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ABSTRACT

Bayesian learning via Stochastic Gradient Langevin Dynamics (SGLD) has been
suggested for differentially private learning. While previous research provides
differential privacy bounds for SGLD when close to convergence or at the initial
steps of the algorithm, the question of what differential privacy guarantees can be
made in between remains unanswered. This interim region is essential, especially
for Bayesian neural networks, as it is hard to guarantee convergence to the poste-
rior. This paper will show that using SGLD might result in unbounded privacy loss
for this interim region, even when sampling from the posterior is as differentially
private as desired.

1 INTRODUCTION

Machine learning and, specifically, deep learning models show state-of-the-art results in various
fields such as computer vision, natural language processing, and signal processing (e.g., Carion
et al. (2020); Devlin et al. (2019); Balevi & Andrews (2021)). Training these models requires data,
which in some problems, e.g., healthcare, finance, can include private information that should not
be made public. Unfortunately, it has been shown (Fredrikson et al. (2015); Carlini et al. (2021))
that private information from the training data can sometimes be extracted from the trained model.
One common approach to handle this issue is Differential Privacy (DP). Differential Privacy is a
framework that ensures that the distribution of training output would be the same, even if we switch
one of the training participants, thus ensuring privacy.

As privacy is usually obtained by adding random noise, it is natural to investigate whether Bayesian
inference, which uses a distribution over models, can give private predictions. Previous works have
shown that sampling from the posterior is differentially private under certain mild conditions (Wang
et al. (2015); Foulds et al. (2016); Dimitrakakis et al. (2017)). The main disadvantage of this method
is that sampling from the posterior is generally hard. The posterior usually does not have a closed-
form solution, and iterative methods such as Markov Chain Monte Carlo (MCMC) are needed.
While theoretical bounds on the convergence of MCMC methods for non-convex problems exist
(Ma et al., 2019), they usually require an infeasible number of steps to guarantee convergence in
practice.

Stochastic Gradient Langevin Dynamics (SGLD) is a popular MCMC algorithm used to approxi-
mately sample from an unnormalized distribution (Welling & Teh, 2011). The privacy guarantees
of this specific sampling algorithm are interesting as it not only returns a sample from the posterior,
which can be private, but the process itself of stochastic gradient descent with Gaussian noise mir-
rors the common Gaussian mechanism in DP. Previous work Wang et al. (2015) gives two disjoint
privacy analyses: The first is for approximate sampling from the Bayesian posterior, which is only
relevant when the SGLD almost converges. The second uses the standard DP analysis utilizing the
Gaussian mechanism and the Advanced Composition theorem (Dwork & Roth, 2014), which only
applies for a limited number of steps and is not connected to Bayesian sampling.

From these two lines of research, differential privacy bounds for SGLD are provided for its initial
steps or when close to convergence. Neither of these cases is suitable for deep learning and many
other problems, as one would limit the model’s accuracy, and the other is unattainable in a reasonable
time. Consequently, the privacy properties of SGLD in the interim region, between these two private
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sections, are of high importance. One could speculate that since the initial steps of the algorithm
are private, and it converges to the posterior that is also private, then sampling at the interim region
will be private as well. If so, SGLD could be considered a solution for training differentially private
deep neural networks. Unfortunately, as we will show, this is not the case.

Our Contributions: This work provides a counter-example, based on a Bayesian linear regression
problem, showing that approximate sampling using SGLD might result in an unbounded loss of
privacy in the interim regime. Moreover, this loss of privacy can even occur under strong conditions
- when sampling from the posterior is as private as desired, and the problem is complex - even
stronger conditions than what we can assume for most Deep Neural Network problems. This implies
that special care should be given when using SGLD for private predictions, especially for problems
where it is infeasible to guarantee convergence.

2 RELATED WORK

Several previous works investigate the connection between Bayesian inference and differential pri-
vacy (Wang et al. (2015); Foulds et al. (2016); Zhang et al. (2016); Dimitrakakis et al. (2017);
Geumlek et al. (2017); Ganesh & Talwar (2020)). None of these papers provide guarantees over
SGLD differential privacy in the interim regime. The closest work to ours is Wang et al. (2015) that
specifically investigates stochastic MCMC algorithms such as SGLD. As mentioned, its analysis
only covers the initial phase and when approximate convergence is achieved.

As many of the privacy bounds require sampling from the posterior, if SGLD is to be used, it requires
non-asymptotic convergence bounds. Dalalyan (2014) provided non-asymptotic bounds on the error
of approximating a target smooth and log-concave distribution by Langevin Monte Carlo. Cheng &
Bartlett (2018) studied the non-asymptotic bounds on the error of approximating a target density p∗
where log p∗ is smooth and strongly convex.

For the non-convex setting, Raginsky et al. (2017) showed non-asymptotic bounds on the 2-
Wasserstein distance between SGLD and the invariant distribution solving Itô stochastic differential
equation. However, to provide (ε, δ) differential privacy, an algorithm should produce a distribution
that is O(δ) close to neighbouring databases. Total Variation (for details about Total Variation see
Tsybakov (2008)) is a more suitable distance for working with differential privacy. Ma et al. (2019)
examined a target distribution p∗, which is strongly log-concave outside of a region of radius R, and
where − ln p∗ is L-Lipschitz. They provided a bound on the number of steps needed for the Total
Variation distance between the distribution at the last step and p∗ to be smaller than ε. This bound is
proportional to O(e32LR2 d

ε2 ), where d is the model dimension. This result suggests that even little
non-convexity will render running until close to convergence impractical. A conclusion from this
work is that basing the differential privacy of SGLD on the proximity to the posterior is impractical
for non-convex settings.

3 BACKGROUND

3.1 DIFFERENTIAL PRIVACY

Differential Privacy (Dwork et al. (2006b;a); Dwork (2011); Dwork & Roth (2014)) is a definition
and a framework that enables performing data analysis on a database while reducing one’s risk of
exposing its personal data to the database. An algorithm is differentially private if it does not change
its output distribution by much due to a single record change in its database.

Definition 1. Approximate Differential Privacy: A randomized algorithm M : D → Range(M) is
(ε, δ)-differentially private if ∀S ⊆ Range(M) and {∀D, D̂ ∈ D : ‖D − D̂‖ ≤ 1} eq. 1 holds.
D, D̂ are called neighboring databases, and while the metric can change per application, Hamming
distance is typically used.

Pr[M(D) ∈ S] ≤ exp(ε)Pr[M(D̂) ∈ S] + δ (1)

Mironov (2017) suggested Rényi Differential Privacy (Definition 3), a relaxation to differential pri-
vacy, and a way to translate RDP guarantees into approximate differential privacy guarantees.
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Definition 2. Rényi Divergence (Rényi, 1961): For two probability distributions Z and Q over R,
the Réyni divergence of order ν > 1 is

Dν(Z||Q)
∆
=

1

ν − 1
logEx∼Q

[(
Z(x)

Q(x)

)ν]
.

Definition 3. (ν, ε)-RDP: A randomized mechanism f : D → R is said to have ε-Rényi differential
privacy of order ν, or (ν, ε)-RDP in short, if for any adjacent databases D, D̂ ∈ D eq. 2 holds,
where Dν is Rényi divergence of order ν.

Dν(f(D)||f(D̂)) ≤ ε (2)

Lemma 3.1. (Mironov (2017) Proposition 3). If f is (ν, ε)-RDP, it also satisfies (ε +
log 1

δ

ν−1 , δ) Dif-
ferential Privacy for any 0 < δ < 1.

3.2 STOCHASTIC GRADIENT LANGEVIN DYNAMICS

Stochastic Gradient Langevin Dynamics (SGLD) is an MCMC method that is commonly used for
Bayesian Inference (Welling & Teh, 2011). The update step of SGLD is shown in eq. 3, where θj
is the parameter vector at step j, ηj is the step size at step j, p(θj) is the prior distribution, p(yi|θj)
is the likelihood of sample yi given model parameterized by θj , b is the batch size, and n is the
database size. SGLD can be seen as a Stochastic Gradient Descent with Gaussian noise, where the
variance of the noise is calibrated to the step size.

θj+1 = θj +
ηj
2

[
∇θj ln p(θj) +

n

b

b∑
i=1

∇θj ln p(yij |θj)
]

+
√
ηjξj

ij ∼ uniform{1, ..., n}
ξj ∼ N (0, 1)

(3)

A common practice in deep learning is to use cyclic Stochastic Gradient Descent. This flavour
of SGD first randomly shuffles the database samples and then cyclically uses the samples in this
order. For optimization, there is empirical evidence that it works as well or better than SGD with
reshuffling, and it was conjectured that it converges at a faster rate (Yun et al. (2021)). Cyclic-SGLD
is the analog of cyclic-SGD for SGLD, where the difference is the use of the SGLD step instead of
the SGD step. For simplicity, we will consider cyclic-SGLD in this work.

4 METHOD

Our goal is to prove that even when the posterior is as private as desired, sampling using SGLD for
T steps can be as non-private as desired. This requires analysing the distribution of SGLD after T
steps, which is hard in the general case. However, we show that we can get the desired behaviour
when looking at a simple Bayesian linear regression problem where everything is a Gaussian with
closed-form expressions. Our result is summarized in theorem 1.

Theorem 1. ∀ δ < 0.5, ε, ε′ there exists a domain and a Bayesian inference problem where a single
sample from the posterior distribution is (ε, δ) differentially private, but, there is a number, T , for
which performing approximate sampling by running SGLD for T steps is not (ε′, δ) differentially
private.

As ε′ can be as big as desired, and ε can be as small as desired, a corollary of Theorem 1 is that
we could always find a problem for which the posterior is (ε, δ) differentially private, but there will
be a step in which SGLD will result in unbounded loss of privacy. Therefore, SGLD alone can not
provide any privacy guarantees in the interim regime, even if the posterior is private.

To prove our theorem, we consider a Bayesian regression problem for a linear model with Gaussian
noise, as defined in eq. 4, on domain D defined in eq. 5.
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y = θx+ ξ

ξ ∼ N (0, β−1)

θ ∼ N (0, α−1)

log p(y|x, θ) = −β(y − θx)2/2− 1

2
log(2π/β)

(4)

D(n, γ1, xh, xl, c) =

{xi, yi||
yi
xi
− c| ≤ nγ1 ; xi, yi, c, γ1 ∈ R>0; xl ≤ xi ≤ xh}ni=1

We assume that x2
hβ > 3 and that γ1 <

1

2

(5)

n, c, xl, xh, γ1 are parameters of the problem (c, xl, xh, and γ1 are used, together with the database
size - n, to bound the database samples to a chosen region). For every ε, ε′ and δ, we will show there
exist parameters n, c, xl, xh, γ1 that have the privacy properties required to prove Theorem 1. The
restrictions on the dataset simplify the proof but are a bit unnatural as it assumes we approximately
know c, the parameter we are trying to estimate. Later we show in subsection 4.3 that they can
be replaced with a Propose-Test-Release phase. We will address the problem of Bayesian Linear
Regression for the model described in eq. 4 on domain D as Bayesian linear regression problem
on domain D. This problem has a closed-form solution for both the posterior distribution and the
distribution at each SGLD step, thus enabling us to get tight bounds on the differential privacy in
each case.

The heart of our proof is showing that for n big enough sampling from the posterior is (ε, δ) differ-
entially private, with ε ∼ O( c

2

n3 ), while for SGLD there exists a step in which releasing a sample
will not be (ε′, δ) differentially private for ε′ = Ω( c

2

n2 ). Therefore, by considering instances of the
problem where c ∼ O(n

3
2
√
ε) and n is big enough, sampling from the posterior will be (ε, δ) dif-

ferentially private, while there will be an SGLD step in which releasing a sample will not be (ε′, δ)
differentially private for ε′ = Ω(nε). We note that the bounds contain dependency over δ, but since
we are using a fixed and equal δ for both the posterior and SGLD privacy analysis, we omit it from
the bounds for simplicity.

Figure 1: A value indicative of the distance between the distributions of samples from two
SGLD processes running on neighbouring databases for the linear Gaussian model. For details
on µs, µrs, σ

r
s see subsection 4.2. The parameters used for this experiment (n = 1149019, α =

0.1, β = 1, xh = 1.8, xl = 0.9, γ1 = 0.1, γ2 = 1.001, c = 1165165) ensure (1.6, 0.01) differential
privacy when sampling from the posterior.

Figure 1 depicts an indicative value of the distance between the distributions of samples from two
SGLD processes running on adjacent databases for the Bayesian linear regression problem. As we
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will later show, SGLD on one of these examples is a Gaussian while the other is a mixture of n
Gaussians. We plot 1

n

∑
i

(µt−µit)
2

(σit)
2 , where µt is the mean of the single Gaussian at timestep t, µit

is the mean of the i’th Gaussian component at timestep t and (σit)
2 its variance. We can see that

even though the distributions are close at the initial iterations and at convergence (which implies
differential privacy in those areas), in the interim region, they are significantly apart, which implies
a lack of differential privacy.

4.1 POSTERIOR SAMPLING PRIVACY

To prove Theorem 1, we first need to show that ∀δ < 0.5, ε, there exists a domain and a Bayesian
inference problem where a single sample from the posterior distribution is (ε, δ) differentially pri-
vate. In order to do so, this section will consider the differential privacy guarantees provided by one
sample from the posterior for the Bayesian linear regression problem on domain D.

We begin by using a well-known result for the closed-form-solution of the posterior distribution for a
Bayesian linear regression problem (see Bishop (2006) for further details). By using the parameters
of our problem, we get Lemma 4.1.
Lemma 4.1. The posterior distribution for Bayesian linear regression problem on domain D is

p(θ|D) = N (θ;µ, σ2); µ =

∑n
i=1 xiyiβ

α+
∑n
i=1 x

2
iβ

; σ2 =
1

α+
∑n
i=1 x

2
iβ
. (6)

Using the posterior distribution, one can calculate the Renyi divergence between every two neigh-
bouring databases, thus getting an expression for the Rényi differential privacy, as shown in Lemma
4.2.
Lemma 4.2. For a Bayesian linear regression problem on domain D, such that n > max{1 +

10
x2
h

x2
l

ν
β , 1 + ν

x2
h

x2
l
}, one sample from the posterior is (ν, ε1)-Rényi differentially private. ε1 ∼ O( c

2

n3 )

for c >> n1+γ1 .

ε1 =
x2
h

2(n− 1)x2
l

+
1

2
(ν − 1)

νx2
h

(n− 1)x2
l − νx2

h

+ 2νβ
x4
h

9
10n

1−2γ1x2
l

+

2νβ · (x2
hβ)(x2

hα+ x4
hβ)

9
10 (x2

l β)2
· (c+ nγ1)

n2−γ1
+
ν

2
· (x2

hα+ x4
hβ)2

9
10x

6
l β

· (c+ nγ1)2

n3
.

We can show that for c >> n1+γ2 , each of the terms is bounded by O( c
2

n3 ). The first and second
terms are bounded by O( 1

n ). The third term is bounded by O(n2γ1−1). Noticing that n2γ1−1 =
n2(1+γ1)

n3 < c2

n3 , we get that the third term is bounded by O( c
2

n3 ). As c >> nγ1 , the fourth term
is bounded by O( cn

γ1

n2 ), and since cnγ1

n2 = cn1+γ1

n3 < c2

n3 , the term is bounded by O( c
2

n3 ). Lastly,
since c >> n1+γ1 , the last term is bounded by O( c

2

n3 ). For the full proof, see subsection A.1 in the
appendix.

Translating the Rényi differential privacy guarantees into approximate differential privacy terms can
be done according to Lemma 3.1, which gives Lemma 4.3.

Lemma 4.3. With the conditions of Lemma 4.2, one sample from the posterior is (ε1 +
ln( 1

δ )

ν−1 , δ)
differentially private.

By choosing ν such that ln( 1
δ )

ν−1 < ε
2 and then choosing n big enough such that ε1 < ε

2 , we get that
the posterior is (ε, δ) differentially private.

4.2 STOCHASTIC GRADIENT LANGEVIN DYNAMICS PRIVACY

To complete the proof of Theorem 1, we need to show that even if one sample from the posterior
is (ε, δ) differentially private for a Bayesian linear regression problem on domain D, it does not
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provide any guarantees on the privacy of SGLD for that problem. In order to do so, this section will
first consider the loss in privacy when using SGLD for the Bayesian linear regression problem on
domain D, and then, together with the results of section 4.1, will prove Theorem 1.

In order to show that SGLD is not differentially private after initial steps and before convergence,
it is enough to find two neighbouring databases for which the loss in privacy is as big as desired in
those steps. We define neighbouring databases D1 and D2 in eq. 7 and consider the Bayesian linear
regression problem on D1 and D2. We set the learning rate to be η = 2

(α+nx2
hβ)2

.

D1 = {xi, yi : xi = xh, yi = c · xh}ni=1

D2 = {xi, yi : xi = xh, yi = c · xh}n−1
i=1 ∪ {

xh
2
, c · xh

2
}

(7)

To tightly analyze the differential privacy loss when approximately sampling via SGLD at each step,
we need to get a closed-form solution for the distribution for each step. For databaseD1, the solution
is Normal distribution. For database D2, different shuffling of samples produces different Gaussian
distributions, therefore giving a mixture of Gaussians.

We look at cyclic-SGLD with a batch size of 1 and mark by θj , θ̂j the samples on the j’th SGLD
step when using databases D1 and D2 accordingly. Since D1 samples are all equal, the update step
of the cyclic-SGLD is the same for every step (with different noise generated for each step). This
update-step contains only multiplication by a scalar, addition of a scalar, and addition of Gaussian
noise, therefore, together with a conjugate prior results in Normal distribution for θj : N (θj ;µj , σ

2
j ).

For D2, there is only one sample different from the rest. We mark by r the index in which this
sample is used in the cyclic-SGLD and call this order r-order. Note that there are only n different
values for r and, as such, effectively only n different samples orders. Since every order of samples is
chosen with the same probability, r is distributed uniformly in {1, .., n}. We mark by θ̂rj the sample
on the j’th SGLD step when using r-order. Since, for a given order, θ̂rj is formed by a series of
multiplications by a scalar, addition of scalar, and addition of Gaussian noise, and since the prior is
also Gaussian, then θ̂rj is distributed Normally, N (θ̂rj ; µ̂

r
j , (σ̂

r
j )

2). As r is distributed uniformly, θ̂j
distribution mass is distributed evenly between all θ̂rj , resulting in a mixture of Gaussians.

Intuitively what will happen is that each Gaussian components ,θ̂j as well as θj , will move towards
the similar posterior Gaussian. However, at each epoch, θ̂j will drag a bit behind because in one
batch one gradient is smaller. While this gap can be quite small, for large n, the Gaussians are very
peaked with very small standard deviations; thus, they separate enough that we can easily distinguish
between the two distributions.

According to approximate differential privacy definition (Definition 1), it is enough to find one set
S such that p(θj ∈ S) > eεp(θ̂j ∈ S) + δ to show that releasing θj is not (ε, δ) private. We
choose S = {s|s > µj} at some step j we will define later on. It is clear from symmetry that
p(θj > µj) = 1/2, and by using Chernoff bound we can bound p(θ̂j > µj).

Lemma 4.4. p(θ̂j > µj) ≤ 1
n

∑n
r=1 exp(− (µj−µ̂rj )2

2(σ̂rj )2 ).

Using Lemma 4.4, we can upper bound the mass of θ̂j in S, and thus lower bound the difference
between θj and θ̂j distribution masses in S for some step - j. To use Lemma 4.4, we first need to

lower bound
(µj−µ̂rj )2

(σrj )2 for a certain step. This is done in Lemma 4.5.

Lemma 4.5. ∃k ∈ Z>0 such that
(µ(k+1)n−µ̂r(k+1)n)2

(σ̂r
(k+1)n

)2 = Ω( c
2

n2 ), for n big enough.

To prove Lemma 4.5, we first find closed-form solutions for θ̂r(k+1)n, θ(k+1)n distributions (Lemma
A.1). Using the closed-form solutions, we find a lower bound over (µ(k+1)n − µ̂r(k+1)n)2 as a
function of k, which applies for all k (Lemma A.2). To upper bound (σ̂r(k+1)n)2, we find an approx-
imation to the epoch in which the data and prior effects on the variance are approximately equal,
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marked k̇. We choose the step in which we will consider the privacy loss as (dk̇e+1)n and show that
(σ̂r

(dk̇e+1)n
)2 is upper bounded at this step (Lemma A.4). Using the upper bound on the difference in

means and the lower bound on the variance, Lemma 4.5 is proved. By using the lower bound from
Lemma 4.5 in Lemma 4.4, we get Lemma 4.6.

Lemma 4.6. For the Bayesian linear regression problem over database D1, such that n is big
enough, ∃T ∈ Z>0 such that approximate sampling by running SGLD for T steps will not be (ε, δ)

private for ε < Ω( c
2

n2 ), δ < 0.5.

From Lemma 4.3, we see that sampling from the posterior is (ε, δ) differentially private for ε =

O( c
2

n3 ). From Lemma 4.6, we see that for SGLD, there exists a step in which releasing a sample will
not be (ε′, δ) differentially private for ε′ = Ω( c

2

n2 ). Therefore, considering instances of the problem
where c = O(n

3
2
√
ε), sampling from the posterior will be (ε, δ) differentially private. However,

there will be an SGLD step in which releasing a sample will not be (ε′, δ) differentially private for
ε′ = Ω(nε). Since we can choose n to be big as desired, we can make the lower bound over ε′ as
big as we desire. This completes the proof of Theorem 1.

4.3 PROPOSE TEST SAMPLE

Our analysis of the posterior and SGLD is done on a restricted domain D as defined in eq. 5. These
restrictions over the dataset simplify the proof but are a bit unnatural as they assume we approxi-
mately know c, the parameter we are trying to estimate. This section shows that these restrictions
could be replaced with a Propose-Test-Release phase (Dwork & Lei, 2009) and common practices
in deep learning.

When training a statistical model, it is common to first preprocess the data by enforcing it in a
bounded region and removing outliers. After the data is cleaned, the training process is performed.
This is especially important in DP, as outliers can significantly increase the algorithm’s sensitivity
to a single data point and thus hamper privacy.

Informally, algorithm 1 starts by clipping the input to the accepted range. It then estimates a
weighted average of the ratio yi

xi
(line 12) and throws away outliers that deviate too much from

it. The actual implementation of this notion is a bit more complicated because of the requirement
to do so privately. Once the database is cleaned, algorithm 1 privately verifies that the number of
samples is big enough, so the sensitivity of p(θ|W ) to a single change in the database will be small,
therefore making sampling from p(θ|W ) (ε, δ) differentially private. This method is regarded as
Propose-Test-Release, where we first propose a bound over the sensitivity, then test if the database
holds this bound, and finally release the result if so.

We define nmin in eq. 26 in the appendix to be the minimum size of W for which the algorithm
will sample from p(θ|W ) with high probability. We will show later on that this limit ensures that
sampling from p(θ|W ) is (ε, δ) differentially private.

We define p(θ|W ) to be the posterior for the Bayesian linear regression problem over database W.
From Lemma 4.1, it follows that p(θ|W ) has the form of

p(θ|W ) = N (θ;µ, σ2); µ =

∑
(xi,yi)∈W xiyiβ

α+
∑

(xi,yi)∈W x2
iβ

; σ2 =
1

α+
∑

(xi,yi)∈W x2
iβ
.

Claim 4.1. Algorithm 1 is (5ε, 2δ) differentially private.

By claim C.9, steps 6-13 are (3ε, δ) differentially private. By corollary C.3, steps 14-19 are (2ε, δ)
differentially private for given m̆ and n2. Therefore by the sequential composition theorem, the
composition is (5ε, 2δ) differentially private. The claim proved by noticing that if steps 6-19 are
private with respect to the updated database (after step 5), then they are also private for the original
database.

Claim 4.2. When replacing line 19 with sampling via SGLD with step size η = 1
(α+n1x2

hβ)2
, then

∃T (n1) : Z>0 → Z>0 such that the updated algorithm is not (ε, δ) differentially private ∀ε ∈
R>0, δ <

1
6 if ran for T (n1) steps.
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Algorithm 1 Propose Test Sample
Input: D = {xi, yi}n1

i=1

Parameters: ε, δ < 0.5, xl > 0, xh > xl, α > 0, β ≥ 3
x2
h
, ρ1 ∈ (1, 3

2 ), ρ2 ∈ (0, 1
2 ), γ1 ∈ (ρ2,

1
2 )

1: for i = 1, 2, . . . , N do
2: xi ← max{xi, xl}
3: xi ← min{xi, xh}
4: yi ← max{yi, 0}
5: end for
6: n̆1 ← n1 − 1

ε log 1
2δ + Lap( 1

ε )
7: V = {xi, yi| yixi ≤ n̆

ρ1
1 }

8: n2 ← |V | − 1
ε log 1

2δ + Lap( 1
ε )

9: if n2 ≤ 1 then
10: return null
11: end if
12: m←

∑
(xi,yi)∈V

xiyi∑
(xi,yi)∈V

x2
i

13: m̆← m+ Lap( 1
ε n̆

ρ1
1

2(n2−1)x2
hx

2
l+x

4
h

n2(n2−1)x4
l

)

14: W ← {(xi, yi) : | yixi − m̆| ≤ n
ρ2
2 }

15: nW ← |W | − 1
ε log( 1

2δ ) + Lap( 1
ε )

16: if nW < nmin then
17: return null
18: end if
19: return sample from p(θ|W )

Proof sketch (See appendix for full proof). We first note that by choosing 1+ρ2 > ρ1, the sensitivity
of m̆ grows slower than the bound over the distance | yixi − m̆|. Therefore for n1 big enough, samples
for which yi

xi
= m will be included in W with high probability. Consequently, databases D3, D4 ∈

D will reach, with high probability, to step 19, which from our previous analysis over SGLD (see
subsection 4.2) will cause an unbounded loss in privacy.

ρ1 > ρ3 > 1

D3 = {xi, yi : xi = xh, yi = nρ31 · xh}
n1
i=1

D4 = {xi, yi : xi = xh, yi = nρ31 · xh}
n−1
i=1 ∪ {

xh
2
, nρ31 ·

xh
2
}

(8)

5 WASSERSTEIN DISTANCE AND DIFFERENTIAL PRIVACY

As we have shown in Theorem 1, one cannot give any DP guarantees for SGLD in the interim
region. That means that to get private samples using SGLD, one must limit the number of iterations,
thus utilizing the Gaussian mechanism, or run until approximate convergence. Therefore, it is of
interest to get non-asymptotic convergence bounds for SGLD so that we guarantee privacy after a
known number of steps. Previously, several works have given non-asymptotic bounds; however,
some of those do so for the 2-Wasserstein metric (Raginsky et al. (2017); Cheng et al. (2018)). This
is unfortunate as the 2-Wasserstein metric is unsuitable for differential privacy - it is easy to create
two distributions with 2-Wasserstein distance as small as desired but with disjoint support.

It is, however, interesting to ask whether combining bounds on the 2-Wasserstein metric with
Lipschitz continuous probability densities will allow us to get privacy guarantees. The intuition
why this should be enough is simple: If p, q are two distributions with small 2-Wasserstein distance,
then there is (under mild conditions) a mapping, f : X → X , such that the pushforward maintains
f]p = q (i.e. for each measurable set S q(S) = p(f−1(S))) and that Ep[||x−f(x)||2] < ε. One can
assume that p(x) ≈ q(f(x)) and q(x) ≈ q(f(x)) as x ≈ f(x) with high probability. Unfortunately,
this intuition does not hold exactly, as the map f can change the density considerably but still be a

8



pushforward by changing the volume. For example, if we assume f is smooth and bijective, we get
the standard change of variable formula such that p(x) = q(f(x)) |det(Jf )|, so p(x) ≈ q(f(x))
only if |det(Jf )| ≈ 1. This issue becomes more severe as the dimensionality increases.

For completeness, we will share our results connecting p(x) to q(x) when W2(p, q) is small,
and both distributions are L-Lipschitz continuous. This bound scale poorly with dimension, and
as such ill-suited for SGLD on deep networks, but can still be useful for Bayesian sampling in
low-dimensional problems.

For distribution p, we define the density pλ(x) as the average of p(x) on a ball of radius λ centered
around x - pλ(x) = 1

vold(λ)

∫
Bdλ(0)

p(x + z)dz, where Bdλ(x) is the ball in Rd of radius λ centered
around x, and vold(λ) is its volume.
Claim 5.1. For L-Lipschitz continuous distribution p we have |p(x)− pλ(x)| ≤ λL.

Theorem 2. Let P,Q be absolutely continuous w.r.t the Lebesgue measure in Rd, with finite second-
moment and L-Lipschitz continuous densities p, q. IfW2(p, q) < ε2 then we have

pλ(x) ≤ vold(λ)

vold(λ− ε)
qλ(x) +

(
vold(λ)

vold(λ− ε)
− 1

)
2λL+

ε

vold(λ− ε)
. (9)

The proof is an extension of the proof of theorem 2.1 in Walker (2004) to dimensions larger than 1.
The detailed proof is in the supplementary material.

It is easy to see that as vold(λ)
vold(λ−ε) =

(
1 + ε

λ−ε

)d
, the bounds usefulness quickly diminishes with

dimensionality as it requires extremely small ε to give non-vacuous results.

This, however, can still give useful results in low-dimensional problems.

6 CONCLUSION

As shown in this work, while SGLD has interesting connections to privacy and some guarantees,
caution is required if one wishes to use it to get private predictions. This is especially important for
models such as deep neural networks, where it is infeasible to guarantee convergence.

9
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A SGLD AND POSTERIOR PRIVACY

Proof Theorem 1. Define

1

2
> γ1 > 0;

3

2
> γ2 > 1 + γ1; xl =

xh
2

ν1 =
2 ln(1

δ )

ε
+ 1

n1 = max{ 1

2αx2
hβ
− 1

x2
hβ
,
α

x2
hβ
,
α

x2
hβ

(e
2

x2
h
β − 2) +

1

2x2β
}

n2 = max{1 +
x2
h

x2
l

8

ε
, 1 + ν

x2
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x2
l

(1 + 8
(ν − 1)

ε
), (

16νβx4
h

9
10εx
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)
1

1−2γ1 ,

(
16νβ

ε
(
(x2
hβ)(x2

hα+ x4
hβ)

9
10 (x2

l β)2
)(1 +

1

(1 + 10
x2
h

x2
l

ν
β )γ2−γ1

))
1

2−γ1−γ2 ,

(
4ν

ε
(
(x2
hα+ x4

hβ)2

9
10x

6
l β

)(1 +
1

(1 + 10
x2
h

x2
l

ν
β )γ2−γ1

))
2

3−2γ2 }

n3 = max{1 + 10
x2
h

x2
l

ν1

β
, 1 + ν

x2
h

x2
l

}

np = max{n1, n2, n3, ((ε
′ − ln(0.5− δ))e

2
x2β (

32x2
hβ

3
)2 2v1

α
)

1
2(γ2−1) }

v1 = max{6, 1 + 2e
1

x2
h
β }

cp = nγ2p

.

We consider the Bayesian linear regression problem over databaseD1 (defined in eq. 7) with n = np
and c = cp. Since np > n1, the problem holds the constraints of lemma A.6. Consequently, there
exists a step for which one approximate sample from the posterior using SGLD is not (ε′′, δ) private
for all ε′′ such that ε′′ ≤ e

− 2
x2β α

2v1
( 3

32x2
hβ

)2(
cp
np

)2 + ln(0.5 − δ). From eq. 10, the choice of np

promises that ε′ ≤ e
− 2
x2β α

2v1
( 3

32x2
hβ

)2(
cp
np

)2 + ln(0.5 − δ); Therefore approximate sampling from
the posterior using SGLD is not (ε′, δ) differentially private.

Since np > n2 and np > n3, the problem holds the constraints of Claim D.30. Therefore one
sample from the posterior is (ε, δ) differentially private.

e
− 2

x2
h
β
α

2v1
(

3

32x2
hβ

)2(
cp
np

)2 + ln(0.5− δ) ≥ ε′

(
cp
np

)2 ≥ (ε′ − ln(0.5− δ))e
2

x2
h
β (

32x2
hβ

3
)2 2v1

α

n2(γ2−1)
p ≥ (ε′ − ln(0.5− δ))e

2

x2
h
β (

32x2
hβ

3
)2 2v1

α

np ≥ ((ε′ − ln(0.5− δ))e
2

x2
h
β (

32x2
hβ

3
)2 2v1

α
)

1
2(γ2−1)

(10)

A.1 POSTERIOR SAMPLING PRIVACY

Proof Lemma 4.1. eq. 11 is a known result for the Bayesian inference problem for a linear model
with Gaussian noise with known precision parameter (β) and a conjugate prior (Bishop (2006) -
3.49-4.51. for details). By choosing the basis function to be φ(x) = x, working in one dimension,
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and choosing m0 = 0,S0 = α−1, we get the linear model defined in eq. 4 and matching posterior
described in Lemma 4.1.

p(w|t) = N (w;mN ,SN ); mN = SN (S−1
0 m0 + βΦT t); S−1

N = S−1
0 + βΦTΦ (11)

Proof Lemma 4.2. By definition 3, for a single sample from the posterior to be (ν, ε′) RDP, the
Rényi divergence of order ν between any adjacent databases needs to be bounded. We consider two
adjacent databases D, D̂ ∈ D, and w.l.o.g, define that they differ in the last sample (where it is
also allowed to be (0, 0) for one of them, which saves us the need to consider also a neighbouring
database with a size smaller by 1). To ease the already complex and detailed calculations, we use
definitions in eq .12.

D = {xi, yi}n−1
i=1 ∪ {xn, yn}, D̂ = {xi, yi}n−1

i=1 ∪ {x̂n, ŷn}

z =

n−1∑
i=1

x2
i , q =

n−1∑
i=1

yixi
(12)

According to Lemma 4.1 and with definitions in eq. 12, the posterior distributions are

p(θ|D) = N (θ;µ, σ2); µ =
β(q + xnyn)

α+ (z + x2
n)β

; σ2 =
1

α+ (z + xn)β

p(θ|D̂) = N (θ; µ̂, σ̂2); µ̂ =
β(q + x̂nŷn)

α+ (z + x̂2
n)β

; σ̂2 =
1

α+ (z + x̂n)β

. (13)

By Gil et al. (2013), the Réyni divergence of order ν, - Dν(f1||f2) - for f1, f2, uni-variate normal
distributions with means µ1, µ2 and variances σ1, σ2 accordingly, is

Dν(f1||f2) = ln
σ1

σ2
+

1

2
(ν − 1) ln

σ2
2

(σ2
f1,f2

)∗ν
+

1

2

ν(µ1 − µ2)2

(σ2)∗ν

(σ2
f1,f2)∗ν = νσ2

2 + (1− ν)σ2
1 > 0

.

Therefore, for p(θ|D) and p(θ|D̂), the Rényi divergence of order ν is as shown in eq. 14, where we
omit the subscript for (σ2)∗ν since it is clear from context to which distributions it applies.

Dν(p(θ|D)||p(θ|D̂)) = ln
σ

σ̂
+

1

2
(ν − 1) ln

σ̂2

(σ2)∗ν
+

1

2

ν(µ− µ̂)2

(σ2)∗ν

(σ2)∗ν = νσ̂2 + (1− ν)σ2

(14)

According to claim D.25, (σ2)∗ν > 0. Therefore the value Dν(p(θ|D), p(θ|D̂)) exists. In order to
prove Rényi differential privacy, each of the terms of Dν(p(θ|D), p(θ|D̂)) is bounded separately.
The bounds on each of the terms are proved at claims D.26,D.27, and D.28.

Proof Lemma 4.3. By Lemma 4.2, sampling from the posterior is (ν, ε1)-RDP, therefore by Lemma
3.1, sampling from the posterior is also (ε1 +

ln( 1
δ )

ν−1 , δ) differentially private.
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A.2 STOCHASTIC GRADIENT LANGEVIN DYNAMICS PRIVACY

Proof Lemma 4.4.

p(θ̂j > µj |D2) =

n∑
r=1

p(θ̂rj > µj |D2)p(θ̂j = θ̂rj |D2) =

n∑
r=1

p(θ̂j − µ̂rj > µj − µ̂rj |D2)p(θ̂j = θ̂rj |D2) =

1

n

n∑
r=1

p(θ̂j − µ̂rj > µj − µ̂rj |D2) ≤

1

n

n∑
r=1

exp(−
(µj − µ̂rj)2

2(σrj )
2

)

Where the inequality holds due to Chernoff bound (For further details, see Wainwright (2019)).

Proof Lemma 4.5. By lemma A.5, for n > max{ α
x2β ,

α
x2
hβ

(e
2
x2β − 2) + 1

2x2β ,
1

2αx2
hβ
− 1

x2
hβ
} eq. 15

holds for some k̇ ∈ R>0. We can see that this lower bound is dominated by c2

n2 , therefore proving
Lemma 4.5.

(µ(dk̇e+1)n − µ̂r(dk̇e+1)n
)2

(σr
(dk̇e+1)n

)2
≥ e
− 2

x2
h
β
α

v1
(

3

32x2
hβ

)2(
c

n
)2

v1 = max{6, 1 + 2e
1

x2
h
β }

(15)

Proof Lemma 4.6. By Lemma A.6, for n > max{ α
x2
hβ
, α
x2
hβ

(e
2

x2
h
β −2)+ 1

2x2
hβ
, 1

2αx2
hβ
− 1
x2
hβ
}, there

exists T ∈ Z>0 (Marked in Lemma A.6 as dk̇e) such that running SGLD for the Bayesian linear
regression problem over D1 for T steps will not be (ε, δ) differentially for ε < ε′, as defined in eq.
16, and δ < 0.5. Since ε′ is dominated by c2

n2 , this proves the lemma.

ε′ = e
− 2
x2β

α

2v1
(

3

32x2
hβ

)2(
c

n
)2 + ln(0.5− δ)

v1 = max{6, 1 + 2e
1

x2
h
β }

(16)

A.3 STOCHASTIC GRADIENT LANGEVIN DYNAMICS DETAILED ANALYSIS

In order to ease the analysis of the SGLD process, markings in eq. 17 are used. xh, α, β, c, n are as
defined for the Bayesian linear regression problem, and η is defined in subsection 4.2.

λ = [1− η

2
(α+ nx2

hβ)], λ̂ = [1− η

2
(α+ n(

xh
2

)2β)], ρ =
η

2
ncx2

hβ, ρ̂ =
η

2
nc(

xh
2

)2β (17)

Lemma A.1. The forms of θ̂r(k+1)n are

θ̂1
(k+1)n = θ0λ̂

k+1λ(n−1)(k+1) +
k∑
j=0

(λ̂λn−1)j [ρ̂λn−1 + ρ
n−2∑
i=0

λi +
√
η
n−1∑
i=0

λiξi]

θ̂r>1
(k+1)n = θ0(λ̂λn−1)k+1+

( r−1∑
i=1

(ρ+
√
ηξ)λ̂λn−i−1 + (ρ̂+

√
ηξ)λn−r +

n∑
j=r+1

(ρ+
√
ξη)λn−j

) k∑
l=0

(λ̂λn−1)l.
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Proof Lemma A.1. Welling & Teh (2011) define the SGLD update rule as in eq. 3. This rule can be
applied to the Bayesian linear regression problem over databases D1, D2 as following

p(θj) = N(θj ; 0, α−1)⇒ ln p(θj) = ln(
1√

2πα−1
)− 1

2
θ2
jα⇒ ∇θjp(θj) = −θjα

p(yi|θj) = N(yj ; θjxi, β
−1)⇒ ln p(yi|θj) = ln(

1√
2πβ−1

)− 1

2
(yi − θjxi)2β ⇒

∇θjp(yi|θj) = (yi − θjxi)xiβ ⇒

θj+1 = θj +
η

2
[−θjα+ n(yi − θjxj)xiβ] +

√
ηjξi =

θj [1−
η

2
(α+ nx2

jβ)] +
η

2
nyixiβ +

√
ηξj =

θj [1−
η

2
(α+ nx2

jβ)] +
η

2
ncx2

iβ +
√
ηξj

.

By using standard tools for solving first-order non-homogeneous recurrence relations with variable
coefficients, the value of θ̂1

n can be found.

θ̂1
n = λ̂λn−1(

θ0λ̂+ ρ̂+
√
ηξ

λ̂
+

n∑
i=2

ρ+
√
ηξ

λ̂λi−1
) =

θ0λ̂λ
n−1 + (ρ̂+

√
ηξ)λn−1 + (ρ+

√
ηξ)

n∑
i=2

λn−1−(i−1) =

θ0λ̂λ
n−1 + (ρ̂+

√
ηξ)λn−1 + (ρ+

√
ηξ)

n∑
i=2

λn−1−(i−1) =

θ0λ̂λ
n−1 + (ρ̂+

√
ηξ)λn−1 + (ρ+

√
ηξ)

n−2∑
i=0

λi =

θ0λ̂λ
n−1 + ρ̂λn−1 + ρ

n−2∑
i=0

λi +
√
ηξ

n−1∑
i=0

λi.

Now by defining a new series - θ̂1
(k+1)n = c1θ̂

1
kn + c2, and using the tools for solving first order

non-homogeneous recurrence relations with constant coefficients, the value of θ̂1
kn can be found

θ̂1
kn = ck1(

θ̂1
n

c1
+

k∑
i=2

c2
ci1

) = θ1
nc
k−1
1 +

k∑
i=2

c2c
k−i
1 =

θ1
nc
k−1
1 + c2

k−2∑
i=0

ci1 = (θ0c1 + c2)ck−1
1 + c2

k−2∑
i=0

ci1 =

θ0(λ̂λn−1)k + (ρ̂λn−1 + ρ

n−2∑
i=0

λi +
√
ηξ

n−1∑
i=0

λi)

k−1∑
j=0

(λ̂λn−1)j .

The proof for θ̂rkn is done in similar manner.

Corollary A.1. θ̂r(k+1)n ∼ N(θ̂r(k+1)n; µ̂r(k+1)n, (σ̂
r
(k+1)n)2).

Lemma A.2. µkn+n − µ̂rkn+n ≥ λn−1 ncx2
hβ

α+nx2
hβ
λk(n−1)(λ̂k+1 − λk+1).

Proof Lemma A.2. The proof of this lemma is separated into two cases, for r = 1 and for r > 1.
For r = 1, it is easy to derive eq. 18 from lemma A.1, using E[θ0] = 0 and E[ξ] = 0.

µ̂1
(k+1)n = ρ

n−2∑
i=0

λi
k∑
j=0

(λ̂λ(n−1))j + ρ̂λn−1
k∑
j=0

(λ̂λ(n−1))j

µkn+n = ρ

n−2∑
i=0

λi
k∑
j=0

λjn + ρλn−1
k∑
r=0

λrn

(18)
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We use the sum of a geometric sequence to get

µ̂1
(k+1)n =

ρ

n−2∑
i=0

λi
k∑
j=0

(λ̂λ(n−1))j + ρ̂λn−1
k∑
j=0

(λ̂λ(n−1))j = (ρ(
1− λn−1

1− λ
) + ρ̂λn−1)

1− (λ̂λn−1)k+1

1− λ̂λn−1

.

Therefore the difference between the means can be lower bounded:

µkn+n − µ̂1
kn+n =

1− λ(k+1)n

1− λn
[ρ(

1− λn−1

1− λ
) + ρλn−1]− 1− (λ̂λ(n−1))k+1

1− λ̂λn−1
[ρ(

1− λn−1

1− λ
) + ρ̂λn−1] =∗

1− λ(k+1)n

1− λn
ncx2β

α+ nx2
hβ

(1− λn)− 1− (λ̂λ(n−1))k+1

1− λ̂λn−1

ncx2β

α+ nx2
hβ

(1− λn−1(
1

4
λ+

3

4
)) =

(1− λ(k+1)n)
ncx2β

α+ nx2
hβ
− 1− (λ̂λ(n−1))k+1

1− λ̂λn−1

ncx2β

α+ nx2
hβ

(1− λn−1(
1

4
λ+

3

4
)) =

ncx2β

α+ nx2
hβ

[(1− λ(k+1)n)− 1− (λ̂λ(n−1))k+1

1− λ̂λn−1
(1− λn−1(

1

4
λ+

3

4
))] =∗∗

ncx2β

α+ nx2
hβ

(λn−1 3
4
η
2α(1− λ̂k+1λ(k+1)(n−1)) + λ(k+1)(n−1)(λ̂k+1 − λk+1)(1− λn−1λ̂)

1− λn−1λ̂

)
≥

ncx2β

α+ nx2
hβ

(λ(k+1)(n−1)(λ̂k+1 − λk+1)(1− λn−1λ̂)

1− λn−1λ̂

)
=

ncx2β

α+ nx2
hβ
λ(k+1)(n−1)(λ̂k+1 − λk+1) =

λn−1 ncx2β

α+ nx2
hβ
λk(n−1)(λ̂k+1 − λk+1)

where equality * holds from claims D.1, D.2, D.3, equality ** holds from claim D.5, and the in-
equality holds because λ < λ̂ < 1. This proves Lemma A.2 for r = 1.

For the case of r > 1, from Lemma A.1 it is easy to see

θ̂r>1
(k+1)n =

[
[θ0λ

r−1 + ρ

r−2∑
i=0

λi +
√
η

r−2∑
i=0

λiξi]λ̂
kλk(n−1)+

k−1∑
j=0

(λ̂λn−1)j [ρ̂λn−1 + ρ

n−2∑
i=0

λi +
√
η

n−1∑
i=0

λiξi]
]
λ̂λn−r+

ρ̂λn−r + ρ

n−r−1∑
j=0

λj +
√
η

n−r∑
j=0

ξλj

.

Therefore µ̂r>1
kn+n follows

µ̂r>1
(k+1)n =

[
[ρ

r−2∑
i=0

λi]λ̂kλk(n−1) +

k−1∑
j=0

(λ̂λn−1)j [ρ̂λn−1 + ρ

n−2∑
i=0

λi]
]
λ̂λn−r + ρ̂λn−r + ρ

n−r−1∑
j=0

λj
.

16



Consequently the difference in means for r > 1 can be lower bounded:

µkn+n − µ̂rkn+n =

λn−r[λρλkλk(n−1)
r−2∑
i=0

λi + λ

k−1∑
j=0

(λλn−1)j(ρλn−1 + ρ

n−2∑
i=0

λi)−

λ̂ρλ̂kλk(n−1)
r−2∑
i=0

λi − λ̂
k−1∑
j=0

(λ̂λn−1)j(ρ̂λn−1 + ρ

n−2∑
i=0

λi)] + λn−r(ρ− ρ̂) =

λn−rλk(n−1)ρ(λk+1 − λ̂k+1)

r−2∑
i=0

λi + λn−r
k−1∑
j=0

λ(n−1)j [λn−1(ρλj+1−

ρ̂λ̂j+1) + (λj+1 − λ̂j+1)ρ

n−2∑
i=0

λi] + λn−r(ρ− ρ̂) =∗

λn−rλk(n−1)ρ(λk+1 − λ̂k+1)
1− λr−1

1− λ
+ λn−r

ncx2
hβ

α+ nx2
hβ

[λ(1− λkn)−

λ̂
1− (λn−1λ̂)k

1− λn−1λ̂
(1− λn(

3

4
λ−1 +

1

4
))] + λn−r(ρ− ρ̂) =∗∗

λn−rλk(n−1)ρ(λk+1 − λ̂k+1)
1− λr−1

1− λ
+ λn−r

ncx2
hβ

α+ nx2
hβ

[
(λ− λ̂)+

λn−1[ 3
4
η
2α(1− λ̂kλk(n−1))]

1− λ̂λn−1
+ λk(n−1)(λ̂k+1 − λk+1)

]
+ λn−r(ρ− ρ̂) =∗∗∗

λn−r
ncx2

hβ

α+ nx2
hβ
λk(n−1)(λk+1 − λ̂k+1)(1− λr−1) + λn−r

ncx2
hβ

α+ nx2
hβ

[
(λ− λ̂)

+
λn−1[ 3

4
η
2α(1− λ̂kλk(n−1))]

1− λ̂λn−1
+ λk(n−1)(λ̂k+1 − λk+1)

]
+ λn−r(ρ− ρ̂) =

λn−r
ncx2

hβ

α+ nx2
hβ
λk(n−1)(λk+1 − λ̂k+1)[1− λr−1 − 1]+

λn−r
ncx2

hβ

α+ nx2
hβ

(λ− λ̂+
λn−1[ 3

4
η
2α(1− λ̂kλk(n−1))]

1− λ̂λn−1
) + λn−r(ρ− ρ̂) =

λn−r
ncx2

hβ

α+ nx2
hβ
λk(n−1)(λ̂k+1 − λk+1)λr−1+

λn−r
ncx2

hβ

α+ nx2
hβ

(λ− λ̂+
λn−1[ 3

4
η
2α(1− λ̂kλk(n−1))]

1− λ̂λn−1
) + λn−r(ρ− ρ̂) =

λn−1 ncx2
hβ

α+ nx2
hβ
λk(n−1)(λ̂k+1 − λk+1)+

λn−r
ncx2

hβ

α+ nx2
hβ

(λ− λ̂+
λn−1[ 3

4
η
2α(1− λ̂kλk(n−1))]

1− λ̂λn−1
) + λn−r(ρ− ρ̂) >∗∗∗∗

λn−1 ncx2
hβ

α+ nx2
hβ
λk(n−1)(λ̂k+1 − λk+1)

where equality * holds from claims D.6 and D.7, equality ** holds from claim D.10, equality ***
holds from claim D.1, and equality **** holds from claim D.11 and λ̂ > λ.
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Lemma A.3. For x2
hβ > 3, n > 1

2αx2
hβ
− 1

x2
hβ

, ∃k̇ ∈ R+ such that upper bounds defined in eq. 19

hold for all 0 < k ≤ k̇:

(σ1
(k+1)n)2 ≤ 2(λ̂λn−1)2 1

α
(λ̂λn−1)2k

(σr>1
(k+1)n)2 ≤ 6(λ̂λn−r)2 1

α
(λ̂λn−1)2k.

(19)

Proof Lemma A.3. The proof will be separated into two cases, r = 1 and r > 1. (σ̂1
kn+n)2 can be

easily computed from lemma A.1 using the fact that both the noise and prior are distributed normally.
A first general upper bound on (σ̂1

kn+n)2 is found at eq. 20.

(σ1
kn+n)2 =

1

α
(λ̂λ(n−1))2(k+1) + η

n−1∑
i=0

λ2i
k∑
j=0

(λ̂2λ2(n−1))j =

(λ̂λ(n−1))2(k+1)[
1

α
+ η

n−1∑
i=0

λ2i
k∑
j=0

(λ̂λ(n−1))2j

(λ̂λ(n−1))2(k+1)
] =

(λ̂λ(n−1))2(k+1)[
1

α
+ η

n−1∑
i=0

λ2i
k∑
j=0

(λ̂λ(n−1))2(j−(k+1))] ≤

(λ̂λ(n−1))2(k+1)[
1

α
+ η

n−1∑
i=0

λ2i
k∑
j=0

λ2n(j−(k+1))] =

(λ̂λ(n−1))2(k+1)[
1

α
+ η

(k+1)n∑
i=1

λ−2i] =

(λ̂λ(n−1))2(k+1)[
1

α
+ ηλ−2 1− λ−2(k+1)n

1− λ−2
]

(20)

where the inequality holds because λ < λ̂

By claim D.12, this upper bound can be further bounded for k̇ ≤ 1
2n logλ( 1

1+ 1
αη (1−λ2)

) − 1 such

that eq. 21 will hold, therefore proving the bound for r = 1.

(λ̂λ(n−1))2(k̇+1)[
1

α
+ ηλ−2 1− λ−2(k̇+1)n

1− λ−2
] ≤ 2(λ̂λ(n−1))2(k̇+1) 1

α
(21)

For r > 1, (σ̂r>1
kn+n)2 can be bounded as following
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(σr>1
kn+n)2 =

(λ̂λn−r)2η[(λ̂kλk(n−1))2
r−2∑
i=0

λ2i +

k−1∑
j=0

(λ̂λn−1)2j
n−1∑
i=0

λ2i]+

η

n−r∑
i=0

λ2i +
1

α
(λ̂λn−1)2k(λ̂λn−1)2 ≤∗

(λ̂λn−r)2η[(λ̂kλk(n−1))2
r−2∑
i=0

λ2i +

k−1∑
j=0

(λ̂λn−1)2j
n−1∑
i=0

λ2i]+

η

n−r∑
i=0

λ2i +
1

α
(λ̂λn−1)2k(λ̂λn−r)2 =

(λ̂λn−r)2[
1

α
(λ̂λn−1)2k + η(λ̂λn−1)2k

r−2∑
i=0

λ2i + η

k−1∑
j=0

(λ̂λn−1)2j
n−1∑
i=0

λ2i] + η

n−r∑
i=0

λ2i ≤∗∗

(λ̂λn−r)2[
1

α
(λ̂λn−1)2k + η(λ̂λn−1)2k

n−1∑
i=0

λ2i + η

k−1∑
j=0

(λ̂λn−1)2j
n−1∑
i=0

λ2i] + η

n−r∑
i=0

λ2i ≤∗∗∗

2(λ̂λn−r)2[
1

α
(λ̂λn−1)2k̇ + η(λ̂λn−1)2k

n−1∑
i=0

λ2i + η

k−1∑
j=0

(λ̂λn−1)2j
n−1∑
i=0

λ2i]

(22)

where inequality * follows from λ < 1 and r > 1, inequality ** follows from r ≤ n, and inequality
*** holds from claim D.15.

For k ≤ 1
2n logλ( 1

1+ 1
αη (1−λ2)

)− 1, this bound can be further developed

2(λ̂λn−r)2[
1

α
(λ̂λn−1)2k̇ + η(λ̂λn−1)2k

n−1∑
i=0

λ2i + η

k−1∑
j=0

(λ̂λn−1)2j
n−1∑
i=0

λ2i] ≤

6(λ̂λn−r)2 1

α
(λ̂λn−1)2k̇

. (23)

The inequality holds from claims D.12, D.14, which provide the bound for r > 1. All that is left is
to prove that 1

2n logλ( 1
1+ 1

αη (1−λ2)
)− 1 > 0, which is done in Claim D.22.

Lemma A.4. Mark k̇ = 1
2n logλ( 1

1+ 1
αη (1−λ2)

)− 1, for the conditions of Lemma A.3

(σ1
dk̇en+n

)2 ≤ (1 + 2e
1
x2β )(λ̂λn−1)2 1

α
(λ̂λ(n−1))2dk̇e

(σr>1
dk̇en+n

)2 ≤ 6(λ̂λn−r)2 1

α
(λ̂λn−1)2dk̇e.

Proof Lemma A.4. This proof will be separated into two cases, for r > 1 and for r = 1. For r > 1,
the bound found in eq. 22, has no dependence on the choice of k, therefore holds also for dk̇e. This
bound was, in turn, developed for k̇ at eq. 23 using three claims. If these claims also hold for dk̇e,
then the bound in eq. 23 also holds for dk̇e, and the lemma is proved for r > 1.

Claims D.14, D.12 hold for all k ≤ 1
2n logλ( 1

1+ 1
αη (1−λ2)

), and since dk̇e ≤ k̇ + 1 =

1
2n logλ( 1

1+ 1
αη (1−λ2)

), they holds for dk̇e. Claim D.15 was proved for all k, hence also holds for

dk̇e.
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For r = 1, the bound found at eq. 20 is applicable for all k, hence

(σ1
(dk̇e+1)n

)2 ≤ (λ̂λn−1)2(dk̇e+1)[
1

α
+ ηλ−2 1− λ−2(dk̇e+1)n

1− λ−2
] ≤ (λ̂λn−1)2(dk̇e+1) 1

α
(1 + 2e

1
x2β )

where the last inequality holds from claim D.17.

Lemma A.5. For k̇ defined in Lemma A.4, the conditions of Lemma A.3, and n >

max{ α
x2
hβ
, α
x2
hβ

(e
2

x2
h
β − 2) + 1

2x2
hβ
}

(µdk̇en+n − µ̂rdk̇en+n
)2

(σrdk̇en+n
)2

≥ e
− 2

x2
h
β
α

v1
(

3

32x2
hβ

)2(
c

n
)2

v1 = max{6, 1 + 2e
1

x2
h
β }.

Proof Lemma A.5.

(µdk̇en+n − µ̂rdk̇en+n
)2

σrdk̇en+n

≥

(
λn−1 ncx2

hβ

α+nx2
hβ
λdk̇e(n−1)(λ̂dk̇e+1 − λdk̇e+1)

)2
v1(λ̂λn−r)2 1

α (λ̂λn−1)2dk̇e
=

λ2dk̇e(n−1)
(
λn−1 ncx2

hβ

α+nx2
hβ

(λ̂dk̇e+1 − λdk̇e+1)
)2

v1(λ̂λn−r)2 1
α (λ̂λn−1)2dk̇e

=

(
λn−1 ncx2

hβ

α+nx2
hβ

(λ̂dk̇e+1 − λdk̇e+1)
)2

v1(λ̂λn−r)2 1
α λ̂

2dk̇e
=

αλ2(r−1)

v1
(
ncx2

hβ

α+ nx2
hβ

)2 (λ̂dk̇e+1 − λdk̇e+1)2

λ̂2dk̇e+1
=
αλ2(r−1)

v1
(
ncx2

hβ

α+ nx2
hβ

)2(1− λdk̇e+1

λ̂dk̇e+1
)2 ≥

αλ2(r−1)

v1
(
ncx2

hβ

α+ nx2
hβ

)2(1− (1−
3
4nx

2β

(α+ nx2
hβ)2 − (α+ 1

4nx
2β)

))2 =

αλ2(r−1)

v1
(
ncx2

hβ

α+ nx2
hβ

)2(
3
4nx

2
hβ

(α+ nx2
hβ)2 − (α+ 1

4nx
2β)

)2 ≥

αλ2(r−1)

v1
(
ncx2

hβ

α+ nx2
hβ

)2(
3
4nx

2β

(α+ nx2
hβ)2

)2 ≥ αλ2(r−1)

v1
(
ncx2β

2nx2
hβ

)2(
3
4nx

2β

(2nx2β)2
)2 =

αλ2(r−1)

v1
(
c

2
)2(

3
4

4nx2
hβ

)2 =
αλ2(r−1)

v1
(

3

32x2
hβ

)2(
c

n
)2 ≥

αλ2(n−1)

v1
(

3

32x2
hβ

)2(
c

n
)2 ≥ e

− 2

x2
h
β
α

v1
(

3

32x2
hβ

)2(
c

n
)2

where first inequality holds from A.3, A.4 and the definition of v1, the second inequality follows
claim D.17 and claim D.22, fourth inequality holds under the assumption of nx2

hβ > α ⇐⇒ n >
α
x2
hβ

, and last inequality holds from claim D.19.

Lemma A.6. For the Bayesian linear regression problem over database D1, the conditions of
Lemma A.5, and k̇, as defined in Lemma A.4, approximate sampling, by running SGLD for (dk̇e+1)n
steps, will not be (ε, δ) differentially private for

δ < 0.5, ε < e
− 2
x2β

α

2v1
(

3

32x2
hβ

)2(
c

n
)2 + ln(0.5− δ)

v1 = max{6, 1 + 2e
1

x2
h
β }.

Proof Lemma A.6. According to definition 1, it is enough that there is one group, S, such that
p(θ(dk̇e+1)n ∈ S|D1) > eεp(θ̂(dk̇e+1)n ∈ S|D2) + δ, to show that releasing θ(dk̇e+1)n is not
(ε, δ) private. Consider S = {s|s > µ(dk̇e+1)n}. From claim D.23 and since θ(dk̇e+1)n ∼
N(θ(dk̇e+1)n;µ(dk̇e+1)n, σ

2
(dk̇e+1)n

), eq. 24 holds. The conditions for the right term to be smaller
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than 0 (thus making the approximate sampling not (ε, δ) private) are found in eq. 25, therefore
proving the lemma.

eεp(θ̂(dk̇e+1)n ∈ S|D2) + δ − p(θ̂(dk̇e+1)n ∈ S|D1) ≤ eεe
−e
− 2
x2β α

2v1
( 3

32x2
h
β

)2( cn )2

+ δ − 0.5 (24)

e
ε−e
− 2
x2β α

2v1
( 3

32x2
h
β

)2( cn )2

+ δ − 0.5 < 0

e
ε−e
− 2
x2β α

2v1
( 3

32x2
h
β

)2( cn )2

< 0.5− δ

ε− e−
2
x2β

α

2v1
(

3

32x2
hβ

)2(
c

n
)2 < ln(0.5− δ)

ε < e
− 2
x2β

α

2v1
(

3

32x2
hβ

)2(
c

n
)2 + ln(0.5− δ)

(25)

B PROPOSE TEST SAMPLE SUPPLEMENTARY

nmin which is used in algorithm 4.3 is defined as following

ν =
2 ln( 1

δ )

ε
+ 1

nb1 = max{1 +
x2
h

x2
l

8

ε
, 1 + ν

x2
h

x2
l

(1 + 8
(ν − 1)

ε
), (

16νβx4
h

9
10εx

2
l

)
1

1−2γ1 ,

(
32νβ

ε
(
(x2
hβ)(x2

hα+ x4
hβ)

9
10 (x2

l β)2
)m̆)

1
2−γ1 ,

(
32νβ

ε
(
(x2
hβ)(x2

hα+ x4
hβ)

9
10 (x2

l β)2
))

1
2−2γ1 ,

(
8ν

ε
(
(x2
hα+ x4

hβ)2

9
10x

6
l β

)m̆)
2
3 ,

(
8ν

ε
(
(x2
hα+ x4

hβ)2

9
10x

6
l β

))
2

3−2γ1 }

nb2 = max{1 +
x2
h

x2
l

10ν

β
, 1 + ν

x2
h

x2
l

}

nmin = max{nb1, nb2, n1

ρ2
γ1 }

. (26)

C PROPOSE TEST SAMPLE PRIVACY

Proof Claim 4.2. We set the algorithm parameters in eq. 27, and matching databasesD3, D4 defined
in eq. 8. We note that we only define a lower bound over n1, which will be updated later on.

ρ3 = 1.15; ρ2 = 0.45; ρ1 = 1.25, γ1 = 0.49;

xl = xh/2

n1 > max{21

ε
log

1

2δ
, 4

1

ε
log

1

2δ
, 210ρ1 , 29+10ρ2}

β = 3;xh = 1

α = 1

(27)

Mark the return value of the algorithm as r, the event of the algorithm running on database D3 and
W = D3 as AD3 , the event of the algorithm running on database D4 and W = D4 as AD4 , and

21



S = {s|s > µi}, where µi is the mean of the sample distribution at the SGLD i’th step given
database D3 (Similarly to as defined in subsection 4.2). We will show that ∀ε ∈ R>0, δ <

1
6 ,∃n1

such that eq. 28 holds.

P (r ∈ S|D3) > eεP (r ∈ S|D4) + δ (28)

We first show that

P (r ∈ S ∧AcD3
|D3) = 0

P (r ∈ S ∧AcD4
|D4) = 0

(29)

Notice that the algorithm can return result in S only if it reached step 19. Consider an event where
the algorithm reached step 19 and AcD3

. From AcD3
, ∃(xi, yi) ∈ D3 such that | yixi − m̆| ≥ nρ22 .

However, since ∀(xi, yi) ∈ D3 : yi
xi

= nρ31 then ∀(xi, yi) ∈ D3 : | yixi − m̆| > nρ22 and therefore
|W | = 0. Under the assumption that sample from p(θ|{}) returns null then in this case the algorithm
also returns null and therefore P (r ∈ S ∧AcD3

|D3) = 0. Same arguments hold for D4.

Following eq. 29, to prove eq. 28 it is enough to prove eq. 30.

P (r ∈ S|D3, A3)P (A3|D3) ≥∗

P (r ∈ S|D3, A3)− 5δ >∗∗ eεP (r ∈ S|D4, A4) + δ ≥
eεP (r ∈ S|D4, A4)P (A4|D4) + δ = eεP (r ∈ S ∧A4|D4) + δ

(30)

From claim C.1 ∃nbound1 such that ∀n1 > nbound1 inequality * holds. From Lemma 4.6, for n1

big enough ∃T ∈ Z>0 such that eq. 31 hold (Where 6δ < 0.5 according to the claim conditions).
Therefore, ∃k, nbound2 ∈ R>0 such that ∀n1 > nbound2 : ε′ > kn

2(1−ρ3)
1 and eq. 31 hold. As

ρ3 > 1, by choosing n1 > max{nbound2, (
ε
k )

1
2(ρ3−1) } get that ε′ > ε. Consequently, by choosing

n1 > max{nbound1 , nbound2 , ( εk )
1

2(ρ3−1) }, inequalities * and ** hold, and the claim is proved.

ε′ = Ω(n
2(ρ3−1)
1 )

P (r ∈ S|D3, A3) > eε
′
P (r ∈ S|D4, A4) + 6δ

(31)

Claim C.1. ∃nbound1 ∈ Z>0 such that the probability for algorithm 4.3 to reach step 19 with
W = D3 (marked event A) is greater or equal to 1− 5δ for all n1 > nbound1 .

Proof. Mark the event of nW > nmin ∧ m̆ ∈ [m − nρ22 ,m + nρ22 ] ∧ n1+ρ2−0.1
2 > n̆ρ11 ∧ n̆1 ≤

n1 ∧ V = D as B. Since P (A|D3, B) = 1 it follows that P (A|D3) ≥ P (A ∧ B|D3) =
P (A|B,D3)P (B|D3) = P (B|D3). Therefore if ∃nlb such that ∀n1 > nlb : P (B|D3) ≥ 1 − 5δ
the claim is proved.

P (B|D3) =

P (m̆ ∈ [m− nρ22 ,m+ nρ22 ] ∧ nW > nmin|D3, V = D,n1+ρ2−0.1
2 > n̆ρ11 , n̆1 ≤ n1)·

P (n1+ρ2−0.1
2 > n̆ρ11 |V = D, n̆1 ≤ n1, D3)P (V = D, n̆1 ≤ n1|D3) ≥

P (m̆ ∈ [m− nρ22 ,m+ nρ22 ] ∧ nW > nmin|D3, V = D,n1+ρ2−0.1
2 > n̆ρ11 , n̆1 ≤ n1)− 3δ =

P (nW > nmin|D3, V = D,n1+ρ2−0.1
2 > n̆ρ11 , n̆1 ≤ n1, m̆ ∈ [m− nρ22 ,m+ nρ22 ])

P (m̆ ∈ [m− nρ22 ,m+ nρ22 ]|D3, V = D,n1+ρ2−0.1
2 > n̆ρ11 , n̆1 ≤ n1)− 3δ ≥

P (nW > nmin|D3, V = D,n1+ρ2−0.1
2 > n̆ρ11 , n̆1 ≤ n1, m̆ ∈ [m− nρ22 ,m+ nρ22 ])− 4δ ≥

1− 5δ
(32)

22



By corollary C.1 and claim C.3 for n1 big enough first inequality holds. By claim C.4 for n1

big enough second inequality holds, and by claim C.5 for n1 big enough third inequality holds.
Therefore for n1 big enough eq. 32 holds and the claim is proved.

Claim C.2. For n1 > max{ 1
2

−10ρ1 , 4 1
ε log 1

2δ}

P (n̆ρ11 ≥ n
ρ3
1 ∧ n̆1 ≤ n1|D3) ≥ 1− 2δ.

Proof. Mark the noise added at step 6 as l1

P (n̆ρ11 ≥ n
ρ3
1 ∧ n̆1 ≤ n1|D3) =

P ((n1 + l1 −
1

ε
log

1

2δ
)ρ1 ≥ nρ31 ∧ n1 + l1 −

1

ε
log

1

2δ
≤ n1|D3) =

P ((n1 + l1 −
1

ε
log

1

2δ
)ρ1 ≥ nρ31 ∧ l1 ≤

1

ε
log

1

2δ
|D3) =

P ((n1 + l1 −
1

ε
log

1

2δ
)ρ1 ≥ nρ31 ∧ |l1| ≤

1

ε
log

1

2δ
|D3)+

P ((n1 + l1 −
1

ε
log

1

2δ
)ρ1 ≥ nρ31 ∧ l1 ≤ −

1

ε
log

1

2δ
|D3) ≥

P ((n1 + l1 −
1

ε
log

1

2δ
)ρ1 ≥ nρ31 ∧ |l1| ≤

1

ε
log

1

2δ
|D3) =

P ((n1 + l1 −
1

ε
log

1

2δ
)ρ1 ≥ nρ31 ||l1| ≤

1

ε
log

1

2δ
,D3)P (|l1| ≤

1

ε
log

1

2δ
|D3) ≥

P ((n1 − 2
1

ε
log

1

2δ
)ρ1 ≥ nρ31 |D3)− 2δ = 1− 2δ

Where last inequality holds from following equation

P (|l1| ≤
1

ε
log

1

2δ
) = 1− 2P (l1 ≤ −

1

ε
log

1

2δ
) = 1− exp(−

1
ε log 1

2δ
1
ε

) = 1− 2δ

Last equality holds since n1 > 1
2

−10ρ1 ⇒ n−1
1 < ( 1

2 )10ρ1 ⇒ n−0.1
1 < ( 1

2 )ρ1 and therefore
(n1 − 2 1

ε log 1
2δ )ρ1 > ( 1

2n1)ρ1 > nρ1−0.1
1 = nρ31

Corollary C.1.

∀n1 > max{1

2

−10ρ1

, 4
1

ε
log

1

2δ
} : P (V = D3 ∧ n̆1 ≤ n1) ≥ 1− 2δ.

Claim C.3. For n1 > max{ 1
2

−(9+10ρ2)
, 4 1

ε log 1
2δ}

P (n1+ρ2−0.1
2 > n̆ρ11 |D3, V = D3, n̆1 ≤ n1) ≥ 1− δ.

Proof.

P (n0.9+ρ2
2 > n̆ρ11 |D3, V = D3, n̆1 ≤ n1) ≥ P (n0.9+ρ2

2 > nρ11 |D3, V = D3) ≥

P ((n1 − 2
1

ε
log

1

2δ
)0.9+ρ2 > nρ11 |D3)p(n2 ≥ |V | − 2

1

ε
log

1

2δ
) ≥

P ((n1 − 2
1

ε
log

1

2δ
)0.9+ρ2 > nρ11 |D3)− δ = 1− δ

where the second inequality holds since P (Lap( 1
ε ) < − 1

ε log 1
2δ ) < δ, and last equality holds since

(n1 − 2 1
ε log 1

2δ )0.9+ρ2 > ( 1
2n1)0.9+ρ2 > n1+ρ2−0.2

1 = nρ11

Claim C.4. ∃nlb1 ∈ Z>0 such that

∀n1 > nlb1 : P (m̆ ∈ [m− nρ22 ,m+ nρ22 ]|D3, n
0.9+ρ2
2 > n̆ρ11 ) ≥ 1− δ.
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Proof. Mark the noise added at step 13 as l1

P (m̆ ∈ [m− nρ22 ,m+ nρ22 ]|D3, n
0.9+ρ2
2 > n̆ρ11 ) =

P (l1 ∈ [−nρ22 , n
ρ2
2 ]|D3, n

0.9+ρ2
2 > n̆ρ11 ) ≥

1− 2(
1

2
exp(−nρ22

1

1
ε n̆

ρ1
1

2(n2−1)x2
hx

2
l+x

4
h

n2(n2−1)x4
l

) =

1− exp(− n1+ρ2
2 ε(n2 − 1)x4

l

n̆ρ11 (2(n2 − 1)x2
hx

2
l + x4

h)
)

Since n0.9+ρ2
2 > n̆ρ11 then n̆ρ11 = o(n1+ρ2

2 ) and therefore for n1 big enough the exponent is smaller
than δ.

Claim C.5. ∃nlb2 ∈ Z>0 such that

∀n1 > nlb2 : p(nW > nmin||V | = D3 ∧ n0.9+ρ2
2 > n̆ρ11 ∧ m̆ ∈ [m− nρ22 ,m+ nρ22 ], D3) ≥ 1− δ.

Proof. For abbreviation mark eventB asB = |V | = D3∧n0.9+ρ2
2 > n̆ρ11 ∧m̆ ∈ [m−nρ22 ,m+nρ22 ].

Mark the Laplace noise used in step 8 as l1 and the Laplace noise used in step 15 as l2.

P (nW > nmin|B,D3) =

P (n1 −
1

ε
log

1

2δ
+ l2 > nmin|B,D3) >

P (n1 −
1

ε
log

1

2δ
− 1

ε
log

1

δ
> nmin|B,D3)P (l2 > −

1

ε
log

1

δ
)+

P (n1 −
1

ε
log

1

2δ
+ l2 > nmin ∧ l2 < −

1

ε
log

1

δ
|B,D3) >

P (n1 −
2

ε
log

1

2δ
− 1

ε
log

1

δ
> nmin|B,D3)(1− δ

2
) >

P (n1 −
2

ε
log

1

2δ
− 1

ε
log

1

δ
> nmin|B,D3)− δ

2
=

P (n1 −
2

ε
log

1

2δ
− 1

ε
log

1

δ
> nmin|l1 <

1

ε
log

1

δ
,B,D3)P (l1 <

1

ε
log

1

δ
|B,D3)+

P (n1 −
2

ε
log

1

2δ
− 1

ε
log

1

δ
> nmin ∧ l1 ≥

1

ε
log

1

δ
|B,D3)− δ

2
≥

P (n1 −
2

ε
log

1

2δ
− 1

ε
log

1

δ
> nmin|l1 <

1

ε
log

1

δ
,B,D3)P (l1 <

1

ε
log

1

δ
|B,D3)− δ

2
≥

P (n1 −
2

ε
log

1

2δ
− 1

ε
log

1

δ
> nmin|l1 <

1

ε
log

1

δ
,B,D3)− δ

From B it holds that |m− m̆| < nρ22 and therefore m̆ < m+ nρ22 , and for the case of l1 < 1
ε log 1

δ

it holds that n2 < n1 − 1
ε log 1

2δ + 1
ε log 1

δ < n1 + 1
ε log 1

δ . Therefore m̆ ≤ m+ (n1 + 1
ε log 1

δ )ρ2 .

As nmin = O(max{m̆ 2
3 , n

ρ2
γ1
1 }) then for the case of l1 < 1

ε log 1
δ and B, it holds that nmin =

O(max{(m + nρ21 )
2
3 , n

ρ2
γ1
1 }) = O(max{n

2ρ3
3

1 , n
ρ2
γ1
1 }) < o(n1), therefore ∃nlb2 such that ∀n1 >

nlb2 : n1 − 2
ε log 1

2δ −
1
ε log 1

δ > nmin. Consequently, ∀n1 > nlb2 : P (n1 − 2
ε log 1

2δ −
1
ε log 1

δ >

nmin|l1 < 1
ε log 1

δ , B,D3) = 1.

Definition 4. A randomized function f(X, y) : χn1 ×Rn2 → R, is (ε, δ)-differentially private with
respect to X if ∀S ⊆ R, and ∀X, X̂ ∈ χn : ‖X − X̂‖ ≤ 1, eq. 33 holds.

P (f(X, y) ∈ S) ≤ exp(ε)P (f(X̂, y) ∈ S) + δ (33)
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Claim C.6. Calculating n̆1, n2 is (2ε, 0) differentially private.

Proof. Since n1 can differ by up to 1 for neighbouring databases, calculating n̆1 is protected via the
Laplace mechanism. Since for a given n̆1 the value |V | can change by up to 1 for two neighbouring
databases then calculating n2 is (ε, 0) by the Laplace mechanism. Consequently from sequential
composition theorem the sequential composition is (2ε, 0) differentially private.

Claim C.7. P (n2 ≤ |V ||D, n̆1) = 1− δ.

Proof. Mark l ∼ Lap( 1
ε ),

P (n2 ≤ |V ||D, n̆1) = P (|V | − 1

ε
log

1

2δ
+ l ≤ |V ||D, n̆1) =

P (l ≤ 1

ε
log

1

2δ
|D, n̆1) = 1− 1

2
exp(−

1
ε log 1

2δ
1
ε

) = 1− δ

Claim C.8. Calculating m̆ is (ε, 0) differentially private with respect to D for given n̆1, n2 and
n2 < |V |.

Proof. Mark by D̂ a neighbouring database to D, and V̂ as V induced by this database. If V = V̂

then the claim follows trivially. In case the V ’s differ, assume w.l.o.g that |V | ≥ |V̂ |, and that
if |V | = |V̂ | then they differ in their last sample. Define q =

∑
(xi,yi)∈V/{x|V |,y|V |} xiyi, z =∑

(xi,yi)∈V/{x|V |,y|V |} x
2
i .

|
q + x|V |y|V |

z + x2
|V |

−
q + x̂|V |ŷ|V |

z + x̂2
|V |

| =

|
qx̂2
|V | + x|V |y|V |x̂

2
|V | + x|V |y|V |z − qx2

|V | − x̂|V |ŷ|V |x
2
|V | − x̂|V |ŷ|V |z

(z + x2
|V |)(z + x̂2

|V |)
| ≤

qx2
h + n̆ρ11 x

2
hz + n̆ρ11 x

4
h

(z + x2
l )z

≤ n̆ρ11

2zx2
h + x4

h

(z + x2
l )z

= n̆ρ11 (
2x2

h

z + xl
+

x4
h

(z + x2
l )z

) ≤

n̆ρ11 (
2x2

h

|V |x2
l

+
x4
h

|V |(|V | − 1)x4
l

) ≤ n̆ρ11 (
2x2

h

n2x2
l

+
x4
h

n2(n2 − 1)x4
l

) = n̆ρ11

2(n2 − 1)x2
hx

2
l + x4

h

n2(n2 − 1)x4
l

therefore by the Laplace mechanism calculating m̆ is (ε, 0) differentially private.

Claim C.9. Steps 6-13 are (3ε, δ) differentially private.
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Proof. Mark D̂ as a neighbouring database,

P (m̆ ∈ S|D) =∫
r1,r2∈R>0×R>0

P (m̆ ∈ S|D, n̆1 = r1, n2 = r2)p(n̆1 = r1, n2 = r2|D)dr1dr2 =∫
r1,r2∈R>0×[1,|V |]

P (m̆ ∈ S|D, n̆1 = r1, n2 = r2)p(n̆1 = r1, n2 = r2|D)dr1dr2+∫
r1,r2∈R>0×(|V |,∞]

P (m̆ ∈ S|D, n̆1 = r1, n2 = r2)p(n̆1 = r1, n2 = r2|D)dr1dr2 ≤∗∫
r1,r2∈R>0×[1,|V |]

P (m̆ ∈ S|D, n̆1 = r1, n2 = r2)p(n̆1 = r1, n2 = r2|D)dr1dr2 + δ ≤∗∗∫
r1,r2∈R>0×[1,|V |]

e2εP (m̆ ∈ S|D̂, n̆1 = r1, n2 = r2)p(n̆1 = r1, n2 = r2|D̂)dr1dr2 + δ ≤∫
r1,r2∈R>0×R>0

e2εP (m̆ ∈ S|D̂, n̆1 = r1, n2 = r2)p(n̆1 = r1, n2 = r2|D̂)dr1dr2 + δ =

e2εP (m̆ ∈ S|D̂) + δ

where inequality * follows claim C.7 and inequality ** follows claims C.8 and C.6.

Claim C.10. Steps 14-19 are (ε, δ) differentially private with respect to D for |W | < nmin and
given n2, m̆.

Proof. Mark l ∼ Lap( 1
ε ), and D̂ as a neighbouring database. Eq. 34 proves the claim.

P (S|D, |W | < nmin, m̆, n2) =

P (S ∩ {null}|D, |W | < nmin, m̆, n2)+

P (S ∩ {null}c|D, |W | < nmin, m̆, n2) ≤
eεP (S ∩ {null}|D̂, |W | < nmin, m̆, n2) + δ ≤
eεP (S|D̂, |W | < d, m̆, n2) + δ

(34)

where first inequality is true from eq. 35 and the Laplace mechanism for nW .

P (null|D, |W | < nmin, m̆, n2) =

P (nW < nmin +
1

ε
log(

1

2δ
)|D, |W | < nmin, m̆, n2) ≥

P (l <
1

ε
log(

1

2δ
)) ≥ 1− δ

(35)

Claim C.11. Step 19 is (ε, δ) differentially private with respect to D for |W | ≥ nmin and given
n2, m̆.

Proof. For a given n2, m̆ and a neighbouring database, the groupW can change by up to one sample.
Mark n = |W | and c = m̆. From eq. 36, it follows that W ∈ D, as defined in eq. 5.

n ≥ n
ρ2
γ1
2 ⇒

n
1
2 > nγ1 ≥ nρ22

(36)

As W ∈ D, n ≥ nb1, and n ≥ nb2, the problem of sampling from p(θ|W ) for |W | ≥ nmin holds
the constraints of claim D.29. Therefore one sample from p(θ|W ) is (ε, δ) differentially private.
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Claim C.12. Steps 14-18 are (ε, 0) differentially private with respect to D for |W | > nmin and
given m̆, n2.

Proof. Only data released is nW , and since the sensitivity of |W | given m̆, n2 is 1, then the Laplace
mechanism ensures (ε, 0) differential privacy.

Corollary C.2. Steps 14-19 are (2ε, δ) differentially private with respect to D for |W | > nmin and
given m̆, n2.
Corollary C.3. Steps 14-19 are (2ε, δ) differentially private with respect to D given m̆, n2.

D AUXILIARY CLAIMS

This subsection contains simple claims used to simplify the reading of the proofs. Claims described
in this subsection uses the marking defined in eq. 17.

Claim D.1. ρ 1
1−λ =

ncx2
hβ

α+nx2
hβ

.

Proof Claim D.1.

ρ
1

1− λ
=
η

2
ncx2

hβ
1

1− (1− η
2 (α+ n(xh2 )2β))

= ncx2
hβ

1

α+ nx2
hβ

=
ncx2

hβ

α+ nx2
hβ

Claim D.2. ρ 1−λn−1

1−λ + ρλn−1 =
ncx2

hβ

α+nx2
hβ

(1− λn).

Proof Claim D.2.

ρ
1− λn−1

1− λ
+ ρλn−1 = ρ(

1− λn−1 + λn−1 − λn

1− λ
) = ρ(

1− λn

1− λ
) =

ncx2
hβ

α+ nx2
hβ

(1− λn)

where the last equality holds from Claim D.1

Claim D.3. ρ( 1−λn−1

1−λ ) + ρ̂λn−1 =
ncx2

hβ

α+nx2
hβ

(1− λn( 3
4λ
−1 + 1

4 )).

Proof Claim D.3.

ρ(
1− λn−1

1− λ
) + ρ̂λn−1 = ρ(

1− λn−1

1− λ
) + ρ

1

4
λn−1 = ρ(

1− 3
4λ

n−1 − 1
4λ

n

1− λ
) =

ρ(
1− λn( 3

4λ
−1 + 1

4 )

1− λ
) =

ncx2
hβ

α+ nx2
hβ

(1− λn(
3

4
λ−1 +

1

4
))

where the last equality holds from Claim D.1.

Claim D.4. 1
4λ+ 3

4 − λ̂ = 3
4
η
2α.

Proof Claim D.4.

1

4
λ+

3

4
− λ̂ =

1

4
(1− η

2
(α+ nx2β)) +

3

4
− (1− η

2
(α+

1

4
nx2β)) =

η

2
[α+

1

4
nx2β − 1

4
(α+ nx2β)] =

3

4

η

2
α

Claim D.5.

(1− λkn)(1− λ̂λn−1)− (1− (λ̂λ(n−1)))k(1− λn−1(
1

4
λ+

3

4
)) =

λn−1 3

4

η

2
α(1− λ̂kλk(n−1)) + λk(n−1)(λ̂k − λk)(1− λn−1λ̂).
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Proof Claim D.5.

(1− λkn)(1− λ̂λn−1)− (1− (λ̂λ(n−1)))k(1− λn−1(
1

4
λ+

3

4
)) =

λn−1(
1

4
λ+

3

4
− λ̂) + λkn(λ̂λn−1 − 1) + (λ̂λn−1)k(1− λn−1(

1

4
λ+

3

4
)) =

λn−1(
1

4
λ+

3

4
− λ̂) + λk(n−1)(λk(λ̂λn−1 − 1) + λ̂k(1− λn−1(

1

4
λ+

3

4
))) =

λn−1(
1

4
λ+

3

4
− λ̂) + λk(n−1)(λ̂k(1− λn−1(

1

4
λ+

3

4
))− λk(1− λ̂λn−1)) =

λn−1(
1

4
λ+

3

4
− λ̂) + λk(n−1)(λ̂k(1− λn−1(

1

4
λ+

3

4
))− λk(1− λn−1λ̂)) =∗

λn−1 η

2

3

4
α+ λk(n−1)(λ̂k(1− λn−1(

1

4
λ+

3

4
))− λk(1− λn−1λ̂)) =∗

λn−1 η

2

3

4
α+ λk(n−1)(λ̂k(1− λn−1(λ̂+

3

4

η

2
α)− λk(1− λn−1λ̂)) =

λn−1 η

2

3

4
α− λ̂kλn−1 3

4

η

2
α+ λk(n−1)(λ̂k(1− λn−1λ̂)− λk(1− λn−1λ̂)) =

λn−1 3

4

η

2
α(1− λ̂kλk(n−1)) + λk(n−1)(λ̂k − λk)(1− λn−1λ̂)

where equality * holds from claim D.4

Claim D.6. λ
∑k−1
j=0 λ

(n−1)jλj [λn−1ρ+ ρ
∑n−2
i=0 λ

i] = λ(1− λkn)
ncx2

hβ

α+nx2
hβ

.

Proof Claim D.6.

λ

k−1∑
j=0

λ(n−1)jλj [λn−1ρ+ ρ

n−2∑
i=0

λi] = ρλ

kn−1∑
i=0

λi = ρλ
1− λkn

1− λ
=∗ λ

ncx2
hβ

α+ nx2
hβ

(1− λkn)

Where equality * follows from claim D.1.

Claim D.7. λ̂
∑k−1
j=0 λ

(n−1)j λ̂j [λn−1ρ̂+ ρ
∑n−2
i=0 λ

i] = λ̂ 1−(λn−1λ̂)k

1−λn−1λ̂

ncx2
hβ

α+nx2
hβ

(1−λn( 3
4λ
−1 + 1

4 )).

Proof Claim D.7.

λ̂

k−1∑
j=0

λ(n−1)j λ̂j [λn−1ρ̂+ ρ

n−2∑
i=0

λi] =

λ̂
1− (λn−1λ̂)k

1− λn−1λ̂
[λn−1ρ̂+ ρ

1− λn−1

1− λ
] =∗ λ̂

1− (λn−1λ̂)k

1− λn−1λ̂

ncx2
hβ

α+ nx2
hβ

(1− λn(
3

4
λ−1 +

1

4
))

Where equality * follows from claims D.1, D.3.

Claim D.8.
λλk − λkλnλ̂− λ̂λ̂k + λ̂λ̂kλn( 3

4λ
−1 + 1

4 ) = (1− λ̂λn−1)(λk+1 − λ̂k+1) + λ̂k+1λn−1( 3
4
η
2α).

Proof Claim D.8.

λλk − λkλnλ̂− λ̂λ̂k + λ̂λ̂kλn(
3

4
λ−1 +

1

4
) =

λk+1(1− λ̂λn−1)− λ̂k+1(1− λn−1(
1

4
λ+

3

4
)) =∗

λk+1(1− λ̂λn−1)− λ̂k+1(1− λn−1(λ̂+
3

4

η

2
α)) =

(1− λ̂λn−1)(λk+1 − λ̂k+1) + λ̂k+1λn−1(
3

4

η

2
α)

where equality * holds from claim D.4.
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Claim D.9.
λ(1− λkn)(1− λn−1λ̂)− λ̂(1− (λn−1λ̂)k)(1− λn( 3

4λ
−1 + 1

4 )) =

(λ− λ̂)(1− λ̂λn−1) + λn−1λ̂[ 3
4
η
2α(1− λ̂kλk(n−1))] + λk(n−1)[(1− λ̂λn−1)(λ̂k+1 − λk+1)].

Proof Claim D.9.

λ(1− λkn)(1− λn−1λ̂)− λ̂(1− (λn−1λ̂)k)(1− λn(
3

4
λ−1 +

1

4
)) =

λ− λ̂− λnλ̂(1− (
3

4
λ−1 +

1

4
))− λk(n−1)[λλk − λkλnλ̂− λ̂λ̂k + λ̂λ̂kλn(

3

4
λ−1 +

1

4
)] =∗

λ− λ̂− λnλ̂(1− (
3

4
λ−1 +

1

4
))− λk(n−1)[(1− λ̂λn−1)(λk+1 − λ̂k+1) + λ̂k+1λn−1(

3

4

η

2
α)] =

λ− λ̂− λn−1λ̂(λ− (
3

4
+

1

4
λ))− λk(n−1)[(1− λ̂λn−1)(λk+1 − λ̂k+1) + λ̂k+1λn−1(

3

4

η

2
α)] =∗∗

λ− λ̂− λn−1λ̂(λ− (λ̂+
3

4

η

2
α))− λk(n−1)[(1− λ̂λn−1)(λk+1 − λ̂k+1) + λ̂k+1λn−1(

3

4

η

2
α)] =

(λ− λ̂)(1− λ̂λn−1) + λn−1λ̂[
3

4

η

2
α(1− λ̂kλk(n−1))] + λk(n−1)[(1− λ̂λn−1)(λ̂k+1 − λk+1)]

Where equality * follows from claim D.8 and equality ** follows from claim D.4.

Claim D.10.

λ(1− λkn)− λ̂1− (λn−1λ̂)k

1− λn−1λ̂
(1− λn(

3

4
λ−1 +

1

4
)) =

(λ− λ̂) +
λn−1[ 3

4
η
2α(1− λ̂kλk(n−1))]

1− λ̂λn−1
+ λk(n−1)(λ̂k+1 − λk+1).

Proof Claim D.10.

λ(1− λkn)− λ̂1− (λn−1λ̂)k

1− λn−1λ̂
(1− λn(

3

4
λ−1 +

1

4
)) =[M5.d]

(λ− λ̂)(1− λ̂λn−1) + λn−1λ̂[ 3
4
η
2α(1− λ̂kλk(n−1))] + λk(n−1)[(1− λ̂λn−1)(λ̂k+1 − λk+1)]

(1− λ̂λn−1)
=

(λ− λ̂) +
λn−1[ 3

4
η
2α(1− λ̂kλk(n−1))]

1− λ̂λn−1
+ λk(n−1)(λ̂k+1 − λk+1)

Claim D.11. ncx2
hβ

α+nx2
hβ

(λ− λ̂+
λn−1[ 34

η
2α(1−λ̂kλk(n−1))]

1−λ̂λn−1
) + (ρ− ρ̂) > 0.
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Proof Claim D.11.

ncx2
hβ

α+ nx2
hβ

(λ− λ̂+
λn−1[ 3

4
η
2α(1− λ̂kλk(n−1))]

1− λ̂λn−1
) + (ρ− ρ̂) =

ncx2
hβ

α+ nx2
hβ

(λ− λ̂+
λn−1[ 3

4
η
2α(1− λ̂kλk(n−1))]

1− λ̂λn−1
) +

η

2
ncx2

hβ(1− 1

4
) =

ncx2
hβ

α+ nx2
hβ

(1− η

2
(α+ nx2β)− (1− η

2
(α+

1

4
nx2β))+

λn−1[ 3
4
η
2α(1− λ̂kλk(n−1))]

1− λ̂λn−1
) +

3

4

η

2
ncx2

hβ =

ncx2
hβ

α+ nx2
hβ

(−3

4

η

2
(nx2β) +

λn−1[ 3
4
η
2α(1− λ̂kλk(n−1))]

1− λ̂λn−1
) +

3

4

η

2
ncx2

hβ =

ncx2
hβ

α+ nx2
hβ

λn−1[ 3
4
η
2α(1− λ̂kλk(n−1))]

1− λ̂λn−1
+ ncx2

hβ[
3

4

η

2
− 3

4

η

2

nx2β

α+ nx2β
] =

ncx2
hβ

α+ nx2
hβ

λn−1[ 3
4
η
2α(1− λ̂kλk(n−1))]

1− λ̂λn−1
+ ncx2

hβ
3

4

η

2
[1− nx2β

α+ nx2β
] > 0

where the last inequality holds because λ, λ̂ < 1 and α > 0

Claim D.12. 1
α > λ−2η 1−λ−2(k+1)n

1−λ−2 is true for k ≤ 1
2n logλ( 1

1+ 1
αη (1−λ2)

)− 1.

Proof Claim D.12.

1

α
≥ λ−2η

1− λ−2k̇n

1− λ−2
⇐⇒ λ2 1

α

1

η
(1− λ−2) ≤ 1− λ−2k̇n ⇐⇒

λ2 1

α

1

η
(λ−2 − 1) ≥ λ−2k̇n − 1 ⇐⇒ 1 + λ2 1

α

1

η
(λ−2 − 1) ≥ λ−2k̇n ⇐⇒

− k̇ ≥ 1

2n
logλ(1 +

1

αη
(1− λ2)) ⇐⇒ k̇ ≤ 1

2n
logλ(

1

1 + 1
αη (1− λ2)

)

Claim D.13.
1
α (λ̂λ(n−1))2k̇ > η

∑n−1
i=0 λ

2i
∑k̇−1
j=0 (λ̂2λ2(n−1))j is true for k̇ ≤ 1

2n logλ( 1
1+ 1

αη (1−λ2)
).

Proof Claim D.13. First note that the inequality can also be written as
1
α > η

∑n−1
i=0 λ

2i
∑k−1
j=0 (λ̂λ(n−1))2(j−k).

Secondly, the right hand term of the inequality could be upper bound as in eq. 37. Therefore for the
claim’s inequality to holds it is enough that 1

α ≥ ηλ−2 1−λ−2nk

1−λ−2 , which proved by claim D.12 to be
true for k̇ ≤ 1

2n logλ( 1
1+ 1

αη (1−λ2)
)
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η

n−1∑
i=0

λ2i
k−1∑
j=0

(λ̂λ(n−1))2(j−k) = η

n−1∑
i=0

λ2i
k−1∑
j=0

1

(λ̂λ(n−1))2(k−j)
<k>j

η

n−1∑
i=0

λ2i
k−1∑
j=0

1

(λλ(n−1))2(k−j) = η

n−1∑
i=0

λ2i
k−1∑
j=0

1

λ2n(k−j) =

η

n−1∑
i=0

k−1∑
j=0

1

λ2[nk−nj−i] =r=nj+i η

nk−1∑
r=0

1

λ2[nk−r] =r′=nk−r,1<r′<nk η

nk∑
r′=1

1

λ2[r′]
=

η

nk∑
i=1

λ−2i = η
λ−2 − λ−2(nk+1)

1− λ−2
= ηλ−2 1− λ−2nk

1− λ−2

(37)

Claim D.14. 1
α (λ̂λn−1)2k̇ ≥ η(λ̂λn−1)2k̇

∑n−1
i=0 λ

2i is true for k̇ ≤ 1
2n logλ( 1

1+ 1
αη (1−λ2)

).

Proof Claim D.14. eq. 38 holds because λ, λ̂ < 1. By multiplying both sides with
∑n−1
i=0 λ

2i get
eq. 39. Then noticing that the right term equals to the right term of claim D.13, and hence smaller
than the left term of the claim, the claim is proved.

(λ̂λn−1)2k < 1 <

k−1∑
i=0

(λ̂λn−1)2j (38)

η(λ̂λn−1)2k̇
n−1∑
i=0

λ2i < η

k̇−1∑
j=0

(λ̂λn−1)2j
n−1∑
i=0

λ2i (39)

Claim D.15. The inequality

(λ̂λn−r)2[
1

α
(λ̂λn−1)2k + η

k−1∑
j=0

(λ̂λn−1)2j
n−1∑
i=0

λ2i] > η

n−r∑
i=0

λ2i

holds for x2
hβ > 3, n > 1

2αx2
hβ
− 1

x2
hβ

.

Proof Claim D.15. Left hand side can be lower bounded according to eq. 40, while right
hand side can be upper bounded according to eq. 41. Therefore it’s enough to show that
λ2n[ 1

αλ
2kn + η 1−λ2kn

1−λ2 ] > η 1−λ2n

1−λ2 , which according to eq. 42 is equivalent to showing that
(2nx2

hβ−1) 1
αλ

2(k+1)n+2(2λ2n−1) > 0. Since n > 1
2αx2

hβ
− 1
x2
hβ

claim D.19 applies and therefore

λ2n ≥ e
− 2

x2
h
β . Consequently it’s enough to show that (2nx2

hβ−1) 1
αλ

2(k+1)n+2(2e
− 2

x2
h
β −1) > 0,

which is true for x2
hβ > 3 by claim D.16.

(λ̂λn−r)2[
1

α
(λ̂λn−1)2k + η

k−1∑
j=0

(λ̂λn−1)2j
n−1∑
i=0

λ2i] >

(λ̂λn−1)2[
1

α
(λ̂λn−1)2k + η

k−1∑
j=0

(λ̂λn−1)2j
n−1∑
i=0

λ2i] >

λ2n[
1

α
λ2kn + η

k−1∑
j=0

λ2jn
n−1∑
i=0

λ2i] = λ2n[
1

α
λ2kn + η

1− λ2kn

1− λ2
]

(40)

First inequality holds because λ < 1 and r > 1, and second inequality holds because λ < λ̂.
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η

n−r∑
i=0

λ2i < η

n−1∑
i=0

λ2i = η
1− λ2n

1− λ2
(41)

Inequality holds because λ < λ̂ and r > 1.

λ2n[
1

α
λ2kn + η

1− λ2kn

1− λ2
] > η

1− λ2n

1− λ2

λ2n(1− λ2)
1

α
λ2kn + ηλ2n(1− λ2kn) > η(1− λ2n)

(1− λ2)
1

α
λ2(k+1)n + η(2λ2n − λ2(k+1)n − 1) > 0

(α+ nx2
hβ)2(1− λ2)

1

α
λ2(k+1)n + 2(2λ2n − λ2(k+1)n − 1) > 0

(α+ nx2
hβ)2(1− (1− 1

α+ nx2
hβ

)2)
1

α
λ2(k+1)n + 2(2λ2n − λ2(k+1)n − 1) > 0

(2(α+ nx2
hβ)− 1)

1

α
λ2(k+1)n + 2(2λ2n − λ2(k+1)n − 1) > 0

2λ2(k+1)n + (2nx2β − 1)
1

α
λ2(k+1)n + 2(2λ2n − λ2(k+1)n − 1) > 0

(2nx2
hβ − 1)

1

α
λ2(k+1)n + 2(2λ2n − 1) > 0

(42)

Claim D.16. For x2β > 3 the inequality (2e
− 2
x2β − 1) > 0 holds.

Proof Claim D.16. It’s easy to see that the inequality holds only if x2β ≥ −2
ln 1

2

. Since −2
ln 1

2

< 3

claim is proved.

Claim D.17. For k̇ as defined in lemma A.4, and the conditions of claim D.19

1

α
(e

2

x2
h
β + α

(e
2

x2
h
β − 1)

(α+ nx2β) + 1
8

) > λ−2η
1− λ−2(dk̇e+1)n

1− λ−2
.

Proof Claim D.17.

η
1− λ−2(dk̇e+1)n

λ2 − 1
≤ ηλ

−2(k̇+2)n − 1

1− λ2
= η

λ
−2( 1

2n logλ( 1

1+ 1
αη

(1−λ2)
)−1+2)n

− 1

1− λ2
=

η
λ
− logλ( 1

1+ 1
αη

(1−λ2)
)
λ−2n − 1

1− λ2
= η

[1 + 1
αη (1− λ2)]λ−2n − 1

1− λ2
=

η
(1− λ2)λ−2n 1

αη

1− λ2
+ η

λ−2n − 1

1− λ2
=

1

α
λ−2n +

(λ−2n − 1)

(α+ nx2β) + 1
8

≤

e
2
x2β

1

α
+

1

α
α

(e
2
x2β − 1)

(α+ nx2β) + 1
8

=
1

α
[e

2
x2β + α

(e
2
x2β − 1)

(α+ nx2β) + 1
8

]

where the fourth equality holds from eq. 43 and the second inequality holds from D.19.

η

λ2 − 1
= η

1

(1− η
2 (α+ nx2β))2 − 1

= η
1

η(α+ nx2β) + (η2 (α+ nx2β))2
=

1

(α+ nx2β) + η
4 (α+ nx2β)2

=
1

(α+ nx2β) + 1
8

(43)
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Claim D.18.

∀k > 0 : 1− (
λ

λ̂
)k ≥

3
4nx

2β

(α+ nx2β)2 − (α+ 1
4nx

2β)
.

Proof Claim D.18.

1− (
λ

λ̂
)k ≥ 1− λ

λ̂
= 1−

1− 1
α+nx2β

1− α+ 1
4nx

2β

(α+nx2β)2

= 1− (α+ nx2β)2 − (α+ nx2β)

(α+ nx2β)2 − (α+ 1
4nx

2β)
=

1− α2 + 2nx2αβ + (nx2β)2 − α− nx2β

α2 + 2nx2αβ + (nx2β)2 − α− 1
4nx

2β
=

3
4nx

2β

(α+ nx2β)2 − (α+ 1
4nx

2β)

Where first inequality holds because λ < λ̂.

Claim D.19. For the conditions of claim D.21,

(1− 1

α+ nx2β
)2n ≥ e−

2
x2β .

Proof Claim D.19. The proof is easily deduced from claims D.20 and D.21

Claim D.20.
lim
n→∞

(1− 1

α+ nx2β
)2n = e

− 2
x2β .

Proof Lemma D.20. From eq. 44, it is enough to find limn→∞
ln(1− 1

α+nx2β
)

1
2n

.

Since limn→∞
ln(1− 1

α+nx2β
)

1
2n

= 0
0 , and both the numerator and denominator are differentiable

around∞, the use of L’Hôpital’s rule is possible as shown in eq. 45. This proves the claim.

(1− 1

α+ nx2β
)2n = e

ln[(1− 1
α+nx2β

)2n]
= e

2n ln(1− 1
α+nx2β

)
= e

ln(1− 1
α+nx2β

)

1
2n (44)

lim
n→∞

d
dn ln(1− 1

α+nx2β )
d
dn

1
2n

= lim

x2β
(α+nx2β−1)(α+nx2β)

− 1
2n2

= − lim
2n2x2β

(nx2β)2
= − 2

x2β
(45)

Claim D.21.
∀n > 1

2αx2β
− 1

x2β
:
d

dn
(1− 1

α+ nx2β
)2n < 0.

Proof claim D.21. First, a simplified term for the derivative is found at eq. 46.
d

dn
(1− 1

α+ nx2β
)2n =

d

dn
e

2n ln(1− 1
α+nx2β

)
=

(1− 1

α+ nx2β
)2n[2 ln(1− 1

α+ nx2β
) + 2n

1

1− 1
α+nx2β

· x2β

(α+ nx2β)2
] =

(1− 1

α+ nx2β
)2n[2 ln(1− 1

α+ nx2β
) +

2nx2β

(α+ nx2β − 1)(α+ nx2β)
]

(46)

A lower bound for the ln term can be found using Taylor’s theorem as shown in eq .47, where
0 ≤ ξ ≤ 1

α+nx2β .

ln(1− 1

α+ nx2β
) = − 1

α+ nx2β
− 1

2

1

(1− ξ)2
(

1

α+ nx2β
)2 ≤

− 1

α+ nx2β
− 1

2
(

1

α+ nx2β
)2

(47)
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From equations 46 and 47 it is enough to find the terms for which nx2β
(α+nx2β−1)(α+nx2β) <

1
α+nx2β +

1
2

1
(α+nx2β)2 holds. A simplified version of this inequality is found at (48), and it can be easily seen

that for α > 1
2 ( 1
nx2β + 1) ⇐⇒ n > 1

2αx2β −
1
x2β this inequality holds.

nx2β

(α+ nx2β − 1)(α+ nx2β)
<

1

α+ nx2β
+

1

2

1

(α+ nx2β)2
⇐⇒

0 < 2α2 + 2nx2βα− 2α− 2nx2β + α+ nx2β − 1 ⇐⇒
0 < nx2β(2α− 1) + α(2α− 1)− 1

(48)

Claim D.22. For n > α
x2
hβ

(e
2

x2
h
β − 2) + 1

2x2
hβ

and the conditions of claim D.19, k̇, as defined in
lemma A.4, is positive.

Proof Claim D.22. The claim’s inequality is simplified at eq. 49

k̇ > 0

1

2n
logλ(

1

1 + 1
αη (1− λ2)

)− 1 > 0

logλ(
1

1 + 1
αη (1− λ2)

) > 2n

ln( 1
1+ 1

αη (1−λ2)
)

lnλ
> 2n

ln(
1

1 + 1
αη (1− λ2)

) < 2n lnλ

ln(
1

1 + 1
αη (1− λ2)

) < lnλ2n

1

1 + 1
αη (1− λ2)

) < λ2n

λ−2n < 1 +
1

αη
(1− λ2)

λ−2n − 1 <
1

αη
(1− λ2)

(49)

By claim D.19 λ−2n−1 < e
2

x2
h
β −1, therefore it is enough to find terms for e

2

x2
h
β −1 < 1

αη (1−λ2),
which is done at eq. 50, which proves the claim.

e
2

x2
h
β − 1 <

1

αη
(1− λ2)

αη(e
2

x2
h
β − 1) < (1− λ2)

αη(e
2

x2
h
β − 1) < 1− (1− η

2
(α+ nx2

hβ))2

α(e
2

x2
h
β − 1) < (α+ nx2

hβ)− η

4
(α+ nx2β)2

α(e
2

x2
h
β − 1) < (α+ nx2

hβ)− 1

2

α(e
2

x2
h
β − 2) +

1

2
< nx2

hβ

α

x2
hβ

(e
2

x2
h
β − 2) +

1

2x2
hβ

< n

(50)
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Claim D.23. For k̇ as defined in lemma A.4, and the conditions of lemma A.5

p(θ̂(dk̇e+1)n > µ(dk̇e+1)n|D̂) ≤ e−e
− 2
x2β α

2v1
( 3
32x2β

)2( cn )2
.

Proof claim D.23.

p(θ̂(dk̇e+1)n > µ(dk̇e+1)n|D̂) ≤

1

n

n∑
r=1

exp(−
(µ(dk̇e+1)n − µ̂r(dk̇e+1)n

)2

2(σr
(dk̇e+1)n

)2
) ≤

1

n

n∑
r=1

exp(−e−
2
x2β

α

2v1
(

3

32x2β
)2(

c

n
)2) =

exp(−e−
2
x2β

α

2v1
(

3

32x2β
)2(

c

n
)2)

Where the first inequality holds due to lemma 4.4 and second inequality holds due to lemma A.5.

Claim D.24. for n > 1 + 10
x2
h

x2
l

ν
β , the inequality 1

10 (α+ (z + x2
n)β) > ν(x̂2

n − x2
n) holds.

Proof Claim D.24. Notice that 1
10 (α+(z+x2

n)β) > 1
10zβ >

1
10 (n−1)x2

l β and νx2
h > ν(x̂2

n−x2
n),

Therefore a sufficient condition will be that 1
10 (n − 1)x2

l β > νx2
h, which is equivalent to n >

1 +
x2
h

x2
l

10ν
β .

Claim D.25. For the (σ2)∗ν as defined in eq. 14

(σ2)∗ν > 0.

Proof Claim D.25.

(σ2)∗ν = νσ2 + (1− ν)σ̂2 =
ν

α+ (z + x2
n)β

+
1− ν

α+ (z + x̂2
n)β

=

ν(α+ (z + x̂2
n)β) + (1− ν)(α+ (z + x2

n)β)

(α+ (z + x2
n)β)(α+ (z + x̂2

n)β)
=

α+ (z + x2
n)β + ν(x2

n − x̂2
n)

(α+ (z + x2
n)β)(α+ (z + x̂2

n)β)

(51)

Therefore, a sufficient condition is that α + (z + x2
n)β + ν(x2

n − x̂2
n) > 0. Since the condition of

Lemma 4.2 dictates n > 1 + 10
x2
h

x2
l

ν
β then claim D.24 holds, which satisfy this condition.

Claim D.26. For the Bayesian linear regression problem on domain D, and σ, σ̂ defined in eq. 14

ln
σ

σ̂
≤ x2

h

2(n− 1)x2
l

.

Proof Claim D.26. Consider c1 =
x2
h

(n−1)x2
l

,

c1 =
x2
h

(n− 1)x2
l

>
x̂2
n − x2

n

z + x2
n

>
x̂2
nβ − x2

nβ

α+ (z + x2
n)β

=
α+ (z + x̂2

n)β

α+ (z + x2
n)β
− 1 (52)

Where eq. 52 holds trivially for x̂n ≤ xn, therefore it is assumed that x̂n > xn. From eq. 52, by
Taylor theorem and 0 ≤ ζ ≤ c1 following inequality holds

ec1 = 1 + c1 +
eζ

2
(c1)2 > 1 + c1 >

α+ (z + x̂2
n)β

α+ (z + x2
n)β

Consequently, because the natural logarithm is monotonically increasing the following equation also
holds

1

2
c1 >

1

2
ln
α+ (z + x̂n)β

α+ (z + xn)β
= ln

σ

σ̂

Therefore ln σ
σ̂ <

1
2

x2
h

(n−1)x2
l
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Claim D.27. For the Bayesian linear regression problem on domain D, the conditions of Lemma
4.2 and (σ2)∗ν , σ̂ defined in eq. 14

1

2
(ν − 1) ln

σ̂2

(σ2)∗ν
≤ 1

2
(ν − 1)

νx2
h

2((n− 1)x2
l − νx2

h)
.

Proof Claim D.27. consider c1 =
νx2
h

((n−1)x2
l−νx

2
h)

,

c1 =
νx2

h

(n− 1)x2
l − νx2

h

≥∗ νβx2
h

α+ (n− 1)x2
l β − νβx2

h

≥∗

νβx̂2
n

α+ (z + x2
n)β − νβx2

n

≥ νβ(x̂2
n − x2

n)

α+ (z + x2
n)β − νβ(x2

n − x̂2
n)

=

α+ (z + x2
n)β

α+ (z + x2
n)β + νβ(x2

n − x̂2
n)
− 1 =

1

α+ (z + x̂2
n)β
· (α+ (z + x2

n)β)(α+ (z + x̂2
n)β)

α+ (z + x2
n)β + νβ(x2

n − x̂2
n)
− 1 =

σ̂2

(σ2)∗ν
− 1

Where inequalities * holds under assumption that n > 1 + ν
x2
h

x2
l

, and last equality holds from eq. 51.
Therefore, by using Taylor theorem and 0 ≤ ζ ≤ c1 following inequality holds

ec1 = 1 + c1 +
eζ

2
(c1)2 > 1 + c1 ≥

σ̂2

(σ2)∗ν

From this inequality, and because the natural logarithm is monotonically increasing ln σ̂2

(σ2)∗ν
≤ c1,

therefore
1

2
(ν − 1) ln

σ̂2

(σ2)∗ν
≤ 1

2
(ν − 1)c1 =

1

2
(ν − 1)

νx2
h

((n− 1)x2
l − νx2

h)
.

Claim D.28. For the Bayesian linear regression problem on domain D, the definitions of eq. 14,
and the conditions of Lemma 4.2, the value ν

2
(µ−µ̂)2

(σ2)∗ν
is bounded by

2νβ(
x4
h

9
10n

1−2γ1x2
l

) + 2νβ(
(x2
hβ)(x2

hα+ x4
hβ)

9
10 (x2

l β)2
)
(c+ nγ1)

n2−γ1
+
ν

2
(
(x2
hα+ x4

hβ)2

9
10x

6
l β

)
(c+ nγ1)2

n3
.

Proof Claim D.28. First bound |µ− µ̂|,

|µ− µ̂| = β| q + xnyn
α+ (z + x2

n)β
− q + x̂nŷn
α+ (z + x̂2

n)β
| =

| (q + xnyn)(α+ (z + x̂2
n)β)− (q + x̂nŷn)(α+ (z + x2

n)β)

(α+ (z + x2
n)β)(α+ (z + x̂2

n)β)
| =

β|qx̂
2
nβ + xnynα+ xnynzβ + xnynx̂

2
nβ − qx2

nβ − x̂nŷnα− x̂nŷnzβ − x̂nŷnx2
nβ

(α+ (z + x2
n)β)(α+ (z + x̂2

n)β)
| =

β|
x̂2
nz(

q
z −

ŷn
x̂n

)β − x2
nz(

q
z −

yn
xn

)β + α(xnyn − x̂nŷn) + xnx̂nβ(ynx̂n − ŷnxn)

(α+ (z + x2
n)β)(α+ (z + x̂2

n)β)
| <

β| x̂
2
hz(2n

γ1)β + αx2
h(c+ nγ1) + x4

hβ(c+ nγ1)

(α+ (z + x2
n)β)(α+ (z + x̂2

n)β)
| =

β|2x̂
2
hβzn

γ1 + (x2
hα+ x4

hβ)(c+ nγ1)

(α+ (z + x2
n)β)(α+ (z + x̂2

n)β)
|
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Therefore,

ν

2

(µ− µ̂)2

(σ2)∗ν
≤

ν

2
β2(

2x̂2
hβzn

γ1 + (x2
hα+ x4

hβ)(c+ nγ1)

(α+ (z + x2
n)β)(α+ (z + x̂2

n)β)
)2 · ( α+ (z + x2

n)β + ν(x2
n − x̂2

n)

(α+ (z + x2
n)β)(α+ (z + x̂2

n)β)
)−1 =

ν

2

β2(2x̂2
hβzn

γ1 + (x2
hα+ x4

hβ)(c+ nγ1))2

(α+ (z + x2
n)β)(α+ (z + x̂2

n)β)(α+ (z + x2
n)β + ν(x2

n − x̂2
n))
≤∗

ν

2

β2(2x2
hβzn

γ1 + (x2
hα+ x4

hβ)(c+ nγ1))2

9
10 (α+ (z + x2

n)β)(α+ (z + x̂2
n)β)(α+ (z + x2

n)β)
=

ν

2
β2(

(2x2
hβ)2z2n2γ1 + 2(2x2

hβ)(x2
hα+ x4

hβ)znγ1(c+ nγ1) + (x2
hα+ x4

hβ)2(c+ nγ1)2

9
10 (α+ (z + x2

n)β)2(α+ (z + x̂2
n)β)

) ≤

ν

2
β2(

(2x2
hβ)2z2n2γ1 + (4x2

hβ)(x2
hα+ x4

hβ)znγ1(c+ nγ1) + (x2
hα+ x4

hβ)2(c+ nγ1)2

9
10 ((z + x2

n)β)2((z + x̂2
n)β)

) ≤∗∗

ν

2
β2(

(2x2
hβ)2n2γ1

9
10nx

2
l β

3
)+

ν

2
β2(

(4x2
hβ)(x2

hα+ x4
hβ)nγ1(c+ nγ1)

9
10 (nx2

l )
2β3

) +
ν

2
β2(

(x2
hα+ x4

hβ)2(c+ nγ1)2

9
10 (nx2

l β)3
) =

2νβ(
x4
h

9
10n

1−2γ1x2
l

) + 2νβ(
(x2
hβ)(x2

hα+ x4
hβ)

9
10 (x2

l β)2
)
(c+ nγ1)

n2−γ1
+
ν

2
(
(x2
hα+ x4

hβ)2

9
10x

6
l β

)
(c+ nγ1)2

n3

Inequality * is true because Lemma 4.2 conditions dictates that n > 1 +
x2
h

x2
l

10ν
β , and according

to claim D.24 this promises that 1
10 (α + (z + x2

n)β) > ν(x̂2
n − x2

n). Inequality ** follows from
n >> 1⇒ (n− 1)xl ≈ nxl.

Claim D.29. For the conditions and definitions of Lemma 4.3, one sample from the posterior is
(ε, δ) differentially private for the following terms on n and ν.

ν = 1 +
2 ln( 1

δ )

ε

n ≥ max{1 +
x2
h

x2
l

8

ε
, 1 + ν

x2
h

x2
l

(1 + 8
(ν − 1)

ε
),

(
16νβx4

h
9
10εx

2
l

)
1

1−2γ1 ,

(
16νβ

ε
(
(x2
hβ)(x2

hα+ x4
hβ)

9
10 (x2

l β)2
)(c+ nγ1))

1
2−γ1 ,

(
4ν

ε
(
(x2
hα+ x4

hβ)2

9
10x

6
l β

)(c+ nγ1))
2
3 }

Proof Claim D.29. By Lemma 4.3, one sample from the posterior is (ε1 +
ln( 1

δ )

ν−1 , δ) differentially

private. For each of the 6 terms of ε1 +
ln( 1

δ )

ν−1 , a lower bound on n and ν is found at equations 53,
54, 55, 56, 57, 58 such that the sum of terms is upper bounded by ε. These bounds match the claim’s
guarantee over n and ν therefore proving the claim.

For term ln( 1
δ )

ν−1

ln( 1
δ )

ν − 1
=
ε

2
⇐⇒

2 ln( 1
δ )

ε
+ 1 = ν

(53)
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For term x2
h

(n−1)x2
l

x2
h

2(n− 1)x2
l

≤ ε

16

n ≥ 1 +
x2
h

x2
l

8

ε

(54)

For term 1
2 (ν − 1)

νx2
h

(n−1)x2
l−νx

2
h

1

2
(ν − 1)

νx2
h

(n− 1)x2
l − νx2

h

≤ ε

16

1

2
(ν − 1)

16νx2
h

ε
≤ (n− 1)x2

l − νx2
h

n ≥ 1 +
1

2
(ν − 1)

16νx2
h

εx2
l

+ ν
x2
h

x2
l

= 1 + ν
x2
h

x2
l

(1 + 8
(ν − 1)

ε
)

(55)

For term 2νβ(
x4
h

9
10n

1−2γ1x2
l

)

2νβ(
x4
h

9
10n

1−2γ1x2
l

) ≤ ε

8

16

ε
νβ

x4
h

9
10x

2
l

≤ n1−2γ1

n ≥ (
16νβx4

h
9
10εx

2
l

)
1

1−2γ1

(56)

For term 2νβ(
(x2
hβ)(x2

hα+x4
hβ)

9
10 (x2

l β)2
) (c+nγ1 )
n2−γ1

2νβ(
(x2
hβ)(x2

hα+ x4
hβ)

9
10 (x2

l β)2
)
(c+ nγ1)

n2−γ1
≤ ε

8

n2−γ1 ≥ 16νβ

ε
(
(x2
hβ)(x2

hα+ x4
hβ)

9
10 (x2

l β)2
)(c+ nγ1)

n ≥ (
16νβ

ε
(
(x2
hβ)(x2

hα+ x4
hβ)

9
10 (x2

l β)2
)(c+ nγ1))

1
2−γ1

(57)

For term ν
2 (

(x2
hα+x4

hβ)2

9
10x

6
l β

) (c+nγ1 )2

n3

ν

2
(
(x2
hα+ x4

hβ)2

9
10x

6
l β

)
(c+ nγ1)2

n3
≤ ε

8

n3 ≥ 4ν

ε
(
(x2
hα+ x4

hβ)2

9
10x

6
l β

)(c+ nγ1)2

n ≥ (
4ν

ε
(
(x2
hα+ x4

hβ)2

9
10x

6
l β

)(c+ nγ1))
2
3

(58)
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Claim D.30. For c = nγ2 , γ1 < γ2 < 3
2 , and the conditions and definitions of Lemma 4.3, one

sample from the posterior is (ε, δ) differentially private for following terms on n and ν.

ν =
2 ln( 1

δ )

ε
+ 1

n ≥ max{1 +
x2
h

x2
l

8

ε
, 1 + ν

x2
h

x2
l

(1 + 8
(ν − 1)

ε
),

(
16νβx4

h
9
10εx

2
l

)
1

1−2γ1 ,

(
16νβ

ε
(
(x2
hβ)(x2

hα+ x4
hβ)

9
10 (x2

l β)2
)(1 +

1

(1 + 10
x2
h

x2
l

ν
β )γ2−γ1

))
1

2−γ1−γ2 ,

(
4ν

ε
(
(x2
hα+ x4

hβ)2

9
10x

6
l β

)(1 +
1

(1 + 10
x2
h

x2
l

ν
β )γ2−γ1

))
2

3−2γ2 }

Proof Claim D.30. Claim D.29 provides general lower bounds on n for (ε, δ) differential privacy.
When c = nγ2 , γ2 > γ1, these bounds can be simplified.

For condition n ≥ ( 16νβ
ε (

(x2
hβ)(x2

hα+x4
hβ)

9
10 (x2

l β)2
)(c+ nγ1))

1
2−γ1 ,

(
16νβ

ε
(
(x2
hβ)(x2

hα+ x4
hβ)

9
10 (x2

l β)2
)(c+ nγ1))

1
2−γ1 =

(
16νβ

ε
(
(x2
hβ)(x2

hα+ x4
hβ)

9
10 (x2

l β)2
)nγ2(1 +

1

nγ2−γ1
))

1
2−γ1 ≤

(
16νβ

ε
(
(x2
hβ)(x2

hα+ x4
hβ)

9
10 (x2

l β)2
)nγ2(1 +

1

(1 + 10
x2
h

x2
l

ν
β )γ2−γ1

))
1

2−γ1

, where the inequality holds since Lemma 4.3 dictates that n ≥ 1 + 10
x2
h

x2
l

ν
β . Consequently it’s

enough that

n > (
16νβ

ε
(
(x2
hβ)(x2

hα+ x4
hβ)

9
10 (x2

l β)2
)(1 +

1

(1 + 10
x2
h

x2
l

ν
β )γ2−γ1

))
1

2−γ1−γ2 .

Following same considerations for condition n ≥ ( 4ν
ε (

(x2
hα+x4

hβ)2

9
10x

6
l β

)(c+ nγ1))
2
3 , it is enough that

n > (
4ν

ε
(
(x2
hα+ x4

hβ)2

9
10x

6
l β

)(1 +
1

(1 + 10
x2
h

x2
l

ν
β )γ2−γ1

))
2

3−2γ2

E WASSERSTEIN DISTANCE PROOF

Claim E.1. If p, q are distributions with 2-Wasserstein distance W2(p, q) = ε2, then we have
p(Br(x)) ≤ q(Br+ε(x)) + ε.

Proof. If is the claim that d2
P ≤ dw from Gibbs & Su (2002). Picking an optimal coupling and using

Markov inequality we get P (d(x, y) > ε) ≤ 1
εE[d(x, y)] = ε. As {(x̃, ỹ) : x̃ ∈ Br(x)} ⊂ {(x̃, ỹ) :

ỹ ∈ Br+ε(y)}∪{(x̃, ỹ) : d(x̃, ỹ) > ε} we get p(Br(x)) ≤ q(Br+ε(x)) + ε (special case of Strassen
theorem).
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Claim E.2. Let p, q be continuous distributions on Rd with Wasserstein distance W2(p, q) < ε2,
and let pδ ,qδ be their convolutions with uniform distribution on Bδ(0). We assume both density
functions are L−Lipshitz continuous. For λ > ε we have

pλ(x) ≤ vold(λ)

vold(λ− ε)
qλ(x) +

ε

vold(λ− ε)
+ 2

(
vold(λ)

vold(λ− ε)
− 1

)
λL. (59)

Proof. We have P (Bλ(x)) = P (Bλ−ε(x)) + P (A(x;λ − ε, λ)) where A(x; r1, r2) is the annulus
around x between radius r1 and r2. From continuity there exists z ∈ P (Bλ(x)) such that p(z) =
P (Bλ(x))
vold(λ) , where vold(r) is the volume of a ball of radius r in Rd. From Lipshitz continuity we have

P (A(x;λ − ε, λ)) ≤ (vold(λ) − vold(λ − ε))(p(z) + 2λL) =
(

1− vold(λ−ε)
vold(λ)

)
P (Bλ(x)) + ∆,

where ∆ = (vold(λ)− vold(λ− ε))2λL. From this, we get

P (Bλ−ε(x)) ≥ vold(λ− ε)
vold(λ)

P (Bλ(x))−∆. (60)

Combining this with claim E.1, we get

P (Bλ(x)) ≤ vold(λ)

vold(λ− ε)
(P (Bλ−ε(x)) + ∆) ≤ vold(λ)

vold(λ− ε)
(Q(Bλ(x)) + ∆ + ε). (61)

We divide by vold(λ) to get the densities pλ, qλ.

pλ(x) ≤ vold(λ)

vold(λ− ε)
qλ(x) +

∆ + ε

vold(λ− ε)
(62)
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