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ABSTRACT

Existing large audio-language models perceive the world as “mono”—a single
stream of audio that ignores the critical spatial dimension ("where”) required for
universal acoustic scene analysis. To break down this fundamental limitation,
we introduce a framework that enables models like Qwen2-Audio to understand
and reason about the complex, three-dimensional acoustic world. Our framework
achieves this through three core contributions: First, we build a large-scale, syn-
thesized binaural audio dataset to provide the rich spatial cues. Second, we design
a novel Mixture-of-Experts (MoE) architecture, where a learnable router directs
outputs from parallel semantic and spatial encoders to specialized expert path-
ways. Finally, we employ a progressive training curriculum, advancing from su-
pervised fine-tuning (SFT) to reinforcement learning via Group Relative Policy
Optimization (GRPO), to evolve the model’s capabilities from basic perception to
advanced reasoning. On our comprehensive benchmark, the model demonstrates
a strong capability for spatial understanding. By enabling this spatial percep-
tion, our work provides a clear pathway for leveraging the powerful reasoning
abilities of large models towards holistic acoustic scene analysis, advancing from
one-dimensional semantic recognition to three-dimensional spatial intelligence.

1 INTRODUCTION

The expansion of Large Language Models (LLMs) from text-centric processing to multimodal in-
telligence has brought renewed attention to the auditory domain. Recent Large Audio-Language
Models (LALMs) have demonstrated remarkable capabilities in understanding and following in-
structions related to the semantic content of audio—the what’ in speech, general sounds, and music
(Chu et al.| |2024; Yang et al., 2024). However, prevailing LALM frameworks predominantly treat
audio as a monophonic time series, lacking explicit modeling of spatial attributes—the *where’.
Technical reports and public benchmarks for these models rarely address reasoning about direction,
distance, or spatial relationships, a gap that constitutes the primary motivation for our work.

This disregard for spatial dimensions starkly contrasts with the fundamental mechanisms of biolog-
ical hearing. As established in classical auditory scene analysis, the brain leverages binaural cues,
such as Interaural Time Differences (ITD) and Interaural Level Differences (ILD), to localize sound
sources and segregate auditory streams. This process provides a “’spatial release from masking” and
underpins the *cocktail party effect,” enabling focused listening in complex acoustic environments.
A model incapable of processing these binaural cues is, in a perceptual sense, “spatially deaf,” re-
sponding only to a one-dimensional projection of a three-dimensional sound field.

This limitation imposes significant constraints on real-world applications in robotics, augmented
reality, and assistive hearing, all demanding a joint understanding of audio’s content and spatial ar-
rangement. Recent explorations have begun extending the encoder-to-LLM” paradigm to spatial
audio, typically by processing binaural signals or Ambisonics recordings (You et al., [2025). For
instance, BAT(Zheng et al., 2025)) introduced spatial question answering, while subsequent meth-
ods improved reasoning by decoupling spatial features or using contrastive learning for localization
(Devnani et al.| [2024). Despite these promising first steps, the research landscape remains fractured,
with most large-scale models focused on semantics (Tang et al., [2024; [Huang et al.l |2023) while
specialized systems handle spatial physics (Shimada et al., [2021). We propose to bridge this di-
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vide, using the reasoning core of an LLM to unify these capabilities and process open-ended spatial
queries with physically consistent representations.

However, the primary bottleneck to integrating spatial awareness into general auditory intelligence
is not the lack of algorithmic starting points, but the scarcity of appropriate data and representations.
Large-scale audio datasets like FSD50K (Fonseca et al., [2022), Clotho (Drossos et al., 2019)), and
MusicCaps (Agostinelli et al.l 2023b) are rich in semantic labels but lack the binaural or 3D spatial
metadata required for joint semantic-spatial alignment. Real-world spatial data, while valuable,
remains limited in scale and diversity. Consequently, physically-consistent procedural simulation
emerges as the most viable path forward. Tools such as Pyroomacoustics (Scheibler et al.| [2017)
and high-resolution Head-Related Transfer Function (HRTF) databases (Audio Engineering Society),
2015) enable the systematic generation of large-scale training corpora with complete “position-
semantic-environment” annotations.

In this context, we introduce The World is Not Mono (TWNM), a framework that extends LALMs
from semantic recognition to spatial reasoning by integrating synthetic binaural data, specialized
representation learning, and reinforcement learning alignment.

Contributions. The main contributions of this work are:

» Synthetic binaural data pipeline: construction of a scalable simulation framework using phys-
ically realistic Binaural Room Impulse Responses (BRIRs) / Head-Related Transfer Functions
(HRTFs) to generate large-scale, spatially annotated audio-language QA pairs across diverse en-
vironments.

» Task-aware MoE architecture: design of a MoE framework with supervised routing to explicitly
decouple semantic and spatial processing, while retaining a shared expert for generalization.

* Training and alignment: a progressive curriculum that first optimizes experts and the router
with the LLM frozen, followed by joint fine-tuning. To further align spatial reasoning with natural
language, GRPO (Shao et al.,|2024) is employed, using rule-based rewards and relative advantages
to improve output accuracy in multiple-choice spatial QA tasks.

* Comprehensive evaluation: demonstration of robust spatial understanding and relational reason-
ing on our promoted benchmarks, highlighting a viable path for spatially aware LALM:s.

This work positions spatial perception not as an incremental feature, but as a fundamental dimension
essential for achieving genuine auditory intelligence. The remainder of the paper is organized as
follows: Section [2| reviews prior efforts on LALMsS, spatial audio modeling, and data synthesis.
Section[3]introduces our proposed framework. Section[d]presents evaluation results on our proposed
benchmark. Finally, Section [5]concludes with discussions and future directions.

2 RELATED WORK

Large Audio-Language Models Foundation models such as Qwen2-Audio (Chu et al., [2024),
SALMONN (Tang et al., 2024)), and AudioGPT (Huang et al., 2023) unify speech, sound, and
music under a language interface, but remain focused on semantic tasks. Most benchmarks neglect
localization and spatial reasoning, leaving models unable to process direction or distance.

Spatial Audio and LLMs Recent efforts extend the encoder-to-LLM paradigm to spatial au-
dio. BAT(Zheng et al. [2025) evaluated binaural reasoning on the SpatialSoundQA benchmark,
and ELSA aligned spatial audio and text via contrastive learning (Devnani et al., |2024). These
approaches show potential but leave representation design and training strategies unresolved.

Computational Auditory Scene Analysis (CASA) SELD methods using FOA input, e.g., ACC-
DOA (Shimada et al.,|2021) and STARSS23 (Shimada et al., [2023)), jointly predict sound class and
direction. While effective for structured outputs, they mismatch the open-vocabulary and conversa-
tional style of LALMs, and early QA adaptations remain limited.

Data Synthesis Because large-scale spatially annotated corpora are scarce, benchmarks often rely
on simulation. SpatialSoundQA, for example, renders binaural or FOA mixtures by convolving
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clean sources with room responses. Public content sets such as FSD50K (Fonseca et al., [2022),
Clotho (Drossos et al.} 2019), and MusicCaps (Agostinelli et al., |2023b), combined with tools such
as Pyroomacoustics (Scheibler et al., [2017) and standardized HRTFs (Audio Engineering Society,
2015)), provide reproducible pipelines, though still narrower in scope than large semantic datasets.

Training Paradigms Scaling and alignment methods from general-purpose LLMs also inform
spatial modeling. MOoE architectures (Fedus et al., 2022; [Lepikhin et al., 2020) allow efficient
specialization, while reinforcement learning techniques such as GRPO (Shao et al., [2024) refine
reasoning and output formats. However, their application to spatial audio remains at an early stage.

3 METHODOLOGY

3.1 PROBLEM FORMULATION AND DESIGN PRINCIPLES

We address the task of conditional text generation from binaural audio input. Given a two-channel
audio waveform = € RP*2*7 and a natural language prompt p, the model’s objective is to generate
a textual response y. To enable the model to comprehend not only the semantic content (”what”)
but also the spatial arrangement (“where”) of the acoustic scene, we explicitly decompose the audio
representation into two distinct components: a semantic embedding zgm(x) and a spatial embed-
ding 2 (). These representations are conditionally fused before being processed by the language
decoder:

y ~po( - | fuse(zem(2), 2p(x)), p).
Our framework is built upon three core design principles:

* Decouple-and-Fuse. Semantic and spatial attributes are modeled by independent, robust en-
coders. Their outputs are then adaptively combined via a supervised, conditional routing mech-
anism. This prevents representational entanglement, where the learning of one attribute might
corrupt the other.

* Minimally Invasive LLM Interfacing. We avoid complex prompt templates and modifications
to the LLM’s native tokenization or positional encoding schemes. The final audio representation
is simply appended to the prompt embeddings as a suffix, ensuring maximum compatibility with
standard autoregressive frameworks.

* Progressive Curricular Optimization. We employ a multi-stage training curriculum that pro-
ceeds from representation learning to alignment and finally to policy optimization. This disentan-
gles conflicting learning objectives and stabilizes the training of the composite model.

3.2 MODEL ARCHITECTURE

Our architecture, depicted in Figure[I} implements our “Decouple-and-Fuse” principle. The process
begins as the input binaural audio is fed into two parallel backbones: a Semantic Encoder to ex-
tract a content representation (W) and a Spatial Encoder for locational cues (S”). These decoupled
representations are then dynamically fused by our conditional MoE module. The MoE’s router is
a key component, conditioned on both a global audio context and the user’s prompt intent, which
allows it to intelligently route features to specialized experts. This process yields a unified audio
embedding (Hey) that is appended to the prompt embeddings and passed to the LLM decoder for
text generation.

Semantic and Spatial Encoders. For semantic feature extraction, we use a frozen Whisper en-
coder. To specifically isolate content, the binaural input is downmixed to mono by averaging the left
and right channels. This process yields a semantic sequence W € RE*Lx768

For spatial features, we adapt the dedicated encoder from (Wu et al., 2025). It processes the com-
plex STFT of the binaural signal to preserve phase information crucial for localization. The model
alternates between frequency-band modeling and temporal modeling using self-attention. Critically,
an attractor-based aggregation mechanism allows it to handle a variable number of sound sources.
The final output is projected and resampled into a spatial feature sequence S’ € RE*EX768 aligned
with the semantic features.
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Figure 1: Model Architecture

Conditional MoE. The MoE module serves as the dynamic bridge between the decoupled repre-
sentations and the decoder. Its design features two key innovations: expert specialization and hybrid
conditional routing.

1. Expert Specialization. The module comprises six experts with distinct roles:

* One Semantic Expert (Eyy): Exclusively processes the semantic representation W.

* Four Parallel Spatial Experts ({Es(llf )}%:1)1 Exclusively process the spatial representation S’.
These experts are pre-oriented during their training towards distinct spatial attributes, namely di-
rection, distance, room acoustics (reverberation), and source count/separation. This specialization
enhances model interpretability and facilitates targeted supervision.

* One Combined Expert (E.omp): This expert is always active and does not participate in the
dynamic routing. It receives the element-wise sum of the semantic and spatial representations,
C =W + S5’. We term C' a Combined Steady Reference, as it provides the model with a stable,
unweighted snapshot of the entire audio scene, which helps mitigate statistical drift and stabilize
the learning process, especially in early training stages.

2. Hybrid Conditional Routing. The routing mechanism is conditioned on both the text prompt
and the audio input. The conditioning signals are:

* Audio Context c(z) € R?>6: A compact vector extracted directly from the raw waveform via
a lightweight 1D CNN, global pooling, and an MLP. It captures global acoustic properties like
loudness, reverberation, and source sparsity.

+ Prompt Intent &(p) € R%«: A vector derived by mean-pooling the word embeddings of the input
prompt p. It encodes the user’s task intention (e.g., a query about “left” vs. ”what sound”).

These two vectors are concatenated and passed through an MLP to produce a 5-dimensional gating
vector o

a = o(MLP([c(z); &(p)])) € (0,1)°.
The five dimensions correspond to the one semantic and four spatial experts. We use a per-expert
Sigmoid activation rather than a Softmax, enabling the simultaneous activation of multiple experts
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for complex queries that require both semantic and spatial reasoning. The outputs of the gated
experts, M, are then fused with the output of the always-active combined expert via averaging to
produce the final hidden state Hey:

4
M = Oéwhlawh(‘/v) + Z Qg Es(§) (S/)a Hepe = %(M + Ecomb(c)) :
k=1

LLM Interface. We employ the Qwen2-Audio 7B model as the language decoder. Its core pa-
rameters are kept frozen, and we use Low-Rank Adaptation (LoRA)(Hu et al., 2022) for parameter-
efficient fine-tuning, applied only to the attention projection matrices (e.g., g-proj, v_proj). Fol-
lowing our principle of minimal intrusion, the audio hidden state He, is directly appended to the
prompt embeddings E(p), forming the input sequence [ E(p) ; Hene | € RE*(Ep+L)Xdac  This sim-
ple and robust protocol eliminates the need for prompt engineering.

3.3 LEARNING: A PROGRESSIVE CURRICULUM FROM REPRESENTATION TO POLICY

To disentangle competing learning objectives, we adopt a five-stage curriculum. The input protocol
and tokenization remain consistent across all stages to prevent training-inference mismatch.

Stage 1: Encoder Pretraining. In this preparatory stage, only the spatial encoder is trained. The
objective is to learn a robust and general-purpose representation of spatial acoustics from a large-
scale (potentially unlabeled) binaural audio dataset. This endows the encoder with a strong inductive
bias for physical acoustic properties, decoupling this representation learning from the more complex
cross-modal alignment task.

Stage 2: Router & Experts Training (Alignment I). The audio encoders and the LLM are frozen,
and only the MoE module (experts and router) is trained. The loss function comprises two terms:
the standard cross-entropy loss Lcg on the decoder output, and a router supervision loss Lroycer-
The supervision signal for the router is derived from task metadata (e.g., classifying a query as
spatial, semantic, etc.). We employ teacher-forcing for the router weights « and add a light sparsity
regularizer (e.g., /1 norm) to prevent expert averaging. The goal is for the model to learn when to
rely on semantic, spatial, or combined cues.

Stage 3: SFT 1.0 (Alignment II). The encoders remain frozen, while the MoE module and the
decoder’s LoRA weights are trained jointly. The objective is to minimize a combined loss, Lcg +
ArLiouter- This stage focuses on bridging the modality gap between the fused audio representations
and the LLM’s latent space, refining the cross-modal interface.

Stage 4: SFT 2.0 (Formatting). In this stage, the encoders remain frozen, while the MoE module
and the decoder’s LoRA weights continue to be trained jointly. The key change is the removal
of the router supervision loss Loyer- The optimization is driven solely by the cross-entropy loss
Lcg. The purpose is to transition the MoE from explicit supervision to end-to-end learning. The
router’s policy is now shaped exclusively by which expert combination ultimately leads to better
text generation, fostering a co-evolution of the routing strategy and the desired output format (e.g.,
<think>...</think><answer>...</answer>).

Stage 5: GRPO Preference Optimization. Finally, only the LoRA weights are updated using
GRPO. For each sample, we generate a group of m candidate responses {y; }, from the current
policy mg. Each response is scored by a reward function:

R(y) = Rimt(y) + Rans(y)-

Here, R assesses structural compliance (e.g., proper tag closure), while R,,s measures correctness
by parsing the content within the <answer> tag. GRPO uses the in-batch group mean as a baseline
to compute the advantage:

R(y:) — 5 X711 Rlyy)

A= T (R()
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The policy is then updated by maximizing the following objective:

£GRPO(9) = E(I,p),{yi}f\/ﬂ'e Z 1Og o (yl|x,p) : stop,gradient(Ai) .
i=1
Keeping the encoders and MoE frozen during this stage confines the optimization to the small set of
LoRA parameters, ensuring stability and efficiency.

3.4 INFERENCE AND PRACTICAL CONSIDERATIONS

* Inference Protocol: The inference process strictly follows the training protocol, using standard
autoregressive decoding on the concatenated input embedding [ E(p) ; Henc -

* Router Control: The Sigmoid router allows for flexible control at inference time. A temperature
parameter 7 can be used to soften the expert weights, enabling a more robust “’soft routing” mode.
Alternatively, a threshold e can be applied to enforce “hard routing” by activating only the top
experts, reducing computational cost on resource-constrained platforms.

* Training Stability: To prevent mode collapse in the router, we incorporate two regularization
techniques during training: a slow-varying regularization to penalize drastic changes in a between
consecutive steps, and a load-balancing loss to encourage all experts to be utilized over the course
of training.

» Computational Efficiency: The MoE design is efficient, as the experts can be computed in par-
allel along the channel dimension of the tensors. The primary latency stems from the STFT
front-end and attention layers in the spatial encoder, both of which can be optimized for streaming
applications using chunk-wise processing and state caching.

* QOutput Interpretability: The structured output provides significant benefits. The content of the
<answer> tag can be directly parsed for automated evaluation. More importantly, the <think>
tag offers a trajectory of the model’s spatial reasoning, providing valuable insights for error anal-
ysis and future alignment with human preferences.

In summary, our methodology combines a decoupled representation with a progressive training
curriculum to efficiently instill spatial reasoning into a pre-trained LALM.

4 EXPERIMENTS

This section details the experimental setup designed to validate our proposed framework. We first
describe our data generation pipeline and the construction of our comprehensive benchmark. We
then present a detailed analysis of the main results, highlighting the effectiveness of our progressive
training curriculum and discussing key findings from our evaluation.

4.1 DATASETS AND SIMULATION PIPELINE

Lacking suitable public datasets for spatial audio reasoning, we developed a scalable simulation
pipeline to generate data for our SFT and GRPO stages. This pipeline combines generation of
physically-principled BRIRs with synthesis of complex acoustic scenes.

Data for SFT. The SFT phase utilizes two data formats. The initial SFT stage employs open-ended
question-answer pairs, where each sample includes an audio path, a textual instruction, a ground-
truth answer, and a router_label to supervise the MoE routing mechanism. A subsequent stage,
SFT2.0, uses data formatted as multiple-choice questions. The answers in this stage are structured
with a chain-of-thought rationale enclosed in | <think>|...|</think>| tags, followed by the
final choice in | <answer>|...|</answer>| tags. This prepares the model for the structured
output format required during the final RL phase. For all SFT data, audio is resampled to 44.1 kHz
and standardized to a fixed length of 5 seconds by padding or truncation.

Data for GRPO. The GRPO phase uses a benchmark of multiple-choice questions designed to
probe a wide range of spatial audio understanding abilities. Each data sample contains an audio
path, a question, a set of options (e.g., A, B, C, D), and the correct answer key. During training, the
question and options are concatenated into a single prompt.
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Spatial Audio Simulation Pipeline.

* BRIR Generation. We create a large and diverse library of BRIRs using the
pyroomacoustics simulator (Scheibler et al., [2017). We model shoebox-shaped rooms with
varying dimensions and wall absorption coefficients, corresponding to low, medium, and high
reverberation levels. For each simulated room, we randomly place a receiver and 30 candidate
source positions. The receiver’s head-related impulse responses (HRIRs) are sourced from the
empirical FABIAN dataset (Brinkmann et al., 2017)), ensuring perceptual realism. The resulting
BRIR for each source-receiver pair is calculated and stored, along with comprehensive metadata
describing the room acoustics and spatial geometry.

* Scene Synthesis. During training, we dynamically generate binaural audio samples. Dry audio
clips are sampled from a collection of large-scale public datasets, including FSD50K for general
sound events (Fonseca et al., |2022)), Clotho v2 for environmental diversity (Drossos et al., 2019),
MusicCaps for musical scenarios (Agostinelli et al., [2023a)), and Emilia for multilingual speech
(He et al., 2024). These dry sounds are convolved with the pre-computed BRIRs from a chosen
scene, scaled by a random gain, and summed to create a multi-source, spatially coherent binaural
mixture. This approach allows us to generate a virtually infinite amount of training data with
precise ground-truth labels for source locations, event classes, and room characteristics.

Further details on data and simulation parameters are provided in Appendix

4.2 TRAINING AND OPTIMIZATION SETUP

Our training regimen follows the progressive curriculum outlined in Section |3} beginning with su-
pervised fine-tuning and culminating in reinforcement learning.

Model Configuration. We use LoRA for parameter-efficient fine-tuning (PEFT), with a rank of
r = 8 and o = 32. To further reduce memory, we employ 4-bit NormalFloat (NF4) quantization via
QLoRA(Dettmers et al., [2023)).

Optimization and Hyperparameters. We use the AdamW optimizer across all stages. The learn-
ing rate is set to 5 x 10~° for SFT stages and 1 x 10~° for the GRPO stage. We use a batch size of 1
per device with gradient accumulation steps of 2 for SFT and GRPO, and 4 for SFT2.0. The training
is conducted for 100, 50, and 5 epochs for SFT, SFT2.0, and GRPO, respectively. All training stages
utilize a warmup ratio of 0.1 and gradient clipping at a norm of 1.0.

Reinforcement Learning with GRPO. In the final stage, we refine the model’s policy using
GRPO, implemented with the TRL library. For each prompt, we generate three candidate responses
from the current policy. The reward function is a composite of a format reward, which encourages
adherence to the |<think>|...|</think>|...|<answer>|...|</answer>| struc-
ture, and a result reward, which grants a bonus if the extracted answer matches the ground truth.
We do not use a separate reference model during GRPO training (re f_model=None).

System and Distributed Training. All experiments were conducted with § NVIDIA RTX 5090
GPUs (32 GB VRAM each). We leverage torchrun for distributed training, utilizing the Deep-
Speed ZeRO stage 2 strategy (Rajbhandari et al., 2020) with CPU-offloading for the optimizer to
enhance memory efficiency. Our entire framework is built upon the Hugging Face Transformers
library (Wolf et al.| 2020).

4.3 BENCHMARK CONSTRUCTION

To rigorously evaluate spatial reasoning, we constructed a 1,000-question multiple-choice bench-
mark using an LLM-powered, semi-automated pipeline to ensure quality and diversity. The process
involves several quality-controlled steps:

* Scene Generation: For each simulated acoustic scene, we first generate a detailed, text-based
description of the scene’s contents and spatial layout.
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* Question Generation: Using task-specific prompts and the generated scene descriptions, the
LLM creates questions that target three core competency areas: Perception (e.g., source count-
ing, content identification), Integration (e.g., binding sounds to locations), and Reasoning (e.g.,
inferring spatial relationships between sources).

* Quality Control: We employ several checks, such as ensuring that questions about spatial rela-
tionships are only generated for scenes with two or more sources. After generation, the order of
options is randomly shuffled to prevent positional bias, with the answer key updated accordingly.

This benchmark not only serves as the evaluation set but also as the foundation for our SFT2.0
“teacher” data. By prompting the LLM to provide a step-by-step reasoning process (<think>) and
a final answer (<answer>) for each benchmark question, we automatically generate high-quality
data for teaching the model the desired output format. Prompt details are provided in Appendix

Our generation pipeline successfully produced a benchmark that aligns with our target distribution
across the three core competency areas. The final 1,000-question set consists of 32.1% Percep-
tion tasks (e.g., identifying sound content, counting sources, and recognizing environmental acous-
tics), 28.5% Integration tasks (e.g., binding sounds to specific locations and associating acoustic
attributes), and 39.4% Reasoning tasks (e.g., inferring spatial relationships between sources, coun-
terfactual reasoning, and summarizing the scene). This balanced distribution ensures a compre-
hensive evaluation of both the model’s foundational perception abilities and its advanced reasoning
capabilities.

4.4 MAIN RESULTS

Our curriculum constitutes a staged ablation where each phase contributes a distinct capability.
Moving from base alignment (SFT 1.0) to full instruction tuning (SFT 2.0) and finally to prefer-
ence optimization (GRPO), overall accuracy rises from 25.10% to 50.10% and reaches 61.10% on
our 1,000-sample benchmark (95% CIs: 22.5-27.9%, 47.0-53.2%, 58.0-64.1%). We group tasks
into three competency areas—Perception (3 tasks, n = 321), Integration (3 tasks, n = 285), and
Reasoning (4 tasks, n = 394). Micro-averaged accuracies improve monotonically across all areas,
with consistent trends under macro averages. Effect-size analysis shows a small-to-moderate gain
from SFT 2.0 to GRPO (Cohen’s h = 0.22) and a large jump from SFT 1.0 to SFT 2.0 (h = 0.52).

Table 1: Ablation study of our progressive training curriculum. Accuracy (%) is reported for each
stage across three core competency areas and overall. Each stage builds upon the previous one,
showing significant gains, particularly in Reasoning after GRPO.

Competency Area SFT 1.0 SFT2.0 GRPO

Perception 34.89 48.60 59.50
Integration 18.60 32.28 46.67
Reasoning 21.83 64.21 72.84

Overall Accuracy 25.10 50.10 61.10

Our curriculum constitutes a staged ablation where each phase contributes a distinct capability.
Moving from base alignment (SFT 1.0) to full instruction tuning (SFT 2.0) and finally to prefer-
ence optimization (GRPO), overall accuracy rises from 25.10% to 50.10% and reaches 61.10% on
our 1,000-sample benchmark (95% Cls: 22.5-27.9%, 47.0-53.2%, 58.0-64.1%). We group tasks
into three competency areas—Perception (3 tasks, n = 321), Integration (3 tasks, n = 285), and
Reasoning (4 tasks, n = 394). Micro-averaged accuracies improve monotonically across all areas,
with consistent trends under macro averages. Effect-size analysis shows a small-to-moderate gain
from SFT 2.0 to GRPO (Cohen’s h = 0.22) and a large jump from SFT 1.0 to SFT 2.0 (h = 0.52).

Preference optimization yields the largest gains on complex reasoning. The scene summariza-
tion reasoning task reaches 98/98 = 100.0% under GRPO, with a 95% confidence interval of
96.2-100.0%, and causal intent reasoning attains 84.38%. A plausible explanation is that pref-
erence optimization explicitly rewards coherent multi-step analyses that are only weakly elicited
during supervised fine-tuning.
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Figure 2: Task-wise accuracies on the ten benchmark categories for SFT1.0, SFT2.0, and GRPO.

Despite the overall gains, two categories remain challenging under GRPO: spatial-relationship rea-
soning at 34.02% and attribute binding integration at 37.07%. Manual inspection indicates a fre-
quent pattern in which the model perceives individual events and locations correctly but fails during
the relational aggregation step; for instance, it may infer several distances correctly yet choose
the wrong object as the farthest. Targeted training signals that impose relative order constraints,
along with contrastive objectives that tighten the association between objects and their attributes,
are promising directions.

We also observe a decrease on the content identification task, where SFT 1.0 at 51.24% surpasses
SFT 2.0 at 37.19% and GRPO at 44.63%. We interpret this as an alignment tax: emphasizing long-
form reasoning can sometimes harm direct identification for simple inputs. To mitigate this trade-
off, one can incorporate routing that sends simple cases to a direct-answer head while reserving
chain-of-thought style decoding for complex cases, or apply minimum-reasoning regularization and
early-exit mechanisms that discourage unnecessary deliberation on easy instances. Finally, because
the scene summarization reasoning task exhibits a ceiling effect under GRPO, we plan to include
harder variants with longer contexts to better probe headroom and to rule out unintended shortcuts.
Additional case studies are provided in Appendix[C]

5 CONCLUSION

In this work, we addressed the critical limitation of existing Large Audio-Language Models—their
inability to perceive spatial audio—by introducing The World is Not Mono (TWNM), a com-
prehensive framework for spatial audio understanding. We demonstrated that a combination of
large-scale synthetic binaural data, a task-aware MoE architecture, and a progressive SFT-to-GRPO
curriculum can successfully endow LALMs with robust spatial reasoning. Our ablation studies
confirmed the value of each training stage, with preference optimization proving especially effec-
tive for complex reasoning tasks. By moving beyond the mono paradigm, our work establishes a
clear pathway for three-dimensional auditory intelligence. Future work will focus on enhancing
the model’s generalization to diverse in-the-wild recordings and extending our framework to sup-
port multi-channel formats like Ambisonics, further broadening its applications in embodied Al,
augmented reality, and assistive technologies.
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APPENDIX

A DATA SIMULATION AND BENCHMARK PARAMETERS

Our data generation pipeline is governed by a set of parameters designed to create diverse and
realistic acoustic environments. The target scale for our generated data includes 10,000 unique
acoustic scenes and a benchmark of 1,000 distinct questions. Key parameters are summarized below.

Room Dimensions: Rooms are sampled from three size categories with uniform probability within
each range:

e Small: z € [3,5] m, y € [4,6] m, z € [2.5,3.5] m
e Medium: x € [8,12] m, y € [10,15] m, z € [3,5] m
* Large: « € [20,30] m, y € [25,35] m, z € [10,15] m

Reverberation / wall absorption. We use absorption coefficient a € [0, 1] where oz = 0 is perfectly
reflective and « = 1 is perfectly absorptive. To simulate different RT60 regimes we sample:

* High reverberation (reflective walls): « € [0.05,0.25],
* Medium reverberation: « € [0.25,0.5],

* Low reverberation (absorptive walls): a € [0.5,0.95].

Benchmark Task Distribution: The question generation process targets the following distribution
across competency areas: Perception (30%), Integration (30%), and Reasoning (40%).

B PROMPT FOR BENCHMARK GENERATION

Prompt (for generating open-ended spatial QA)

You are a top-tier Al course designer preparing graduation exam questions for an advanced spatial audio
model. This model has already mastered the basics of recognizing sound content (semantic), localizing
sources (localization), perceiving the environment (acoustics), and counting (count).
Your task: given a <scene_description>, design 1-2 open-ended, complex questions that require
integrating multiple abilities, and provide detailed, fluent, high-quality answers.
[Design Principles]
- Reject simplicity: do not ask “Where is the dog?”; instead ask “What is the main activity in the scene,
and where does it occur relative to me in space?”
- Encourage reasoning: propose questions that require inference from multiple cues. For example:
“Based on the room’s reverberation and the sounds inside, what is the most plausible type of place?”
- Simulate dialogue: both questions and answers should read like a natural conversation between humans.
[Example] <scene_description>
Indoors with slight reverberation, two sounds are audible. One is keyboard typing from straight ahead at a
close distance. The other is birdsong coming from outside the window, located up-right and farther away.
</scene_description>
<generated-data>
[

{

"instruction": ”Based on what you hear, can you infer where I might be and what I'm doing?”,
"answer": "It sounds like you’re likely in a room—perhaps an office or at home. The clear, nearby
keyboard typing suggests you’re working or studying on a computer. Meanwhile, the birdsong from
outside implies it’s likely daytime and that you’re close to a window.”
}
]

</generated_data>

[Formal Task] <scene_description>
{{ insert RTSD here }}
</scene_description>
<generated-data>
</generated_data>
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C CASE STUDY

To further illustrate the reasoning ability of our model, we present a representative case study drawn
from the evaluation set. The task requires the model to infer the most plausible explanation of an
acoustic scene based on the perceived spatialized audio.

Ground Truth (Reference)

Scene Description:

— Scene type: Mixed, single sound source

— Sound event: Respiratory sound (breathing)

— Azimuth: 317°, Elevation: -13°, Distance: 17.4 m

— Room acoustics: Anechoic, absorption coefficient ~ 0.99, RT60 = 0.0 s

Correct Answer:
A. The listener may be using headphones to hear a specially recorded or processed audio, in
which a breathing sound is precisely placed at a specific position in the sound field.

-
(&

Question
Task: Based on the audio you hear, which of the following explanations is the most reason-
able for this scene?

* A. The listener may be using headphones to hear a specially recorded or processed audio,
in which a breathing sound is precisely placed at a specific position in the sound field.

* B. In a wide-open space, someone is breathing about 17 meters away from the listener, and
the openness of the space makes the sound unusually clear.

* C. The listener is in a completely silent room, and due to over-concentration, hallucinates
the distant sound of breathing.

* D. This is a live recording in a large concert hall, where a breathing sound from an audience
member was mistakenly amplified during post-production.

Model Output (verbatim)

| <think>| The core of the question is to infer the most reasonable scene based on the
heard sound.
First, I analyze the key sound elements in the audio. I heard a clear breathing sound, coming
from my front-left, about 17 meters away. The sound is very clear, almost without echo,
which indicates I am in an open environment, such as a large space. The sound position is
very precise, at azimuth 313 degrees and elevation 1 degree, which shows that the sound
source is fixed rather than moving randomly.
Based on these observations, I evaluate each option:
— Option A states that the breathing sound was placed at a specific position. This matches
exactly with the sound location I heard (azimuth 313 degrees). A processed audio, where a
sound is placed at a specific position in the recording, is entirely possible.
— Option B describes a wide-open space with someone breathing. This contradicts the clear,
echo-free sound characteristics. A wide-open space would produce noticeable reverberation.
— Option C suggests that the sound is a hallucination from silence. This is clearly wrong
because I distinctly heard a breathing sound.
— Option D suggests a concert hall live recording where the breathing was over-amplified.
Howeyver, a concert hall should have noticeable reverberation, which is absent here, so D is
not reasonable.
In summary, Option A best fits the sound characteristics: a clear, precisely located breathing
sound placed in a large space. | </think> |
According to the audio analysis, the sound comes from a precise location in a nearly echo-
free large space, indicating that it is likely a processed audio rather than a real-world event.

| <answer>| A |</answer>|

-
&
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D STATEMENT ON THE USE OF LARGE LANGUAGE MODELS (LLMS)

In the preparation of this manuscript, LLMs were utilized for two distinct purposes. First, as a
general-purpose tool for tasks such as grammar correction and language polishing of the manuscript
text. Second, as a core component of our methodology, LLMs were employed in a semi-automated
pipeline under human supervision to generate the questions and chain-of-thought rationales for our
benchmark dataset, as detailed in Section@ The core research ideation, experimental design, and
the final analysis were conceived and executed by the authors. We confirm that the LLMs’ role,
while integral to the methodology, was that of a tool to implement our research design. The authors
take full responsibility for all content presented in this paper, including the validity of the generated
benchmark and any potential inaccuracies.
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