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A modern military command center.
A distinguished general, wearing a highly decorated uniform with gray hair.
(1) Stand. (2) Speak into a headset. (3) Discuss with officers.

BachVid

Figure 1: We present BachVid, the first training-free method for Video generation with consistent
Background and Character. The three prompts share the same background (blue) and character
(green) description, while the actions (red) vary. The generated videos enable consistent background
and character, facilitating downstream applications such as visual storytelling.

ABSTRACT

Diffusion Transformers (DiTs) have recently driven significant progress in text-
to-video (T2V) generation. However, generating multiple videos with consistent
characters and backgrounds remains a significant challenge. Existing methods
typically rely on reference images or extensive training, and often only address
character consistency, leaving background consistency to image-to-video mod-
els. We introduce BachVid, the first training-free method that achieves consistent
video generation without needing any reference images. Our approach is based on
a systematic analysis of DiT’s attention mechanism and intermediate features, re-
vealing its ability to extract foreground masks and identify matching points during
the denoising process. Our method consolidates this finding by first generating an
identity video and caching the intermediate variables, and then inject these cached
variables into corresponding positions in generated videos, ensuring both fore-
ground and background consistency across multiple videos. Experimental results
demonstrate that BachVid achieves robust consistency in generated videos without
requiring additional training, offering a novel and efficient solution for consistent
video generation without relying on reference images or additional training.
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1 INTRODUCTION

Text-to-video (T2V) diffusion models (Zheng et al. [2024; [Yang et al.| [2024; [Kong et al.| 2024;
HaCohen et al.,[2024; Wan et al.| 2025) driven by Diffusion Transformers (DiTs) (Esser et al., 2024;
Peebles & Xie,2023) have made remarkable progress in recent years. While these models can ensure
subject consistency within a single video, maintaining consistency across multiple videos remains
challenging, particularly in applications such as storytelling and long-form video generation.

To address this issue, existing studies have proposed a variety of effective methods, which can be
broadly categorized into training-based and training-free approaches. Training-based methods, such
as ConsisID (Wang et al., 2025), yield strong performance but require substantial computational
resources and long training time. In contrast, training-free methods avoid such costly overhead.
For instance, TPIGE (Gao et al.}[2025)) introduces the first training-free IPT2V (Identity-Preserving
Text-to-Video) framework, which eliminates both per-identity tuning during inference and addi-
tional training costs, while still retaining state-of-the-art performance. Nevertheless, these methods
generally require additional reference images as input and primarily focus on preserving character
identity across different backgrounds, leaving the issue of background consistency unresolved.

Meanwhile, in the image generation domain, CharaConsist (Wang et al.| [2025) has demonstrated
dual consistency in both background and character through a training-free method. Its core idea
is to generate an identity image and cache all the key-value pairs from the DiT, which are then
injected when generating new images. Yet, directly extending it to video generation still faces
two challenges. First, unlike image diffusion models where the internal mechanisms of DiTs have
been extensively explored (Wang et al., 2025} |Avrahami et al., 2025), the inner workings of video
diffusion models remain underexplored. Research on image DiTs has primarily focused on their
ability to control spatial features, whereas video DiTs must additionally handle the more complex
temporal dimension. To date, only DiffTrack (Wang et al., 2025) has revealed that the query-key
similarity within video DiTs implicitly encodes temporal correspondences across frames, offering
an important insight. Second, video latent representations are typically much larger than those in
images. Blindly storing all key-value pairs of the DiT would result in severe out-of-memory (OOM)
issues.

To address these challenges, we present BachVid, a training-free and reference-image-free method
designed to ensure Background and Character consistency across multiple video generations. First,
we extract the foreground mask from the attention weights between the text prompt and the video
from specific layers at certain timesteps. Second, we identify the matching points between two video
generation processes from the attention outputs from specific layers at certain timesteps. Third, we
determine a subset of vital layers for key-value injection to save memory while maintaining consis-
tency between two video generation processes. We provide a detailed analysis of the open-source
video DiT models (Yang et al., 2024). The experiments demonstrate that BachVid generates videos
with consistent background and character across DiT-based video generation models. Through the
analysis, we uncover several key findings: 1) A few specific layers play a dominant role in extract-
ing foreground mask, key-value injection, and identifying matching points between two generation
processes; 2) Mask extraction and matching point identification strength during the early timesteps,
but degrade towards the end, during the denoising process.

In summary, our contributions are as follows:

* We propose the first training-free method for text-to-video generation with consistent back-
grounds and characters.

* We establish a systematic analysis for DiT-based video generation models to automatically
extract foreground mask of the generated video, identify matching points between two
generated videos, and determine the vital layers for key-value injection.

2 RELATED WORK

2.1 DIFFUSION-BASED T2V GENERATION

Early diffusion systems were predominantly built on UNet backbones that interleave convolution
and self-attention, and inject textual guidance via cross-attention from text encoders (e.g., CLIP),
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thereby enabling controllable synthesis. Diffusion Transformers (DiTs) (Peebles & Xie, [2023)) re-
place the UNet with a Transformer (Vaswani et al., [2017) and exhibit strong scaling with data and
model size. Following this trajectory, a series of DiT-based methods have achieved state-of-the-
art image and video quality for both T2I (Blattmann et al., 2023 [Esser et al.l 2024 [Labs et al.,
20235)) and text-to-video (T2V) generation (Yang et al.|[2024; |Wan et al., 2025). In contrast to UNet-
based pipelines that explicitly decouple self- and cross-attention, DiTs unify attention over a joint
sequence, which makes many UNet-oriented editing or control strategies—often designed to manip-
ulate specific encoder/decoder stages—non-trivial to port to the Transformer setting.

Understanding where and when to inject conditioning has therefore become a key question. A body
of work has probed internal representations of UNet-based image diffusion models (Jin et al., 2025
Meng et al., |2024; Zhang et al., 2023} Tang et al., 2023} [Nam et al., |2024), largely focusing on
image-space correspondences or two-frame relationships. Moving to video, DiffTrack (Nam et al.,
2025)) establishes temporal correspondences during denoising and reports a characteristic evolution:
temporal matching strengthens through the mid timesteps (as motion and layout consolidate) but can
diminish near the end when attention re-focuses on refining appearance details, while early steps rely
more heavily on text and intra-frame cues to set global semantics and structure.

For DiT-based generators, StableFlow (Avrahami et al.l 2025) further observes that “vital” layers
for effective control are distributed across the Transformer stack rather than localized, complicating
the choice of layers and timesteps for intervention. Taken together, these findings suggest that T2V
models—especially Transformer-based ones—benefit from conditioning schemes that account for
(1) the unified multimodal attention in DiTs, (ii) the temporal evolution of correspondences across
denoising, and (iii) the dispersed importance of layers over depth and time.

2.2  TRAINING-FREE CONSISTENT GENERATION

Consistent generation has been extensively studied in both image (Liu et al., 2025} Zhou et al.,[2024;
Tewel et al.,|2024;|Wang et al.,[2025;|Mao et al.,|2025; |L1 et al., 2024) and video domains (Wu et al.,
2024; |Wei et al.| 2024)), with most approaches relying on reference images or videos as input. Mo-
tionBooth (Wu et al.l 2024) and DreamVideo (Wei et al., [2024) address per-identity consistency
by fine-tuning models or incorporating additional modules. To overcome the limitations of per-ID
fine-tuning, subsequent works (Mao et al., [2025; |Li et al., 2024; |Yuan et al.| 2025} Jiang et al.| [2025))
propose tuning-free strategies. However, these methods typically require large-scale datasets and
computationally expensive training. As a result, training-free approaches have gained increasing
attention. For example, TPIGE (Gao et al., | 2025)) enables identity-preserving video generation with-
out training, but its scope is limited to facial identity. In contrast, our method is also training-free
but achieves both background and character consistency across generated videos.

3 METHODOLOGY

In this section, we first introduce some preliminaries on video generation models, outlining the
fundamental architecture and mechanisms that underpin consistency across frames. Motivated by
CharaConsist (Wang et al., | 2025)), our core idea for ensuring consistency is to establish a stable iden-
tity video generation and guide subsequent frame video generation through information reuse.
The identity video provides stable representations, whose intermediate variables (keys, values, and
attention outputs) are cached and later injected into the frame generation process, thereby enforc-
ing consistency. Building on this idea, our method addresses three key components: (1) extraction
of foreground and background masks, (2) identification of matching points between the identity
and frame videos, and (3) injection of the identity video’s keys and values into the corresponding
positions of the frame videos. These components are elaborated in the following subsections.

3.1 PRELIMINARIES

Video Diffusion Models. Video diffusion models (Yang et al.,2024;Wan et al., 2025} Kong et al.,
2024; [Zheng et al 2024) generate videos from the input text prompt through iterative denoising.
They are typically composed of a 3D Variational Autoencoder (VAE), a text encoder, and a denois-
ing network fy. The 3D VAE compresses a video Zyigeo € RT'XH'XW'X3 jnt6 a latent representa-
tion 2yjgeo € RTXHXWXC "swhere T < T', H < H',W < W', for computational efficiency. The
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(a) Layers and timesteps-wise. (b) Layers-wise. (c) Timesteps-wise. (d) Lmask-wise.

Figure 2: Average IoU Evaluation of foreground mask extraction at different timesteps and layers.

text encoder maps the input prompt into an embedding 2.y Wwith sequence length L. Given a
predefined noise schedule, Gaussian noise is progressively added to 2yigeo,s, yielding noisy latents
Zvideo,t+1- At each step, the denoising network fg(zvideo; ¢, Ztext,t) 18 trained to predict and remove
the injected noise. Starting from Gaussian noise zyideo 7, the model iteratively denoises until reach-
ing 2yideo,0, Which is then decoded by the 3D VAE to produce the final video Z/,,..
Video Diffusion Transformers. Building on the success of Sora (Liu et al. 2024b), Diffusion
Transformers (DiTs) (Blattmann et al., [2023; [Peebles & Xiel [2023) has become the standard back-
bone for video generation (Zheng et al., 2024; HaCohen et al., 2024; Yang et al., 2024; Kong et al.,
2024; |Wan et al., [2025). DiTs employ full 3D attention across space and time, enabling rich in-
teractions between visual and textual representations. We illustrate this using CogVideoX (Yang
et al.| 2024). At each timestep ¢ and layer [, self-attention is applied to the concatenated sequence
Z = Zyideo P Ziext- This sequence is projected into queries Q“, keys K 6l and values V4!, each in
R(THW+Le)XC  The attention output is computed as:

ot =whiytt - Wht = Softmax(Q" (K" /VC), (1

where Wt ¢ RIHWHLe)x(THW+Le) denotes the attention weights, capturing interactions
between video and text latents. For instance, the video-to-text cross-attention weights thzi €
RTHW xLex characterize the correspondence between video tokens and text tokens.

3.2 FOREGROUND MASK EXTRACTION

To ensure consistent backgrounds and characters, it is necessary to localize the foreground (charac-
ter) and background regions. Foreground extraction from complete videos is straightforward with
off-the-shelf methods. However, in our setting, we must identify the foreground during the denois-
ing process, where only latent features are available.

The video-to-text attention weights W\fzi capture the relationship between each pixel and each text
token. We structure the prompts in the form “[Background],[Character],[Action]”, from which the
token lengths Lyg, Lz and Ly can be obtained, such that Ly, = Lpg + Lfg + Lact + Lpag- The
corresponding attention segments are then extracted as:

ng W, 2t[ L] € RTHW > Leg Wftl W, Zt[ Lbg : Log + Lgg] € RTHW>Le —(2)

v v

A foreground mask is obtained by comparing the averaged attention weights:
tl_ (1 t, l ] t, z ]
M= (2 o) < (2 Wil ®

where Mt € RTHW indicates whether each pixel is classified as foreground or background.

For every layer [ and timestep ¢, we evaluate M"* against the ground-truth mask M, using IoU
(Fig. [24) and the results show that not all layers or timesteps contribute equally: some yield strong
masks, others degrade performance. Fig. 2b]shows IoU averaged over layers, and we observe that
mask quality improves during denoising but degrades at the final steps., as early noisy latents
hinder extraction, while late steps mainly refine details rather than structure. Fig. |[2c| shows IoU
averaged over timesteps, and we find that early layers facilitate accurate mask extraction, while
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Figure 3: MSE Evaluation of matching point identification at different timesteps and layers.

later layers degrade it, since encoder-like early layers capture high-level semantics, while decoder-
like later layers focus on noise prediction.

Based on these observations, we select the top-15 layers (indices 6-20), denoted L,x. Evaluating
on this subset (Fig. @ shows consistent trends. We set 7,5k = 5 and the final robust foreground
mask is thus:

Mo Y (%ZWQZM) < Y (£ wELa). @)

1€ Linask 1€ Linask i

3.3 MATCHING POINT IDENTIFICATION

Consistent characters across videos require identifying correspondences between the identity and
frame videos. While off-the-shelf feature matchers can be used on fully rendered videos, our task
requires identifying correspondences during denoising, when only latents are available.

Prior work (Tang et al., 2023 |Wang et al., [2025)) demonstrated that semantic correspondences can
be extracted by comparing intermediate diffusion features at specific timesteps. Following this, we
use attention outputs O*! € RTHWXC for point matching.

Given O;’il (identity video) and O;im

between frame and identity pixels:

(frame video), we compute the frame-wise cosine similarity

At At
St,l _ O?rm(Ofd)T c RTXHWXHW’ (5)
where OA?fnm, Ol € RT*HWXC are normalized and reshaped from O?ﬁm, O%!. The matching point

for pixel (¢, j) in the frame video is:

map(Sh i, j) = argmax(S™'[i, j,:]). (6)

We evaluate each (t,!) against ground-truth correspondences using MSE (Fig. , and the results
show that not all layers or timesteps are useful. Fig. [3b]shows MSE averaged over layers, and we
observe that point matching improves during denoising but fluctuates due to noisy early latents.
Fig. shows MSEs averaged over timesteps and we observe that early layers provide robust
features, while later layers degrade performance, mirroring mask extraction trends.

Based on these observations, we select the bottom-15 layers (indices 2-16), denoted Laen, and
further evaluate on these layers (See Fig. [3d). The results reflect a different trend from Fig. [3b} as
the other layers badly disrupt the point matching. The observation is similar to Fig. 2d] that point
matching quality improves during denoising but degrades at the final steps.

We also set Tiaeh = 10 and the final robust similarity matrix is:

matci 7l matcl )l T THW THW
Shatch = Z O (Oz—d‘h ) eR x . @)

frm
leLmalch

For the j-th pixel in the frame video, the matching point is identified by:

map(Smatchvj) = argmax(smatch []a :Dv (®)

where map(Smatch, j) = k means that j-th pixel in the frame video and k-th pixel in the identity
video are matching points.
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ID Video Denoising

Kv

Frame Video Denoising

Figure 4: Overview of BachVid. An identity video is first generated to cache key intermediate vari-
ables. For every frame video, these cached key-values are injected into matched points (Sec. [3.2B.3]
to ensure both foreground and background consistency, using only vital layers (Sec. @)

3.4 VITAL LAYERS DETERMINATION

Having obtained masks and correspondences, we must decide which layers to apply key-value in-
jection. Naively storing all key-value across timesteps and layers is infeasible for DiT-based video
models (e.g., CogVideoX), as their large depth and latent dimension cause memory issues.

To reduce memory, we identify vital layers. Following StableFlow (Avrahami et al.,[2025)), which
measured DINOv2 feature similarity for the stable editing task, we instead evaluate the aesthetic
score of generated videos when skipping each layer. For video Z~! generated by skipping layer [,
the score is:

T/
1 it
Scorews = > Az, 9)
i=1
where A is the pre-trained aesthetic predictor.
As shown in Fig. EI, skipping layer | € L,s={1,2,12,13,14, 15,16, 18,20, 21, 22, 24, 30, 35, 42}
significantly reduces scores. We therefore set Ly, = L, as the determined vital layers.

3.5 CONSISTENT BACKGROUND AND CHARACTER VIDEO GENERATION

Fig. [] illustrates the full pipeline. During identity video generation, we extract the foreground
mask M4, the attention outputs {OZ;‘“‘“"[ }e L and store the key-values { K ﬁil, ViS’l }igs-’” across
timesteps 7. During frame video generation, for each timestep ¢, we compute M f,..,, from La5¢
and {O;ﬁ‘;‘j;"l}le r We then calculate the mapping map(Smaccn, ) using Eq. and obtain the
indices to the foreground and background of the frame video:

Itm tg = nonzero(Mim),  Imbg = iszero(Mig U M) (10)

where non-zero(-) and iszero(-) refer to get the indices of non-zero and zero elements, respectively.
Then we identify their matching points’ indices in the identity video:

match *

Iid,fg = map(Smatcha Ifrm,fg)a Iid,bg = Ifrm,bg~ (11)

Based on the indices, we extract the keys and values Kig go, Vid fe, Kid,bgs Vid,pg (eliminate ¢,¢ for
simplication) from the identity image and re-encode the keys with RoPE (Su et al.,[2024):

Ky to = ROPE(Kia gg; Itim tg),  Kigpe = ROPE(Kidpg, iim,bg), (12)

1 1

We then inject the key-values of the identity video into the frame video to get the fused key-values:

Kiin = Kion © Kigre ® Kiapg:  Viim = Vim © Viae © Viaog: (13)
Finally, the attention is computed as:
Ofim = WiinVirms Wi = Softmax(Q gy (K )T/ VO) + log(M®), (14)

where the attention mask M* enforces that frame foreground tokens attend only to identity fore-
ground tokens, and background to background.
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A home library with floor-to-ceiling mahogany bookshelves packed with books, two deep leather armchairs, and a Persian rug.
A man in his 40s with short, salt-and-pepper hair and glasses, wearing a dark green knitted sweater and brown trousers.
(1) Browse the bookshelf. (2) Select a book and examine its cover. (3)Settle into the leather armchair with a sigh. (4)Open the book, read, and adjust glasses.

Ours

ConsislD

TPIGE

Vanilla

A quiet suburban kitchen with wooden cabinets and warm, cozy lighting.
A mother in a floral apron, with short brown hair.
(1) Chop vegetables on a cutting board. (2) Stir a pot on the stove. (3) Check the oven timer and touch the metal handle. (4) Wipe her hands on a towel.

Ours

ConsisIlD

TPIGE

Vanilla

A brightly lit craft room with shelves overflowing with colorful fabrics, yarn, and ribbons, and a large cutting table in the center.

A woman with kind eyes and grey hair worn in a long braid, wearing a floral pinafore apron over a simple grey dress.

(1) Select a piece of soft blue felt. (2) Use a pair of fabric scissors to carefully cut a heart shape from the blue felt.

(3) Thread a needle with white embroidery floss, squinting slightly in concentration. (4) Hold up the finished embroidered heart to the camera with a smile.

Ours

ConsislD

=)

Figure 5: Qualitative results. We select two frames for each action for visualization.

4 EXPERIMENT

4.1 IMPLEMENTATION DETAILS

Dataset. While existing benchmarks lack features suited for consistent generation for characters
and background, we used DeepSeek 2024a) to generate a series of T2V prompts. Specif-
ically, we instructed DeepSeek to create multiple groups of prompts in the format: “[Background],
[Character], [Action].”, with contents varying across groups. In each group, both “[Background]”
and “[Character]” remain consistent, while “[Action]” varies. In total, we generate 40 groups with
5 prompts each, which is sufficient as the validation dataset’s scale is similar to 2025).

Metric. We follow the metrics of CharaConsist 2025)) and TPIGE 2025)).

We evaluate the method from four perspectives: text alignment, background consistency, identity
consistency, and video quality. For text alignment, we use the CLIP score (CLIP-T) to evaluate the
text-video similarity. For background consistency, we use the PSNR and CLIP scores (PSNR-BG
and CLIP-BG) of pairwise background region videos segmented by SAM?2 (Ren et al.}, 2024} Ravi|
2024). For identity consistency, we use the CLIP scores (CLIP-FG) of pairwise foreground
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Table 1: Quantitative results with Baselines. All metrics are higher-is-better, except for TCG
which is lower-is-better.

Method | CLIP-T (%) | PSNR-BG (dB) CLIP-BG (%) | CLIP-FG (%) Face-Arc (%) | MS (%) 1Q (%) | TCG
CogVideoX 25.99 28.95 94.85 92.86 2.62 98.57  64.67 | 113/3/33
ConsisID 26.03 28.68 95.02 94.13 39.54 98.10  69.36 | 115/3/37
TPIGE 26.05 20.15 95.43 93.59 41.70 9891  70.67 | 593/77/76
Ours 26.14 31.96 97.31 95.06 40.25 98.69  64.72 | 214/175/40

Figure 6: Mask extraction over different layers and timesteps.

region videos and compute facial embedding similarity (Face-Arc) between each generated frame
and the reference image using RetinaFace and ArcFace feature spaces. For video quality, we use
Motion Smoothness and Imaging Quality from VBench (Huang et al., [2024). For efficiency, we
record the inference Time used (seconds)/CPU memory (GB)/GPU memory (GB), denoted as TCG.

4.2 COMPARISON WITH SOTA

As no existing methods enable generating video with a consistent background and character, we
compare with methods that focus on identity-preserving. We compare with the following baselines:
1) ConsisID (Yuan et al., [2025), based on CogVideoX-5B (Yang et al., [2024)), proposed a hierar-
chical training strategy with frequency-decomposed facial features to achieve tuning-free IPT2V. 2)
TPIGE (Gao et al.| [2025), based on VACE (Jiang et al.| 2025)), proposed to enhance face-aware
prompts and prompt-aware reference images, and ID-aware spatiotemporal guidance to achieve
training-free IPT2V. Because both baselines require a reference face image, we crop the charac-
ter headshots using RetinaFace (Deng et al.,[2020) from the identity video as their input.

Qualitative and quantitative results are shown in Fig. [5 and Table [I, Compared with SOTA ap-
proaches, our method achieves better performance on text alignment and background consistency
across all methods. For identity consistency, we can obtain Face-Arc scores comparable to reference-
based baselines. While ConsisID and TPIGE explicitly inject identity priors via a face image, text-
to-video models often fail to generate consistently clear facial details (side views, occlusions, ac-
cessories, etc.), limiting the effectiveness of such priors. Our method injects priors implicitly at
the feature level and thus achieves comparable results. Besides, we perform the best CLIP-FG,
which shows that our method produces videos with more consistent overall appearance (face, cloth-
ing, style). Furthermore, our method will not degrade the video quality compared to the vanilla
CogVideoX.

4.3 ABLATION STUDY

How do the layer and timestep affect the foreground mask extraction? Fig. [6] presents a vi-
sualization of mask extraction across different layers and timesteps. We observe that aggregating
features from all layers often leads to suboptimal results, as certain layers (e.g., 1, 31, 42) introduce
noise that interferes with accurate mask extraction. In contrast, aggregating features only from the
selected layers Lyask yields a clean and consistent mask. In addition, mask extraction tends to be
unreliable at the early stages of denoising, while performing it too late can also degrade the results.
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Figure 8: Visualization of Z~*. Figure 9: Analysis on vital layers.

How do the layer and timestep affect the matching point identification? Fig. /| presents a
visualization of point matching identification across different layers and timesteps. We find that
aggregating features from all layers often produces suboptimal results, as certain layers (e.g., 1,
32) introduce interference that disrupts point matching. In contrast, using features only from the
selected layer Lyaen yields more robust and reliable matching points. Moreover, point matching is
also sensitive to timing: performing it too early or too late in the denoising process is unstable.

How does the layer affect the KV Injection? We also conduct an ablation study on the metrics
for selecting vital layers. To preserve semantic content, StableFlow (Avrahami et al} 2025]) identifies
vital layers for image editing using DINOv2 similarity:

T/
Scorenmov = Ti S Cossim(£(Z)), £(2 i), (15)
=1

where £ is the pre-trained DINOv2 encoder. Fig. Epresents the results and we denote Lpinoy2 as the
15 vital layers. We notice that skip layer [ € {3, 5,6, 8,9, 10} results in low DINOvV?2 similarity but
keeps a high aesthetic score. This is because the generated videos still keep moderate quality, but
show different diversity (see Z 6 in Fig. . We infer that these layers mainly control motion diver-
sity and should therefore be treated as non-vital. Table. 2] quanlitatively demonstrate that injecting
KV of L, performs better than Lpinoys-

Table 2: Ablation study on Lyy. All metrics are higher-is-better.

Ly, |CLIP-T (%) | PSNR-BG (dB) CLIP-BG (%) | CLIP-FG (%) Face-Arc (%)|MS (%) 1Q (%)

26.12 31.18 96.86 94.24 32.99 98.76  65.13
26.13 31.69 97.03 94.24 36.93 98.77 65.22

EDINOVZ

aes
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Table 3: Quantitative results with different DiT-based models. All metrics are higher-is-better.

Method | CLIP-T (%) | PSNR-BG (dB) CLIP-BG (%) | CLIP-FG (%) Face-Arc (%) | MS (%) 1Q (%)
CogVideoX-5B 25.99 28.95 94.85 92.86 22.62 98.57  64.67
Ours(CogVideoX-5B) 26.13 31.69 97.03 94.24 36.93 98.77 6522
Wan2.1-T2V-14B 26.22 28.76 95.03 92.08 18.20 99.08  70.29
Ours(Wan2.1-T2V-14B) 26.28 31.62 97.52 94.70 32.54 9895  69.78

More DiT-based video models. To further demonstrate the effectiveness of our method, we con-
duct additional analyses and experiments on another DiT-based model: Wan2.1-T2V-14B
[2025). The architecture of Wan differs from that of CogVideoX, notably in its use of cross-
attention to integrate textual prompts into video latents. The corresponding results are presented in
Tab. 3} with a detailed analysis provided in Sec.[B] Overall, maintaining consistency solely through
textual descriptions of the background and characters is insufficient to ensure content consistency in
generated videos. Our method, however, effectively achieves this.

How do 7 and the number of chosen layers affect performance? We conduct ablation studies
on Tmask and Tmaech, as well as on the number of selected layers used for Lk, Lmatch, and Lyy.
The results are summarized in Tab. EI For simplicity, we set T = Tiask = Tmatch, and use |L£|=n to
denote the selection of n layers for each of Liask, Lmacch, and Lyy. SR refers to the success rate of
generating all frame videos. In our setup, failure typically occurs when the extracted foreground
mask is entirely False, preventing BachVid from generating valid videos. Setting 7 = 3 tends to
produce inaccurate masks and mismatched points, leading to a lower success rate. As 7 increases,
inference time also rises, while larger values of |£| result in higher memory consumption. To achieve
a better balance between output quality and computational efficiency, we ultimately select 7 = 5
and |£| = 15.

Table 4: Ablation studies on 7 and |£|. The bolded metrics indicate the optimal values and the
underlined metrics indicate the sub-optimal values, except for those at 7=3.

7,|£] | CLIP-T (%) | PSNR-BG (dB) CLIP-BG (%) | CLIP-FG (%) Face-Arc (%) | MS (%) 1Q(%) | TCG | SR(%)

3,10 26.13 31.36 97.31 95.59 42.42 98.68 65.44 | 172/118/35 | 94.37
3,15 26.15 31.96 97.59 96.05 45.71 98.66 65.46 | 199/175/39 | 93.13
3,20 26.17 32.22 97.47 95.91 46.33 98.64 65.37 | 226/232/45 | 91.87
5,10 26.13 31.34 97.01 94.82 37.42 98.71 64.97 | 184/118/35 | 99.38
5,15 26.14 31.96 97.31 95.06 40.25 98.69 64.72 | 214/175/40 | 99.38
5,20 26.12 32.24 97.27 95.17 43.67 98.70 64.80 | 244/232/45 | 99.38
10, 10 26.16 31.06 96.77 94.41 35.42 98.78 65.18 | 205/118/35 | 100.00
10, 15 26.13 31.69 97.03 94.24 36.93 98.77 65.22 | 241/175/41 | 100.00
10,20 26.13 31.96 97.04 94.58 38.50 98.77 64.97 | 278/232/45 | 100.00
15,10 26.11 30.95 96.60 94.07 31.69 98.79 65.20 | 226/117/35 | 100.00
15,15 26.12 31.59 96.90 94.15 33.17 98.79 65.20 | 264/175/39 | 99.38
15,20 26.11 31.86 96.96 94.21 33.74 98.78 65.17 | 304/232/45 | 100.0

5 CONCLUSION

In this work, we presented BachVid, the first training-free approach for generating multiple videos
with consistent characters and backgrounds, without relying on reference images or additional train-
ing. By systematically analyzing the attention mechanism and intermediate features of DiTs, we
revealed their intrinsic ability to extract foreground masks and identify matching points during de-
noising. Building on these insights, BachVid generates an identity video, caches key intermediate
variables, and reinjects them into subsequent generations to ensure both foreground and background
consistency. Experiments confirm that our method achieves robust consistency while remaining
efficient and training-free.

Limitation and future work. BachVid does not support reference identity or background images
as inputs. A promising direction is to integrate our findings on mask extraction, point matching, and
vital layer selection into reference image—based methods, which could further enhance their training
efficiency.
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Figure 10: Average IoU Evaluation of foreground mask extraction at different timesteps and layers.

Time step

Layer index
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Figure 11: MSE Evaluation of matching point identification at different timesteps and layers.

A USAGE OF LLM

We use ChatGPT to polish our writing, and use DeepSeek for text-to-video prompt generation,
which is used as evaluation dataset.

B RESULTS ON WAN2.1

To further prove the effectiveness of our method, we conduct analysis and experiments on another
DiT-based Model: Wan2.1-T2V-14B. The architectural of Wan is different from CogVideoX. Wan
uses cross-attention to integrate text prompt to video latents.

B.1 FOREGROUND MASK EXTRACTION

For foreground mask extraction, we find that using whole sentences of [Background] and [Character]
results in bad performance, because high attention weights tends to occur in words like “the”, “with”
and “.”, etc.

Therefore, we use LLM to identify the noun of the sentences to detail the scope, the results show
similar trends with CogVideoX (See Fig[T0a).

We select the top-8 layers (indices 3-10), whose IoU values are above the 70% of the maximum IoU.
We set Tnask = 9, where IoU reaches >95% of its maximum.

B.2 MATHCING POINT IDENTIFICATION

For matching point identification, the results are shown in Fig.[TTa} Note that the results in Fig
are evaluated on timesteps (5-15) because we find that the other timesteps has bad results in Fig 1 1bj

Based on these observations, we select the bottom-6 layers (indices 2-7), denoted Lqch, and further
evaluate on these layers (See Fig. [[1d). The results reflect a different trend from Fig. as the
other layers badly disrupt the point matching. The observation is similar to Fig. that point
matching quality improves during denoising but degrades at the final steps.

We also set Tiaich = 9, where MSE is within 105% of the minimum.
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Figure 12: Aes scores when skipping layers.

B.3 VITAL LAYERS DETERMINATION

As shown in Fig[12] skipping layer | € Los={1,2,17,22,24,29,33,34,35,39,40} significantly
reduces scores.

We showcase more generated videos in Fig. [T3]

C RESULTS WITH OTHER PROMPT TEMPLATE

We further provide examples generated by prompt formed as “[Character],[Background],[ Action]”
in Fig. The results demonstrate that our method would not be overfitting to prompt formed as
“[Background],[Character],[ Action]”.

D FAILURE CASE

If the identity video contains complex scene and actions, the extracted mask may not be perfect,
which would result in undesirable videos. We provide two examples in Fig.[[3] In the first example,
the mask at the slender fishing rod in the identity video is difficult to extract completely, so the fishing
rod in the generated frame video is also regarded as the “background”. In the second example, there
are multiple contents in the video that could be regarded as “general”, making it difficult to obtain
the desired mask.

A sunny, tranquil fishing pier extending over calm blue water, with a fishing rod holder and a cooler sitting on the wooden planks.
An old fisherman with a weathered face and a bucket hat, wearing a plaid shirt and holding a fishing rod.

1) reels in the line with a steady hand, a grin spreading across his face as he feels the weight of the catch.

2) watches the tip of the rod intently for any sign of a nibble.

A modern military command center filled with large digital screens displaying strategic maps and data.
A distinguished general, wearing a highly decorated uniform with gray hair,

1) stands confidently in front of one of the screens. He is pointing at a detailed map.

2)is speaking into a radio headset.

Figure 13: Failure cases.
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A monk, dressed in traditional orange robes and with a shaved head.

A peaceful Japanese Zen garden with meticulously raked sand and blooming cherry blossom trees.
1) sits cross-legged in deep meditation under a small pagoda.

2) stands gracefully by a small tea table. He is pouring tea into a delicate, small cup.

3) stands quietly, his focused gaze on a small incense stick as he carefully lights it.

§ = S [ — ¥

A businesswoman in a navy suit with glasses and a neat bun.

A modern office space with glass walls and glowing computer monitors, the lighting is bright and the atmosphere is professional.
1) sits at her desk, sipping coffee while reviewing documents.

2) is seated at a sleek desk, typing quickly on a laptop.

3) is standing at her desk, speaking on a phone with a serious expression.

Figure 14: Results with other prompt template. Videos generated from prompts formed as “[Char-
acter],[Background],[Action]”.
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A spacious, well-organized garage workshop with a sturdy workbench, tools hanging on a pegboard, and a vintage motorcycle on a center stand.
A mechanic in her 30s with her hair tied up in a red bandana, wearing oil-stained coveralls and protective goggles.

1) selects a socket wrench from the pegboard wall.

2) peers inside the engine, using a flashlight to inspect the components.

A sunny, tranquil fishing pier extending over calm blue water, with a fishing rod holder and a cooler sitting on the wooden planks
An old fisherman with a weathered face and a bucket hat, wearing a plaid shirt and holding a fishing rod

1) places the rod in the holder and sits down on a small stool to wait.

2) watches the tip of the rod intently for any sign of a nibble.

3) reels in the line with a steady hand, a grin spreading across his face as he feels the weight of the catch.

Figure 15: More Results of BachVid (Wan2.1).
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