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Abstract

We propose an adaptive sampling framework for 3D Gaussian Splatting (3DGS)
that leverages comprehensive multi-view photometric error signals within a unified
Metropolis-Hastings approach. Vanilla 3DGS heavily relies on heuristic-based
density-control mechanisms (e.g., cloning, splitting, and pruning), which can
lead to redundant computations or premature removal of beneficial Gaussians.
Our framework overcomes these limitations by reformulating densification and
pruning as a probabilistic sampling process, dynamically inserting and relocating
Gaussians based on aggregated multi-view errors and opacity scores. Guided
by Bayesian acceptance tests derived from these error-based importance scores,
our method substantially reduces reliance on heuristics, offers greater flexibility,
and adaptively infers Gaussian distributions without requiring predefined scene
complexity. Experiments on benchmark datasets, including Mip-NeRF360, Tanks
and Temples and Deep Blending, show that our approach reduces the number
of Gaussians needed, achieving faster convergence while matching or modestly
surpassing the view-synthesis quality of state-of-the-art models. Our project page
is available at https://hjhyunjinkim.github.io/MH-3DGS.

1 Introduction

Novel view synthesis (NVS) focuses on creating photo-realistic images of a 3D scene from unseen
viewpoints. It is significant due to its broad applicability across various real-world scenarios. While
Neural Radiance Fields (NeRF) [36] has largely advanced Novel View Synthesis by mapping 3D loca-
tions and view directions to view-dependent colors and volumetric densities, its slow rendering speed
hinders real-world deployment. To address these limitations, 3D Gaussian Splatting (3DGS) [20]
recently emerged, enabling real-time photo-realistic rendering by representing complex scenes with
explicit 3D Gaussians, each of which is projected to the screen and defined by its position, anisotropic
covariance, and opacity.

Despite these advantages, 3DGS and its extensions [18, 20, 56] rely heavily on heuristic-based
adaptive density control mechanisms, such as cloning, splitting, and pruning by introducing fixed
thresholds on opacity, size, and positional gradients in the view space. This leads to inflation of
memory with redundant Gaussians when thresholds are loose, or to a sacrifice of fidelity when
they are tight. To tackle this problem, Kheradmand et al. [22] recast 3DGS updates as Stochastic
Gradient Langevin Dynamics (SGLD), framing Gaussian updates as Markov Chain Monte Carlo
(MCMC) samples from an underlying probability distribution representing scene fidelity. As SGLD
updates Gaussians in the direction of the image-reconstruction gradient and adds a small noise term,
the procedure behaves like a gradient-based optimizer. Although it replaces heuristics with state
transitions, it still fixes the total number of Gaussians upfront, limiting adaptability to scenes of
varying complexity.
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Motivated by these considerations, we propose an adaptive sampling framework that uniquely
leverages comprehensive multi-view error signals within a unified Metropolis-Hastings (MH) [6,

] approach. We reformulate 3D Gaussian Splatting (3DGS) as an MH sampling process and
newly derive a concise, rigorously proven acceptance probability grounded in the classical MH
rule. By casting the densification and pruning stages of 3DGS as a probabilistic sampling problem,
our method selectively adds Gaussians in regions with high visual or geometric significance as
indicated by aggregated view-consistent photometric discrepancies. By deriving Gaussian-level
importance scores from opacity and multi-view error metrics, we generate Gaussian candidates
through coarse-to-fine proposals, which are subsequently accepted or rejected via Bayesian acceptance
tests. This probabilistic process adaptively converges to a well-balanced Gaussian distribution
with only minimal reliance on heuristics. It requires no prior knowledge of scene complexity
while seamlessly integrating with existing 3DGS workflows to achieve better reconstruction quality,
capturing both coarse structures and fine details.

We demonstrate the effectiveness of our approach on real-world scenes from the Mip-NeRF360 [1],
Tanks and Temples [23], and Deep Blending [17] datasets. Our method reduces the number of
Gaussians needed to represent each scene solely through an improved sampling mechanism, while
consistently matching or surpassing the view-synthesis quality of 3DGS across diverse scenes.
Additionally, our approach converges faster than 3DGS-MCMC [22], achieving target PSNR values
in fewer training iterations and reduced wall-clock time. By coupling principled probabilistic
inference with dense multi-view error signals, our method matches the rendering accuracy of 3DGS-
MCMC [22] with fewer Gaussians, demonstrating that comparable quality can be achieved with a
leaner, more generalizable representation that converges more rapidly.

We summarize our contributions as follows:

* We introduce an adaptive Metropolis—Hastings (MH) framework that replaces densification heuris-
tics in 3DGS with a closed-form Bayesian posterior for each Gaussian and a lightweight photometric
surrogate that turns the MH acceptance ratio into a single logistic—voxel product.

* To this end, we derive Metropolis—Hastings transition equations that are specialized to 3DGS and
prove that this MH sampler is mathematically sound, demonstrating that the heuristic densification
rule in 3DGS can be recast as a principled MH update.

* Our experiments show that our framework achieves compelling view synthesis quality while
converging faster.

2 Related Work

2.1 Neural 3D Scene Representation

Novel View Synthesis generates realistic images from novel viewpoints that differ from the original
captures [56]. Neural Radiance Fields (NeRF) [36] pioneered this field by using MLPs to model

3D scenes from multi-view 2D images, inspiring extensions for large scenes [13, 46, 52], dynamic
content [8, 14, 40, 41, 49], and pose-free reconstruction [2, 19, 27, 33, 34, 57]. However, NeRF’s
extensive training and rendering time prompted numerous acceleration efforts [4, 10, 11, 37,42, 45].

3D Gaussian Splatting (3DGS) [20] emerged as a compelling alternative, using differentiable ras-
terization of 3D Gaussian primitives initialized from sparse point clouds generated from Structure-
from-Motion [44]. This approach enables efficient optimization and high-resolution output, spurring
extensions in dynamic scenes [25, 26, 31, 51, 53], 3D generation [5, 29, 47, 48, 55], and large-scale
reconstruction [21, 28, 30]. Yet, 3DGS suffers from a significant memory burden due to covari-
ance matrices and spherical harmonics, leading to memory-efficient variants that rely on heuristic
density-control rules [9, 15, 16, 24, 38, 39, 50].

Recent work has explored probabilistic sampling in 3D reconstruction: Goli et al. [12] and Bortolon
et al. [3] apply Metropolis-Hastings for sample refinement and surface point selection in NeRF. While
these methods use Metropolis-Hastings for specific components, our work reformulates the entire
3D reconstruction problem as a Metropolis-Hastings sampling process, replacing heuristic density
controls in 3DGS with a unified probabilistic framework that enhances both efficiency and generality.



2.2 Adaptive Density Control for 3D Gaussian Splatting

Kheradmand et al. [22] recently introduced the use of Stochastic Gradient Langevin Dynamics
(SGLD) for sampling and optimization in 3DGS, combined with an opacity-driven relocation strategy
to shift low-opacity Gaussians towards higher-opacity regions, while enforcing a fixed limit on the
total number of Gaussians. Additionally, Rota Bulo et al. [43] introduces error-based densification
with perceptual error prioritization and sets a global limit on the number of Gaussians. Similarly, Ye
et al. [54] addresses the limitations of gradient collision in adaptive density control by proposing a
homodirectional gradient as a criterion for densification. Moreover, Mallick et al. [32] presents a
score-based guided densification approach that uses training-time priors to restrict growth. More
recently, Deng et al. [7] introduced deterministic geometric splitting rules for efficient density
control. As 3DGS-MCMC [22] aligns most closely with our objectives and delivers the best overall
reconstruction quality, it serves as our primary baseline.

In contrast, our proposed framework leverages a unified Metropolis-Hastings sampling strategy
grounded in comprehensive multi-view error signals. Rather than relying on thresholds, our method
computes Gaussian importance scores from aggregated multi-view photometric errors and dynami-
cally adapts the number and distribution of Gaussians via probabilistic inference. We derive the MH
acceptance rule in the context of 3DGS and prove that our importance-weighted proposals preserve
detailed balance with respect to the multi-view photometric likelihood. This rigorous formulation
distinguishes our framework from prior methods and enables natural scaling with scene complexity.

3 Preliminary

3.1 3D Gaussian Splatting

3D Gaussian Splatting (3DGS) [20] represents the 3D scene as a set of anisotropic 3D Gaussians,
further optimized by differentiable tile rasterization. Each 3D Gaussian G is characterized by a
position vector y and a covariance matrix X::

G(z) = e 2@=m 27 @) ¥ = RGSTRT, (1

where the covariance matrix is factorized into a scaling matrix S and a rotation matrix R. The
transformed 2D covariance matrix ¥’ is calculated by the viewing transform W and the Jacobian of the
affine transformation of the projective transformation J as ¥’ = JWXWT JT. The color C of a pixel
can be computed by blending A ordered points overlapping the pixel as C' = 37, _ s ci; H;;ll (1-—
«;), where ¢; and o; represent the view-dependent color and opacity computed from a 2D Gaussian
distribution.

To achieve a high-quality representation, 3DGS employs adaptive density control that clones Gaus-
sians in under-reconstructed areas and splits Gaussians in over-reconstructed regions. During den-
sification, 3DGS evaluates the positional gradient V, L of each Gaussian, refining further if the
gradient exceeds a predefined threshold 7,,. If a Gaussian surpasses the size threshold 7, indicating
over-reconstruction, it is split into smaller Gaussians. Alternatively, under-reconstructed areas prompt
cloning by shifting Gaussians along the gradient direction for better scene representation.

3.2 Metropolis-Hastings Algorithm

The Metropolis-Hastings algorithm [6, 35] is a widely used Markov Chain Monte Carlo (MCMC)
method for sampling from complex, high-dimensional probability distributions. The objective is to
construct a Markov chain whose stationary distribution 7r(x) matches the target distribution, enabling
efficient sampling where direct methods are impractical.

Given a target distribution 7(x) defined over a state space X, the algorithm generates a sequence
{x(}N | of samples by iteratively proposing candidates from a proposal distribution ¢(x,y) and
accepting or rejecting them based on an acceptance probability. At each iteration ¢, a new candidate
y is proposed from the distribution ¢(x(*), -). The acceptance probability is further computed as

@ oy — i (1 T®aly.xO)
p(X ! 7Y) = min <1a W(x(t))q(x(t)7y) . (2)



The candidate y is accepted with probability p(x*), y); otherwise, the chain remains at the current
state, x(**1) = x(*) The acceptance probability is designed to ensure that the Markov chain satisfies
the detailed balance condition:

T(x)q(x, ¥)p(x,y) = 7(y)q(y,x)p(y,x) 3)

which guarantees that 7 (x) is the stationary distribution of the Markov chain. The distribution of the
generated samples converges to the target distribution 7(x) as the number of iterations N increases.

4 Method

Our method begins with a key design choice: unlike 3DGS, which densifies points at fixed thresholds,
we employ a lean point-based sampler that keeps the most informative Gaussians, sharply reducing
storage while preserving fidelity. Section 4.1 lays the theoretical groundwork for this: we extend
the Metropolis—Hastings algorithm to 3DGS and rigorously derive scene-adaptive equations that
generalize the traditional formulation. Section 4.2 describes how the sampler proposes candidates
guided by multi-view photometric and opacity errors, and Sec. 4.3 presents the MH acceptance
test with a newly derived practical expression for the MH acceptance probability. The complete
algorithmic flow is in Algorithm 1 and 2 in Appendix D.

4.1 Formulation of the Metropolis-Hastings Framework

Our main objective is to eliminate heuristic dependence in adaptive density control by recasting
densification and pruning as a principled sampling problem. Specifically, we interpret each modifi-
cation of the Gaussian set as a proposal in a Metropolis-Hastings Markov Chain. Each step in the
chain perturbs the current scene representation © by (i) inserting new Gaussians near pixels that
still exhibit high multi—view error or (ii) relocating Gaussians whose opacity has collapsed. The
proposed scene ©’ is then accepted or rejected according to a probabilistic rule that, in expectation,
favors configurations that reproduce the captured images better while remaining spatially sparse.

In our formulation, a scene is described as a collection © = {g;}, of Gaussian splats, where each
splat contains parameters (x;, 2;, ¢;, cv; ), representing the position, covariance, color, and opacity of
a Gaussian. We define the overall loss function as:

E(@) = (1 - )\>£1 + )\ED»SSIM + )‘opacitya + )\scalei (4)

where £; and Lp.gsp are the loss terms from the original 3DGS [20] method. The last two
terms are regularizers on the mean opacity and covariance, used to penalize large or widespread
opacities and large Gaussian spreads, respectively, as advocated by 3DGS-MCMC [22]. We use
A = 0.2, Aopacity = 0.01 and Ageq1e = 0.01 in our framework.

From a likelihood viewpoint, we treat the minimization of £(©) equivalent to maximizing the
likelihood of the observed image set D = {I(*)}. Thus, we can interpret this as:

np(D | ©) = —L(O) ©)

Since likelihood terms are usually expressed with base e, we adopt the natural logarithm (In)
throughout to keep the formulas clean and consistent.

Furthermore, photometric fidelity alone does not stop the optimizer from piling Gaussians onto
the same patch once it converges locally. Thus, we discourage such redundancies by introducing a
voxel-wise prior:

lnp(®) = ~A, 3 In(1 + co(v)) ©)
%
where co(v) is the number of Gaussians in voxel v. This prior encourages at most one or two
Gaussians per voxel. Since the cost grows logarithmically, empty cells get almost no penalty, but the
penalty rises quickly once the voxel becomes crowded. Combining Eq. 4 and 6, we are able to define
a negative log-posterior:
£(0) =L(©) + Ay Y In(1+ co(v)) (7)
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Based on this derivation, we can define the posterior density based on Bayesian statistics:
—£(©
7(©) = e ¥©), ®)

where Z is a normalization constant (See Appendix A for details). Our framework samples Gaussian
configurations © in proportion to 7(©) and adaptively refines the 3D Gaussian representation to
cover undersampled regions. To facilitate this sampling, we construct a Markov Chain whose states
are successive scene representations ©g, ©1, . .., ©;. From a given state ©;, we draw a proposal ©’
by adding Gaussians in high-error areas or relocating low opacity Gaussians, with probability density
q(©'" | ©;). The construction of ¢(O’|©;) is detailed in Sec. 4.2.

We accept or reject © according to the Metropolis-Hastings (MH) rule:
m(©)4(0: ] ©')
m(©) q(©" [ ©4)
where p(©’ | ©;) indicates the standard MH acceptance probability. At each step we draw u ~
U(0,1); if u < p, the proposal is accepted and we set O;1 = ©’, otherwise we keep O;11 = O;.
We explain how the MH rule accepts or rejects ©’ again in Sec. 4.3. Over many iterations, this

Markov Chain converges toward our target distribution 7 (©), systematically densifying the Gaussian
set, reducing loss, and relocating Gaussians that fail to improve image fidelity.

p(0'] ©;) = min(1, ). p(e 1) € 0,1] ©)

4.2 Proposal Generation

Building on the Metropolis-Hastings framework, we now specify how a candidate configuration ©’ is
generated from the current state ©. The guiding principle is to concentrate proposals in problematic
regions where O either (1) lacks sufficient opacity, indicating missing or overly sparse geometry, or
(2) exhibits a large photometric error.

4.2.1 Per-pixel importance field

At every densification step, we first choose a working view subset C; = {c; 1, .. ., ¢k, } from the full
training set C to ensure balanced use of all viewpoints over time and broad viewing-angle coverage.
Note that this selected subset C; is used only for computing the importance field. The subset size is
annealed according to
t — tmin
ke = max(l, (1 =) |C|J>, N =—-— (10)
7frnax - tmin

so that early iterations (1, ~ 0) ensure broad coverage across diverse views, whereas we reduce
the subset size to focus on specific vantage points requiring finer coverage. We use a round-robin
schedule that walks through C in contiguous blocks of length k;, as this allows every viewpoint to
contribute equally to the error signal after a few iterations. For each viewpoint ¢ € C;, we compare
the current prediction 1) to the ground truth image 7(©) and record per-pixel SSIM and £ errors.
To construct a unified importance field for Gaussian proposal generation, we aggregate these error
maps and construct view-averaged importance maps:

1 . 1 A
8SIMage (p) = = > [1 = SSIM(IV(p), I'(p))],  Llage(p) = 5 > 1€ p) =1 (p)| (1)
ceCy ceCy

where £ is the number of selected viewpoints, and p indicated image pixels. This aggregation
produces a spatial field that captures the difficulty of reconstruction across the current viewing subset.
We then feed SSIM . (p) and L1,4,(p) along with the opacity O(p), which is directly obtained by
projecting the per-Gaussian opacity on pixel p, into our importance score. After applying robust
normalization to each quantity (to mitigate outliers and match dynamic ranges), the three cues are
fused through a logistic function:

s(p) :0(a0(p) + BSSIMagg(p) + leagg(p)), 0(z) = 1= (12)

where «, 3,y control the relative emphasis on opacity, structural similarity, and photometric fidelity,
respectively. We use o« = 0.8, f = 0.5,y = 0.5 in our tests. The scalar field s € (0, 1) highlights the
pixels that are simultaneously under-covered and photometrically inaccurate across the chosen views.



4.2.2 Mapping Pixels to Gaussian Importance

Given the 3D position x; € R3 of a Gaussian g;, we obtain its image-plane coordinates via the
calibrated projection IT: R? — R2. Rather than integrating the importance field over the full elliptical
footprint of g;, which requires evaluating hundreds of pixels per splat, we adopt a lightweight
surrogate that uses the floor operator to sample only the pixel lying directly beneath the center of g;:

1(i) = s([I(xs)]) (13)

where s(+) is the logistic importance map in Eq. 12. The importance weight I(7) is then normalized
once per iteration to give a categorical distribution Py (1) = 1(¢)/ >, 1(j).

4.2.3 Proposal Distribution

Having established a Bayesian viewpoint on our 3D Gaussian representation and a per-pixel impor-
tance score s(p), we now detail the proposal mechanism in our Metropolis-Hastings (MH) sampler.
We maintain a Markov Chain ©®y — ©7 — ..., each O, comprising the current Gaussian set. From
state ©;, we form a proposal ©’ in two phases.

During the Coarse Phase, we sample a batch Z, = {i§, ... ,iCBC} of size B, from P,x. For every
index ¢ € 7., we create a new Gaussian:
g = (xi+65, %, ¢, i), 8 ~ NO0,02,..1) (14)
where o.oarse 1S chosen to be large enough to enable the sampler to explore broad coverage gaps.
In the Fine Phase, a second batch Zy = {il,... iz } is also drawn from the distribution Py
Similar to the coarse phase, we create a new Gaussian for every index in 7 € Zy:
gf = (x;+6, %, ¢y i), 8 ~ N(0,02,I) (15)

where ofne < Ocoarse- The smaller perturbation radius focuses on residual high-importance regions
that still yield large weights 7(7) (and hence a large Pk (7)) after the coarse phase fills the major
coverage gaps. This allows our method to refine the geometry further using locally placed Gaussians.
See Fig. 2 for a visualization of the coarse—fine proposal phase.

Finally, all the newly spawned Gaussians are combined to form the birth component Oy, of the
proposal. This is combined the current state ©; to yield a full proposal ©’:

O = {9 |1 €L} U {gf|icL}, © =0, U Oy (16)
Formally, the probability of drawing the birth component is:
q(®']0) H Prick (1) X,’,O’iI) (17)
1€L ULy

4.2.4 Relocation of Low Contributing Gaussians

In addition to densification, our framework incorporates a relocation mechanism inspired by 3DGS-
MCMC [22] to reuse Gaussians with persistently low opacity. Let D = {i | o; < 7} denote the set
of Gaussians with low opacity, and A = {j | a;; > 7} the set of high opacity Gaussians. We consider
7 = 0.005. For each g; € D, we sample a replacement index j € .4 with probability

@
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and update g;’s parameters by transferring those from g;, optionally modulated by a ratio reflecting
the sampling frequency. The relocation step preserves the representational fidelity of our framework
by continuously reinforcing effective Gaussians while reassigning under-contributing ones.

p(j) =

4.3 Metropolis-Hastings Proposal Acceptance

Now, the Metropolis-Hastings sampler must decide whether the proposal ©’ is kept or rejected.
Recall the MH rule in Eq. 9. Considering the posterior density in Eq. 8, we can rewrite the rule as:

1. e—AE Q(@|@)}

CAE 4o

PMH = min{



Figure 1: PSNR over training iterations for our
method and 3DGS-MCMC, averaged across all
scenes. Dotted vertical lines indicate when each
method reaches 98 % of its eventual PSNR, high-

Table 1: Time to equal PSNR comparison be-
tween our method and 3DGS-MCMC, averaged
across all benchmark scenes. Our method con-
sistently reaches target PSNR thresholds faster.

lighting near-optimal convergence speed. While
both methods ultimately attain comparable final

Target PSNR  Time - Ours Time - 3DGS-MCMC

PSNR, ours converges faster. (dB) (s / mins) (s / mins)
21 16.30/0.27 17.08 /0.28
| — ours » 24 61.34/1.02 98.38/1.64
3bGs-Meme i 27 287.01/4.78 341.64/5.69

30 851.52/14.19 983.05/16.38

Figure 2: 3D visualization of (a) coarse and (b)
fine proposal stages (see Sec. 4.2.3 for details).

: Ours
: 11.9 min

5000 10000 15000 20000 25000 30000

Iteration (a) (b)

where AE = £(0')—E&(O). The proposal ©’ is a batch of new Gaussians, but since the perturbations
are independent, we can evaluate the acceptance separately. Considering one candidate Gaussian
whose center falls in voxel v/, the insertion of that particular Gaussian leads to AE as:

1+ co(v') +1 1

1+ co(v) - 1+ Ao (V) (19)

AE = AL+ A\, 1n( ) = AL-lnD@), D®)
where AL is the photometric change and ¢(v’) is the voxel occupancy before the insertion. (See
Appendix B for details.) However, evaluating £ requires rendering every view in the set C;, which is
computationally expensive. Thus, we use the tight empirical correlation between the importance map

I(i) and the loss reduction, —AL = I(i), as a surrogate. (See Appendix C for details.)

Moreover, the calculation of ¢(© | ©’) in Eq. 18 requires the enumeration of the reverse action,
which is deleting the particular newborn Gaussian. As our framework does not generate such a move,
we absorb the unavailable reverse-proposal density into the voxel factor D(v') = (1 + A\,co(v')) 71,
which already penalises insertions in crowded cells. Substituting both surrogates into Eq. 18 gives
an upper bound min{1,e!() D(v/)}, and mapping the exponential through the logistic o(z) =
(1 + e~*)~! yields a practical version of the MH rule:

pli) = o(1(i)) D)

Following the Metropolis-Hastings algorithm, we draw a uniform random number u ~ U(0, 1) for
each candidate Gaussian. The proposal is accepted and added to the current set ©; when u < p(7),
otherwise it is rejected. Because p(i) = o(I(i)) D(v’) is large only when the per-Gaussian importance
1(7) is high and the voxel factor D(v’) is close to one, Gaussians that target significant photometric
errors in sparsely populated regions are accepted with high probability, whereas candidates in already
crowded voxels or low-error areas are mostly discarded.

(20)

4.4 Comparison with 3DGS-MCMC [22]

Although both methods fall under the broad scope of Monte-Carlo sampling, they embody funda-
mentally different MCMC philosophies. 3DGS-MCMC treats every Gaussian parameter as a latent
variable and applies SGLD: it perturbs all dimensions with small, isotropic noise and accepts every
proposed move, so the chain drifts locally through the existing cloud.

In contrast, our method runs a Metropolis-Hastings birth sampler that targets only positions. We draw
global proposals straight in image-space voids highlighted by a multi-view error map, then pass each



Table 2: Quantitative results of our method and state-of-the-art models evaluated on Mip-NeRF
360 [ 1], Tanks&Temples [23] and Deep Blending [17] datasets. We present the baseline results from
3DGS [20]. For a fair comparison, we also report the results for 3DGS obtained from our experiments
(Denoted as 3DGS*), as well as those for 3DGS and 3DGS-MCMC trained with the same number
of Gaussians as our method (denoted as 3DGS-S and 3DGS-MCMC, respectively). The unit of the
number of Gaussians is million. The results are colored as 'best , second-best , and third-best . To
avoid redundancy, only 3DGS* results are considered instead of 3DGS.

Dataset Mip-NeRF 360 Tanks & Temples Deep Blending
Method PSNRT SSIM?T LPIPS| # GS| PSNR?T SSIMT LPIPS| # GS| PSNR?T SSIM{ LPIPS| # GS|
Plenoxels [10] 23.08 0.626 0.463 - 21.08 0.719 0.379 - 23.06 0.795 0.510 -
INGP-base [37] 2530 0.671 0371 - 21.72  0.723 0.330 - 23.62 0.797 0.423 -
INGP-big [37] 25.59 0.699 0.331 - 21.92 0.745 0305 - 2496 0.817 0.390 -
Mip-NeRF 360 [1] | 27.69 0.792  0.237 - 2222 0.759 0.257 - 29.40 0.901 = 0.245 -
3DGS [20] 2721 0.815 0214 - 23.14 0.841 0.183 - 29.41 0903 0.243 -
3DGS* [20] 2744 0.811 0223 3.176 23.63 0.848 0.177 1.831 29.53 0.904 | 0.244 2815
3DGS-S [20] 26.62 0.761 0299 0.723 2338 0.828 0.214 0.773 2927 0.897 0.272 0.751
3DGS-MCMC [22] | 27.69 0816 0.234 0.723 | 2430 0862 0.170 0.773 29.84 0.906 0.254 0.751
Ours 2734 0.798 0.241 0.723 2399 0.852 0.166 0.773 | 30.12 0909 0.245 0.751

candidate through a Metropolis-Hastings accept-reject test that weighs its predicted photometric
gain against a sparsity prior. This decouples exploration (“where to propose”) from retention (“what
to keep”), enabling long jumps to uncovered regions and the principled dismissal of redundant
splats, which Langevin-noise walks with unconditional acceptance cannot achieve. Moreover, we
analytically derive and rigorously prove that the 3DGS densification process can be recast as a
Metropolis—Hastings sampler, establishing a principled bridge between 3DGS and our formulation.

In principle, 3DGS-MCMC is a local, always-accept SGLD chain, whereas our approach is a global,
importance-driven MH chain focused on the scene’s unexplored areas. This leads to our method
converging faster, as shown in Fig. 1. Measuring time to equal PSNR across all benchmark scenes,
our method reaches 30 dB approximately 2.2 minutes faster than 3DGS-MCMC, with consistently
faster convergence at intermediate quality thresholds, as shown in Tab. 1.

S Experiments

5.1 Experimental Settings

Dataset and Metrics. We perform comprehensive experiments using the same real-world datasets
employed in 3DGS. Specifically, we utilize the scene-scale view synthesis dataset from Mip-
NeRF360 [ 1], which includes nine large-scale real-world scenes comprising five outdoor and four
indoor environments. Additionally, we selected two scenes each from the Tanks and Temples [23]
and the Deep Blending [17] datasets, using the same scenes as in the original 3DGS. We evaluate
each method using the standard evaluation metrics: peak signal-to-noise ratio (PSNR), structural
similarity index measure (SSIM), and learned perceptual image patch similarity (LPIPS).

Implementation Details. Our framework is based on 3DGS [20] implementation. We also use
the differentiable tile rasterizer implementation provided by 3DGS-MCMC [22]. We conducted
experiments on an NVIDIA RTX 3090 GPU. Averaged across all datasets, our method runs at 0.0528
seconds per iteration and 26.4 minutes for 30K iterations. During densification, a normalized progress
value (€ [0, 1]) linearly transitions parameters from coarse (larger offsets, voxel sizes, and batch
sizes) to fine (smaller offsets and voxel sizes) to shift focus from broad to precise refinements. Coarse
proposal scales range from 10.0 to 5.0, fine proposal scales from 2.0 to 1.0, and voxel sizes from 0.02
to 0.005. Batch sizes for coarse and fine proposals are set to 4,500 and 16,000, respectively.

Comparison with Baselines. We compare against methodologies that model large-scale scenes. We
compare our approach against state-of-the-art baselines, such as Plenoxels [10], Instant-NGP [37],
Mip-NeRF 360 [1], and 3DGS [20]. For the baselines aside from 3DGS, we present the original
results as reported in 3DGS. Moreover, we include a comparison with 3DGS-MCMC [22], which has
a similar motivation and shows state-of-the-art performance.



Figure 3: Qualitative results of our method compared to 3DGS and the corresponding ground truth
image from held-out test views. As shown in the red bounding box, our method better captures the
fine and coarse details that 3DGS [20] and 3DGS-MCMC [22] miss.

Room Treehill Playroom Train
Mip-NeRF 360 Mip-NeRF 360 Deep Blending Tanks & Temples

it 2

Ours 3DGS-MCMC 3DGS

GT

5.2 Results

Table 2 presents the quantitative evaluations, and Fig. 3 demonstrates the qualitative evaluations on
real-world scenes. Our method consistently surpasses 3DGS performance with the same number of
Gaussians and achieves or exceeds 3DGS performance with fewer points. Unlike 3DGS, which relies
on fixed thresholds for densification, our framework leverages a streamlined point-based sampling
strategy that drastically reduces storage requirements while preserving high-fidelity reconstructions.
In particular, Tab. C in Appendix F demonstrates our approach’s consistent efficiency across varied
scene complexities. We also provide the full per-scene evaluations in Appendix E.

Although 3DGS-MCMC can yield slightly higher metrics, it updates and optimizes every Gaussian
parameter, which increases its inefficiency and necessitates knowing the scene’s complexity (the
number of Gaussians) in advance. In contrast, our method focuses exclusively on sampling and
optimizing point positions, providing a simpler yet equally accurate alternative. As evidenced by
Fig. 1, our method reaches the 98 % PSNR threshold faster than 3DGS-MCMC, both in iteration and
wall-clock time, demonstrating faster convergence. This shows that our framework can still achieve
state-of-the-art reconstruction quality even without exhaustive parameter updates.

5.3 Ablation Study

Components for the Importance Scores. We conducted an ablation study on the key Gaussian
components to identify the most influential factors in importance score calculation for accurate sam-
pling. The results, shown in Tab. 3, support the effectiveness of our Importance Score Computation
design. Specifically, combining SSIM, L1 loss, and opacity values yields higher PSNR scores and
reduces the required number of Gaussians compared to both the baseline and variants that rely solely
on photometric losses. This study underscores the need for careful factor selection.

Effectiveness of Relocation. We explore whether relocating Gaussians was effective in Tab. 5. Our
experiments confirm that the relocation strategy is essential for maintaining high representational
fidelity. It shows that dynamically reallocating underperforming Gaussians to areas where they
contribute more effectively improves performance in both indoor and outdoor scenes.



Table 3: Ablations on the importance score components.

Method | Dataset Mip-NeRF360 [1] Tanks&Temples [23] Deep Blending [17]
L1 SSIM Opacity PSNRT SSIM{ LPIPS] PSNR{T SSIM?T LPIPS| PSNRt SSIM?T LPIPS|
v v 2722 0.796 0.243 23.89 0.851 0.168 29.87 0.907 0.247
v v 2730 0.796 0.242 2392 0.851 0.169 29.85 0907 0.246
v v 2730 0.796 0.243 23.87 0.852 0.167 30.02 0.908 0.247
v oV v 27.34  0.798 0.241 2399 0.852 0.166 30.12 0.909 0.245

Table 4: Ablations on the core sampling strategy: Metropolis—Hastings (MH) vs. Stochastic Gradient
Langevin Dynamics (SGLD). We denote the number of Gaussians next to the method.

Mip-NeRF360 Tanks&Temples Deep Blending
PSNR 1 SSIM1 LPIPS | PSNR 1 SSIM* LPIPS | PSNR T SSIM {1 LPIPS |

3DGS + MH (0.85M) 26.87 0.782 0260 23.66 0.843 0.173 2946 0.898  0.258
3DGS + SGLD (0.85M) 26.80 0.789  0.250 2347 0.841 0.178 2945 0.898  0.259

Table 5: Ablations on relocation and the multi-view importance score. Results presented for 3DGS
use the same number of Gaussians as ours.

Mip-NeRF360 Tanks&Temples Deep Blending
PSNR 1 SSIM?T LPIPS | PSNR 1 SSIMt LPIPS | PSNR 1 SSIMft LPIPS |
3DGS 26.62 0.761 0.299 2338 0.828 0.214 2927 0.897 0.272

Ours w/o Relocation 2694 0778 0.267 2369 0.844 0.184 2957 0.901 0.267
Ours w/o Importance Score  27.31  0.800 0234 2379 0.851 0.167 2997 0906 0.245

Ours 27.34  0.798  0.241 2399 0852 0.166  30.12 0909 0.245

Contribution of Metropolis-Hastings Sampling. To measure the exact contribution of our core
Metropolis-Hastings (MH) sampling strategy, we conducted an ablation study comparing our
method directly against the Stochastic Gradient Langevin Dynamics (SGLD) approach from 3DGS-
MCMC [22]. We implemented only the core sampling algorithms from each method while maintain-
ing matched Gaussian counts to ensure a fair comparison. The results shown in Tab. 4 demonstrate
that MH sampling consistently outperforms SGLD across all benchmark datasets, confirming the
effectiveness of our sampling strategy.

Furthermore, to understand the source of our method’s effectiveness, we conducted an ablation study
in Tab. 5 that isolates the contributions of the sampling process and the multi-view importance score.
Our experiments demonstrate that the method retains strong performance even when the importance
scores are removed. This indicates that the underlying sampling mechanism is the primary driver of
our approach, while the multi-view importance scores act as an intelligent guidance mechanism.

6 Conclusion

We present an adaptive sampling framework that unifies densification and pruning for 3D Gaussian
Splatting via a probabilistic Metropolis-Hastings scheme. The importance-weighted sampler auto-
matically targets visually or geometrically critical regions while avoiding redundancy. We derive a
new, concise probabilistic formulation that links proposals to scene importance, enabling faster con-
vergence without sacrificing accuracy. Our experiments show that our method matches or surpasses
state-of-the-art quality with fewer Gaussians, and our method’s simplicity invites further advances in
3D scene representation.

Limitations and Future Work. Our Metropolis-Hastings sampler, though aware of low-density
regions, still prioritizes high-density areas, leading to outdoor scenes with sparser data performing
worse than indoor scenes. Moreover, using multi-view photometric errors when proposing points
adds roughly 5 minutes of extra training time per scene. Crafting multi-scale representations or
dual-stream foreground/background samplers, and introducing faster optimization to reduce training
time, would be promising directions for future research.
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A Extended Derivation for Eq. 8

In Bayesian statistics, the posterior distribution of the parameters © given data D is defined as:

§(O]|D) = rP|0)p®) 1)
JECIDPO
Z
where p(D | O) is the likelihood, p(©) is the prior, and Z is the marginal likelihood.
In Eq. 7, we introduced a negative log-posterior
£(0) =L(©) + Ay Y In(1+ co(v)) (22)
veV
In Eq. 5, we found out that Inp(D | ©) ~ —L£(©). Combining these two, we can derive:
£(0) = —Inp(D | ©) —Inp(O) (23)
If we exponentiate —£(0):
e 5% =p(D | ©)p(6), (24)

we can derive the unnormalized posterior density. To turn this into a proper probability distribution,
we normalize by Z = [ e~€(©) 4o, yielding:

’/T(@) _ %678(@) _ p(D | 2)]3(@) _ p(@|D) (25)

As 7(©) matches the posterior distribution form in Eq. 21, we can define it as the posterior density.

B Extended Derivation for Eq. 19

Below is the derivation for Eq. 19. Recall Eq. 7, which defines the negative log-posterior, also known
as the energy function:

£(©) =L(O)+ A, Y _ In(l +co(v)) (26)
veVY
Thus AE = £(O') — £(O) can be calcuated as:

AE = £(O) —£(©)
=L(O) + Xy Y _In(1+ce(v)) = (L(O) + Ay Y In(1 + co(v)))

veEY veEY
= (L(®) = L(©)) + Xy Y _ In(1+ cor(v)) — In(1 + co(v))]
veEY

As we considered the case of having added exactly one Gaussian into voxel v’, we can define cg/ (v),
the number of Gaussians in v’ after the move, as:

cor (V) = co(v') +1 27
Moreover, the sum collapses to a single term for voxel v’. Thus, continuing our derivation:
AE=(L(O) = L(©) + X Y [In(1+co(v)) +1) —In(1+ co(v'))]
veV

!
AL A I [ LHce®) 1
1+ co(v)

1+ co(v') )Av

=AL-In|{ ——FF—7—
n(1+ce(v’)—|—1

' Av
Setting (%) as D(v’), we can derive:

AE =AL—-InD(V) (28)
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Now set z = m We can use the first-order Taylor series expansion (also known as the
first-order Maclaurin expansion) to approximate

Ay
Ay In(1 R AT = ——— 29
n(l+x) x T+ co(0) (29)
We can further approximate as follows:
InD(W')=-XIn{1+ _
= v 1 + o (’U/)
=-NIn(l+z)~ -z
D) = e M (30)
Using the Maclaurin expansion, we can approximate:
1 1 1
el=—= . ~ 31
e l14+a+% 40 1+a
. — AT 1
Thus we can approximate e as 73
1 1
D)~ e M x S ~ - (32)
]. + 1+C(_)U(’U,) 1 + )\’UC@(,U )

C Extended Derivation for Surrogate

This section explains why we approximate —AL to I().

Let’s say we insert a tiny splat {€ g;} to the current state ©. We’ll call this state ©’. By the first-order
term in the multivariate Taylor expansion in the direction of g;:

AL = L(0) — £(O©) ~ <vgi £(0), Egi> (33)

where V4, £(©) is the gradient of the loss w.r.t. the Gaussian’s parameters and the inner product
measures the first-order change when adding ¢ g;.

Since g; only affects p; = |II(x;) ], we can show:

—AL x aO(p;) + BSSIMage(pi) + 7 L1lage(pi) = zi (34)

As stated in Eq. 12 and 13, we set:

1
I() = o(z) = ——— 35
()=o) = 1+ 39)
The Maclaurin series for o(z) = H% around 0 is:
"0 3) (0
a(z)ZU(O)-FU'(O)Z-FOQ(,)22-&-03'()z3+-~-

U U SR
IR R T RN

Thus, o (%) ~ % + izi. Since our Metropolis-Hastings rule uses only relative magnitudes of o(z;),
the constant and the scale are absorbed, yielding o(z;) o z;. Finally, if we put everything together:

D Algorithms

Our algorithms for our coarse-fine Metropolis-Hastings sampling framework and overall pipeline are
summarized in Alg. 1 and 2.
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Algorithm 1 Coarse-Fine Metropolis—Hastings Sampling for 3DGS

Require: Scene © = {g;} where g; = (x4, 2i, ¢, )

13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24

25:

——
BESv®no

View set C; iteration ¢, total steps tmax

Vozxel size v; density penalty A,

Proposal stds (o, ot); batch sizes (B, Br)
Importance weights («, 8, 7); opacity threshold 7

// Select diverse view subset for error aggregation

1 C¢ < VIEWSUBSET(C, ¢, tmax)

// Compute multi-view error maps (SSIM, L1)

:SMMmmhge%ﬁzﬁqﬁ—%muﬂ%ﬂ%,u@_ﬂq}

// Relocate Gaussians with low opacity

: for g; € © where o; < 7 do

RELOCATE(g;)

: end for

// Compute importance scores per Gaussian

: for g; € © do
pi  TI(x;) > Project center to image plane
O(pi) + o > Use projected Gaussian opacity

S(i) <= aO(pi) + B SSIMage (pi) + ¥ L1age (Pi)
I(i) < o(5(7))

: end for
: ¢(-) < VOXELCOUNTS(O,v)

// Metropolis—Hastings insertion (Coarse — Fine)
for (07 B) € {(0—0 BC), (O—f, Bf)} do
Sample Z of size B from © with Pr(7) o I(7)
fori € 7 do
x' ¢+ x; + N(0,0°T)
v' <~ VOXELINDEX(x', v)
D) 15,501
p<+ I(i)-D(v") > Acceptance probability
if UNIFORM(0, 1) < p then
O+ 00U {(X,, i, Gy Otz)}
end if
end for
end for

return ©

Algorithm 2 Overall pipeline of Metropolis-Hastings 3DGS

A A ol S oy

o

10:
11:
12:
13:
14:
15:
16:
17:
18:

Input: M, S, C, A (SfM Points, Covariances, Colors, Opacities); image dimensions w, h.
Output: Optimized and densified attributes M, S, C, A.

140 > Iteration count
while not converged do
{V, I} <— SAMPLETRAININGVIEW() > Camera V' and image

I < RASTERIZE(M, S,C, A, V)
L « Loss(I, 1)
Sssiv.i < SSIM(I, )
SLl,i — L](I, j)
[M, S,C, Al + Apam(VL) > Update attributes
if ISREFINEMENTITERATION(?) then
for Current Scene © do
METROPOLIS_HASTINGS_SAMPLING(M, S, C, A)
end for
end if
14 1+1
end while
return M, S, C, A
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E Per-Scene Results

In this section, we provide the full per-scene evaluations. We evaluated our method, 3DGS [
3DGS-MCMC [
360 [1], Tanks & Temples [

] and

] on various datasets and scenes. We provide the per-scene results for Mip-NeRF
] and Deep Blending [

| datasets in Tab. A and B. All evaluations

have been conducted on a NVIDIA GeForce RTX 3090.

Table A: Full per-scene results evaluated on Mip-NeRF 360 dataset.

Type of Dataset Indoor Outdoor
Scene Bonsai Counter  Kitchen Room Bicycle  Flowers  Garden Stump Treehill ~ Average
PSNR 32.14 28.98 31.25 31.65 25.10 21.33 2731 26.64 22.54 27.44
SSIM 0.940 0.906 0.931 0.927 0.747 0.589 0.857 0.770 0.635 0.811
LPIPS 0.206 0.202 0.117 0.197 0.244 0.359 0.122 0.216 0.347 0.223
3DGS [20] Train (mm:ss) 28:04 43:25 31:05 26:29 42:41 31:21 43:16 34:00 30:53 34:34
#of Gaussians 1249672 1174274 1763905 1478813 5728256 3480107 5667876 4494105 3522801 3175479
Storage (MB) 296.56 277.73 419.18 349.76 135480  823.09  1340.52 106291  833.18 750.86
PSNR 31.37 28.84 3091 31.04 23.55 20.10 26.27 24.84 22.64 26.62
SSIM 0.935 0.909 0.924 0918 0.616 0.488 0.794 0.677 0.590 0.761
LPIPS 0.205 0.196 0.134 0.214 0.410 0.478 0.230 0.381 0.444 0.299
3DGS-S [20] Train (mm:ss) 26:42 28:04 33:59 25:22 25:54 23:58 28:17 23:02 28:00 27:02
#of Gaussians 777782 698871 623992 764539 741748 695495 811695 697792 690517 722492
Storage (MB) 183.96 165.29 147.58 181.02 175.43 164.49 191.98 165.04 163.32 170.90
PSNR 32.48 29.27 31.41 32.15 25.13 21.64 26.71 27.21 23.09 27.69
SSIM 0.949 0.920 0.930 0.933 0.745 0.595 0.832 0.791 0.648 0.816
LPIPS 0.176 0.177 0.126 0.186 0.275 0.377 0.170 0.247 0.370 0.234
3DGS-MCMC [22]  Train (mm:ss) 32:08 37:27 30:25 35:37 31:56 25:39 24:16 23:50 26:01 29:42
#of Gaussians 777782 698871 623992 764539 741748 695495 811695 697792 690517 722492
Storage (MB) 183.96 165.29 147.58 181.02 175.43 164.49 191.98 165.04 163.32 170.90
PSNR 3252 29.30 31.35 32.15 24.53 20.99 26.49 25.95 22.80 27.34
SSIM 0.950 0918 0.930 0.934 0.711 0.556 0.819 0.743 0.621 0.798
LPIPS 0.171 0.174 0.123 0.179 0.289 0.384 0.185 0.279 0.384 0.241
Ours Train (mm:ss) 41:05 46:59 41:20 46:31 34:58 35:13 31:36 32:46 37:05 38:37
#of Gaussians 777782 698871 623992 764539 741748 695495 811695 697792 690517 722492
Storage (MB) 183.96 165.29 147.58 181.02 175.43 164.49 191.98 165.04 163.32 170.90

Table B: Full per-scene results evaluated on Tanks & Temples and Deep Blending datasets.

Dataset Tanks&Temples Deep Blending
Scene Train Truck  Average DrJohnson Playroom Average
PSNR (1) 21.89 25.37 23.63 29.08 29.97 29.53
SSIM (1) 0.814 0.882 0.848 0.901 0.907 0.904
LPIPS (}) 0.207 0.147 0.177 0.244 0.244 0.244
3DGS [20] Train (mm:ss)  13:22 19:09 16:15 29:26 26:20 27:53
# of Gaussians 1085904 2575516 1830710 3308886 2320688 2814787
Storage (MB)  256.83  609.14  432.99 782.59 548.87  665.73
PSNR (1) 21.80 24.95 23.38 28.99 29.54 29.27
SSIM (1) 0.791 0.865 0.828 0.892 0.901 0.897
LPIPS (}) 0.245 0.183 0.214 0.280 0.263 0.272
3DGS-S [20] Train (mm:ss)  19:16 18:05 18:41 20:18 20:23 20:21
# of Gaussians 788942 756104 772523 766469 735409 750939
Storage (MB)  186.60 178.83  182.72 181.28 17393  177.61
PSNR (1) 22.58 26.02 24.30 29.37 30.30 29.84
SSIM (1) 0.834 0.889 0.862 0.902 0.910 0.906
LPIPS (}) 0.196 0.143 0.170 0.260 0.248 0.254
3DGS-MCMC [22] Train (mm:ss)  15:50 15:45 15:48 26:28 23:39 25:03
# of Gaussians 788942 756104 772523 766469 735409 750939
Storage (MB)  186.60 178.83  182.72 181.28 173.93  177.61
PSNR (1) 22.44 25.54 23.99 29.77 30.47 30.12
SSIM (1) 0.821 0.883 0.852 0.904 0.913 0.909
LPIPS (}) 0.198 0.134 0.166 0.249 0.240 0.245
Ours Train (mm:ss)  20:38 19:40 20:09 32:27 29:54 31:10
# of Gaussians 788942 756104 772523 766469 735409 750939
Storage (MB) 186.60 178.83  182.72 181.28 17393  177.61
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F Comparison of the Number of Gaussians

Table C contrasts the number of Gaussians needed by our approach and by 3DGS for each scene. In
every case, our method attains equal or superior rendering quality while requiring substantially fewer
Gaussians.

Table C: Comparison of our method and 3DGS on the number of Gaussian center points used to
represent scenes in the Mip-NeRF 360 [ 1], Tanks & Temples [23], and Deep Blending [ 7] datasets.

Dataset Mip-NeRF 360 Tanks&Temples Deep Blending

Method Bonsai Counter Kitchen Room Bicycle Flowers Garden Stump Treehill Train Truck Dr Johnson  Playroom
3DGS [20] 1,249,672 1,174274 1,763,905 1,297,736 4,888,552 2,887,138 5.667.876 4,324,049 3,224,118 1,085,904 2580408 3,308,886 2,320,688
Ours 771,782 698,871 623,992 765,370 741,748 695,495 811,695 697,792 690,517 788,942 756,104 766,469 735,409

G Broader Impacts

As our method focuses on the core and theoretical problem of 3D Scene Reconstruction, our work
has the potential for positive societal impact on various downstream applications using 3D Gaussian
Splatting [20]. As we reduce the reliance on heuristics and the number of Gaussians used in a
scene, we expect our work to enhance many downstream applications that require less memory usage.
However, as we did not introduce any fundamental new content generation capabilities through our
work, there is little potential for our work to have a negative societal impact beyond the ethical
considerations already present in the field of 3D reconstruction.

H Dataset Licenses

We used the following datasets:
* Mip-NeRF360 [1]: The license term is unavailable. Available at https://jonbarron.info/
mipnerf360/

* Tanks and Temples [23]: Published under the Creative Commons Attribution 4.0 International (CC
BY 4.0) License. Available at https://www.tanksandtemples.org/license/

* Deep Blending [17]: The license term is unavailable. Available at http://visual.cs.ucl.ac.
uk/pubs/deepblending/
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1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We write our contributions and scope in the Abstract and Introduction in
Sec. 1.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer:[Yes]
Justification: We discuss our limitations in the Conclusion.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.
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address problems of privacy and fairness.
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tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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a complete (and correct) proof?

Answer: [Yes]
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Justification: We provide it in Sec. 4 and Appendix A, B and C

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide the details of our experiments in Sec. 5

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: We will release the code at https://github.com/hjhyunjinkim/
MH-3DGS. The datasets used in this paper are open sourced, details are provided at Ap-
pendix H.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

¢ The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: We provide detailed experiment setups in Sec. 5.
Guidelines:

* The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: Due to our limited computational resources, we were unable to report error
bars.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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e It should be clear whether the error bar is the standard deviation or the standard error
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e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: This information is provided in Sec. 5.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: : This work conforms with the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: Discussed in Appendix G.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: NA
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have properly cited all sources. We also cited the dataset licenses in
Appendix H.

Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: [NA|
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: [NA|
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: [NA|
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* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: LLM was used for writing and editing purposes.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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