
Geometry-Aware Preference Learning for 3D Texture Generation

AmirHossein Zamani 1 2 Tianhao Xie 2 Amir G. Aghdam 2 Tiberiu Popa 2 Eugene Belilovsky 1 2

Abstract
Recent advances in 3D generative models have
achieved impressive results but 3D contents gen-
erated by these models may not align with sub-
jective human preferences or task-specific criteria.
Moreover, a core challenge in the 3D texture gen-
eration domain remains: most existing approaches
rely on repeated calls to 2D text-to-image genera-
tive models, which lack an inherent understanding
of the 3D structure of the input 3D mesh object.
To address this, we propose an end-to-end dif-
ferentiable preference learning framework that
back-propagates human preferences, represented
by differentiable reward functions, through the
entire 3D generative pipeline, making the process
inherently geometry-aware. We demonstrate the
effectiveness of our framework using four pro-
posed novel geometry-aware reward functions, of-
fering a more controllable and interpretable path-
way for high-quality 3D content creation from
natural language.

1. Introduction
While large-scale generative computer vision models learn
broad knowledge and some reasoning skills to generate
images (Black et al., 2024; Fan et al., 2023), videos (Wu
et al., 2023), and 3D objects (Poole et al., 2022; Lin et al.,
2023), achieving precise control of their behavior is difficult
due to the completely unsupervised nature of their training.
Among these generative models, 3D generative ones often
rely on adapting text-to-image models at inference (Poole
et al., 2022; Lin et al., 2023; Zeng et al., 2024), but the
resulting 3D content may not align with human preferences
or task-specific needs. This challenge highlights the need
for a preference learning frameworks adapted to 3D content
creation. One general solution proposed mainly in the large
language models’ literature (Ouyang et al., 2022; Christiano
et al., 2017; Dong et al., 2023; Rafailov et al., 2023) is to
incorporate human or automated feedback as a supervisory
signal to guide the generative models toward desired be-
havior. This is usually done by leveraging reinforcement

1Mila - Quebec AI Institute, Montreal, Canada 2Concordia
University, Montreal, Canada. Correspondence to: AmirHossein
Zamani <amirhossein.zamani@mila.quebec>.

ICML 2025 Workshop on Models of Human Feedback for AI Align-
ment, Vancouver, Canada. 2025. Copyright 2025 by the author(s).

learning from human feedback (RLHF) (Christiano et al.,
2017). Prior work has shown that RLHF can significantly
improve results in some domains, such as text generation
(Ouyang et al., 2022; Dong et al., 2023) and image synthesis
(Black et al., 2024; Fan et al., 2023). However, to the best
of our knowledge, DreamReward (Ye et al., 2024) is the
only prior work that incorporates human feedback into 3D
generative model training. It applies differentiable rewards
to optimize NeRF-based geometry editing, without training
the generative model. In contrast, we directly fine-tune the
diffusion model for texture editing within a 3D generation
pipeline, enabling precise control aligned with user prefer-
ences. Moreover, unlike DreamReward’s aesthetic rewards
that ignore geometry, our geometry-aware rewards ensure
textures are both perceptually rich and structurally aligned
with the geometry of the input 3D mesh. Despite recent ad-
vances, a core challenge in 3D texture generation remains:
most existing approaches rely on repeated calls to 2D text-to-
image models, which lack an inherent understanding of 3D
structure. Therefore, applying preference learning directly
to these 2D components often leads to solutions that neglect
crucial 3D constraints. To address this, we propose an end-
to-end differentiable preference learning framework that
back-propagates through the entire 3D generative pipeline,
making the process inherently geometry-aware. Our method
is reinforcement learning–free, easy to implement, and com-
putationally efficient. By directly fine-tuning the 3D texture
generation model through differentiable geometry-aware re-
wards, our framework supports interactive and user-aligned
texture editing, producing results that are both visually com-
pelling and geometrically coherent. By proposing such an
approach, we offer a main advantage over existing methods
in other generative domains: it is computationally more effi-
cient as it does not necessitate too many expensive sampling
steps from the models, which is typically required in rein-
forcement learning pipelines. The main contributions of this
study are: (i) design and development of the first preference
learning framework for high-quality 3D geometry-aware
content (texture) creation from text, and (ii) proposing novel
geometry-aware reward functions for aligning 3D genera-
tion models.

2. Methodology
We propose a simple, reinforcement-learning-free, end-to-
end differentiable preference learning framework for gener-
ating texture images aligned with the geometric features of

1



Geometry-Aware Preference Learning for 3D Texture Generation

Figure 1. An overview of the proposed training process, consisting of two main stages: (i) texture generation (Section 2.1), where a latent
diffusion model generates high-quality images from textual prompts. Combined with differentiable rendering and 3D vision techniques,
this step produces realistic textures for 3D objects. (ii) texture preference learning (Section 2.2), where an end-to-end differentiable
pipeline fine-tunes the pre-trained diffusion model ϵθ by maximizing a differentiable reward function r. To demonstrate the method’s
effectiveness in producing textures aligned with 3D geometry, we introduce four novel geometry-aware reward functions, detailed in
Section 2.3 and Appendix B.

a 3D mesh. The training consists of two stages: (i) texture
generation, where a diffusion model (Rombach et al., 2022)
combined with 3D vision techniques like differentiable ren-
dering (Laine et al., 2020) produces realistic textures from
text prompts (Section 2.1); and (ii) texture preference learn-
ing, where the diffusion model ϵθ is fine-tuned via a differen-
tiable pipeline that maximizes a reward function r, enabling
gradients to flow through the full 3D generation process
and making it geometry-aware (Section 2.2). We introduce
four novel geometry-aware reward functions to demonstrate
the method’s effectiveness, each detailed in Section 2.3 and
Appendix B. An overview of the training procedure of the
the proposed end-to-end differentiable framework is shown
in Figure 1 and Algorithm 1.

2.1. Texture Generation
Our depth-aware text-to-texture pipeline builds on two estab-
lished methods, (Richardson et al., 2023; Tang et al., 2024).
Using a differentiable renderer (Laine et al., 2020), we ren-
der the object from multiple viewpoints to extract inpainted
images, depth maps, normal maps, and UV coordinates.
Given a text prompt, each view is painted using a depth-
aware text-to-image diffusion model (Rombach et al., 2022),
guided by a pre-trained ControlNet (Zhang et al., 2023) that
provides depth information This ensures the generated tex-
tures align with both the text and depth (geometry) informa-
tion. We repeat this process iteratively across all viewpoints
until the full 3D surface is painted. Due to the stochastic
nature of diffusion models, this can result in inconsistent
textures and visible seams. To address this, we adopt a dy-
namic partitioning strategy inspired by (Richardson et al.,
2023; Chen et al., 2023), using the view direction cosine
(see Appendix C) to segment each view into three regions:
(i) generate – newly visible and unpainted areas, (ii) refine
– previously painted areas now seen from a better angle

(higher cosine), and (iii) keep – already well-painted regions
that require no update. This partitioning guides the render-
ing and repainting process to maintain visual consistency.
However, this partitioning and certain other operations in
the texture generation step are not inherently differentiable,
so we introduce mathematical modifications to ensure dif-
ferentiability. These modifications are essential not only
for making the pipeline differentiable, enabling the training
of the diffusion model, but also for incorporating gradient
information from each component of the texture-generation
process. This ultimately makes the entire pipeline aware of
the geometry of the mesh being textured. For more on the
differentiable mathematical formulation, we refer the reader
to Appendix C.1 and Appendix C.2.

2.2. Texture Preference Learning
The texture image, obtained from the texture generation
step, serves as an input to the next step, texture preference
learning, to be evaluated and then enhanced according to a
differentiable reward which represents human preferences
or task-specific objectives. The goal is to fine-tune the pre-
trained stable diffusion model’s parameters θ such that the
texture images maximize a differentiable reward function r.
The maximization problem can be then formulated as:

J(θ) = Ec∼pc [r (TexGen (θ, c,vgen) , c)] (1)

where r is a differentiable reward function,
TexGen(θ, c,vgen) represents the iterative texturing
process from different viewpoints vgen (explained in Sec-
tion 2.1 and Appendix C), and c is the text prompt randomly
sampled from the text dataset pc. To solve Equation (1),
instead of maximizing the reward function, we consider
the negative of it as a loss function L(θ) = −J(θ). Then,
we compute −∇θr (TexGen (θ, c,vgen) , c) and update θ
using gradient-based optimization algorithms and the follow-
ing update rule: θ ← θ + η∇θr (TexGen (θ, c,vgen) , c).

2



Geometry-Aware Preference Learning for 3D Texture Generation

However, naively optimizing the θ would results in
requiring a massive amount of memory which makes the
fine-tuning process impractical. This is because of the fact
that computing the gradients ∇θr requires backpropagation
through multiple diffusion steps and multiple camera
viewpoints which stems from the texturing process
TexGen(θ, c,vgen). Consequently, this necessitates
storing all the intermediate variables during the multi-view
texturing process. More specifically, each step in the
texturing process involves at least 10 diffusion steps, and
with 8–10 total texturing steps (corresponding to the number
of camera viewpoints), this results in approximately 100
diffusion steps overall. Each step requires around 3 GB of
GPU memory, leading to a total memory demand of roughly
300 GB to train the texture-generation pipeline. Such
hardware requirements are nearly infeasible, especially
in typical academic environments. To alleviate this issue,
we leverage two main approaches to reduce the memory
used by our method during the training stage: 1) low-rank
adaptation (LoRA) (Hu et al., 2022) and 2) gradient
checkpointing (Chen et al., 2016). Applying LoRA to
the U-Net in the latent diffusion model reduces trainable
parameters by roughly a factor of 1000 compared to
full fine-tuning. Additionally, two levels of activation
checkpointing keep memory usage constant across views
and diffusion steps, enabling higher-resolution renders and
more diffusion steps. Further memory-saving details are
provided in Appendix D.
2.3. Geometry-Aware Reward Design
Our differentiable framework enables the design and imple-
mentation of task-specific differentiable reward functions
(which represent human preferences), defined either in the
2D texture image space or directly on the 3D mesh sur-
face, to guide the texture generation toward the desired
outcome. Hence, we propose four novel geometry-aware
reward functions to demonstrate the effectiveness of the
proposed differentiable framework, each detailed in the fol-
lowing subsections.
Geometry-Texture Alignment Reward. To encourage
texture image features (e.g. edges) to be aligned with the ge-
ometry of a 3D object, we introduce a differentiable reward
function that aligns texture gradient vectors with principal
curvature directions on the mesh surface (see Appendix E.1
for details). These curvature vectors encode the surface’s
bending behavior, and aligning texture gradients with them
results in textures that are both visually and semantically
consistent with the underlying geomtery of the 3D input
mesh. More specifically, for each point in the UV space
(texture), obtained by projecting 3D mesh vertices into 2D
texture space, we compute the alignment as the squared dot
product (cosine similarity) between the normalized texture
gradient and corresponding normalized curvature direction
vector:

R1 =
1

N

N∑
i=1

(−→g i · −→c i)
2 (2)

where N is the number of UV coordinates, −→g i and −→c i are
the texture gradient and minimum principal curvature at
each UV coordinate, respectively.
Geometry-Guided Texture Colorization Reward. To
encode surface curvature into texture color, we design a
reward function that encourages warm colors (e.g., red, yel-
low) in regions of high curvature and cool colors (e.g., blue,
green) in regions of low curvature. Given a per-pixel scalar
curvature map C(x, y) ∈ [−1, 1], and a curvature thresh-
old T ∈ [−1, 1], let Ir(x, y) and Ib(x, y) denote the red
and blue channels of the predicted texture at pixel (x, y),
respectively. For pixels where C(x, y) > T , we encourage
warm colors by rewarding a higher red-blue channel dif-
ference ∆rb(x, y) = Ir(x, y) − Ib(x, y). Conversely, for
C(x, y) < T , we encourage cool colors by penalizing this
difference. The final reward is the average ∆rb across all
pixels:

R2 =
1

N

∑
x,y

{
∆rb(x, y), if C(x, y) > T

−∆rb(x, y), if C(x, y) ≤ T
(3)

where N is the total number of pixels. This formulation
captures the desired color-geometry correlation. However,
its hard conditional logic makes it non-differentiable and
unsuitable for gradient-based training. To resolve this, we
replace hard thresholds with smooth, sigmoid-based approx-
imations, enabling end-to-end differentiability.
Texture Features Emphasis Reward. This reward
encourages texture patterns that emphasize 3D surface
structure while maintaining perceptual richness through
color variation. It consists of two components: (i) texture-
curvature magnitude alignment which strengthens texture
variations in high-curvature regions to enhance capturing
geometric structures, and (ii) colorfulness inspired by (Du
et al., 2024; Hasler & Suesstrunk, 2003), which discour-
ages desaturated textures by encouraging vibrant color use,
measured through the standard deviation and mean dis-
tance of opponent color channels from neutral gray. Let
T (x, y) ∈ [0, 1]3 denote the RGB texture at pixel (x, y) and
C(x, y) ∈ [0, 1] be the normalized curvature map in UV
space. The texture-curvature alignment term is mathemati-
cally defined as the negative mean squared error (MSE):

Rmagnitude = −
1

N

∑
x,y

(∇T(x, y)− C(x, y))2 (4)

where ∇T(x, y) =

√∥∥∂T
∂x (x, y)

∥∥2 + ∥∥∥∂T
∂y (x, y)

∥∥∥2 is the

texture gradient magnitude and N is the total number
of pixels in the texture image. Then, we augment
this reward with a colorfulness term based on oppo-
nent color channels (Hasler & Suesstrunk, 2003). Let
R(x, y), G(x, y), B(x, y) ∈ RH×W denote the red, green,
and blue channels of the texture. We compute the opponent
axes:

rg = R−G, yb =
1

2
(R+G)−B (5)

3



Geometry-Aware Preference Learning for 3D Texture Generation

the colorfulness term is then defined as:

Rcolor = σrg + σyb + 0.3 (|µrg|+ |µyb|) (6)

where σrg, σyb, µrg, and µyb are the standard deviations
and mean colors offsets corresponding to color opponent
components rg(x, y) = R(x, y)−G(x, y) and yb(x, y) =
R(x,y)+G(x,y)

2 −B(x, y), respectively. The full texture fea-
tures emphasis reward combines both components:

R3 = αmRmagnitude + αcRcolor (7)

where αm and αc are weights for the texture-curvature mag-
nitude alignment and colorfulness terms, respectively.

Figure 2. Qualitative results of the geometry-texture alignment
experiment on a rabbit (bunny) mesh.

3. Experiments and Results
To show the effectiveness of our approach, we perform
four training experiments using the four proposed geomatry-
aware reward functions in Section 2.3, and Appendix B,
each detailed in the following and Appendix F. We qualita-
tively and quantitatively compare our results against the the
automated version of InTeX’s (Tang et al., 2024) method, an
state-of-the-art method in the field of texture generation. We
report the qualitative results for each experiment in Figure 2,
Figure 3, and quantitative results in Table 1 (more results in
Appendix F).
Geometry-Texture Alignment. The objective of this task
is to generate texture images whose patterns are aligned with
the surface geometry of a 3D mesh object, represented by
its minimal curvature directions. Figure 2 presents qualita-
tive results on a rabbit mesh textured using different textual
prompts. Each row corresponds to a different description,
with the main texture pattern written on the left and over-
laid vectors indicating the minimal curvature directions on
the surface. As illustrated, our method successfully guides
texture patterns to follow the underlying geometric cues,
a capability that InTex (Tang et al., 2024) lacks (more re-
sults in Figure 8). Compared to InTeX, which uses a pre-
trained model without fine-tuning, our approach exhibits an
interesting capability: the generation of repetitive texture
patterns that align with the curvature structure. Additional
analysis of this effect are provided in Appendix E.3 and
Appendix E.4.

Geometry-Guided Texture Colorization. This task aims
to colorize textures based on surface bending intensity, rep-
resented by mean curvature, an average of the minimal and
maximal curvature directions, on the 3D mesh. Specifi-
cally, the model is encouraged to apply warm colors (e.g.,
red, yellow) in high-curvature regions and cool colors (e.g.,
blue, green) in low-curvature areas. Figure 9 shows qualita-
tive results on rabbit and cow mesh objects colorirzed with
different textual prompts. As illustrated, our method con-
sistently adapts texture colors, regardless of initial patterns,
according to local curvature and successfully maps warmth
and coolness to geometric variation.
Texrure Features Emphasis. This task aims to learn tex-
ture images with salient features (e.g., edges) emphasized at
regions of high surface bending, represented by the magni-
tude of mean curvature. This promotes texture patterns that
highlight 3D surface structure while preserving perceptual
richness through color variation. Figure 3 shows qualitative
results on a rabbit mesh with brick patterns. As illustrated,
our method enhances texture features, such as edges and
mortar, in proportion to local curvature, a capability In-
Tex (Tang et al., 2024) lacks, often resulting in pattern-less
(white) areas, particularly on the back and head of the rabbit
(more results in Figure 10).

Figure 3. Qualitative results of the texture features emphasis exper-
iment on a rabbit (bunny) object.

4. Conclusions
This study presents an end-to-end differentiable preference
learning framework for 3D texture generation, enabling
human preferences, expressed as differentiable reward func-
tions, to be back-propagated through the entire 3D genera-
tive pipeline. To demonstrate its effectiveness, we introduce
four geometry-aware reward functions that guide texture
generation to align closely with the input mesh geometry.
The framework is broadly applicable, supporting any dif-
ferentiable feedback defined in either 2D texture space or
directly on the 3D surface, and is extensible to tasks beyond
texture generation. As future work, we envision applying
this approach to general 3D content creation, including joint
optimization of geometry and texture.

4



Geometry-Aware Preference Learning for 3D Texture Generation

Acknowledgements
We acknowledge funding from Mila Tech Transfer Grant
with Silicolabs. Compute resources provided by Calcul
Quebec and the digital researcher alliance.

References
Abdi, H. and Williams, L. J. Principal component analysis.

Wiley interdisciplinary reviews: computational statistics,
2(4):433–459, 2010.

Avrahami, O., Fried, O., and Lischinski, D. Blended latent
diffusion. ACM transactions on graphics (TOG), 42(4):
1–11, 2023.

Black, K., Janner, M., Du, Y., Kostrikov, I., and Levine, S.
Training diffusion models with reinforcement learning.
In The Twelfth International Conference on Learning
Representations (ICLR), 2024.

Chen, D. Z., Siddiqui, Y., Lee, H.-Y., Tulyakov, S., and
Nießner, M. Text2tex: Text-driven texture synthesis via
diffusion models. In Proceedings of the IEEE/CVF in-
ternational conference on computer vision, pp. 18558–
18568, 2023.

Chen, T., Xu, B., Zhang, C., and Guestrin, C. Training
deep nets with sublinear memory cost. arXiv preprint
arXiv:1604.06174, 2016.

Christiano, P. F., Leike, J., Brown, T., Martic, M., Legg,
S., and Amodei, D. Deep reinforcement learning from
human preferences. Advances in neural information pro-
cessing systems, 30, 2017.

Dong, H., Xiong, W., Goyal, D., Zhang, Y., Chow, W.,
Pan, R., Diao, S., Zhang, J., Shum, K., and Zhang, T.
Raft: Reward ranked finetuning for generative foundation
model alignment. Trans. Mach. Learn. Res., 2023.

Du, X., Zhou, Z., Wu, X., Wang, Y., Wang, Z., Zheng, Y.,
and Jin, C. Multicolor: Image colorization by learning
from multiple color spaces. In Proceedings of the 32nd
ACM International Conference on Multimedia, pp. 6784–
6792, 2024.

Fan, Y., Watkins, O., Du, Y., Liu, H., Ryu, M., Boutilier,
C., Abbeel, P., Ghavamzadeh, M., Lee, K., and Lee, K.
Dpok: Reinforcement learning for fine-tuning text-to-
image diffusion models. Advances in Neural Information
Processing Systems, 36:79858–79885, 2023.

Hasler, D. and Suesstrunk, S. E. Measuring colorfulness in
natural images. In Human vision and electronic imaging
VIII, volume 5007, pp. 87–95. SPIE, 2003.

Hu, E. J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang,
S., Wang, L., Chen, W., et al. Lora: Low-rank adaptation
of large language models. ICLR, 1(2):3, 2022.

Jacobson, A., Panozzo, D., et al. libigl: A simple C++ ge-
ometry processing library, 2018. https://libigl.github.io/.

Laine, S., Hellsten, J., Karras, T., Seol, Y., Lehtinen, J.,
and Aila, T. Modular primitives for high-performance
differentiable rendering. ACM Transactions on Graphics
(ToG), 39(6):1–14, 2020.

Lin, C.-H., Gao, J., Tang, L., Takikawa, T., Zeng, X.,
Huang, X., Kreis, K., Fidler, S., Liu, M.-Y., and Lin,
T.-Y. Magic3d: High-resolution text-to-3d content cre-
ation. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 300–309,
2023.

Liu, S., Li, T., Chen, W., and Li, H. Soft rasterizer: A
differentiable renderer for image-based 3d reasoning. In
Proceedings of the IEEE/CVF international conference
on computer vision, pp. 7708–7717, 2019.

Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright, C.,
Mishkin, P., Zhang, C., Agarwal, S., Slama, K., Ray, A.,
et al. Training language models to follow instructions
with human feedback. Advances in neural information
processing systems, 35:27730–27744, 2022.

Paszke, A. Pytorch: An imperative style, high-performance
deep learning library. arXiv preprint arXiv:1912.01703,
2019.

Pearson, K. Liii. on lines and planes of closest fit to systems
of points in space. The London, Edinburgh, and Dublin
philosophical magazine and journal of science, 2(11):
559–572, 1901.

Poole, B., Jain, A., Barron, J. T., and Mildenhall, B. Dream-
fusion: Text-to-3d using 2d diffusion. arXiv preprint
arXiv:2209.14988, 2022.

Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G.,
Agarwal, S., Sastry, G., Askell, A., Mishkin, P., Clark, J.,
et al. Learning transferable visual models from natural
language supervision. In International conference on
machine learning, pp. 8748–8763. PmLR, 2021.

Rafailov, R., Sharma, A., Mitchell, E., Manning, C. D., Er-
mon, S., and Finn, C. Direct preference optimization:
Your language model is secretly a reward model. Ad-
vances in Neural Information Processing Systems, 36:
53728–53741, 2023.

Richardson, E., Metzer, G., Alaluf, Y., Giryes, R., and
Cohen-Or, D. Texture: Text-guided texturing of 3d
shapes. In ACM SIGGRAPH 2023 conference proceed-
ings, pp. 1–11, 2023.

5



Geometry-Aware Preference Learning for 3D Texture Generation

Rombach, R., Blattmann, A., Lorenz, D., Esser, P., and
Ommer, B. High-resolution image synthesis with latent
diffusion models. In Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition, pp.
10684–10695, 2022.

Tang, J., Lu, R., Chen, X., Wen, X., Zeng, G., and Liu,
Z. Intex: Interactive text-to-texture synthesis via unified
depth-aware inpainting. arXiv preprint arXiv:2403.11878,
2024.

Wu, J. Z., Ge, Y., Wang, X., Lei, S. W., Gu, Y., Shi, Y.,
Hsu, W., Shan, Y., Qie, X., and Shou, M. Z. Tune-a-
video: One-shot tuning of image diffusion models for
text-to-video generation. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 7623–
7633, 2023.

Ye, J., Liu, F., Li, Q., Wang, Z., Wang, Y., Wang, X., Duan,
Y., and Zhu, J. Dreamreward: Text-to-3d generation with
human preference. In European Conference on Computer
Vision, pp. 259–276. Springer, 2024.

Zeng, X., Chen, X., Qi, Z., Liu, W., Zhao, Z., Wang, Z., Fu,
B., Liu, Y., and Yu, G. Paint3d: Paint anything 3d with
lighting-less texture diffusion models. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pp. 4252–4262, 2024.

Zhang, L., Rao, A., and Agrawala, M. Adding conditional
control to text-to-image diffusion models. In Proceedings
of the IEEE/CVF international conference on computer
vision, pp. 3836–3847, 2023.

A. Differentiable 3D Texture Preference
Learning Algorithm

We outline the training procedure of the proposed end-toend
differentiable framework in Algorithm 1. The algorithm
supports any form of human preference that can be formu-
lated as a differentiable feedback signal, either in the 2D
texture space or directly on the 3D surface. This flexibility
makes the approach broadly applicable and extensible to a
wide range of 3D tasks beyond texture generation.

Algorithm 1 Differentiable 3D Texture Preference Learning
Require: Inference timesteps T , training iterations E,

prompt dataset pc, camera viewpoints for texture gen-
eration Vgen, camera viewpoints for texture evaluation
Veval, pre-trained diffusion model ϵθ conditioned on con-
trol commands generated by the ControlNet model, and
diffusion model weights θ
for e = 1 to E do
# Step 1: Texture Generation
Sample a prompt c ∼ pc, and sample xT ∼ N (0, I).
Initialize the 3D asset’s parameters a including texture
image albedo, weight image cnt, and the view cosine
cache image viewcos.
for vgen in Vgen do
hi = DiffRender(a, vgen)
for t = T to 1 do
yit−1 = ControlNet(hi, t, c)
xi
t−1 = µ(xi

t, y
i
t−1, t, c) + σtz, z ∼ N (0, I)

end for
Inpaint3DAsset(a, vgen)
albedo← Update3DAsset(a, vgen)

end for
# Step 2: Texture Preference
Learning
if 3D Reward then

for veval in Veval do
hi = DiffRender(a, veval)
reward = reward+ r(hi)

end for
reward = reward/len(Veval)
g = −∇θreward

else if Texture Reward then
g = −∇θr(albedo)

end if
θ ← θ − ηg

end for
return θ

B. Symmetry-Aware Reward Design
We propose a differentiable reward function that encourages
texture patterns to be symmetric across mirrored UV co-
ordinates while maintaining visual richness through color

6



Geometry-Aware Preference Learning for 3D Texture Generation

variation. We first identify the mesh’s intrinsic plane of sym-
metry using Principal Component Analysis (PCA) (Abdi &
Williams, 2010; Pearson, 1901), then compute mirror pairs
of surface points across this plane, project these pairs into
the 2D UV domain for use in a symmetry-aware reward
function, and finally compute the symmetry reward. The
four steps are outlined in the following.

Symmetry plane estimation via PCA. To estimate the
mesh’s dominant symmetry plane, we apply principal com-
ponent analysis (PCA) to the 3D vertext coordinates. Let
{vi ∈ R3}Ni=1 denoted the 3D vertext positions of the
mesh. We then compute the centroid of the mesh as
c = 1

N

∑N
i=1 vi. Next, we construct the covariance matrix

of the centered vertices: Σ = 1
N

∑N
i=1 (vi − c) (vi − c)

⊤.
We then perform eigen-decomposition of Σ, yielding eigen-
values λ1 ≤ λ2 ≤ λ3 ≤ and corresponding orthonormal
eigenvectors e1, e2, e3. Teh eigenvector n = e1 associated
with teh smallest eigenvalue is to taken to define the normal
vector of the symmetry plane, as it corresponds to the di-
rection of least variance in the point cloud (vertices). The
symmetry plane Π is then defined as the set of points:

Π =
{
x ∈ R3 | (x− c) · n = 0

}
(8)

Reflecting vertices across the symmetry plane. To
identify symmetric correspondences, we first compute the
signed distance of each vertex to the plane: di = (vi − c) ·
n. We keep only the vertices where di > 0, i.e., those
lying on one side of the plane, to avoid duplication. Each
selected vi is then reflected across the plane to compute
its mirrored position vmirror

i ∈ R3 using: vmirror
i = vi −

2 [(vi − c) · n]n.

Projecting 3D mirror points into UV space. To obtain
the UV coordinates corresponding to vmirror

i , we perform
a closest-point query on the mesh surface to find the nearest
triangle containing the surface projection of vmirror

i . Given
the triangle’s 3D vertices v1, v2, v3, and corresponding UV
coordinates u1, u2, u3 ∈ [0, 1]2, we compute barycentric
coordinates (β1, β2, β3) of the projected point and obtain
the UV coordinates of the mirror as: umirror

i = β1u1 +
β2u2+β3u3. We store the UV coordinate ui of the original
vertex along with umirror

i and form a pair (ui, u
mirror
i )

used in our symmetry-awared reward.

Symmetry-aware texture reward design Given a set of
UV coordinate pairs {(ui,u

mirror
i )}Mi=1, obtained by project-

ing symmetric 3D vertex pairs into the UV domain, we
define a differentiable reward function that encourages sym-
metry in the generated texture. Let T ∈ R3×H×W denote
the RGB texture defined in UV space. For each UV pair, we
sample RGB values via bilinear interpolation:

Ti = Sample(T ,ui), T mirror
i = Sample(T ,umirror

i ) (9)

where Ti, T mirror
i ∈ R3 represent the RGB values at each

location. Sampling is implemented using the differentiable
grid sample operation in Pytorch (Paszke, 2019) to en-
sure gradient flow during training. To encourage symmetry,
we minimize the mean squared error (MSE) between origi-
nal and mirrored samples:

Lsymmetry =
1

M

M∑
i=1

∥∥Ti − T mirror
i

∥∥2
2

(10)

We define the symmetry reward as the negative of this loss:

Rsymmetry = −Lsymmetry (11)

To discourage trivial (e.g., grayscale) solutions, similar to
texture features emphasis reward (Section 2.3), we augment
the symmetry reward with a colorfulness term using Equa-
tion (6). The total reward is a weighted combination of the
symmetry alignment and colorfulness terms:

R4 = αsym · Rsymmetry + αcolor · Rcolor (12)

We use αsym = 1.0 and αcolor = 0.05 in our experiments.

C. Remarks on The Texture Generation Step

Figure 4. Visualization of three main stages in the texture genera-
tion: (i) rendering, render the object from a camera viewpoint using
a differentiable renderer and extract a rendering buffer, (ii) depth-
aware painting, given a text prompt, each viewpoint is painted
using a depth-aware text-to-image diffusion model, guided by a
pre-trained ControlNet that provides depth information. This en-
sures the generated textures align with both the text and depth
(geometry) information, and (iii) update the final texture. We re-
peat this process iteratively across all camera viewpoints until the
full 3D surface is painted.

Due to the stochastic nature of the diffusion models, ap-
plying the iterative painting process for texturing process,
explained in Section 2.1, would leads to having inconsistent
textures with noticeable seams on the appearance of the
object. To resolve this issue, we take a dynamic partitioning
approach similar to (Richardson et al., 2023; Chen et al.,
2023), where each rendered viewpoint is divided to three
regions based on a concept called view direction cosine. The

7



Geometry-Aware Preference Learning for 3D Texture Generation

Figure 5. Visualization of rendering in the texture generation step.
For each camera viewpoint, we render the object using a differ-
entiable renderer and extract rendering buffer including painted
viewpoint image, depth maps, normal maps, and UV coordinates.
Then, using the normal map, obtained from the differentiable
renderer, we compute the view direction cosine, and then gener-
ate three regions (masks), explained above, for each viewpoint:
Mgenerate,Mrefine and Mkeep. These three regions will serve
as input to the next step of the texturing process to enforce the
consistency in the output texture.

view direction cosine is utilized to determine how the sur-
face is facing the viewer. Mathematically, the view direction
cosine is represented as the cosine of the angle between
two vectors: the view direction vector which is the direction
of the viewer’s (in our case, the camera) line of sight, and
mesh’s surface normal vectors associated with each face or
vertex of the mesh. These normals indicate the direction
perpendicular to the surface at that point (vertex):

viewcos = cos(ϕ) =
V⃗ .N⃗

|V⃗ | · |N⃗ |
(13)

where V⃗ is the view vector, a vector starting from the camera
position points toward a point on the surface of the 3D mesh
object, N⃗ is the surface normal, vector perpendicular to the
mesh surface, and ϕ is the angle between the view vector
and surface normal. During the rendering process, this helps
determine how to project and render 3D objects onto a 2D
screen, ensuring that objects are viewed from the correct
perspective. More specifically, the view direction cosine is
computed for each rendered viewpoint, and the rendered
viewpoint is partitioned into three regions based on the value
of view direction cosine: 1) generate - the regions have been
viewed for the first time by the camera and have never been
painted during the texturing process, 2) refine - the regions
that have already been viewed and painted from a viewpoint
in previous iterations, but is now seen from a better camera
angle (i.e. higher view direction cosine values) and should
be painted again, and 3) keep - the regions that have already
been viewed and pained from a good camera angle and
should not be painted again. Appendix C.1 presents further
details and the differentiable mathematical representation
of our texture generation step.

C.1. Mathematical Representation

Mathematically, the texture-generation process can be for-
mulated as steps below (see Figure 4): (i) rendering, render
the object using a differentiable renderer (Laine et al., 2020)
and extract a rendering buffer hi corresponding to the cam-
era viewpoint i, including painted viewpoint image, depth
maps, normal maps, and UV coordinates:

hi = frender(a, vgen) (14)

where a is the 3D asset’s parameters including texture image,
the view direction cosine for the current view, view direction
cosine for previous iterations, vgen is the camera viewpoints
for texture-generation process, and i ∈ vgen is the current
viewpoint. Using the normal map, obtained from the dif-
ferentiable renderer, we then compute the view direction
cosine, and then generate three regions (masks), explained
above, for each viewpoint: Mgenerate,Mrefine and Mkeep.
These three regions will serve as input to the next step of the
texturing process to enforce the consistency in the output
texture. Figure 5 visually demonstrates the details of the
output generated by the differentiable renderer. (ii) Depth-
aware painting, at each denoising step t, the depth-aware
diffusion process can be formulated as below:

yit−1 = fcontrolnet(h
i, t, c)

xi
t−1 = µ(xi

t, y
i
t−1, t, c) + σtz, z ∼ N (0, I)

(15)

where fcontrolnet represents the ControlNet model whose
parameters are fixed during the training, hi is the differen-
tiable renderer output, yit−1 is the control signal generated
by the ControlNet model at timestep t for viewpoint i, and c
is the prompt embdedding obtained from the CLIP encoder
model (Radford et al., 2021). To enforce the consistency
during the painting process, we follow (Avrahami et al.,
2023) to incorporate latent mask blending in the latent space
of the diffusion process. Specifically, by referring to the part
that we wish to modify as mblended and to the remaining
part as mkeep = 1 −mblended, we blend the two parts in
the latent space, as the diffusion progresses. This modifies
the sampling process in a way that the diffusion model does
not change the keep regions of the rendered image. There-
fore, the latent variable at the current diffusion timestep t is
computed as:

zit ← zit ⊙mblended + ziOt
⊙ (1−mblended) (16)

where ziOt
is the latent code of the original rendered image

with added noise at timestep t and for the viewpoint i and
mblended is the painting mask defined below:

mblended =

{
Mgenerate , t ≤ (1− α)× T

Mgenerate ∪Mrefine , t > (1− α)× T

(17)
where T is the total number of diffusion denoising steps
and α is the refining strength which controls the level of
refinement over the viewpoints - the larger it is, the less
strong refinement we will have during the multi-viewpoint

8



Geometry-Aware Preference Learning for 3D Texture Generation

texturing process. Lastly, when the blending latent diffusion
process is done, we output the image by decoding the re-
sultant latent using the pre-trained variational autoencoder
(VAE) existing in the stable diffusion pipeline.

C.2. Modifications To Make Texture Generation Step
Differentiable

Differentiable Camera Pose Computation. Instead of
using traditional camera positioning, to enable end-to-end
training with backpropagation through the camera position-
ing steps, we provide a re-implementation of this procedure
using PyTorch (Paszke, 2019) operations, preserving gra-
dient flow. More specifically, camera poses are computed
using statically generated camera-to-world transformation
matrices from spherical coordinates (elevation and azimuth).
This process involved the following steps: (i) spherical to
cartesian conversion - given azimuth ϕ, elevation θ, and
radius r, the camera position c ∈ R3 is computed as:

x = r cos(θ) sin(ϕ),

y = −r sin(θ),
z = r cos(θ) cos(ϕ),

c = [x, y, z]⊤ + t,

(18)

where t is the target point. (ii) Look-at matrix construction
- the rotation matrix R ∈ R3×3 is computed using a right-
handed coordinate system by constructing orthonormal basis
vectors:

f = normalize (c− t) (forward vector) ,
r = normalize (up× f) (right vector) ,
u = normalize (f × r) (up vector) ,

(19)

where up = [0, 1, 0]T . The camera pose matrix T ∈ R4×4

is then presented as:

T =

[
R c
0⊤ 1

]
(20)

This modification transforms a previously non-trainable pre-
processing step into a fully differentiable component, al-
lowing camera positions and orientations to participate in
gradient-based learning, particularly during texture pref-
erence learning where the texture is optimized to match
geometry-aware reward signals.

Differentiable Viewpoint Dynamic Partitioning (Mask-
ing). In the original implementation of the texture gen-
eration step (Tang et al., 2024), dynamic viewpoint parti-
tioning for multi-view texturing was performed using hard,
non-differentiable binary masks based on thresholding and
bitwise operations. Specifically, three disjoint masks were
used to guide different behaviors across image regions dur-
ing training: (i) a generation mask Mgenerate, (ii) a refine-
ment mask Mrefine, and (iii) a keep mask Mkeep. Let

c ∈ RH×W denotes the count map (indicating coverage
across viewpoints), and v, vold ∈ RH×W be the view-
consistency scores for the current and cached viewpoints,
respectively. The original masks were defined as:

Mgenerate = 1[c < 0.1]

Mrefine = 1 [v > vold ] · ¬Mgenerate

Mkeep = ¬Mgenerate · ¬Mrefine

(21)

where 1[·] denotes the indicator function and logical op-
erators like, ¬ produce discrete masks, making them non-
differentiable and unsuitable for gradient-based optimiza-
tion. To enable end-to-end differentiability, we replace these
hard decisions with soft, continuous approximations using
the sigmoid function. Let σk(x) =

1
1+exp(−kx) denote the

sigmoid function with steepness k. We define soft masks as
follows: (i) soft generation mask -

M soft
generate = 1− σk(c− 0.1) (22)

This approaximates 1[c < 0.1], where k = 100 ensures a
sharp transition.(ii) soft refinement mask -

M soft
refine = σk (v − vold ) ·

(
1−M soft

generate

)
(23)

This replaces the hard bitwise AND with elementwise mul-
tiplication and soft comparison. (iii) soft keep mask -

M soft
keep =

(
1−M soft

generate

)
·
(
1−M soft

refine

)
(24)

These soft masks retain the semantics of the original binary
partitioning but allow gradients to propagate through all
mask operations, enabling joint optimization with the diffu-
sion model during our texture preference learning step. We
also apply bilinear interpolation in the zooming operation
to maintain spatial smoothness across render resolutions.

D. Remarks on Memory-saving Details in The
Texture Preference Learning Step

Activation Checkpointing. Gradient or activation check-
pointing (Chen et al., 2016) is a technique that trades com-
pute for memory. Instead of keeping tensors needed for
backward alive until they are used in gradient computation
during backward, forward computation in checkpointed re-
gions omits saving tensors for backward and recomputes
them during the backward pass. In our framework, we apply
two levels of gradient checkpointing to our pipeline. First,
low-level checkpointing, where we apply the checkpointing
technique to the sampling process in the diffusion model
by only storing the input latent for each denoising step, and
re-compute the UNet activations during the backpropaga-
tion. Second, high-level checkpointing, where we apply the
checkpointing technique to every single-view texturing pro-
cess in our multi-view texturing algorithm. Practically, what

9



Geometry-Aware Preference Learning for 3D Texture Generation

it means is that, for each viewpoint during the multi-view
iterative texturing process, intermediate tensors inside the
per-view texturing are not saved. Instead, only the inputs
(camera pose, prompt embeddings, etc.) are saved. Then,
during the backward pass, we recompute the forward pass
of the per-view texturing again so gradients can flow back-
ward. Overall, this technique allows to keep memory usage
constant even across many viewpoints and diffusion steps
which consequently leads to scaling to more views and using
higher-resolution renders or more diffusion steps to have a
more realistic and visually appealing texture image without
any memory issues.

Low-Rank Adaptation (LoRA). LoRA is a technique,
originally introduced in (Hu et al., 2022) for large language
models, that keeps the pre-trained model weights fixed and
adds new trainable low-rank matrices into each layer of the
neural architecture which highly reduces the number of train-
able parameters during the training process. Mathematically,
for a layer with base parameters W whose forward pass is
h = Wx, the LoRA adapted layer is h = Wx + BAx,
where A and B are the low-rank trainable matrices and the
W remains unchanged during the training process. In our
case, we apply the LoRA techniques to the U-Net archi-
tecture inside the latent diffusion model (LDM) (Liu et al.,
2019) which lies at the heart of our texture generation step.
This allows us to fine-tune the LDM using a parameter set
that is smaller by several orders of magnitude, around 1000
times fewer, than the full set of LDM parameters.

E. Remarks on Geometry-Aware Reward
Design

E.1. Principal Curvature Directions

Principal curvature directions at a point on a surface describe
how the surface bends in different directions. Curvature is
defined as k = 1

R where R is the radius of the circle that
best fits the curve in a given direction. Among all possible
directions, two orthogonal directions, called the principal
curvature directions, are of special interest: the maximum
and minimum curvature directions. The minimum curvature
direction corresponds to the direction in which the surface
bends the least (i.e., the largest fitting circle), while the
maximum curvature direction corresponds to the direction
in which it bends the most (i.e., the smallest fitting circle).
See Figure 6 for an illustration. Additionally, the mean
curvature at a point is defined as the average of the two
principal curvatures: H = 1

2 (k1 + k2). We use the Libigl
library (Jacobson et al., 2018) to compute both the mean
curvature values and the principal curvature directions on
our 3D mesh surfaces.

Figure 6. Visualization of principal curvatures (Image Credit:
Keenan Crane). The minimum curvature direction corresponds to
the direction in which the surface bends the least (i.e., the largest
fitting circle), while the maximum curvature direction corresponds
to the direction in which it bends the most (i.e., the smallest fitting
circle).

E.2. Remarks on Geometry-Guided Colorization and
Texture Features Emphasis Rewards

Note that to compute the curvature-quided colorization re-
ward, we need the mean curvature 2D map as a way to
incorporate mesh’s geometry information into texture learn-
ing objectives (Equation (3)). To this end, we construct
a mean curvature 2D map, a 2D image in UV space that
encodes the mean curvature of the underlying 3D mesh sur-
face and then compute the rewards in the 2D UV space by
comparing the texure image and the 2D curvature map. This
process involves the following key steps.

UV-Pixel mapping. Each mesh vertex is associated with
a UV coordinate (u, v) ∈ [0, 1]2. These UV coordinates
are scaled to a discrete H ×W pixel grid representing the
output texture space.

Per-face barycentric interpolation. For each triangular
face of the mesh, we project its UV coordinates to the texture
grid, forming a triangle in 2D space. We then compute a
barycentric coordinate transform that expresses any point
within the triangle as a convex combination of its three
corners.

Compute barycentric coordinates. We iterate over each
pixel inside the UV triangle’s bounding box and compute
its barycentric coordinates. If a pixel lies within the triangle,
its mean curvature value is interpolated from the curvature
values at the triangle’s corresponding 3D vertices using:

val = bary[0] · curvv[tri v[0]]+
bary[1] · curvv[tri v[1]]+
bary[2] · curvv[tri v[2]] (25)

where bary[i] is the i-th barycentric coordinate of the pixel
relative to the UV triangle, tri v[i] is the index of the i-th 3D
vertex corresponding to the UV triangle corner, and curvv is

10

http://wordpress.discretization.de/geometryprocessingandapplicationsws19/a-quick-and-dirty-introduction-to-the-curvature-of-surfaces/


Geometry-Aware Preference Learning for 3D Texture Generation

the mean curvature array, containing one scalar curvature per
3D vertex. This produces a smoothly interpolated curvature
value for each pixel within the UV triangle.

Accumulation and averaging. Each pixel may be covered
by multiple UV triangles. Therefore, we accumulate curva-
ture values and record the number of contributions per pixel.
After processing all triangles, we normalize the curvature
value at each pixel by the number of contributions, produc-
ing a final per-pixel average curvature. The output is then
a dense 2D curvature texture defined over the UV domain.
This texture captures the surface’s geometric structure and
is suitable for use in differentiable training objectives or
geometric regularization.

E.3. Remarks on Geometry-Texture Alignment Reward

Note that curvature is a vertex-level attribute defined per
vertex on the 3D mesh surface, whereas texture gradients are
defined per pixel in the 2D UV space. Therefore, to guide
texture generation using surface-aware vector fields and to
compute cosine similarity between curvature vectors and
texture gradients (Equation (2)), both must be in the same
space. To address this, we project the minimum principal
curvature direction vectors, defined at each vertex on the
3D mesh, into the corresponding 2D UV space. Unlike
scalar quantities like mean curvature, vector fields require
special process to preserve both direction and tangency. This
process involves the following steps.

Compute principal curvature directions. We use the
method from libigl (Jacobson et al., 2018) to compute the
minimum principal curvature direction di ∈ R3 at each
vertex vi ∈ R3 of the mesh. Each direction vector lies in
the tangent plane of the surface at its vertex.

Project to the tangent plane. Although the direction vec-
tors are already tangent to the surface by construction, we
explicitly project them onto the local tangent plane to re-
move residual normal components (due to numerical noise).
For each vertex: dtan

i = di − (di · ni)ni where ni is the
surface normal at vertex i.

Trace vector to find triangle containment. For each pro-
jected vector dtan

i , we trace it forward from the verex vi to
obtain a new point: pi = vi+

1
λi
·dtan

i where λi is a normal-
ization constant to ensure the traced vector remains within a
local triangle. We then search among the projected triangles
incident to vi to find one in which the point pi lies. If found,
we compute the barycentric coordinates βi = [β1, β2, β3]
of pi relative to the triangle’s projected vertices.

Convert to UV coordinates. Using the barycentric weights
and the corresponding UV triangle (u1,u2,u3), we map
the end of the vector to UV space: uend = β1u1 + β2u2 +
β3u3. The UV origin uorig is determined from the texture
coordinate associated with vertex vi. The 2D texture-space

direction vector is then:

duv
i =

uend − uorig

∥uend − uorig ∥
(26)

Populate texture coordinates. Since a single vertex may be
associated with multiple UV coordinates (due to UV seams),
the final duv

i is assigned to all associated texel indices. This
step builds a complete UV-space vector field aligned with
curvature directions.

Post-processing and smoothing. Some vertices may not
yield a valid projection due to degenerate geometry, occlu-
sion, or sharp creases. For these cases, we apply Lapla-
cian smoothing, and iterative neighbor averaging technique
using a texture-space adjacency graph. After resolving
missing values, we apply several iterations of vector field
smoothing to reduce visual noise while preserving direction-
ality: duv

i ← mean(neighbors of i). This vector field in
UV space is then used to supervise or visualize alignment of
learned texture patterns with surface geometry using Equa-
tion (2).

E.4. Emergence of Repetitive Patterns through
Geometry-Aligned Sampling.

An interesting observation in our results (see Figure 2 and
Figure 8) is the emergence of repetitive texture patterns af-
ter fine-tuning with the geometry-texture alignment reward.
This behavior stems from the mismatch between the number
of curvature vectors and the number of texture gradients.
Specifically, curvature is a vertex-level attribute defined per
mesh vertex, whereas texture gradients are defined per pixel
in the 2D UV space. For example, in the bunny mesh ex-
ample, we have 4487 curvature vectors (one per vertex),
but over one million texture gradients from a 1024× 1024
texture image. To compute cosine similarity between cur-
vature vectors and texture gradients, both must be in the
same space and of the same dimension. We address this
by sampling the texture gradients at the UV coordinates
corresponding to mesh vertices, the same positions where
curvature vectors are defined. This results in two aligned
tensors (both of size 4487 in the bunny case), enabling the
reward function to compare directional alignment directly.
Over time, this differentiable sampling mechanism guides
the model to place strong texture features (e.g., edges) at
those specific UV coordinates. As these positions remain
fixed (being tied to the mesh vertices), the model learns to re-
inforce edge features at the same UV locations across views
and iterations. This alignment results in visually repetitive
patterns in the generated textures, especially in regions of
high curvature.

11



Geometry-Aware Preference Learning for 3D Texture Generation

Table 1. A quantitative comparison between our proposed method
(after fine-tuning) and InTeX (Tang et al., 2024) (before fine-
tuning) across four experiments. We repeat each experiment five
times and report the mean and standard deviation values of rewards.
GEO-TEX-ALIGN, GEO-TEX-COLOR, TEX-EMPHASIS, and
SYM-AWARE stand for geometry-texture alignment reward (Sec-
tion 2.3), geometry-guided texture colorization reward (Sec-
tion 2.3) , texture features emphasis reward (Section 2.3), and
symmetry-aware texture generation reward (Appendix B), respec-
tively.

REWARD OURS INTEX

GEO-TEX-ALIGN 0.3347 ± 0.0039 0.2915 ± 0.0019
GEO-TEX-COLOR 0.6006 ± 0.0003 -0.0256 ± 0.0195
TEX-EMPHASIS -0.1106 ± 0.0002 -0.1423 ± 0.0007
SYM-AWARE 0.0114 ± 0.0093 -0.0635 ± 0.0039

F. Additional Experiments and Results
We show expanded results from the main paper featuring
more texture image and more viewpoints of different 3D
objects. Figure 7, Figure 8, Figure 9, and Figure 10 shows
the qualitative results of the symmetry-aware, geometry-
texture alignment, geometry-guided texture colorization,
and texture features emphasis experiments, respectively.

Symmetry-Aware Texture Generation. The goal of this
experiment is to encourages texture consistency across sym-
metric regions of a 3D object (see Appendix B). We evaluate
this by training our pipeline using the symmetry reward on
a balloon mesh object. Figure 7 presents qualitative re-
sults before and after fine-tuning with the symmetry reward.
We show the rendered 3D object from multiple viewpoints,
alongside the corresponding texture images (the last row),
which highlight the symmetric regions. A vertical dashed
line marks the symmetry axis in each texture image. The
purple plane passing through the center of the balloon in
each viewpoint indicates the estimated symmetry plane of
the object. As shown, compared to the pre-trained model
(Tang et al., 2024), our method generates textures that are
more consistent across symmetric parts of the mesh, demon-
strating the reward’s effectiveness in enforcing symmetry
consistency. Without symmetry supervision, patterns often
differ noticeably between sides (more results in Figure 7).

12



Geometry-Aware Preference Learning for 3D Texture Generation

Figure 7. Qualitative results of symmetry-aware experiment for different examples on a balloon mesh object. For each example (each
rwo), we show the rendered 3D object from multiple viewpoints, alongside the corresponding texture images (rightmost column), which
highlight the symmetric regions. A vertical dashed line marks the symmetry axis in each texture image. The purple plane passing through
the center of the balloon in each viewpoint indicates the estimated symmetry plane of the object. As shown, compared to the pre-trained
model (Tang et al., 2024), our method generates textures that are more consistent across symmetric parts of the mesh. Without symmetry
supervision, patterns often differ noticeably between sides. In contrast, textures trained with the proposed symmetry reward exhibit
visually coherent features across symmetric regions, demonstrating the reward’s effectiveness in enforcing symmetry consistency.

13



Geometry-Aware Preference Learning for 3D Texture Generation

Figure 8. Qualitative results of the geometry-texture alignment experiment on a rabbit (bunny) mesh. For each example, we show the
rendered 3D object from multiple viewpoints, with the corresponding texture image in the rightmost column. Minimum curvature vectors,
representing the underlying surface geometry, are visualized in the bottom row and overlaid on the textured objects for comparison.
As shown, our method produces textures whose patterns align more closely with the mesh’s curvature directions, unlike InTex (Tang
et al., 2024). Moreover, a notable outcome in our results is the emergence of repetitive texture patterns after fine-tuning with the
geometry-texture alignment reward. This behavior arises from the differentiable sampling strategy used during reward computation.
Specifically, it encourages the model to place edge features at specific UV coordinates which ultimately results in structured and repeated
patterns in the texture (see Appendix E.4).

14



Geometry-Aware Preference Learning for 3D Texture Generation

Figure 9. Qualitative results of the geometry-guided texture colorization experiment on rabbit (bunny) a cow mesh objects. For each
example, we show the rendered 3D object from multiple viewpoints, with the corresponding texture image in the rightmost column. The
goal is to colorize textures based on surface bending intensity, represented by mean curvature, an average of the minimal and maximal
curvature directions, on the 3D mesh. Specifically, the model is encouraged to apply warm colors (e.g., red, yellow) in high-curvature
regions and cool colors (e.g., blue, green) in low-curvature areas. As illustrated, our method consistently adapts texture colors, regardless
of initial patterns, according to local curvature and successfully maps warmth and coolness to geometric variation.

15



Geometry-Aware Preference Learning for 3D Texture Generation

Figure 10. Qualitative results of the texture features emphasis experiment on a rabbit (bunny) objects with different text prompts. For
each example, we show the rendered 3D object from multiple viewpoints, with the corresponding texture image in the rightmost column.
This goal is to learn texture images with salient features (e.g., edges) emphasized at regions of high surface bending, represented by the
magnitude of mean curvature. This encourages texture patterns that highlight 3D surface structure while preserving perceptual richness
through color variation. As illustrated, our method enhances texture features, such as edges and mortar, in proportion to local curvature, a
capability InTex (Tang et al., 2024) lacks, often resulting in pattern-less (white) areas, particularly on the back and head of the rabbit.

16


