and thus s and t are more closely related the closer this
quantity is to 1. Thus the event E(ρ, τ) can be interpreted to mean that there exists some point s far
from t⋆ (as governed by ρ) such that Ω(s) is almost minimal (as governed by τ ); in other words,
Theorem 5 puts an upper bound on the probability that almost-minimizers of a Gaussian process lie
far from the true minimizer. We now prove Theorem 5.

Proof of Theorem 5. Note that by compactness of T and almost sure continuity of Ω, a minimizer
of Ω exists almost surely; furthermore, by [Kim and Pollard, 1990, Lemma 2.6], t⋆ is almost surely
unique. As T is separable and Ω has almost surely continuous sample paths, it suffices to replace
T with a countable dense subset. We will hereafter suppose without loss of generality that T is
countable. For each t ∈ T , define the set

A(t) =

{
s ∈ T

∣∣∣∣K(s, t)

K(t, t)
≤ 1− ρ2 and Ω(s) ≤ Ω(t) + τ

}
.

It then suffices to lower bound the probability that A(t⋆) = ∅. We compute

P (|A(t⋆)| = 0) =
∑
t∈T

P (t⋆ = t and |A(t)| = 0)

=
∑
t∈T

Ey

[
P
(
t⋆ = t and inf

K(s,t)≤(1−ρ2)K(t,t)
Ω(s) ≥ y + τ |Ω(t) = y

)]
,

where the expectation is taken over the distribution of Ω(t). Now, fix t and let Ωt,y denote the
Gaussian process Ω conditioned on the event that Ω(t) = y. Let mt,y and η2 ·Kt denote the mean
and covariance processes of Ωt,y . Critically, note that Kt is independent of y and for all s ̸= t, we
have

mt,y(s) = m(s) +
K(s, t)

K(t, t)
(y −m(t)) .

Define the functions

a(s) =
τ

ρ2
· K(s, t)

K(t, t)
and b(s) =

τ

ρ2
− a(s).

Now, note that if K(s, t) ≤ (1− ρ2) ·K(t, t), then

b(s) =
τ

ρ2

(
1− K(s, t)

K(t, t)

)
≥ τ

ρ2
· ρ2 = τ. (5)

We also have that b(s) ≥ 0 for all s by the fact that K(s, t) ≤
√

K(s, s) ·K(t, t) and K(s, s) ∨
K(t, t) ≤ 1. Furthermore, for all s, it holds that

mt,y+ τ
ρ2
(s) = mt,y(s) + a(s). (6)
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Thus, for fixed t ∈ T and y ∈ R, we have

P
(
t⋆ = t and inf

K(s,t)≤(1−ρ2)K(t,t)
Ω(s) ≥ y + τ |Ω(t) = y

)
≥ P

(
t⋆ = t and inf

K(s,t)≤(1−ρ2)K(t,t)
Ω(s)− b(s) ≥ y|Ω(t) = y

)
= P

(
t⋆ = t and inf

K(s,t)≤(1−ρ2)K(t,t)
Ω(s)− b(s)− a(s) + a(s) ≥ y|Ω(t) = y

)
= P

(
t⋆ = t and inf

K(s,t)≤(1−ρ2)K(t,t)
Ω(s) + a(s) ≥ y +

τ

ρ2
|Ω(t) = y

)
= P

(
t⋆ = t and inf

K(s,t)≤(1−ρ2)K(t,t)
Ω(s) ≥ y +

τ

ρ2
|Ω(t) = y +

τ

ρ2

)
≥ P

(
t⋆ = t and inf

K(s,t)≤(1−ρ2)K(t,t)
Ω(s) ≥ y +

τ

ρ2
|Ω(t) = y +

τ

ρ2

)
,

where the first inequality follows from (5), the second equality follows from the construction, and
the last equality follows from (6) and the fact that Kt is independent of y. Now, denote

qt(y) = (2πK(t, t))−
1
2 exp

(
− (y −m(t))2

2η2K(t, t)

)
,

the density of Ω(t) and note that we have

P (|A(t⋆)| = 0) =
∑
t∈T

∫ ∞

−∞
qt(y)P

(
t⋆ = t and inf

K(s,t)≤1−ρ2
Ω(s) ≥ y + τ |Ω(t) = y

)
dy

≥
∑
t∈T

∫ ∞

∞
qt(y)P

(
t⋆ = t and inf

K(s,t)≤1−ρ2
Ω(s) ≥ y +

τ

ρ2
|Ω(t) = y +

τ

ρ2

)
dy.

(7)

We then compute∫ ∞

−∞
qt(y)P

(
t⋆ = t and inf

K(s,t)≤1−ρ2
Ω(s) ≥ y +

τ

ρ2
|Ω(t) = y +

τ

ρ2

)
dy (8)

=

∫ ∞

−∞
qt(y)P

(
t⋆ = t and inf

K(s,t)≤1−ρ2
Ω(s) ≥ y|Ω(t) = y

)
dy

+

∫ ∞

−∞

(
qt(y)− qt

(
y − τ

ρ2

))
· P
(
t⋆ = t and inf

K(s,t)≤1−ρ2
Ω(s) ≥ y|Ω(t) = y

)
dy,

where we added and subtracted the first term and then made the variable substitution y + τ
ρ2 7→ y

for the latter integral. Note that

P
(
t⋆ = t and inf

K(s,t)≤1−ρ2
Ω(s) ≥ y|Ω(t) = y

)
= P (t⋆ = t|Ω(t) = y)

as Ω(s) ≥ Ω(t⋆) for all s ∈ T by definition. Combining this observation with (7) and (8) yields

P (|A(t⋆)| = 0) ≥
∑
t∈T

∫ ∞

−∞
qt(y)P (t⋆ = t|Ω(t) = y) dy

−
∑
t∈T

∫ ∞

−∞

(
qt(y)− qt

(
y − τ

ρ2

))
· P (t⋆ = t|Ω(t) = y) dy.

For the first term, we have∑
t∈T

∫ ∞

−∞
qt(y)P (t⋆ = t|Ω(t) = y) dy =

∑
t∈T

P (t⋆ = t) = 1.
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For the second term, using the fact that 1− ex ≤ x for all x, we have

qt(y)− qt

(
y − τ

ρ2

)
= qt(y)

1− exp

 (y −m(t))2

2η2K(t, t)
−

(
y −m(t)− τ

ρ2

)2
2η2K(t, t)




≤ qt(y)

 (y −m(t))2

2η2K(t, t)
−

(
y −m(t)− τ

ρ2

)2
2η2K(t, t)


≤ qt(y)

2η2κ2
·
(
2τ

ρ2
(y −m(t))

)
.

Thus we have
P (|A(t⋆)| > 0) = 1− P (|A(t⋆)| = 0)

≤
∑
t∈T

∫ ∞

−∞

qt(y)

2η2κ2
·
(
2τ

ρ2
(y −m(t))

)
· P (t⋆ = t|Ω(t) = y) dy

=
τ

ρ2η2κ2

∑
t∈T

∫ ∞

−∞
(y −m(t))qt(y)P (t⋆ = t|Ω(t) = y) dy

=
τ

ρ2η2κ2
· E [Ω(t⋆)−m(t⋆)]

≤ τ

ρ2η2κ2
· E
[
sup
t∈T

Ω(t)−m(t)

]
.

The result follows by noting that η · ω(t) = Ω(t)−m(t) for all t ∈ T .

We now prove a corollary of Theorem 5 that will be useful in the proof of Proposition 1 and which
makes the relationship between E(ρ, τ) and the intuition of distance between t⋆ and s more explicit.
Corollary 1. Suppose that we are in the situation of Theorem 5 with the additional conditions that
T is a subset of a real vector space and that d(s, t) =

√
K(s− t, s− t). Let m′ : T → R denote

a mean function such that supt∈T |m(t)−m′(t)| ≤ τ and let Ω′ denote the corresponding shifted
Gaussian process. If t⋆

′
= argmint∈T Ω′(t), then

P
(
d(t⋆, t⋆

′
) > ρ

)
≤ 8τ

ρ4ηκ2
· E
[
sup
t∈T

ω(t)

]
.

Proof. Note that
d(s, t)2 = K(s− t, s− t) = K(s, s) +K(t, t)− 2K(s, t).

Let M = max(K(t⋆, t⋆),K(t⋆
′
, t⋆

′
)) ≤ 1 and note that the above implies:

d(t⋆, t⋆
′
)2 ≤ 2M

(
1− K(t⋆

′
, t⋆)

M

)
.

Thus,

P
(
d(t⋆, t⋆

′
) > ρ

)
≤ P

(
2M

(
1− K(t⋆, t⋆

′
)

M

)
> ρ

)

≤ P

(
1− K(t⋆, t⋆

′
)

M
>

ρ2

2

)

≤ 2

 τ(
ρ2

2

)2
ηκ2

· E
[
sup
t∈T

ω(t)

]
=

8τ

ρ4ηκ2
· E
[
sup
t∈T

ω(t)

]
,
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where the last inequality follows by applying a union bound and Theorem 5 to the Gaussian pro-
cesses Ω and Ω′ after observing that

Ω′(t⋆) ≤ Ω′(t⋆
′
) + τ

and similarly for Ω(t⋆
′
).

We are now ready to prove Proposition 1 using Corollary 1.

Proof of Proposition 1. Let T = F , and observe that

d(f, f ′)2 = K(f − f ′, f − f ′) = E
[
ω(f)− ω(f ′)2

]
= ∥f − f ′∥2 .

The result then follows immediately by applying Corollary 1 to the Gaussian process Ω(f) =
m(f) + η · ω(f).

C Analysis of Algorithms 2 and 3

In this section we provide the full proofs for Theorems 2 and 3, as well as more general state-
ments under different measures of the complexity of the function class F . We begin the section
by stating formal bounds on the learning and differential privacy guarantees for each algorithm.
In Appendix C.1, we prove Lemma 1, which is a key technical lemma in the differential privacy
guarantee of Algorithm 2; we then continue in Appendix C.2 by proving Lemma 2, which plays an
analogous role except in the analysis of Algorithm 3. In Appendix C.3, we prove that algorithmic
stability in ∥·∥m can be boosted to differential privacy through Algorithm 1. In Appendix C.4 we
combine the previous results to give guarantees on the differential privacy of Algorithm 2 and Al-
gorithm 3. We continue in Appendix C.5 by applying more standard learning theoretic techniques
to demonstrate that both algorithms are PAC learners before concluding the proofs of the main the-
orems in Appendix C.6. Finally, for the sake of completeness, we prove a norm comparison lemma
in Appendix C.7 that was deferred from Appendix C.5 for the purpose of continuity.

C.1 Stability of Algorithm 2 and Proof of Lemma 1

We break the proof into two parts. First, we integrate the tail bound from Proposition 1 to get control
on E

[∥∥f̄j − f̄ ′
j

∥∥
m

]
for any j ∈ [J ]. We then apply a Jensen’s inequality and a Chernoff bound to

get high probability control on
∥∥f̄ − f̄ ′

∥∥. We begin with the following lemma:

Lemma 7. Let f̄j be as in in Line 6 of Algorithm 2 and f̄ ′
j is defined analogously with respect to

D′, a neighboring dataset to D. Then

E
[∥∥f̄j − f̄ ′

j

∥∥2
m

]
≤ 2

(n · η)1/3κ2/3
·

(
E

[
sup
f∈F

ωm(f)

])1/3

,

where the expectation is with respect to ξ(j).

Proof. By boundedness of ℓ, it holds that |LD(f)− LD′(f)| ≤ 1
n for all f ∈ F . Thus, if f̄ (1) and

f̄ (1)′ are as in the statement of the corollary, then LD(f̄
(1)′) + η · ω(1)

m (f̄ (1)′) ≤ LD(f̄
(1)) + η ·

ω
(1)
m (f̄ (1)) + 1

n . Plugging in τ = 1
n and applying Proposition 1 yields

P
(∥∥f̄j − f̄ ′

j

∥∥
m

> ρ
)
≤ 8

nρ4κ2η
· E

[
sup
f∈F

ωm(f)

]
.
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Now, we can integrate the tail bound to get for any ζ > 0,

E
[∥∥f̄ − f̄ ′∥∥2

m

]
≤ ζ +

∫ 1

ζ

2ρP
(∥∥f̄ − f̄ ′∥∥

m
> ρ
)
dρ

≤ ζ + 2 ·
∫ 1

ζ

ρ · 8

nρ4κ2η
· E

[
sup
f∈F

ωm(f)

]
dρ

≤ ζ +
8

nζ2κ2η
· E

[
sup
f∈F

ωm(f)

]
· log

(
1

ζ

)
.

Minimizing over ζ yields the result.

We now apply a Jensen’s inequality and a Chernoff bound to get high probability control on∥∥f̄ − f̄ ′
∥∥.

Proof of Lemma 1. By Jensen’s inequality and the definition of f̄ , it holds that

P
(∥∥f̄ − f̄ ′∥∥

m
> ρ
)
= P

∥∥∥∥∥∥ 1J
J∑

j=1

f̄j − f̄ ′
j

∥∥∥∥∥∥
m

> ρ


= P


∥∥∥∥∥∥ 1J

J∑
j=1

f̄j − f̄ ′
j

∥∥∥∥∥∥
2

m

> ρ2


≤ P

 1

J

J∑
j=1

∥∥f̄j − f̄ ′
j

∥∥2
m

> ρ2

 .

Finally, by Hoeffding’s inequality [Wainwright, 2019, Van Handel, 2014] and Lemma 7, we have
that

δ ≥ P

 1

J

J∑
j=1

∥∥f̄j − f̄ ′
j

∥∥2
m

> E
[∥∥f̄1 − f̄ ′

1

∥∥
m

]
+

√
log
(
1
δ

)
J


≥ P

 1

J

J∑
j=1

∥∥f̄j − f̄ ′
j

∥∥2
m

>
2

(n · η)1/3κ2/3
·

(
E

[
sup
f∈F

ωm(f)

])1/3

+

√
log
(
1
δ

)
J

 .

The result follows.

C.2 Stability of Algorithm 3 and Proof of Lemma 2

In this section we prove Lemma 2 based on a technique borrowed from online learning and the
analysis of Follow the Regularized Leader (FTRL) [Gordon, 1999, Cesa-Bianchi and Lugosi, 2006].

Proof of Lemma 2. Let L be as in (3) and L′ be defined similarly but with D replaced by D′. Note
that ∥·∥2m is strongly convex with respect to ∥·∥m [Rockafellar, 2015]. Thus, by convexity of F , it
holds that

L(f̄ ′) ≥ L(f̄) + η

2

∥∥f̄ − f̄ ′∥∥2
m
.

On the other hand,

L(f̄ ′) = L′(f̄ ′) + L(f̄ ′)− L′(f̄ ′)

≤ L′(f̄) + L(f̄ ′)− L′(f̄ ′)

= L(f̄) + L(f̄ ′)− L′(f̄ ′) + L′(f̄)− L(f̄)

≤ L(f̄) + 2

n
.
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Combining this with the previous display and rearranging yields:

η ·
∥∥f̄ − f̄ ′∥∥2

m
≤ 4

n
.

Rearranging again proves the result.

C.3 Boosting Stability to Differential Privacy: Proofs from Section 4.2

In this section, we analyze Algorithm 1 and prove that if f̄ is stable in ∥·∥m then applying the output
perturbation yields a differentially private algorithm for standard choices of perturbation distribution
Q. We also show that Algorithm 1 returns f̂ close to the f̄ with high probability. This first claim is
implied by the following standard concentration bound.

Lemma 8. Suppose that Q = N (0, 1) and let f̂ = Perturb(f̄ ,Q, γ, D̃x) be as in Algorithm 1. Then
with probability at least 1− β, ∥∥∥f̄ − f̂

∥∥∥
m

≤ 2γ ·

√
log

(
1

β

)
. (9)

If Q = Lap(1), then with probability at least 1− β,∥∥∥f̄ − f̂
∥∥∥
m

≤ 2γ · log
(
1

β

)
·
√
m. (10)

Proof. By construction, it holds that∥∥∥f̂ − f̄ − γ · ζ
∥∥∥
m

≤
∥∥f̄ − f̄ − γ · ζ

∥∥
m

= γ · ∥ζ∥m .

By the triangle inequality, it holds that∥∥∥f̂ − f̄
∥∥∥
m

≤
∥∥∥f̂ − f̄ − γ · ζ

∥∥∥
m
+ γ · ∥ζ∥m ≤ 2γ · ∥ζ∥m .

Thus it suffices to bound ∥ζ∥m. Bounds on this quantity when ζ ∼ N (0, 1) or ζ ∼ Lap(1) are
standard and can be found in, for example Wainwright [2019]. The result follows.

We now prove the main property of Algorithm 1, namely that it boosts stability to differential pri-
vacy.

Lemma 9. Let Perturb be as in Algorithm 1 and suppose that f̄ , f̄ ′ ∈ F . If D̃x = {Z1, . . . , Zm} ⊂
X is arbitrary and Q = N (0, 1), then for any δ > 0 and any measurable G ⊂ F , it holds that

P
(
Perturb(f̄ ,Q, γ, D̃x) ∈ G

)
≤ e

m
2γ2

(
1+γ·

√
log( 1

δ )
)
·∥f̄−f̄ ′∥

m · P
(
Perturb(f̄ ′,Q, γ, D̃x) ∈ G

)
+ δ.

On the other hand, if Q = Lap(1), then

P
(
Perturb(f̄ ,Q, γ, D̃x) ∈ G

)
≤ e

m3/2

γ ·∥f̄ ′−f̄∥
m · P

(
Perturb(f̄ ′,Q, γ, D̃x) ∈ G

)
Proof. To prove the first statement, let Bδ denote the event that ∥ζ∥m ≤ γ ·

√
log
(
1
δ

)
and let

p(u) = (2πγ2)−
m
2 · exp

(
− 1

2γ2
· ∥u∥2m

)
be the density of γ · ζ. Note that P (Bc

δ) ≤ δ by Lemma 8. We compute:

P
(
Perturb(f̄ ,Q, γ, D̃x) ∈ G

)
=

∫
u∈Rm

P
(
Perturb(f̄ ,Q, γ, D̃x) ∈ G|γ · ζ = u

)
p(u)du

=

∫
u∈Rm

I [Bδ] · P
(
Perturb(f̄ ,Q, γ, D̃x) ∈ G|γ · ζ = u

)
p(u)du

+

∫
u∈Rm

I [Bc
δ]P

(
Perturb(f̄ ,Q, γ, D̃x) ∈ G|γ · ζ = u

)
p(u)du

≤ δ +

∫
u∈Rm

I [Bδ] · P
(
Perturb(f̄ ,Q, γ, D̃x) ∈ G|γ · ζ = u

)
p(u)du.
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For the second term, we compute:∫
u∈Rm

I [Bδ] · P
(
Perturb(f̄ ,Q, γ, D̃x) ∈ G|γ · ζ = u

)
p(u)du

=

∫
u∈Rm

I [Bδ] · P
(
Perturb(f̄ ′,Q, γ, D̃x) ∈ G|γ · ζ = u+ f̄ ′ − f̄

)
p(u)du

=

∫
u∈Rm

I [Bδ] · P
(
Perturb(f̄ ′,Q, γ, D̃x) ∈ G|γ · ζ = u

)
p(u) · e

m
2γ2

(
∥u−f̄ ′∥2

m
−∥u−f̄∥2

m

)
du

≤
∫
u∈Rm

I [Bδ] · P
(
Perturb(f̄ ′,Q, γ, D̃x) ∈ G|γ · ζ = u

)
p(u) · e

m
2γ2 (1+∥u∥m)·∥f̄−f̄ ′∥

mdu

≤
∫
u∈Rm

I [Bδ] · P
(
Perturb(f̄ ′,Q, γ, D̃x) ∈ G|γ · ζ = u

)
p(u) · e

m
2γ2

(
1+γ·

√
log( 1

δ )
)
·∥f̄−f̄ ′∥

mdu

≤ e
m

2γ2

(
1+γ·

√
log( 1

δ )
)
·∥f̄−f̄ ′∥

m · P
(
Perturb(f̄ ′,Q, γ, D̃x) ∈ G

)
.

The first claim follows. To prove the second claim, we may repeat the same argument with Q =
Lap(1) and δ = 0. Indeed, observe that if

q(u) = γ−m · e−
∥u∥

ℓ1
γ

then

q(u+ f̄ ′ − f̄)

q(u)
≤ e

∥f̄′−f̄∥ℓ1
γ ≤ e

m3/2

γ ·∥f̄ ′−f̄∥
m ,

where the second inequality follows from Cauchy-Schwarz. Plugging this ratio into the above argu-
ment yields the second claim.

C.4 Concluding the Proofs of Differential Privacy

In this section, we combine the results from Appendix C.3 with the stability results from Ap-
pendix C.6 to prove the differential privacy guarantees of Algorithm 2 and Algorithm 3. We separate
this section into two lemmas, each corresponding to one of the algorithms. We begin with the more
general result. Note that this lemma does not quite follow immediately from combining the stability
guarantee with the results of Appendix C.3 as we wish to assume a uniform lower bound on ∥f∥µ
whereas Lemma 1 requires a uniform lower bound on ∥·∥m. We apply a result from Appendix C.5
below to reconcile this discrepancy.
Lemma 10 (Differential Privacy Guarantee for Algorithm 2). Suppose that F : X → [−1, 1] is
a function class and let µ ∈ ∆(X ) such that ∥f∥2 ≥ 2

3 for all f ∈ F . Suppose further that ℓ is
bounded in [0, 1]. Let δ > 0 and suppose that m, γ, η, and J are such that

m

2γ2

(
1 + γ ·

√
log

(
2

δ

)) 4

(n · η)1/3
· E

[
sup
f∈F

ωm(f)

]
+

√
log
(
2
δ

)
J

 ≤ ε

and

C

 log2(m)√
m

· Gm(F) +

√
log log(m) + log

(
1
δ

)
m

 ≤ 1

6
.

Then Algorithm 2 is (ε, δ)-differentially private for Q = N (0, 1).

Proof. The result follows immediately by combining Lemmas 1 and 9 assuming we have a lower
bound on κ. Indeed, by Lemma 12, it holds with probability at least 1 − δ that inff∈F ∥f∥m ≥ 1

4 .
The result follows.

We also have a guarantee for the more specialized algorithm.
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Lemma 11 (Differential Privacy Guarantee for Algorithm 3). Suppose that F : X → [−1, 1] is a
convex function class and suppose that ℓ is convex and λ-Lipschitz in its first argument. If δ > 0 and
m, γ, η are such that

m

2γ2

(
1 + γ ·

√
log

(
2

δ

))
· 2
√
η · n

≤ ε,

then Algorithm 3 run with Q = N (0, 1) is (ε, δ)-differentially private. On the other hand, if δ = 0
and

m3/2

γ
· 2
√
η · n

≤ ε,

then Algorithm 3 run with Q = Lap(1) is ε-purely differentially private.

Proof. This follows immediately by combining Lemmas 2 and 9.

These results show that for any choice of ν, Algorithms 2 and 3 are differentially private. In the next
section we show that if ν is σ-smooth with respect to µ, then the algorithms are also PAC learners
with respect to ν.

C.5 PAC guarantees for Algorithms 2 and 3

The previous sections have shown that Algorithms 2 and 3 are differentially private, which comprises
the main difficulty of our analysis. Here we apply standard learning theoretic techniques to show
that if ν is σ-smooth with respect to µ, then the algorithms are also PAC learners with respect to
ν. This proof rests on three main results: first, we recall a norm comparison guarantee in high
probability that allows us to relate ∥·∥µ to ∥·∥m; second, we recall a classical uniform deviations
bound for empirical processes; and third, we show that the perturbed empirical minimizer f̄ has
similar loss to the empirical minimizer fERM of a loss function as long as the perturbation is not too
large. Combining all three results will result in a PAC learning guarantee for Algorithms 2 and 3.

We begin with the following lemma, which is a fairly standard result in learning theory. To state the
lemma, we recall from Definition 6 that the worst-case Gaussian complexity is defined as

Gm(F) = sup
Z1,...,Zm

E

[
sup
f∈F

ωm(f)

]
,

We then have the following control on ∥·∥µ in terms of ∥·∥m:

Lemma 12. Suppose that F : X → [−1, 1] is a function class and let µ ∈ ∆(X ) with
Z1, . . . , Zm ∼ µ independent. Then for any β > 0, it holds with probability at least 1 − β that
for all f, f ′ ∈ F ,

∥f − f ′∥µ ≤ 2 · ∥f − f ′∥m + C

 log2(m)√
m

· Gm(F) +

√√√√ log log(m) + log
(

1
β

)
m

 .

Because the proof is relatively standard [Bousquet, 2002, Rakhlin et al., 2017], but also a technical
digression, we defer it to Appendix C.7 and continue with our arguments.

Our second lemma is a standard uniform deviation bound for empirical processes:

Lemma 13. Let F : X → [−1, 1] be a bounded function class and let D denote a data set of
(Xi, Yi) ∼ ν be independent. Then for any β > 0, with probability at least 1− β, it holds that

sup
f∈F

|LD(f)− L(f)| ≤ 6√
n
· E

[
sup
f∈F

ωn(f)

]
+

√√√√2 log
(

1
β

)
n

.
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Proof. This follows immediately from combining Wainwright [2019, Theorem 4.10] with Van Han-
del [2014, Lemma 7.4].

Finally, we show that the perturbed empirical minimizer f̄ has similar loss to the empirical minimizer
fERM of a loss function as long as the perturbation is not too large.
Lemma 14. Let F : X → [−1, 1] denote a function class and let ℓ : [−1, 1]×2 → [0, 1] denote a
bounded loss function convex in the first argument and let D denote a dataset of size n. For η > 0,
let f̄ be as in Line 5 of Algorithm 2. Then for any β > 0, with probability at least 1− β,

L(f̄)− inf
f∈F

L(f) ≤ 12√
n
· E

[
sup
f∈F

ωn(f)

]
+ 2 ·

√√√√ log
(

1
β

)
n

+ 2η ·

E

[
sup
f∈F

ω(j)
m (f)

]
+

√√√√ log
(

1
β

)
J

 .

(11)

If instead we let f̄ be as in Line 3 of Algorithm 3, then almost surely,

L(f̄)− inf
f∈F

L(f) ≤ 12 · E

[
sup
f∈F

ωn(f)

]
+ 2 ·

√√√√ log
(

1
β

)
n

+ η. (12)

Proof. Applying Lemma 5 and noting that f̄ , fERM ∈ F and applying Lemma 13 yields

L(f̄)− inf
f∈F

L(f) ≤ 12√
n
· E

[
sup
f∈F

ωn(f)

]
+ 2 ·

√√√√2 log
(

1
β

)
n

+ sup
f,f ′∈F

R(f)−R(f ′).

The second statement follows immediately by noting that 0 ≤ ∥f∥m ≤ 1 for all f ∈ F and letting
R(f) = η · ∥f∥m.

For the first statement, we note that by convexity of ℓ, it holds that

LD(f̄) ≤
1

J
·

J∑
j=1

LD(f̄j) ≤ LD(fERM) +
η

J
·

J∑
j=1

sup
f∈F

ω(j)(f)− inf
f ′∈F

ω(j)(f ′).

To prove the second statement, we observe that by the Borell-Tsirelson-Ibragimov-Sudakov inequal-
ity (see, e.g., Wainwright [2019, Example 2.30]) and the fact that E

[
ω
(j)
m (f)2

]
≤ 1 for all f ∈ F ,

that for all j ∈ [J ], with probability at least 1− β, it holds that

sup
f∈F

ω(j)
m (f) ≤ E

[
sup
f∈F

ω(j)
m (f)

]
+

√
2 log

(
1

β

)
.

Applying symmetry and a Chernoff bound tells us that with probability at least 1− β it holds that

1

J
·

J∑
j=1

sup
f∈F

ω(j)
m (f)− inf

f∈F
ω(j)
m ≤ 2 · E

[
sup
f∈F

ω(j)
m (f)

]
+ 2 ·

√√√√ log
(

1
β

)
J

.

The result follows.

Before continuing, we prove Lemma 5 from Section 4:

Proof of Lemma 5. For an arbitrary regularizer R : F → R, if we let f̄ ∈ argminf∈F LD(f) +

R(f), then by definition LD(f̄) +R(f̄) ≤ LD(fERM) +R(fERM) and so

LD(f̄) ≤ LD(fERM) + sup
f,f ′∈F

R(f)−R(f ′),

where fERM ∈ argminf∈F LD(f) is the ERM.
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Combining these three lemmas yields the following PAC learning guarantee for Algorithm 2.
Lemma 15 (PAC Learning Guarantee for Algorithm 2). Suppose that F : X → [−1, 1] is a function
class and ℓ : [−1, 1]×2 → [0, 1] is a bounded loss function λ-Lipschitz and convex in the first
argument. Let µ ∈ ∆(X ) and suppose that ν is σ-smooth with respect to µ. For any β > 0 it holds
with probability at least 1− β that

L(f̂)− inf
f∈F

L(f) ≤ 12√
n
· E

[
sup
f∈F

ωn(f)

]
+ 2 ·

√√√√ log
(

1
β

)
n

+ 2η ·

E

[
sup
f∈F

ω(j)
m (f)

]
+

√√√√ log
(

1
β

)
J

+
4λγ

σ
·

√
log

(
1

β

)

+
Cλ

σ
·

 log3(m)√
m

· Gm(F) +

√√√√ log log(m) + log
(

1
β

)
m

 .

for f̂ returned by Algorithm 2 with Q = N (0, 1) and D a dataset of size n.

Proof. We compute:

L(f̂) = L(f̄) + L(f̂)− L(f̄) ≤ L(f̄) + λ ·
∥∥∥f̄ − f̂

∥∥∥
νX

≤ L(f̄) +
λ

σ
·
∥∥∥f̄ − f̂

∥∥∥
µ
,

where the first inequality uses Jensen’s and the second usesthe fact that ν is σ-smooth. We now
observe that by Lemma 8, with probability at least 1− β,∥∥∥f̄ − f̂

∥∥∥
µ
≤ 2γ ·

√
log

(
1

β

)
.

Combining this with Lemma 14 yields

L(f̂)− inf
f∈F

L(f) ≤ 12√
n
· E

[
sup
f∈F

ωn(f)

]
+ 2 ·

√√√√ log
(

1
β

)
n

+ 2η ·

E

[
sup
f∈F

ω(j)
m (f)

]
+

√√√√ log
(

1
β

)
J


+

4λγ

σ
·

√
log

(
1

β

)
+

λ

σ

(∥∥∥f̂ − f̄
∥∥∥
µ
−
∥∥∥f̂ − f̄

∥∥∥
m

)
.

Applying Lemma 12 concludes the result.

Similarly, we have a result for Algorithm 3; note that while convexity of ℓ is required to demonstrate
that Algorithm 2 is a PAC learner, although is irrelevant to the privacy guarantee in Lemma 10, the
situation for Algorithm 3 is reversed in that convexity is not required to demonstrate that Algorithm 3
is a PAC learner while it is necessary for the privacy guarantee in Lemma 11.
Lemma 16 (PAC Guarantees for Algorithm 3). Suppose that F : X → [−1, 1] is a convex function
class and ℓ : [−1, 1]×2 → [0, 1] is a bounded loss function λ-Lipschitz in the first argument. Let
µ ∈ ∆(X ) and suppose that ν is σ-smooth with respect to µ. For any β > 0 it holds with probability
at least 1− β that

L(f̂)− inf
f∈F

L(f) ≤ 12√
n
· E

[
sup
f∈F

ωn(f)

]
+ 2 ·

√√√√ log
(

1
β

)
n

+ η +
4λγ

σ
·

√
log

(
1

β

)

+
Cλ

σ
·

 log3(m)√
m

· Gm(F) +

√√√√ log log(m) + log
(

1
β

)
m

 .
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for f̂ returned by Algorithm 3 with Q = N (0, 1) and D a dataset of size n. Similarly, if we replace
Q = Lap(1), then with probability at least 1− β,

L(f̂)− inf
f∈F

L(f) ≤ 12√
n
· E

[
sup
f∈F

ωn(f)

]
+ 2 ·

√√√√ log
(

1
β

)
n

+ η +
4λγ

σ
· log

(
1

β

)
·
√
m

+
Cλ

σ
·

 log3(m)√
m

· Gm(F) +

√√√√ log log(m) + log
(

1
β

)
m

 .

Proof. The proof of the first statement is identical to that of Lemma 15 with the exception of re-
placing (11) by (12) in the invocation of Lemma 14. The second statement is also identical but now
replacing (9) by (10) when applying Lemma 8.

With these results in hand, along with those from Appendix C.4, all that remains to conclude the
proofs of the main theorems is to tune the hyperparameters and control the complexity terms. We
do this in the next section.

C.6 Concluding the Proofs of Theorems 2 and 3

In this section, we combine the results from Appendices C.4 and C.5 to prove the main theorems.
The main theorems in the text, Theorems 2 and 3, follow immediately from the following two results.
We begin by stating a more detailed version of Theorem 2:

Theorem 6. Suppose that F : X → [−1, 1] is a function class such that Gm(F) = O
(√

d
)

for

some d ∈ N and ℓ : [−1, 1]×2 → [0, 1] is convex and λ-Lipschitz in the first argument. If we let
Q = N (0, 1) in Algorithm 1 and set

γ = Θ

 σα

λ ·
√
log
(

1
β

)
 , η = Θ(

α√
d
), m = Θ̃

d ∨ log
(

1
β

)
σ2α2

· λ2



J = Ω̃

d log
(

1
β

)
α2

∨
λ8d2 log4

(
1
β

)
log
(
1
δ

)
σ8α8ε2

∨
d2λ6 log3

(
1
β

)
log2

(
1
δ

)
σ6α6ε2


and

n = Ω̃

λ12d5 log6
(

1
β

)
σ12ε3α14

∨
d5λ9 log9/2

(
1
β

)
log3/2

(
1
δ

)
σ9ε3α10

 ,

then Algorithm 2 is (ε, δ)-differentially private and an (α, β)-PAC learner with respect to any ν that
is σ-smooth with respect to µ.

Proof. This follows by combining Lemma 10 with Lemma 15 and plugging in the parameter
choices.

We also have a result for Algorithm 3:

Theorem 7. Suppose that F : X → [−1, 1] is a convex function class such that Gm(F) = O
(√

d
)

for some d ∈ N and ℓ : [−1, 1]×2 → [0, 1] is convex and λ-Lipschitz in the first argument. If we let
Q = N (0, 1) in Algorithm 1 and set

γ = Θ

 σα

λ ·
√
log
(

1
β

)
 , η = Θ(α), m = Θ̃

d ∨ log
(

1
β

)
σ2α2

· λ2
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and

n = Ω̃

λ5d log2
(

1
β

)
εσ4α5

∨
λ4d log3/2

(
1
β

)
log1/2

(
1
δ

)
εσ3α4

 ,

then Algorithm 3 is (ε, δ)-differentially private and an (α, β)-PAC learner with respect to any ν that
is σ-smooth with respect to µ.

On the other hand, if we set Q = Lap(1) in Algorithm 1 and set

γ = Θ̃

 α2σ

λ2 ·
(
d

√
log
(

1
β

)
∧ log

(
1
β

))
 , η = Θ(α), m = Θ̃

d ∨ log
(

1
β

)
σ2α2

· λ2


and

n = L̃

(
λ6

σ5εα6
·

(
d2

√
log

(
1

β

)
∨ log5/2

(
1

β

)))
then Algorithm 3 is ε-purely differentially private and an (α, β)-PAC learner with respect to any
σ-smooth ν.

Proof. This follows immediately by combining Lemma 11 with Lemma 16 and plugging in the
parameter choices, with the pure differential privacy guarantees coming from the second halves of
each lemma.

As a final remark, we note that Lemmas 15 and 16 are both phrased entirely in terms of Gm(F)
and thus apply to function classes F such that Gm(F) = ω(1). Such non-donsker [Wainwright,
2019, Van Handel, 2014] classes can still be learned in the PAC framework, albeit with slower rates.
Indeed, it is immediate from the above results that as long as Gm(F) = o(

√
m), then appropriately

tuning the hyperparamters results Algorithms 2 and 3 being differentially private PAC learners with
respect to ν. It is well-known that (with our scaling) Gm(F) = o(

√
m) is a necessary condition for

PAC learnability even absent a privacy condition [Wainwright, 2019, Van Handel, 2014] and thus
our results qualitatively demonstrate that private learnability with public data is possible whenever
non-private learning is possible.

C.7 Proof of Lemma 12

Replacing F by F − F = {f − f ′|f, f ′ ∈ F} and noting that the uniform bound only increases
by a factor of 2 and the Rademacher complexity increases at most by a factor of 2, we observe that
it suffices to prove the result for f ′ = 0. We thus instead prove the notationally simpler claim that
with probability at least 1− β, for all f ∈ F ,

∥f∥µ ≤ 2 · ∥f∥m + C

 log3(m)√
m

· Gm(F) +
log log(m) + log

(
1
β

)
m


We first note that by Bousquet [2002, Theorem 6.1], with probability at least 1− β, it holds that for
all f ∈ F ,

∥f∥2µ ≤ 2 · ∥f∥2m + 200

r2 +
log
(

1
β

)
+ log log(m)

m

 (13)

for some universal constant C, with

r ≤ inf

r > 0|Eξ

 sup
f∈F

∥f∥2
m≤r2

1

m
·

m∑
i=1

ξif(Zi)
2

 ≤ r2

2

 . (14)
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Taking square roots on both sides of (13) shows that it suffices to upper bound r. For the remainder
of the proof, we do this.

In order to proceed, we recall the following standard definition of covering numbers.
Definition 8. Let F be a function class and ∥·∥m,∞ the the L∞ norm on the empirical measure on
Z1, . . . , Zm ∈ X , i.e., ∥f∥m,∞ = maxi∈[m] |f(Zi)|. We say that f1, . . . , fN is an ε-cover with
respect to ∥·∥m,∞ if for all f ∈ F there is some fj such that ∥f − fj∥m,∞ ≤ ε. We then let
Nm,∞(F , ε) denote the size of the smallest ε-cover of F with respect to ∥·∥m,∞.

The notion of a cover is standard throughout learning theory and can be used to control the
Rademacher and Gaussian complexities [Dudley, 1969, Van Handel, 2014, Wainwright, 2019]. We
will use it to control r.

Proceeding with the proof, let Nm,∞(F , u) denote the covering number of the function class F with
respect to ∥·∥m,∞ at scale u > 0. We then claim that r can be upper bounded by any r satisfying

50√
m

·
∫ 1

r/16

√
logNm,∞(F , u)du ≤ r. (15)

We also claim that for any r > Gm(F), the following holds:∫ 1

r/16

√
logNm,∞(F , u)du ≤ C

√
log(m) ·

∫ 1

r

√
log
(
cm
u

)
u

du

 · Gm(F) (16)

for some universal constant C. We now suppose that (15) and (16) hold and set r = Cm−1/2 ·
log3(m) · Gm(F). Then it is immediate that r is a member of the set in (14).

We now prove the two claims.

Proof that a solution to (15) is an upper bound on r. By a standard Dudley Chaining argument
[Van Handel, 2014, Wainwright, 2019], it holds that

Eξ

 sup
f∈F

∥f∥2
m≤r2

1

m
·

m∑
i=1

ξif(Zi)
2

 ≤ inf
u>0

{
4u+

12√
m

·
∫ r

u

√
logNm,∞(F2 ∩

{
∥f∥2m ≤ r2

}
, u)du

}
.

(17)

Letting f1, . . . , fM ∈ F ∩
{
∥f∥2m ≤ r2

}
be a proper u-cover of F ∩

{
∥f∥2m ≤ r2

}
with respect

to ∥·∥m,∞ at scale s ≤ r and π : F → {fi} be projection to the cover, we have∥∥f2 − π(f)2
∥∥2
m

≤ s2 · ∥f + π(f)∥2m ≤ 4s2r2

by factoring f2 − π(f)2 = (f − π(f))(f + π(f)). In particular,

Nm,2(F2 ∩
{
∥f∥2m ≤ r2

}
, 2ur) ≤ Nm,∞(F ∩

{
F2 ∩

{
∥f∥2m ≤ r2

}}
, u) ≤ Nm,∞(F , u),

where we used the fact that a proper covering at scale ε has size bounded by a covering at scale ε/2
by the triangle inequaltiy. Substituting into (17) and rescaling yields the claim.

Proof that (16) holds. This proof goes through fat shattering numbers, a complexity measure
taking a function class and a scale u > 0 and returns fat(F , u) ∈ N [Bartlett et al., 1994]. We do
not need the full definition of fat shattering numbers and defer to [Bartlett et al., 1994, Srebro et al.,
2010, Rudelson and Vershynin, 2006] for details. We only need the following two properties. First,
for any u > 0, it holds by Rudelson and Vershynin [2006] that

logNm,∞(F , u) ≤ C · fat(F , cu) · log(m) · log
(

m

fat(F , cu)u

)
. (18)

Second, by Srebro et al. [2010, Lemma A.2], for all r > m−1/2 · Gm(F),

r2 · fat(F , r) ≤ 4 · Gm(F)2. (19)
Plugging (18) into the left hand side of (16) and then applying (19) concludes the proof of the claim.
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D Classification and Analysis of RRSPM

In this section, we provide full proofs for the guarantees of Algorithm 4. In Section D.1, we describe
the concept of universal identification sets and the result of Neel et al. [2019] which plays a crucial
role in the privacy analysis of our algorithm. In Section D.2, we formally prove Lemma 6 which is
the technical lemma used for the proof of differential privacy based on Neel et al. [2019]. We then
continue in Section D.3 by applying standard learning theoretic techniques to demonstrate that our
algorithm is an accurate classifier.

D.1 Universal Identification Set based Algorithm

In this section, we formally define universal identification sets and informally describe the algo-
rithm used in Neel et al. [2019]. Intuitively, a universal identification set captures the combinatorial
property of a function class that all distinct functions in the function class disagree on at least one
point from the data universe. For many natural classes, the size of the universal identification set is
proportional to the VC dimension of the function class.

We now describe the algorithm from Neel et al. [2019] and explain the usefulness of universal
identification sets. First, we formally define the notion of universal identification set.
Definition 9. (Universal Identification Set) A set U ⊆ X is a universal identification set for a
hypothesis class F if for all pairs of functions f, f ′ in the hypothesis class F , there is a x ∈ U such
that:

f(x) ̸= f ′(x).

Additionally, if |U| = m, we say that F has a universal identification set of size m.

Assuming the existence of a universal identification set for the function class F of size m denoted
by U = {U1, . . . , Um}, Neel et al. [2019] showed that the following algorithm(called RSPM) is an
ε- pure differentially private and (α, β)-accurate algorithm.

Algorithm 5: RSPM
1: Input ERM oracle ERM, dataset D = {(Xi, Yi) | 1 ≤ i ≤ n}, hypothesis class F , universal

identification set U = {U1, . . . , Um}, loss function ℓ : Y × Y → {0, 1}.
2: Draw weights ξ = {ξ1, . . . , ξm} such that ξi ∼ Lap(2m/ε).
3: Draw labels Ỹ = {Ỹ1, . . . , Ỹm} such that Ỹi ∼ Uni({0, 1}).
4: Define Lξ,D,U : F → R such that

Lξ,D,U (f) =

n∑
i=1

ℓ(f(Xi), Yi) +

m∑
i=1

ξi · ℓ(f(Ui), Ỹi).

5: Get f̂ = ERM(F ,Lξ,D,U ).

RSPM roughly simulates “Report-Noisy-Min”(Dwork et al. [2014]) attempting to output a function
that minimizes a perturbed estimate, where the perturbation is sampled from a Laplace distribution.
A straight forward implementation of “Report-Noisy-Min" to minimize over all perturbed estimates
of functions, it’d have to check for all functions in F and thus the computational complexity would
depend on the size of F . RSPM avoids this problem by implicitly perturbing the function evalu-
ations via an augmented dataset. The proof of privacy thus exploits the structure of the universal
identification set.

Although many natural function classes have bounded universal identification sets, their existence is
not as general as having bounded VC dimension. In our work, we only assume finite VC dimension
of the function class.

D.2 Privacy Analysis

In this section, we prove that Algorithm 4 is differentially private. A notion that we will need is that
of a projection of a hypothesis class onto a set of points from the domain.
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Definition 10. (Projection) Given a hypothesis class F ⊆ Y |X | and a subset Z = {z1, . . . zm} of the
feature space X , we define the projection of F onto Z to be F|Z = {(f(z1), . . . , f(zm)) : f ∈ F}.

In the following sections, we will interchangeably think of the projection of a hypothesis class onto
a set of points Z as a set of functions on Z or as a set of vectors in Y |Z|.

By construction, F|Z has the property that any two distinct functions f ̸= f ′ ∈ F|Z must disagree
on at least one point z ∈ Z. We encapsulate this as the following lemma.

Lemma 17. Let F be a hypothesis class and let Z = {z1, . . . , zm} be a set of points in the instance
space X . Then, for all f ̸= f ′ ∈ F|Z , there exists z ∈ Z such that f(z) ̸= f ′(z).

Remark 2. This property is analogous to the notion of a universal identification set considered in
Neel et al. [2019]. In particular, the above lemma can be seen as the statement that the set Z is a
universal identification set for the class F|Z .

We first provide an informal sketch of the proof of privacy. In the later sections, we formalize these
ideas. Let f̂ ∈ F be any arbitrary function and let D,D′ be any pair of neighbouring datasets.
We show that P(RRSPM(D) = f̂) ≤ eεP(RRSPM(D′) = f̂). By the definition of the pro-
jection, there is some f̃ ∈ F|D̃x

that is consistent with the labelling of the selected function f̂ .
P(ERM(F ,Lξ,D,D̃) = f̃) ≤ eεP(ERM(F ,Lξ,D′,D̃) = f̃) since privacy for f̂ follows from the
post-processing property of differential privacy.

We now provide with a proof sketch for the main technical lemma showing that the privacy is pre-
served over the projected function class. Optimizing a loss function perturbed by Laplace-weighted
examples implicitly tries to implement “Report-Noisy-Min” algorithm outputting a function that
minimizes a perturbed estimate. For any neighbouring datasets D and D′, the evaluation of any
function f̃ can differ by at most 1. We show that the set of public points D̃ is a universal identifica-
tion set for the set of functions projected onto D̃ and leverage this to prove that whenever the shift
in the noise vectors is bounded by 2 in every coordinate, then f̃ is the minimizing function when
switching from D to D′. This intuition is made precise in Lemma 18.

Lemma 18. Let D,D′ be two neighbouring data sets, and let D̃ = (D̃x, D̃y) ∈ (X ×
{0, 1})m where D̃x = {Z1, . . . , Zm} and D̃y = {Ỹ1, . . . , Ỹm}. Define E(fD̃,D, D̃) ={
ξ : ERM(F|D̃x

,Lξ,D,D̃) = fD̃

}
, where Lξ,D,D̃ is a functional as defined below:

Lξ,D,D̃(f) =

n∑
i=1

ℓ(f(Xi), Yi) +

m∑
i=1

ξi · ℓ(f(Zi), Ỹi).

Let ξ = {ξ1, . . . , ξm} such that ξi ∼ Lap(2m/ε). Given a fixed fD̃ ∈ F|D̃x
, define a mapping

ΨfD̃
(ξ) : Rm → Rm on noise vectors as follows:

1. if ℓ(fD̃(Zi), Ỹi) = 1,ΨfD̃
(ξ)i = ξi − 2

2. if ℓ(fD̃(Zi), Ỹi) = 0,ΨfD̃
(ξ)i = ξi + 2

Equivalently, ΨfD̃
(ξ)i = ξi + 2(1 − 2ℓ(fD̃(Zi), Ỹi)). Let ξ ∈ E

(
fD̃,D, D̃

)
where fD̃ ∈

ERM(F|D̃x
,Lξ,D,D̃). Then ΨfD̃

(ξ) ∈ E(fD̃,D′, D̃).

Proof. Let ΨfD̃
(ξ) = ξ′ = (ξ′1, . . . ξ

′
m). Our goal is to show that for every f ∈ F|D̃x

such
that f ̸= fD̃, we have Lξ′,D′,D̃(f) > Lξ′,D′,D̃(fD̃). First, recall that by our assumption for all
f ∈ F|D̃x

, we have

Lξ,D,D̃(f) > Lξ,D,D̃(fD̃). (20)
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We now argue that Lξ′,D′,D̃(f)−Lξ′,D′,D̃(fD̃) is strictly positive for all f ∈ F|D̃x
such that fD̃ ̸= f .

To see this we calculate,

Lξ′,D′,D̃(f)− Lξ′,D′,D̃(fD̃) =
∑

(X,Y )∈D′

ℓ(f(X), Y ) +

m∑
i=1

ξ′i · ℓ(f(Zi), Ỹi)

−
∑

(X,Y )∈D′

ℓ(fD̃(X), Y )−
m∑
i=1

ξ′i · ℓ(fD̃(Zi), Ỹi)

≥ Lξ,D,D̃(f)− 1 +

m∑
i=1

ξ′i · ℓ(f(Zi), Ỹi)− ξi · ℓ(f(Zi), Ỹi)

− Lξ,D,D̃(fD̃)− 1−
m∑
i=1

ξ′i · ℓ(fD̃(Zi), Ỹi) + ξi · ℓ(fD̃(Zi), Ỹi)

> −2 +

m∑
i=1

(ξ′i − ξi)
(
ℓ(f(Zi), Ỹi))− ℓ(fD̃(Zi), Ỹi)

)
,

where the second inequality follows from the fact that D and D′ differ in only one entry and ℓ is 1−
sensitive. The last equation follows from statement 20.

We know from Lemma 17 that there exists a Z ∈ D̃ such that f(Z) ̸= fD̃(Z). Recall that ξ′i =

ξi + 2(1− 2ℓ(fD̃(Zi), Ỹi)). By construction, each term is non-negative. Therefore,

m∑
i=1

(ξ′i − ξi)
(
ℓ(f(Zi), Ỹi))− ℓ(fD̃(Zi), Ỹi)

)
> 2.

To wrap up, we can bound
Lξ′,D′,D̃(f)− Lξ′,D′,D̃(fD̃) > 0.

This proves that ΨfD̃
(ξ) ∈ E(fD̃,D′, D̃).

Lemma 19 (Laplace shift). Let ξ = {ξ1, . . . , ξm} such that ξi ∼ Lap(2m/ε). Fix some noise
realization r ∈ Rm and fix a hypothesis in the projection set f ∈ F|D̃x

. Then,

P(ξ = r) ≤ eεP(ξ = Ψf (r)),

where Ψf (ξ)i = ξi + 2(1− 2ℓ(f(Zi), Ỹi)) as defined in Lemma 18.

Proof. Let i ∈ [m] be any index and let r ∈ Rm. Since ξi ∼ Lap(2m/ε), we know

P(ξi = ri) =
ε

4m
exp

(
−|ri|ε
2m

)
For any t, t′ ∈ R such that |t− t′| ≤ 2, we get

P(ξi = t′) ≤ exp(ε/m)P(ξi = t)

Since for all i ∈ [d], |Ψf (r)i − ri| ≤ 2, we get

P(ξ = Ψf (r))

P(ξ = r)
=

m∏
i=1

P(ξi = Ψf (r)i)

P(ξi = ri)
≤

m∏
i=1

exp(ε/m) = exp(ε).
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Our proof of privacy also makes use of the following lemma, which says that minimizers are unique
with probability 1 [Neel et al., 2019, Lemma 4].

Lemma 20. Let D̃ = (D̃x, D̃y) ∈ (X × {0, 1})m. Consider F|D̃x
, where F|D̃x

is the projection of
F on D̃x. For every dataset D, there is a subset B ⊆ Rm such that:

• P(ξ ∈ B) = 0 and

• On the restricted domain Rm \ B, there is a unique minimizer f̃ ∈
argminf∈F|D̃x

Lξ,D,D̃(f).

Using standard results about Laplace perturbations stated in Lemma 19 and Lemma 20 and using the
perturbation coupling bound in Lemma 18, we get the our formal statement of privacy for optimizing
over the projected function class as follows:
Lemma 21. (Privacy over Projection) Let D,D′ be arbitrary datasets containing n points each.
Let D̃ = (D̃x, D̃y) ∈ (X × {0, 1})m. Then,

P(ERM(F|D̃x
,Lξ,D,D̃) = f) ≤ eεP(ERM(F|D̃x

,Lξ,D′,D̃) = f).

Proof. We calculate,

P(ERM(F|D̃x
,Lξ,D,D̃) = f) = P(ξ ∈ E(f,D, D̃))

=

∫
Rm

P(ξ)1(ξ ∈ E(f,D, D̃))dξ

=

∫
Rm\B

P(ξ)1(ξ ∈ E(f,D, D̃))dξ B has 0 measure by Lemma 20

≤
∫
Rm\B

P(ξ)1(Ψf (ξ) ∈ E(f,D′, D̃))dξ Lemma 18

≤
∫
Rm\B

eεP(Ψf (ξ))1(Ψf (ξ) ∈ E(f,D′, D̃))dξ Lemma 19

≤
∫
Rm\Ψf (B)

eεP(ξ)1(ξ ∈ E(f,D′, D̃))
∂Ψf

∂ξ
dξ Change of variables ξ → Ψf (ξ)

=

∫
Rm

eεP(ξ)1(ξ ∈ E(f,D′, D̃))dξ Ψf (B) has 0 measure,
∣∣∣∣∂Ψf

∂ξ

∣∣∣∣ = 1

= eεP(ξ ∈ E(f,D′, D̃))

= eεP(ERM(F|D̃x
,Lξ,D′,D̃) = f).

Theorem 8. Algorithm 4 is ε-pure differentially private.

Proof. Let D and D′ be any neighbouring datasets. Fix any function f̂ ∈ F . We now show that

P(RRSPM(D) = f̂) ≤ eεP(RRSPM(D′) = f̂),

where the probability is taken over the randomness of the algorithm. From the definition of the
projection, we know that there exists a unique function in the projection say, f̃ ∈ F|D̃x

such that
f̂(Zi) = f̃(Zi) for all i ∈ [m].

Using Lemma 21, we know that

P(ERM(F|D̃x
,Lξ,D,D̃) = f̃) ≤ eεP(ERM(F|D̃x

,Lξ,D′,D̃,D̃y
) = f̃).

As defined in the algorithm, let L̃(f) =
∑m

i=1 ℓ(f(Zi), f̃(Zi)). From the definition of L̃, it follows
that f̂ ∈ argmin

f∈F
L̃(f). Following the post-processing guarantee of differential privacy, it is easy to

see that
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P(RRSPM(D) = f̂) ≤ eεP(RRSPM(D′) = f̂).

D.3 Accuracy Analysis

In this section we analyze the accuracy of our algorithm. Let f∗ denote the function in the hypothesis
class that minimizes the loss with respect to the distribution ν i.e. f∗ ∈ argmin

f∈F
Lν(f). Let f̂ denote

the output hypothesis of our algorithm. We show that the loss of f̂ is close to f∗ with respect to the
data generating distribution ν.

As in the algorithm description, let f̃ be the function that minimizes the perturbed loss. Our algo-
rithm outputs f̂ whose labelling is consistent with f̃ on the public dataset D̃x. Since D̃x is sampled
from the base distribution, it follows from VC theorem that f̂ and f̃ are close under the base distri-
bution µ. We show in Lemma 22 that f̂ and f̃ are close under ν by leveraging that νx is a σ-smooth
distribution. Using standard results about Laplace perturbations, we show that f ′ is close to f̃ in
Lemma 23, where f ′ is the empirical risk minimizer over D. Using the VC theorem, it is easy to see
that f ′ is close to f∗ and consequently using the triangle inequality we finish the proof by showing
that f∗ and f̂ are close under ν.

We now state the VC theorem below which we use in our analysis.
Theorem 9. Let D = {(X1, Y1), . . . , (Xn, Yn)} where for all i ∈ [n], (Xi, Yi) ∈ X × {0, 1}
are sampled from a fixed distribution ν. Let LD(f) = 1

n |{i : f(Xi) ̸= Yi}| and let Lν(f) =
E(X,Y )∼ν [1(f(X) ̸= Y ]. If the function class F has V C dimension d then,

P

(
sup
f∈F

|LD(f)− Lν(f)| ≤ O

(√
d+ log(1/β)

m

))
≥ 1− β.

In particular if f∗ ∈ argmin
f∈F

LD(f) then,

P

(
|Lν(f

∗)− argmin
f∈F

Lν(f)| ≤ O

(√
d+ log(1/β)

m

))
≥ 1− β.

Lemma 22. Let νx be a σ-smooth distribution that is
∥∥∥dνx

dµ

∥∥∥ ≤ 1
σ . Let Lν be the loss function as de-

fined in Defintion 2. Let f̂ be the hypothesis returned by our algorithm and let f̃ ∈ ERM(F ,Lξ,D,D̃).
Then,

Lν(f̂)− Lν(f̃) ≤ O

(√
d+ log(1/β)

mσ2

)
,

with probability 1− β.

Proof. Let α′ = O

(√
d+log(1/β)

m

)
. First we show that | L(f̂)

X∼µ

Y=f̃(X)

− L(f̃)
X∼µ

Y=f̃(X)

| ≤ 2α′ with probability

at least 1 − β. Consider the dataset D̂ = {(X1, f̃(X1), . . . , (Xm, f̃(Xm))} we minimize over and
output f̂ . Using Theorem 9 we know that,

P

| L(f̂)
X∼µ

Y=f̃(X)

− L(f̃)
X∼µ

Y=f̃(X)

| ≤ 2α′ + |LD̂(f̂)− LD̂(f̃)|

 ≥ 1− β.

Since L(f̃)
X∼µ

Y=f̃(X)

= 0 and |LD̃(f̂)− LD̃(f̃)| = 0 and we get that with probability at least 1− β,
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PX∼µ(f̂(x) ̸= f̃(x)) ≤ 2α′. (21)

We now show that PX∼νx(f̂(x) ̸= f̃(x)) ≤ 2α′/σ with probability at least 1− β.

PX∼νx(f̂(x) ̸= f̃(x)) = EX ∼ νx[1(f̂(x) ̸= f̃(x))]

=
∑
X∈X

P(νx = X)1(f̂(x) ̸= f̃(x))

≤ 1

σ

∑
X∈X

P(µ = X)1(f̂(x) ̸= f̃(x)) Since
∥∥∥∥dνxdµ

∥∥∥∥ ≤ 1

σ

=
1

σ

(
EX ∼ µ[1(f̂(x) ̸= f̃(x))]

)
=

1

σ

(
PX∼µ(f̂(x) ̸= f̃(x))

)
≤ 2α

σ
Using Eq 21

Having shown that with probability at least 1− β,

PX∼νx
(f̂(x) ̸= f̃(x)) ≤ 2α′/σ, (22)

we now prove that with probability at least 1− β,

| L(f̂)
X∼νx

Y∼νy|X

− L(f̃)
X∼νx

Y∼νy|X

| ≤ 2α′/σ.

which is equivalent to the theorem statement. Using the triangle inequality we get

| L(f̂)
X∼νx

Y∼νy|X

− L(f̃)
X∼νx

Y∼νy|X

| ≤ EX∼νx

[∣∣∣PY∼νy|X(f̂(X) ̸= Y )− PY∼νy|X(f̃(X) ̸= Y )
∣∣∣]

= EX∼νx [1(f̃(X) ̸= f̂(X))]

= 2α′/σ

where the second equation follows from the observation that for any value of X , if f̂(X) = f̃(X)

then the difference of the probabilities equate to 0 and if f̂(X) ̸= f̃(X) then the difference of the
probabilities equate to 1 and the last equation follows from Equation 22.

Substituting the value of α′ proves that with probability 1− β,

Lν(f̂)− Lν(f̃) ≤ O

(√
d+ log(1/β)

mσ2

)
.

Lemma 23. Let F be a function class with V C dimension d. Let D = {(X1, Y1), . . . , (Xn, Yn)}
and D̃x = {Z1, . . . , Zm} where Zi ∼ µ. Let LD be the loss function as defined in Definion 2. Let
f ′ ∈ ERM(F ,LD) and let f̃ ∈ ERM(F ,Lξ,D,D̃) then,

LD(f̃)− LD(f
′) ≤ 4m2 log(m/β)

εn
,

with probability 1− β.

Proof. Following the algorithm we know that for all i ∈ [m], ξi ∼ Lap(2m/ε). Using Chernoff’s
bound and a union bound we get that with probability 1− β,

∀i ∈ [m], |ξi| ≤
2m log(m/β)

ε
.
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Since f̃(Zi) ∈ {0, 1} for all Zi ∈ D̃, with probability 1−β, Lξ,D,D̃(f̃) ≥ LD(f̃)−m · 2m log(m/β)
ε .

Similarly, Lξ,D,D̃(f
′) ≤ LD(f

′) +m · 2m log(m/β)
ε . Dividing by n and combining the bounds we

get,

LD(f̃)− LD(f
′) ≤ 4m2 log(m/β)

εn
,

with probability 1− β.

Theorem 10. Let f̂ be as defined in Algorithm with D sampled from some distribution ν such that∥∥∥dνx

dµ

∥∥∥ ≤ 1
σ . Suppose the function class F has VC-dimension d then setting

m = O

(
d+ log(1/β)

α2σ2

)
yields an ε- pure differentially private (α, β)-learner as long as

n ≥ Ω̃

(
d2 log(1/β)

α5σ4ε

)
,

where Ω̃ hides log factors.

Proof. Let ν be the distribution from which the given dataset D is sampled where
∥∥∥dνx

dµ

∥∥∥ ≤ 1
σ . Let

f̂ be the output of our algorithm, f ′ ∈ argmin
f∈F

LD(f), f∗ be the target function from our function

class F and f̃ ∈ argmin
f∈F

Lξ,D,D̃(f). We wish to compare the guarantee of the function f̂ with

respect to the function f∗ with respect to the distribution ν i.e. |Lν(ĥ)− Lν(f
∗)|.

In our analysis below, we break the loss function several times using triangle inequality and bound
each term using previously stated results via a union bound.

|Lν(f̂)− Lν(f
∗)|

≤ |Lν(f̂)− Lν(f̃)|+ |Lν(f̃)− LD(f̃)|+ |LD(f̃)− LD(f
′)|+ |LD(f

′)− Lν(f
∗)|

≤ O

(√
d+ log(1/β)

σ2m

)
︸ ︷︷ ︸

Lemma 22

+O

(√
d+ log(1/β)

n

)
︸ ︷︷ ︸

Theorem 9

+O

(
m2 log(m/β)

εn

)
︸ ︷︷ ︸

Lemma 23

+O

(√
d+ log(1/β)

n

)
︸ ︷︷ ︸

Theorem 9

= O

(√
d+ log(1/β)

σ2m
+

√
d+ log(1/β)

n
+

m2 log(m/β)

εn

)
.

Setting

m = O

(
d+ log(1/β)

α2σ2

)
, n = O

(
d2 log d · log(1/β)

α5σ4ε

)
and combining the guarantee from Theorem 8 we get that RRSPM (Algorithm 4) is a ε- pure differ-
entially private (α, β)-learner.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction accurately captures all the contributions of the
paper. All the claims are formally stated in the main body and the appendix of the paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations are that the work requires public, unlabelled data and that
the statistical rates of our efficient algorithms do not match those achievable by inefficient
methods. Both limitations are stated clearly and repeatedly throughout the text.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the ap-
proach. For example, a facial recognition algorithm may perform poorly when image
resolution is low or images are taken in low lighting. Or a speech-to-text system might
not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to ad-
dress problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: Proof sketches are provided in the main body and detailed arguments are
found in the appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theo-

rems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?
Answer: [NA]
Justification: Did not run experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all sub-
missions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear

how to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [NA]
Justification: Did not run experiments.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not
be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [NA]
Justification: Did not run experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of

detail that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?
Answer: [NA]
Justification: Did not run experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should prefer-

ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]

Justification: Did not run experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Evident.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Evident.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Does not apply.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: Does not apply.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the pack-

age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the li-
cense of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?
Answer: [NA]
Justification: Does not apply.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?
Answer: [NA]
Justification: Does not apply.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Does not apply.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.
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