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ABSTRACT

The identification of biocatalyzed reaction products plays a critical role in en-
zyme function prediction, drug discovery, and metabolic engineering. Uncovering
the products of biocatalyzed reactions experimentally is both time-consuming and
costly, which underscores the urgent need for computational methods. Previous
machine learning methods have largely focused on spontaneous, non-biocatalyzed
reactions but do not perform well when applied to biocatalyzed reactions specif-
ically. We present a novel approach that harnesses graph-based deep learning to
predict the primary products of enzyme-catalyzed reactions, considering both the
protein sequence and substrates involved. On the recently published dataset En-
zymeMap, we find that our method based on graph-editing outperforms existing
transformer-based approaches.

1 INTRODUCTION

A key computational task in biocatalysis is predicting the products of a reaction from an enzyme
and its substrates. In silico methods for this task enable new opportunities in enzyme discovery,
therapeutic development, and metabolic engineering. Current machine learning models have shown
initial feasibility at automating this process; however, thus far they rely on information that may not
be available for novel chemistry (e.g. Enzyme Commission number). As a result, this limits their
practical use as an alternative to experimental methods.

The goal of our work is to improve the generalization capacity of these models to new chemistry.
To this end, we assume access to only the molecular structure of the substrates and the enzyme
primary sequence, without any additional information. In predicting the products of spontaneous
chemical reactions, graph-based methods have outperformed both language model and rule-based
approaches. These methods, however, fail to take into consideration the enzyme and therefore ex-
perience a significant drop in performance on biocatalyzed reactions. We hypothesized that better
generalization can be achieved by a mechanistically-inspired model that captures the biochemical
interaction between the enzyme residues and substrate atoms. We demonstrate that these interac-
tions can be learned through a multi-headed cross attention using graph convolutions to encode the
substrates as 2D molecular graphs and a protein language model to encode the enzyme’s amino acid
sequence.

In the context of drug design, the metabolism of small molecule drugs impacts their efficacy, toxicity,
and mechanism of action. For example, Fenofibrate, which is used to treat high cholesterol, must first
be metabolized into fenofibric acid by liver carboxylesterase 1 in order to become active. Therefore
in Appendix A.3, we consider phase II metabolism of small molecule drugs as a potential real-world
application and a prime example of generalization to a novel chemical space. Specifically, we use
a dataset of drug reactions from DrugBank to predict the products generated by the reaction of a
drug with its target enzyme. This is an interesting and challenging generalization scenario since
the chemical distribution of therapeutics differs significantly to that of metabolites on which these
models are trained.

∗Equal contribution

1



Published at the GEM workshop, ICLR 2024

We develop our model using the EnzymeMap dataset, consisting of 103,120 pairs of atom-mapped
reactions and UniProt-SwissProt proteins. We demonstrate a significant improvement in predicting
unseen products on a standard product split. For instance, we obtain 89% accuracy in generating
correct products when evaluating the top 10 predictions and outperform current methods that range
between 50%-70%. The comparison between our method and previous methods highlights the im-
portance of adequate enzyme encoding. Ignoring the enzyme altogether or utilizing the protein EC
numbers leads to significantly worse performance (Probst et al., 2022; Kreutter et al., 2021). Finally
we show comparable improvements using a dataset from DrugBank in Appendix A.3.

2 RELATED WORK

See Appendix A.2 for full details.

3 METHOD

3.1 BIOCATALYZED PRODUCT GENERATION

We present here an overview of the method. We first predict whether and how the reactant bonds
change conditioned on both the set of reactants and the protein sequence of the associated enzyme
(Section 3.1.1). We deterministically perform chemically valid graph edits to obtain all products that
can be generated with up to k of the most likely predicted bond changes. We train a second model
to retrieve the correct product given the full reaction and the protein sequence (Section 3.1.2).

3.1.1 REACTION CENTER PREDICTION

Reactants and products are constructed as 2D graphs G = (V, E), with node features vi ∈ V and
edges eij ∈ E . While the bonds we predict correspond to the overall net change between the atom-
mapped reactants and products, they are nonetheless dependent on chemical interactions between
atoms in the same reactants, atoms in different reactants, and the enzyme amino acid residues. We
model each type of interaction and use them together to predict all bond changes.

First, a Graph Attention Network (Brody et al., 2022) flocal is used to encode each reactant separately
and obtain node embeddings for each atom:

A = flocal(V, E)
where A = {a1, a2, . . . , an} is the set of reactant node features after applying the GNN and ai ∈ Rd.

Similarly to Jin et al. (2017), a second model, fglobal, is then used to encode the interaction between
atoms in different molecules by constructing a complete graph from the reactants. Specifically we
add an edge between every pair of nodes: e′ij = [1same ∥ 1diff ∥ eij ], where 1same indicates whether
the atoms are in the same molecule, 1diff indicates whether the atoms are in different molecules, and
eij are the bond features. We set eij = 0 when the atoms are not connected by a chemical bond.
We compute a pairwise attention with every atom in the complete graph and obtain the global node
embeddings a′i ∈ Rd as a weighted sum:

αij = σ(u⊤ReLU (Pa(ai + aj) + Pbeij))

a′i =
∑
j

αijaj

A′ = {a′1, a′2, . . . , a′n}

Third, we use ESM-2 (Lin et al., 2023) as the protein encoder fp to obtain residue-level represen-
tations P = {r1, r2, . . . , rm} and perform a multi-headed cross-attention (Vaswani et al., 2017)
between the residues and the node embeddings of the reactant graphs ai:

A′′ = softmax
(
QKT

√
d

)
V

where
Q = WQA; K = WKP ; V = WV P
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Figure 1: Schematic of the model architecture for predicting the bond changes associated with a
given an enzyme and its substrates.

Finally, for each atom pair (i, j), we compute the probability that a particular bond change k occurs
between them, which consists of either the loss of a bond or the formation of a single, double, triple,
or aromatic bond:

ci = Wa[ai ∥ a′i ∥ a′′i ]
bij = Wbeij

sijk = WkReLU ([ci + cj ∥ bij ])

To force the model to focus on bond changes associated with substrate, we do no compute the
loss over bond changes associated with common co-factors and co-enzymes like ATP, which often
comprise most of the bond changes associated with the reaction.

3.1.2 CANDIDATE PRODUCT RANKING

Given the predicted bond changes above, we select the top k predictions. We empirically predefine a
k′ as the maximum number of changes that could occur within a biochemical reaction and construct
all sets of size at most k′ consisting of chemically valid changes. Each set of bond changes is applied
as graph edits on the original reactant graphs to obtain candidate products. We then train a classifier
to retrieve the products associated with the ground truth set of changes from the list of all candidate
products.

The identity of the correct product depends on the reactants and enzyme, and the most likely products
are those whose transition state is stabilized by the enzyme (Martı́ et al., 2004; Warshel et al., 2006).
As a result, we represent a pseudo-transition state using the condensed reaction graph (Hoonakker
et al., 2011; Heid & Green, 2021) for each prediction by superimposing the reactants and generated
products and concatenating their node and edge features. This aims to incorporate all representations
of the predicted reaction and the enzyme together. We then encode the graph structure with a directed
message passing neural network frxn (Yang et al., 2019) to obtain atom-level features ai and obtain
residue-level features ri of the enzyme using ESM-2.

ai = frxn

([
v
(reactants)
i ∥ v(products)

i

]
,
[
e
(reactants)
ij ∥ e(products)

ij

])
a =

∑
i

ai; p =
1

|P |
∑
i

ri

g = frank([a ∥ p])

Finally, we aggregate both the reaction graph representations and the protein representations, and
pass them together through a small feed-forward network, frank, to score each proposed reaction.

4 EXPERIMENTAL SETUP

See Appendix A.1 for full details.
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Figure 2: Schematic of the ranking model used to select the correct product from a list of candidates
by considering the enzyme and the full predicted reaction. The red and green dashed edges represent
bonds that are predicted to be deleted and created, respectively.

5 RESULTS

5.1 ENZYMEMAP

While prior deep learning methods developed specifically for this task use more detailed data on
the enzyme identity (either the EC number or the enzyme nomenclature) our method assumes that
only the amino-acid sequence of the enzyme and the substrate molecules are known. However, we
compare against these methods for completeness. Additionally, we impose a conservation of mass
constraint and only generate bond changes whereas existing baselines use free generation to decode
the product SMILES.

We test the hypothesis that encoding the protein and molecular structure leads to better generaliz-
ability in predicting unseen products. We find that our model is able to generalize better to unseen
reaction products and surpasses other models by a considerable margin with a top-1 accuracy of
72.5% relative to 35.3% and 50.5% using enzyme name and EC, respectively (Table 5). Since reac-
tions can have multiple possible products, we expect that not all products can be recovered within
the first prediction. Considering the top k > 1 predictions, we observe sustained performance gains
in recovering all products, approaching 90% accuracy with k = 10. We also consider other bi-
ologically relevant splits based on protein structure similarity and the reaction classes defined by
EC numbers, and observe that our model exhibits comparable on these harder splits, albeit without
assuming any additional protein annotations (Appendix A.5).

5.2 IMPACT OF PROTEIN SEQUENCE

Enzymes play an important role in biocatalysis. However, since the molecular structure of the
substrates alone provides some information about the potential sites of metabolism (Kirchmair et al.,
2015), we sought to evaluate the extent to which these models simply memorize reaction rules
versus take into account the impact of the enzyme itself. Here, we show how well each model
predicts the products of enzymatic reactions from the reactants alone without enzyme information.
We train both the Molecular Transformer architecture (Schwaller et al., 2019) and WLN (Coley
et al., 2017) without incorporating any protein information. Since our primary task is to generalize

Table 1: Top-k accuracy of our graph-based method compared to existing approaches for biocat-
alyzed forward synthesis. Published methods are trained as detailed in their respective GitHub
codebases (Appendix A.6). Performance is evaluated on EnzymeMap using a product split.

MODEL TOP 1 TOP 3 TOP 5 TOP 10

KREUTTER
ET AL. (2021) 35.3% 43.6% 46.0% 47.8%

PROBST ET AL.
(2022) 50.5% 61.7% 65.4% 68.8%

OURS 72.5% 84.3% 87.3% 89.4%
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Table 2: Top-k accuracy of a transformer and graph model that exclude protein information com-
pared to our full model. Performance is evaluated on EnzymeMap using data splits based on a
product split.

MODEL TOP 1 TOP 3 TOP 5 TOP 10

SCHWALLER
ET AL. (2019) 35.0% 50.6% 55.5% 58.9%

COLEY ET AL.
(2017) 58.3% 75.9% 81.8% 85.2%

OURS 72.5% 84.3% 87.3% 89.4%

to new products, we focus our analysis on the product split. We observe that both models achieve
improved performance when the protein sequence is included (Table 2), with the top 1 accuracy of
our method obtaining a 14% gain in performance relative to the WLN model (no protein sequence).
However, this gap decreases to 4% as more candidates are considered (top k=10). We also find that
both graph-based models perform better over sequence-to-sequence models.

While the results of Table 2 suggest that the model is utilizing the protein sequence in improv-
ing its final prediction, they provide no indication whether it learns any biologically meaningful
properties regarding the protein’s catalytic function. Our architecture, however, learns a multi-head
cross-attention between the full protein sequence and the latent atom representations of the sub-
strates, yielding attention scores for every residue-atom pair. By summing over the attentions scores
across all atoms, we obtain a weighting per residue. We extract active site annotations from the
Mechanism and Catalytic Site Atlas (Ribeiro et al., 2018) for both the reference sequences as well
their homologs, which are assumed to have identical active sites, and we compare them with the
top-scoring residues according to the learned attention scores. We take the residues with the top q-th
quantile of attention scores and compute the fraction of annotated active site residues included in
that predicted set. We find that our learned attention has a consistently better correspondence with
the active site than an equivalent random guess (Figure 3). This suggests that our model is able to
learn a functionally meaningful association between the protein sequence and the substrates.

6 CONCLUSION

This paper presents a novel graph-based method for predicting the products of biocatalyzed reac-
tions given a set of substrates and an enzyme sequence. We show that incorporating the enzyme
sequence in the input improves performance compared to other methods that include alternative rep-
resentations of enzymes, namely EC numbers and enzyme names. We report an improvement of
37.2 points in top-1 accuracy against preceding state-of-the-art methods on the EnzymeMap dataset.

Figure 3: Fraction of true active site residues included in the top q quantile of attention scores
extracted from the multi-head cross-attention layer used to predict the bond changes in each reac-
tion. For every quantile, we take a random permutation over all residue indices and select the same
number of predictions as in that quantile to obtain a random guess baseline.
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Lastly, we note that by relying on enzyme sequence, we widen the utility of our model compared to
previous models to encompass unannotated and orphan enzymes.

The results presented also exhibit a number of limitations. While we show that the model has a
capacity to generalize to out-of-distribution molecules, like small molecule drugs in Appendix A.3,
there still remains room for improvement especially for completely new chemical transformations.
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A APPENDIX

A.1 EXPERIMENTAL SETUP

A.1.1 ENZYMEMAP DATASET

We train all models on data derived from EnzymeMap (Heid et al., 2023), which consists of bio-
catalyzed reactions paired with protein UniProt identifiers and their EC numbers. All reactions are
fully atom-mapped, meaning that every atom in the products can be traced back to an atom in the
reactants of the reaction. To obtain protein sequences, we consider only reactions associated with
UniProt or SwissProt identifiers and pull their sequences from their respective databases. As is stan-
dard in the literature, we remove products that occur as reactants in the same reaction, common
byproducts, and products with fewer than 4 heavy atoms. We follow Probst et al. (2022) and split
reactions with multiple products and exclude reactions with large molecules (> 100 heavy atoms).
To control for the size of the proteins, we only consider sequences that are no more than 800-amino
acids long. This yields 103,120 enzyme-catalyzed reactions with 20,385 unique chemical reactions,
12,541 enzymes, covering 2743 EC numbers.

We consider several splits of the dataset. In keeping with previous work, our primary test set is
constructed using a product split, where no product in the test set is seen in the training set. Ad-
ditionally, we explore a structure similarity split and an EC split in the appendix. In particular,
enzymes are clustered using Foldseek (van Kempen et al., 2023) with a 90% structure overlap and a
sequence identity of 0, and enzymes in the same cluster are assigned to the same split. We split the
data into train, development, and test datasets with a ratio of 8 : 1 : 1. For the EC split, we held-out
reactions in an EC for the test set and split the remaining reactions into (∼89%) train and (∼11%)
development. Details on data processing are provided in Appendix A.4.1.

A.1.2 DRUGBANK DATASET

We consider the out-of-distribution chemical domain of drug metabolism and showcase the im-
proved performance of our model as compared to other models on this task. We obtain drug reactions
from DrugBank for which a UniProt ID is available. Since our graph-editing procedure requires all
reactant molecules present, including co-factors, we obtain from UniProt all reactions annotated for
each protein entry and extract the substrates that are common among all reactions of an entry and
add them to the corresponding DrugBank data samples. We further focus our analysis on reactions
from phase II metabolism and exclude reactions catalyzed by cytochromes. The cytochrome P450
superfamily is known to perform a wide range of chemical transformations and is often non-specific
to location or to substrate such as hydroxylation of unactivated C-H bonds, C-C or C-N bond forma-
tion, heteroatom oxidation, oxidative C-C bond cleavages, and nitrene transfer Greule et al. (2018).
Since these chemical transformations can be stochastic in their location, annotated datasets repre-
sent only a small subset of possible products making it hard to evaluate predictions using the same
method and so we exclude them. This curated dataset yields 804 reaction-enzyme pairs, with 160
unique proteins and 342 drugs.

A.1.3 BASELINES

We consider the two prior works on biocatalysis prediction as baselines (Kreutter et al., 2021; Probst
et al., 2022). We retrain the transformer models on the USPTO and EnzymeMap training sets follow-
ing the paradigm reported in the publications and detailed in Appendix A.6. Kreutter et al. (2021)
uses the enzyme names to encode the protein, therefore we map protein identifiers from EnzymeMap
to their annotated name in UniProt. In cases where annotated names are missing we mark the name
as ”unknown” in order to avoid skipping many samples. Providing the protein name as input to the
model suggests that the protein’s function has already been studied and its function characterized,
thus defining the name of the protein. In cases where the name does not provide any indication of
the function, it should not provide useful information to the model (e.g. ”unknown”). In these cases
the model must rely on the substrates alone. On the other hand, Probst et al. (2022) encodes the
first three levels of the EC number of the reaction; similarly, knowing the associated EC number
suggests that much of the biochemical reaction is already characterized and provides the model with
information that is beyond what we assume to be available at inference time.
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A.2 RELATED WORK

Enzyme Modeling Central to correctly predicting the product of a biochemical reaction is learn-
ing the function of the enzyme. In fact, depending on the enzyme identity, the same substrates can
undergo different chemical transformations (Durairaj et al., 2019). Prior research on biocatalyzed
reaction prediction considers two alternative methods for incorporating enzyme information: using
enzyme nomenclature (Kreutter et al., 2021) or EC number (Probst et al., 2022). The former method
encodes the scientific name of the enzyme using a language model, while the latter relies on expert
defined enzyme classes (i.e., their EC numbers). In both cases, enzymes with similar characteris-
tics are likely to exhibit similarity in their encoding. However, both methods only provide limited
generalization capability especially for unseen enzymes where categorization information may not
be available. Moreover, these methods ignore the rich biological information embedded in protein
sequences. In operating on enzyme classes, previous research also disregards the specificity of pro-
teins and treats all enzymes of a particular class as capable of catalyzing the same substrates. In
contrast, utilizing sequence information, our method can be applied to unseen enzymes, without
relying on functional annotations.

Chemical Reaction Prediction The field of biocatalyzed reaction prediction is still relatively
nascent, and prior methods frame the task as a machine translation problem using language models.
However, language-based generation does not make use of the fact that the atoms of the reactants
are conserved, and small mistakes in generation can lead to widely different molecules. Our work
most closely follows graph-based approaches developed for the small molecule, general chemistry,
space. These methods leverage this inductive bias and learn the graph edits to apply on the molec-
ular graph encoding of the reactants, and recently demonstrated better generalization than language
model based approaches (Jin et al., 2017; Coley et al., 2017; Segler & Waller, 2017; Bradshaw et al.,
2018; Bi et al., 2021; Sacha et al., 2021; Chen & Jung, 2022). Our approach builds on the success
of these graph based methods and develops it further to include enzyme sequences and exploit the
interactions between the sequences and substrates.

Drug Metabolism Prediction In the pharmaceutical industry, drug metabolism screening is typi-
cally done through experimental assays. Existing analytical methods largely rely on rule-based ap-
proaches (Cruciani et al., 2005; Ridder & Wagener, 2008; Djoumbou-Feunang et al., 2019; Finkel-
mann et al., 2018; Adams, 2010; Kirchmair et al., 2013; Darvas, 1987; Rudik et al., 2023). For
example, Mohammadi Peyhani et al. (2020) used a template-based search to predict that the anti-
cancer drug 5-fluorouracil can be metabolized into competitive inhibitors of native enzymes, which
can help explain the observed toxicity of the drug. As an alternative to rule-based approaches, sev-
eral machine learning methods have emerged. However, these approaches are limited in their reach
as they are typically trained on a specific class of enzymes (e.g., cytochrome P450s) (de Bruyn Kops
et al., 2020; Hughes & Swamidass, 2017; Olsen et al., 2019; Hennemann et al., 2009). In contrast,
our method provides a more general framework that can be applied to any chemical matter while
delivering strong performance on a curated dataset from DrugBank (Wishart et al., 2018).

A.3 PREDICTING DRUG METABOLISM

Here, we take the metabolism of small molecule drugs as a potential real-world application of our
model and showcase the improved performance of our model as compared to others on this task.
How a drug is metabolized has important implications for its efficacy, toxicity, and mechanism of
action. While some experimental approaches exist to study drug-metabolizing enzymes, there re-
mains a critical need for in-silico drug metabolism models to address the cost, time, and human
expertise required by in-vitro and in-vivo methods. We evaluate our model on drug reactions from
DrugBank for which a UniProt ID is available and focus on non-cytochrome-catalyzed biotransfor-
mations (Wishart et al., 2018). We find that our model is able to predict the correct drug metabolite
with a 60.1% top-10 accuracy and outperform other deep learning models (Table 3).

To better understand the errors observed on drug reactions, we manually inspect cases where the
model fails to find an exact match to the annotated product within the top ten predictions. In many
cases, we find that the model comes close in identifying the reaction type but focuses on incorrect,
yet similar, sites of metabolism. For example, the model correctly predicts the reaction in Figure 4(a)
to be a hydroxylation but predicts the wrong methyl group to which to add the OH group, though it

10
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is near the true site. We also identify cases where the model predictions are considered wrong as a
result of inconsistencies in the databases. Raloxifene (DB00481) is reported to be metabolized by
a UDP-glucuronosyltransferase (Q9HAW8) (Figure 4(b)). Since we obtain enzyme co-factors from
UniProt, we utilize UDP-α-D-glucuronate as the other substrate in the reaction. Our prediction
matches exactly the chemical pattern annotated in UniProt and provided by the Rhea database.
However, this appears to be inconsistent with the metabolic reaction of raloxifene in DrugBank
and results in our prediction to be considered incorrect. In some cases, the model is not able to
fully capture the complexity of the biochemical reaction. The metabolism of morphine (DB00295)
consists of the transfer of glucuronic acid and ring breaking (Figure 4(c)). The model is found to
be partially correct as it predicts the right glucuronidation site but is unable to identify the bond
changes to the ring in any of its top-k predictions.

Table 3: Performance on the DrugBank drug reactions.

Model Top 1 Top 3 Top 5 Top 10

KREUTTER ET AL. (2021) 28.6% 37.2% 40.8% 43.8%
PROBST ET AL. (2022) 25.7% 33.0% 38.1% 42.8%
OURS 40.7% 56.0% 58.0% 60.1%

Figure 4: Illustrative examples of errors made by our model, where (a) the predicted reaction type
is correct but the reactive site is misclassified; (b) the mistake is possibly due to inconsistencies
between databases; and (c) the reaction consists of several changes that the model is unable to fully
recover.

A.4 IMPLEMENTATION DETAILS

A.4.1 DATA SPLITS

Product Split We follow prior work and split the data such that there is no overlap of products
between the three data splits. We use the rxn4chemistry tools (https://github.com/
rxn4chemistry/biocatalysis-model, Probst et al. (2022)) to pre-process our data and
exclude reactions with large molecules (> 100 heavy atoms), those with products with fewer than
4 heavy atom, and those with proteins that are more than 800-amino acids long. This yields 95,318
training samples, 5,037 development samples, and 2,765 test samples.

Structure Split We download predicted protein structures from AlphaFold (Jumper et al., 2021)
as .cif files. We use Foldseek (van Kempen et al., 2023) to cluster our database of structures using
easy-cluster with --min-seq-id = 0.0 and -c = 0.9. We obtained 13,866 clusters which
were split into 80% train, 10% development, and 10% test. Samples were placed in a split according
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to the enzyme’s cluster identity. This yields 79,443 training samples, 11,208 development samples,
and 10,781 test samples.

EC Split For each EC, ec ∈ {1, 2, 3, 4, 5, 6}, we held out all reactions with that specific ec number,
considering only the top level class. The remaining reactions were split according to product-based
split into 8

9 training and 1
9 development sets (maintaining the ratio of 8:1:1). The number of samples

in each split are provided in Table 4.

Table 4: Number of reactions in each data split when using the top-level EC number to construct the
test sets.

HELD-OUT EC TRAINING SPLIT DEVELOPMENT SPLIT TEST SPLIT

1 64,065 8,159 30,896
2 65,652 8,247 29,221
3 68,462 7,335 27,323
4 82,669 10,809 9,642
5 88,352 10,751 4,017
6 89,907 11,192 2,021

A.4.2 MODEL TRAINING

Reaction center prediction We use pre-trained ESM-2 with 35M parameters
(esm2_t12_35M_UR50D) to encode the enzyme sequences. We use Graph Attention Net-
works (Brody et al., 2022) for flocal with 3 layers, 16 attention heads, and a hidden dimension of
480. We construct a complete graph of the reactants to compute the pairwise attentions across all
atom pairs in the fglobal model. The multi-head cross-attention between the protein residues and
reactant atoms is implemented with 4 attention heads. Individual atom representations from each
are concatenated and passed through a linear projection layer (3 × 480 to 480) before predicting
pair-wise bond changes.

Candidate product ranking We apply chemprop (Yang et al., 2019), a directed message passing
network, on the condensed graph reaction representation of the reactants and candidate products
with 5 layers and a hidden dimension of 480. We obtain the mean protein embeddings from ESM-2
(35M parameters) and concatenate them with the graph-level feature representations of the reaction.
The final ranking is done with a 2-layer feed-forward network with layer norm (Ba et al., 2016).

Training parameters We use a batch size of 16, learning rate of 1e−4, learning rate decay of 0.1,
and the Adam optimizer (Kingma & Ba, 2014). Training is done with half precision training with
bfloat16 (Kalamkar et al., 2019), and we train the reaction center for 20 epochs and the ranker for 5
epochs.

A.4.3 ATTENTION ANALYSIS

Our multi-head cross-attention in the reaction center prediction model is performed between the full
protein sequence embedding and the latent atom representations of the substrates, yielding attention
scores for every residue-atom pair, A ∈ R|V|×|P |, with Aij ∈ [0, 1]. For every residue, we sum the
attentions scores across all reactant atoms and obtain a weight per residue ri: ai =

∑
v Avi.

Where available, we collect a set of indices, RAS for each sample in the test set corresponding to the
location of annotated active sites from the Mechanism and Catalytic Site Atlas. For each protein p,
We take the residues in the top q-th quantile of attention scores and compute the fraction of annotated
active site residues included in that predicted set:

R̂ = {i|ri > k, k = jth quantile of a} (1)

s(k)p =
|RAS ∩ R̂|
|RAS |

(2)
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We plot s(k)p for all test sample proteins with annotations at 10 equally spaced quantile levels. As a
control, we compare these scores with those obtained by randomly selecting an equivalent number
of indices spanning the length of the protein.

A.5 PERFORMANCE ALONG ADDITIONAL SPLITS

A.5.1 PERFORMANCE ON STRUCTURE SPLITS

We assign proteins to the training and testing splits based on their Foldseek (van Kempen et al.,
2023) cluster identity. We observe that all models achieve similar performance ranging from 60%
top-1 accuracy to 80% top-10 (Table 5). While the proteins in the test are expected to assume
different 3D folded structures, they may still share catalytic activities with proteins seen during
training Omelchenko et al. (2010). For instance, convergent evolution can result in significantly
different proteins that catalyze the same reaction. As a result, this can result in data splits where the
encoding used in our model does not provide an advantage.

Table 5: Top-k accuracy of our graph-based method compared to existing approaches for biocat-
alyzed forward synthesis. Published methods are trained as detailed in their respective GitHub
codebases (Appendix A.6). Performance is evaluated on EnzymeMap using data splits based on
protein structure similarity using FoldSeek (van Kempen et al., 2023).

MODEL FOLDSEEK 90% SPLIT
TOP 1 TOP 3 TOP 5 TOP 10

KREUTTER ET AL. (2021) 64.5% 77.5% 79.8% 81.2%
PROBST ET AL. (2022) 60.2% 75.0% 77.9% 80.3%
OURS 60.4% 71.7% 75.9% 78%

A.5.2 PERFORMANCE ON EC SPLITS

The EC system defines seven large classes of biochemical transformations. To measure the gener-
alization across enzyme families and types of chemical transformations, we we trained six models
separately, holding out each time all reactions with a specific EC number (only six classes are con-
tained in the EnzymeMap dataset). This constituted the hardest setting among the three splits. Since
Probst et al. (2022) utilizes the EC number as an input, we omitted it from this experiment since
it would never see the test-set EC during training. We observe that our method is comparable to
Kreutter et al. (2021) on ECs 2,3, and 5, better on ECs 1 and 4, and significantly worse on EC 6 (Ta-
ble 6) . Across ECs, however, both models achieve poor performance in terms of absolute accurate
generalization, demonstrating the challenge of truly learning the chemistry underlying enzymatic
catalysis.

A.6 TRAINING OF TRANSFORMER-BASED MODELS

We train existing deep learning model for biocatalysis Kreutter et al. (2021) and Probst et al.
(2022) according to the codebases associated with their respective publications: https://
github.com/rxn4chemistry/OpenNMT-py/tree/carbohydrate_transformer
and https://github.com/rxn4chemistry/biocatalysis-model. Specifically, we
use the same tokenization scheme for the enzyme names with either byte pair encoding or the EC
numbers. We pre-process (onmt_preprocess) the data with the default parameters of sequence
source and target lengths of 3000 and a shared vocabulary, and we train the models (onmt_train)
simultaneously on the USPTO dataset (Lowe, 2012; 1976) and the same splits of EnzymeMap that
we use for our model. We use the default hyper-parameters for training (Table 7).

Table 7: Hyper-parameters used for training the transformer-based mod-
els. All are the default provided in the models’ respective codebases.

Hyper-parameter Value
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data_weights (9,1) (for USPTO and EnzymeMap, respecitvely)
seed 42
gpu_ranks 0
world_size 1
train_steps 250,000
param_init 0
param_init_glorot true
max_generator_batches 32
batch_size 32768
batch_type tokens
normalization tokens
max_grad_norm 0
accum_count 1
optim adam
adam_beta1 0.9
adam_beta2 0.998
decay_method noam
warmup_steps 8,000
learning_rate 2
label_smoothing 0.1
layers 6
rnn_size 512
word_vec_size 512
encoder_type transformer
decoder_type transformer
dropout 0.1
position_encoding true
share_embeddings true
global_attention general
global_attention_function softmax
self_attn_type scaled-dot
heads 8
transformer_ff 2048
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Table 6: Top-k accuracy of our graph-based method compared to existing approaches for biocat-
alyzed forward synthesis on different EC-based splits. Each model is trained on all other ECs and
tested on the held-out EC.

MODEL HELD OUT EC TOP 1 TOP 3 TOP 5 TOP 10

KREUTTER ET AL. (2021) EC 1 (n=30,896) 8.6% 17.3% 21.9% 26.3%
OURS 9.4% 22.2% 27.2 % 34.0 %
KREUTTER ET AL. (2021) EC 2 (n=29,221) 9.1% 16.6% 20.9% 26.2%
OURS 8.0% 15.9% 20.7% 25.8%
KREUTTER ET AL. (2021) EC 3 (n=27,323) 26.8% 47.7% 55.2% 61.7%
OURS 32.1% 45.9% 52.9% 60.7%
KREUTTER ET AL. (2021) EC 4 (n=9,642) 13.9% 19.8% 23.0% 28.6%
OURS 7.4% 20.1% 29.0% 35.1%
KREUTTER ET AL. (2021) EC 5 (n=4,017) 2.4% 6.4% 7.1% 11.9%
OURS 1.7% 9.0& 10.9% 12.0%
KREUTTER ET AL. (2021) EC 6 (n=2,021) 20.6% 41.5% 47.0% 48.3%
OURS 4.1% 15.9% 21.4% 26.1%
KREUTTER ET AL. (2021) MEAN

13.5% 24.9% 29.2% 33.8%
OURS 10.5% 24.0% 27.0% 32.3%
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